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Abstract

Human activity understanding is an important research problem due to its relevance to

a wide range of applications. Recently, 3D skeleton-based activity analysis becomes

popular due to its succinctness, robustness, and view-invariant representation. In this

thesis, we focus on human activity understanding in 3D skeleton sequences.

Recent works attempted to utilize recurrent neural networks (RNNs) and long

short-term memory (LSTM) networks to model the temporal dependencies between

the 3D positional configurations of human body joints for better analysis of human

activities in the 3D skeletal data. As the first work of this thesis, we apply recurrent

analysis to spatial domain as well as temporal domain to better analyze the hidden

sources of action-related information within the human skeleton sequences in both of

these domains simultaneously. Based on the pictorial structure of Kinect’s skeletal

data, an effective tree-structure based traversal framework is also proposed. In order

to deal with the noise in the skeletal data, a new gating mechanism within LSTM

module is introduced, with which the network can learn the reliability of the sequential

data and accordingly adjust the effect of the input data on the updating procedure

of the long-term context representation stored in the unit’s memory cell. Moreover,

we introduce a novel multi-modal feature fusion strategy within the LSTM unit in

this thesis. The comprehensive experimental results on seven challenging benchmark

datasets for human action recognition demonstrate the effectiveness of the proposed

method.
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In skeleton-based action recognition, not all skeletal joints are informative for

activity analysis, and the irrelevant joints often bring noise which can degrade the

performance. Therefore, we need to pay more attention to the informative ones.

However, the original LSTM network does not have explicit attention ability. In our

second piece of work, we propose a new class of LSTM network, global context-aware

attention LSTM, for skeleton-based action recognition, which is capable of selectively

focusing on the informative joints in each frame by using a global context memory

cell. To further improve the attention capability, we also introduce a recurrent attention

mechanism, with which the attention performance of our network can be enhanced

progressively. Besides, a two-stream framework, which leverages coarse-grained

attention and fine-grained attention, is also introduced. The proposed method achieves

state-of-the-art performance on five challenging datasets for skeleton-based action

recognition.

The aforementioned two works focus on action recognition in well-segmented

skeleton sequences, in which each sequence includes one action sample and we need

to recognize its class. In the third work, we focus on online action prediction in

untrimmed streaming skeleton data, in which each sequence contains multiple action

samples and we need to recognize the class label of the current ongoing activity when

only a part of it is observed. A dilated convolutional network is introduced to model

the motion dynamics in temporal dimension via a sliding window over the temporal

axis for online action prediction. As there are significant temporal scale variations in

the observed part of the ongoing action at different time steps, a novel window scale

selection method is proposed, which makes our network focus on the performed part of

the ongoing action and suppress the possible incoming interference from the previous

actions. An activation sharing scheme is also proposed to handle the overlapping

computations among the adjacent time steps, which enables our framework to run

more efficiently. Moreover, to enhance the performance of our framework for action



vii

prediction with the skeletal input data, a hierarchy of dilated tree convolutions are also

designed to learn the multi-level structured semantic representations over the skeleton

joints at each frame. The proposed approach is evaluated on four challenging datasets.

The extensive experiments demonstrate the effectiveness of the proposed method for

skeleton-based online action prediction.
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Chapter 1

Introduction

1.1 Background

Human activity understanding is amongst the most challenging problems in computer

vision. It has attracted a lot of research attention due to its wide range of application in

security surveillance, human-machine interaction, robotics, patient monitoring, and so

on.

Many existing works in this domain focus on using RGB videos as input [9, 10].

However, it is often challenging to achieve effective and efficient human activity

understanding when we use RGB sequences as input. The first challenge comes from

the large amount of data to be processed, as each video frame generally consists of

millions of pixel values. The second challenge is that the 3D structural information of

the observed activities, which is often important for reliable activity analysis, is not

provided in the 2D frame-based input. Besides, the illumination variations, viewpoint

changes, and cluttered backgrounds are also challenging factors of this task.

To mitigate the aforementioned issues, some recent works [11, 12, 4, 13–16]

started to investigate human activity understanding based on a high-level succinct
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Frame #1 Frame #2 Frame #3 Frame #T . . . 

Fig. 1.1 A sequence of human skeleton data.

representation: 3D skeleton data, i.e., performing activity analysis by using the 3D

coordinates of the major body joints in each frame as input, as illustrated in Fig. 1.1.

The research on skeleton-based activity analysis is motivated by the studies and

observations in biology [17] that demonstrate that the skeleton data is informative

enough for representing human behaviors, even without appearance information [18].

(a) (b) 

(c) 

Fig. 1.2 Illustration of the depth sensors. (a) Microsoft Kinect v1. (b) Microsoft Kinect
v2. (c) Asus Xtion.

Human activities are naturally performed in 3D space, thus 3D skeleton data is

suitable for representing human actions [19]. Specifically, the 3D skeleton data can

be easily and effectively acquired in real-time with the low-cost depth sensors [20],

such as the Microsoft Kinect and the Asus Xtion (see Fig. 1.2). Moreover, such a
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representation is robust against variations in viewpoints, illumination, clothing textures,

and cluttered backgrounds [3, 21, 6]. As a result, human activity analysis with 3D

skeleton data becomes popular.1

1.2 Challenges and Motivations

In this thesis, we mainly focus on the task of 3D skeleton-based human activity analysis.

Below we introduce some of the important aspects that need to be considered when

handling this task and the motivations of the proposed methods in this thesis.

(1) Spatio-temporal context dependence.

As illustrated in Fig. 1.3, in the sequence of 3D skeleton data, there are strong

dependency relations among different frames, which reveal the temporal dynamics

of the human motions. Besides, in each singe frame, there is also high dependence

among different body joints, which shows the spatial posture pattern.

Intuitively, to understand the human behaviors in the 3D skeleton sequence well,

the analysis of the context dependency information in both spatial dimension and

temporal dimension is important.

Frame #1 Frame #2 Frame #3 Frame #T . . . 

Fig. 1.3 Illustration of temporal context dependence over frames (denoted as green
lines) and spatial context dependence among different joints in each single frame
(denoted as red lines).

1 The details of deriving the RGB-D data and the skeleton data can be found in these papers: [22, 23].
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This motivates us to design network models to model the context dependencies in

both the spatial and temporal dimensions for human activity analysis (Chapter 3 and

Chapter 5).

(2) Noisy skeleton data.

In 3D skeleton-based activity analysis, the input is a sequence of skeleton data

consisting of the 3D locations of the human body joints. However, these joint locations

that are provided by the depth sensors using a pose estimation algorithm [23] are not

always accurate, as shown in Fig. 1.4. The noisy input data will affect the activity

analysis performance.

Fig. 1.4 Examples of the noisy skeletons from the NTU RGB+D dataset [1].

This motivates us to design a gating method to handle the noisy skeleton data by

learning the reliability of the sequential data and accordingly adjusting the effect of

the input (Chapter 3).

(3) Identifying informative joints.

Not all joints in the 3D skeleton sequence are informative for activity analysis. For

example, the movements of the foot joints are very informative for the action “kicking”,

while the hand joints’ motions are not. As illustrated in Fig.1.5, different activity

sequences often have different informative joints. Besides, in the same sequence, the

informativeness degree of a joint may also vary over the frames.

Motivated by this observation, we investigate to identify the informative joints in

each frame of the skeleton sequence and emphasize their features, and meanwhile

suppress the features of the irrelevant joints, because the irrelevant joints often con-
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Fig. 1.5 In the actions “kicking” and “shaking hands”, the most informative joints are
the foot joints and hand joints, respectively. The most informative joints are labeled as
blue circles. Image samples are from the NTU RGB+D dataset [1].

tribute little for activity analysis, and even bring in noise that corrupts the performance

(Chapter 4).

(4) Temporal scale selection.

In activity analysis, specifically in online activity analysis over a streaming skeleton

sequence that contains multiple action samples, a common approach is to use a sliding

window over the temporal dimension to segment a sub-sequence for analysis at each

temporal step, as shown in Fig. 1.6. In this setting, the used temporal window scale

(size) will affect the effectiveness and efficiency of the activity analysis at each time

step. This indicates choosing a “proper” window scale is important.

Fig. 1.6 Online activity analysis over a streaming skeleton sequence that contains
multiple action samples.

However, it is challenging to determine the temporal window scale, because at

different progress levels of the actions, the “proper” scale may change. For example, at

the early stages of an action sample, we need to use a smaller scale because the larger

ones will cover irrelevant information from the previous action samples, while at the
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later stages, it is better to use a larger window scale to cover more of the observed

parts of the current action.

This motivates us to propose an approach to estimate the proper window scale at

each step, and adopt the estimated proper scale for analysis at each step (Chapter 5).

1.3 Proposed Activity Analysis Models

In this thesis, we present three network models for skeleton-based activity analysis,

each of which addresses one or several important aspects that are discussed in Section

1.2. Below we briefly introduce these three network models.

The first model (Chapter 3) is based on the recurrent networks for sequential

data analysis. We propose a spatio-temporal recurrent network to model the context

dependencies in both the spatial and temporal dimensions of the skeleton sequence

for action recognition. Inspired by the graphical structure of the human skeleton,

we also propose a powerful traversal method to represent the spatial dependency

information within the skeleton. Due to the unreliability of the 3D input data, a new

gating mechanism, called trust gate, is also proposed to improve the robustness of the

network against noise and occlusion. This model achieves state-of-the-art performance

on seven challenging benchmark datasets for 3D human action recognition.

The second model (Chapter 4) extends the original LSTM network to achieve a

Global Context-Aware Attention LSTM (GCA-LSTM) network for skeleton-based

action recognition, which has strong capability in selectively focusing on the infor-

mative joints in each frame of the skeleton sequence with the assistance of global

contextual information. A recurrent attention mechanism is also designed to strengthen

the attention capability of the GCA-LSTM network. Besides, a two-stream framework,

which leverages coarse-grained attention and fine-grained attention, is also introduced.
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This network model yields state-of-the-art performance on five challenging datasets

for 3D action recognition.

The third model (Chapter 5) is designed for handling online action prediction

in untrimmed streaming sequences. Dilated convolutions are applied to model the

motion dynamics in temporal dimension via a sliding window over the time axis.

A hierarchy of dilated tree convolutions are also designed to learn the multi-level

spatial dependency structure over the skeleton joints at each frame. As there are

significant temporal scale variations of the observed part of the ongoing action at

different progress levels, a window scale selection scheme is also designed to make

the network focus on the performed part of the ongoing action and try to suppress

the noise from the previous actions at each time step. This model is evaluated on

four challenging datasets and achieves state-of-the-art performance of online activity

analysis.

1.4 Thesis Contributions

The main contributions of this thesis are summarized as follows:

(1) We introduce two different methods to model the spatio-temporal context

dependency information for the skeleton sequence. First, we extend the LSTM network

that models the context dependency in the temporal domain to a spatio-temporal LSTM

network that analyzes the hidden sources of action-related information within the input

data over both domains concurrently (Chapter 3). Second, we propose a hierarchy of

dilated tree convolutions to model the spatial dependency structure of the skeleton

joints and apply a stack of dilated convolution layers to model the motion dynamics

in the temporal dimension (Chapter 5). These two methods are shown to be effective

in representing the spatio-temporal dependency information in the skeleton data, and

both achieve superior performance for human activity analysis in our experiments.
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(2) We propose a trust gating mechanism to handle the noisy skeleton data that

improves the performance of the network model when dealing with the noisy input

data (Chapter 3). The extensive experiments also demonstrate the efficacy of the trust

gating mechanism for skeleton-based activity analysis.

(3) We design a method to selectively focus on the informative joints in each frame

of the skeleton sequence with the assistance of global contextual information. We

also design a recurrent attention mechanism to improve the attention performance

progressively (Chapter 4). Our experiments show that by selectively focusing on the

informative joints, the activity analysis performance can be improved significantly.

(4) A temporal scale selection scheme is also proposed to handle the temporal scale

variations for online activity analysis. This scheme enables the network model to focus

on the performed part of the ongoing action and try to suppress the interference from

the previous actions at each time step (Chapter 5). The effectiveness of this scheme is

also demonstrated in our experiments.

1.5 Organization of Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we review the

related works in the literature. In Chapter 3, we introduce the proposed spatio-temporal

LSTM network with trust gates for skeleton-based action recognition. In Chapter 4,

we introduce the Global Context-aware Attention LSTM network for skeleton-based

action recognition. In Chapter 5, the scale selection network is proposed for skeleton-

based online action prediction. Finally, in Chapter 6, we conclude this thesis and show

our future research directions.
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Literature Review

In this chapter, we review the existing methods and benchmark datasets that are

relevant to our proposed models for skeleton-based activity analysis.

2.1 Related Methods

We first review the methods that extract hand-crafted features for skeleton-based

action recognition. We then introduce the existing deep learning-based approaches for

skeleton-based action recognition. Finally, we review the methods that are related to

online action prediction in untrimmed sequences.

2.1.1 Skeleton-Based Action Recognition with Hand-crafted Fea-

tures

With the advent of cheap and easy-to-use depth sensors, such as Kinect [20], 3D

skeleton-based human action recognition becomes very popular [24, 25], and different

methods that extract hand-crafted features have been proposed for skeleton-based

action recognition [26–31, 16, 32–40].
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Xia et al. [7] proposed to model the temporal dynamics in action sequences with

the Hidden Markov models (HMMs). They also introduced a compact representation of

postures by calculating the histograms of 3D joint locations for action recognition. The

static postures and dynamics of the motion patterns were represented via eigenjoints

by Yang and Tian [29]. A Naive-Bayes-Nearest-Neighbor (NBNN) classifier learning

approach was also used in [29]. Chaudhry et al. [41] encoded the skeleton sequences

to spatio-temporal hierarchical models and used a set of linear dynamical systems

(LDSs) to learn the dynamic structures. Vemulapalli et al. [42] represented the

skeleton configurations and action patterns as points and curves in a Lie group, and a

support vector machine (SVM) classifier was used to classify the actions.

Evangelidis et al. [43] introduced a local skeleton representation to encode the

relative position of the joint quadruples. They also learned a Gaussian mixture model

(GMM) over the Fisher kernel representation of the skeletal quads features. An angular

skeletal representation over the tree-structured set of joints was proposed in [44],

which calculated the similarity of these features over temporal dimension to build the

global representation of the action samples and fed them to a linear SVM for final

classification. A skeleton-based dictionary learning method using geometry constraint

and group sparsity was proposed by Luo et al. [26]. A temporal pyramid matching

method was utilized to handle the temporal alignment problem.

Wang et al. [2, 45] introduced an actionlet ensemble representation to model the

actions meanwhile capturing the intra-class variances, as shown in Fig. 2.1. A temporal

pattern representation called Fourier Temporal Pyramid (FTP) was also introduced in

[2, 45] to handle temporal sequence misalignment and noise.

Chen et al. [46] designed a part-based 5D feature vector to explore the relevant

joints of body parts in skeleton sequences. Koniusz et al. [47] introduced tensor

representations for capturing the high-order relationships among body joints. Wang

et al. [48] proposed a graph-based motion representation in conjunction with a SPGK-
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Fig. 2.1 Illustration of the actionlet ensemble framework [2] ©2012 IEEE.
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kernel SVM for skeleton-based activity recognition. Zanfir et al. [49] developed a

moving pose framework together with a modified k nearest neighbor (k-NN) classifier

for low-latency action recognition.

2.1.2 Skeleton-Based Action Recognition with Deep Learning Mod-

els

Very recently, deep learning, especially recurrent neural network (RNN), based ap-

proaches have shown their strength in skeleton-based action recognition [3, 50, 5, 1, 51–

54]. Our proposed spatio-temporal LSTM network and Global Context-aware Atten-

tion LSTM network are based on the LSTM model that is an extension of RNN. In

this section, we review the RNN and LSTM based methods that are relevant to our

proposed models.

Du et al. [3] proposed a Hierarchical RNN network by utilizing multiple bidi-

rectional RNNs in a novel hierarchical fashion, as illustrated in Fig. 2.2. The human

skeletal structure was divided to five major joint groups. Then each group was fed into

the corresponding bidirectional RNN. The outputs of the RNNs were concatenated to

represent the upper body and lower body, then each was further fed into another set

of RNNs. By concatenating the outputs of two RNNs, the global body representation

was obtained, which was fed to the next RNN layer. Finally, a softmax classifier was

used in [3] to perform action classification.

Veeriah et al. [4] proposed to add a new gating mechanism for LSTM to model the

derivatives of the memory states and explore the salient action patterns, as illustrated

in Fig. 2.3. In this method, all of the input features were concatenated at each frame

and were fed to the differential LSTM at each step.

Zhu et al. [5] introduced a regularization term to the objective function of the

LSTM network to push the entire framework towards learning co-occurrence relations
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Fig. 2.2 Illustration of the Hierarchical RNN network [3] ©2015 IEEE.

Fig. 2.3 Illustration of the LSTM network with a differential gating scheme [4] ©2015
IEEE.



14 Literature Review

among the joints for action recognition, as shown in Fig. 2.4. An internal dropout [55]

technique within the LSTM unit was also introduced in [5].

Fig. 2.4 Illustration of the deep LSTM network proposed by Zhu et al. [5] ©2015
AAAI.

Shahroudy et al. [1] proposed to split the LSTM’s memory cell to sub-cells to push

the network towards learning the context representations for each body part separately,

as shown in Fig. 2.5. The output of the network was learned by concatenating the

multiple memory sub-cells.

Harvey and Pal [56] adopted an encoder-decoder recurrent network to reconstruct

the skeleton sequence and perform action classification at the same time. Their model

showed promising results on motion capture sequences.

Mahasseni and Todorovic [57] proposed to use LSTM to encode a skeleton se-

quence as a feature vector. At each step, the input of the LSTM consists of the

concatenation of the skeletal joints’ 3D locations in a frame. They further constructed

a feature manifold by using a set of encoded feature vectors. Finally, the manifold

was used to assist and regularize the supervised learning of another LSTM for action

recognition.
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Fig. 2.5 Illustration of the Part-aware LSTM network [1] ©2016 IEEE.

Different from the aforementioned works, our proposed spatio-temporal LSTM

(ST-LSTM) network (in Chapter 3) does not simply concatenate the joint-based input

features to build the body-level feature representation. Instead, the context dependen-

cies between the skeletal joints are explicitly modeled by applying recurrent analysis

over temporal and spatial dimensions concurrently. Furthermore, a novel trust gate is

introduced to make our ST-LSTM network more reliable against the noisy input data.

Besides, the aforementioned RNN/LSTM based approaches do not explicitly

consider the informativeness of each skeletal joint with regarding to the global action

sequence. Differently, our proposed GCA-LSTM network (in Chapter 4) utilizes

the global context information to perform attention over all the evolution steps of

LSTM to selectively emphasize the informative joints in each frame, and thereby

generates an attention representation for the sequence, which can be used to improve

the classification performance. Furthermore, a recurrent attention mechanism is

proposed to iteratively optimize the attention performance.
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2.1.3 Online Action Prediction in Untrimmed Sequences

In Section 2.1.1 and Section 2.1.2, we have reviewed the methods for skeleton-based

action recognition in well-segmented sequences, i.e., each skeleton sequence contains

a whole observation of one action sample, and we need to recognize the class of

the action in this sequence. The proposed skeleton-based online action prediction

method (introduced in Section 5) takes one step forward in dealing with the untrimmed

continuous sequences, i.e., the input is an untrimmed streaming sequence that contains

multiple action instances, and we need to early recognize the class of the current

ongoing action from its observed part at each time step. In this section, we review the

works on action prediction and action analysis with untrimmed sequences, which are

relevant to our online action prediction method.

Action Prediction. Action prediction is to recognize the class label of an ongoing

activity when only a part of it is perceived. Predicting (recognizing) an action before it

gets fully performed has attracted a lot of research attention recently [58–64].

Cao et al. [60] formulated the prediction task as a posterior-maximization problem,

and applied sparse coding for action prediction. Ryoo et al. [59] represented each

action as an integral histogram of spatio-temporal features. They also developed a

recognition methodology called dynamic bag-of-words (DBoW) for activity prediction.

Li et al. [65] designed a predictive accumulative function. In their method, the human

activities are represented as a temporal composition of constituent actionlets. Kong

et al. [58] proposed a discriminative multi-scale model for early action recognition.

Ke et al. [63] extracted deep features from the optical flow images for two-person

interaction prediction.

Hu et al. [6] explored to incorporate 3D skeleton information for real-time action

prediction in the well-segmented sequences, i.e., each sequence includes only one

action. They introduced a soft regression strategy for action prediction, as shown in
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Fig. 2.6 Illustration of the soft regression model for action prediction [6] ©2016
Springer.

Fig. 2.6. An accumulative frame feature was also designed to make their method work

efficiently. However, their framework is not suitable for online action prediction in the

untrimmed continuous skeleton sequence that contains multiple action instances.

Action Analysis with Untrimmed Sequences. Beside the online action predic-

tion task, the problem of temporal action detection [66–73, 66, 74–77] also copes with

untrimmed videos. Several methods attempted online detection [78], while most of

the action detection approaches are developed for handling offline mode that conducts

detection after observing the whole long sequence [69, 79, 80].

The online action prediction task addressed in this thesis (in Chapter 5) is different

from action detection, as action detection mainly addresses accurate spatio-temporal

segmentation, while action prediction focuses more on predicting the class of the

current ongoing action timely from its observed part, even when only a small ratio of

it is performed.

Sliding window-based design [49, 72, 81, 82] and action proposals [71] have been

adopted for action detection. Zanfir et al. [49] used a sliding window with one fixed
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scale (obtained by cross validation) for action detection. Shou et al. [83] adopted

multi-scale windows for action detection via multi-stage networks.

Differently, in the online action prediction task, determining the scale of the

temporal window is challenging owing to the scale variations of the observed part

of the ongoing action. Also, rather than using one fixed scale [49] or multi-scale

multi-round scans [83, 84], a novel SSNet for online prediction is proposed in this

thesis (in Chapter 5), which is supervised to choose the proper window scale for

prediction at each time step. Moreover, the redundant computations within the sliding

window-based design are efficiently shared over different steps in our approach.

2.2 Related Datasets

With the advent of the Microsoft Kinect, a decent number of datasets have been

collected for the research on 3D skeleton-based human activity analysis. Below we

introduce the benchmark datasets that are used for experimental evaluations in this

thesis. Seven datasets for action recognition are introduced, namely, NTU RGB+D [1],

UT-Kinect [7], SBU Interaction [39], SYSU-3D [85], ChaLearn Gesture (segmented)

[86], MSR Action3D [87], and Berkeley MHAD [88]. Four datasets for online action

prediction are introduced, namely, OAD [78], ChaLearn Gesture (untrimmed) [86],

PKUMMD [89], and G3D [90].

NTU RGB+D dataset [1] was captured with Kinect (v2). It is currently the largest

publicly available dataset for depth-based action recognition, which contains more

than 56,000 video sequences and 4 million video frames. The samples in this dataset

were collected from 80 distinct viewpoints. A total of 60 action classes (including

daily actions, medical conditions, and pair actions) were performed by 40 different

persons aged between 10 and 35. This dataset is very challenging due to the large

intra-class and viewpoint variations. With a large number of samples, this dataset is
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highly suitable for deep learning based activity analysis. The parameters learned on

this dataset can also be used to initialize the models for smaller datasets to improve and

speed up the training process of the network. RGB videos, depth videos, IR videos,

and 3D skeleton sequences are provided in this dataset, as shown in Fig. 2.7.

Fig. 2.7 First row: sample frames from the NTU RGB+D dataset [1]. Second row: the
RGB, RGB+skeleton, depth, depth+skeleton, and IR modalities of a sample frame.
©2016 IEEE.

UT-Kinect dataset [7] was captured with a stationary Kinect sensor. It contains

10 action classes. Each action was performed twice by every subject. The 3D locations

of 20 skeletal joints are provided. The significant intra-class and viewpoint variations

make this dataset very challenging.

SBU Interaction dataset [39] was collected with Kinect. It contains 8 classes

of two-person interactions, and includes 282 skeleton sequences with 6822 frames.

Each body skeleton consists of 15 joints. This dataset is challenging because of (1) the

relatively low accuracies of the coordinates of skeletal joints recorded by Kinect, and

(2) complicated interactions between two persons in many action sequences.

SYSU-3D dataset [85] contains 480 sequences and was collected with Kinect. In

this dataset, 12 different activities were performed by 40 persons. The 3D coordinates

of 20 joints are provided in this dataset.
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ChaLearn Gesture (segmented) dataset [86] consists of 23 hours of videos

captured with Kinect. A total of 20 Italian gestures were performed by 27 different

subjects. Each skeleton in this dataset has 20 joints.

MSR Action3D dataset [87] is widely used for depth-based action recognition. It

contains a total of 10 subjects and 20 actions. Each action was performed by the same

subject two or three times. Each frame in this dataset contains 20 skeletal joints.

Berkeley MHAD dataset [88] was collected by using a motion capture network

of sensors. It contains 659 sequences and about 82 minutes of recording time. Eleven

action classes were performed by twelve subjects. The 3D coordinates of 35 skeletal

joints are provided in each frame.

OAD dataset [78] was collected with a Kinect (v2) sensor that captures color

images, depth images, and human skeletal data simultaneously. This dataset contains

10 daily actions that were performed by different actors. A total of 59 long video

sequences are provided in this dataset, and each long video contains multiple action

instances.

ChaLearn Gesture (untrimmed) dataset [86] is a large-scale dataset for human

activity (body language) analysis. It contains 20 action classes. This dataset is

very challenging, as the body motions of many action classes are very similar in the

untrimmed long sequences.

PKUMMD dataset [89] was collected for continuous skeleton-based human ac-

tivity understanding. This dataset contains 1076 untrimmed long video sequences and

51 action classes. Multi-modality data sources, including RGB, depth, IR, and 3D

skeleton, are provided in this dataset.

G3D dataset [90] consists of untrimmed video sequences for the gaming activities.

It contains 20 different gaming actions. These actions are further grouped into 7 major

categories.



Chapter 3

Skeleton-Based Action Recognition

Using Spatio-Temporal LSTM

Network with Trust Gates

In our first work, we focus on human action recognition in 3D skeleton sequences, and

a new network model, spatio-temporal LSTM (ST-LSTM), is introduced for this task.

Besides, we design a novel gating framework for the ST-LSTM network to handle the

noisy skeleton data.

3.1 Introduction

Recurrent neural networks (RNNs) which can handle the sequential data with variable

lengths [91, 92], have shown their strength in language modeling [93–95], image

captioning [96, 97], video analysis [98–105, 78, 106, 107], and RGB-based activity

recognition [108–113]. Applications of these networks have also shown promising

achievements in skeleton-based action recognition [3, 4, 1].
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In the current skeleton-based action recognition literature, RNNs are mainly used

to model the long-term context information across the temporal dimension by repre-

senting motion-based dynamics. However, there are often strong dependency relations

among the skeletal joints in spatial domain also, and the spatial dependency structure

is usually discriminative for action classification.

To model the dynamics and dependency relations in both temporal and spatial

domains, we propose a spatio-temporal long short-term memory (ST-LSTM) network

in this chapter. In our ST-LSTM network, each joint can receive context information

from its stored data from previous frames and also from the neighboring joints at

the same time frame to represent its incoming spatio-temporal context. Feeding a

simple chain of joints to a sequence learner limits the performance of the network,

as the human skeletal joints are not semantically arranged as a chain. Instead, the

adjacency configuration of the joints in the skeletal data can be better represented by a

tree structure. Consequently, we propose a traversal procedure by following the tree

structure of the skeleton to exploit the kinematic relationship among the body joints

for better modeling spatial dependencies.

Since the 3D positions of skeletal joints provided by depth sensors are not always

very accurate, we further introduce a new gating framework, so called “trust gate”,

for our ST-LSTM network to analyze the reliability of the input data at each spatio-

temporal step. The proposed trust gate gives better insight to the ST-LSTM network

about when and how to update, forget, or remember the internal memory content as

the representation of the long-term context information.

In addition, we introduce a feature fusion method within the ST-LSTM unit to

better exploit the multi-modal features extracted for each joint.

We summarize the main contributions of this chapter as follows. (1) A novel

spatio-temporal LSTM (ST-LSTM) network for skeleton-based action recognition

is designed. (2) A tree traversal technique is proposed to feed the structured human
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skeletal data into a sequential LSTM network. (3) The functionality of the ST-LSTM

framework is further extended by adding the proposed “trust gate”. (4) A multi-modal

feature fusion strategy within the ST-LSTM unit is introduced. (5) The proposed

method achieves state-of-the-art performance on seven benchmark datasets.

The remainder of this chapter is organized as follows. In section 3.2, we introduce

our end-to-end trainable spatio-temporal recurrent neural network for action recogni-

tion. The experiments are presented in section 3.3. Finally, the chapter is concluded in

section 3.4.

3.2 Spatio-Temporal Recurrent Networks

In a generic skeleton-based action recognition problem, the input observations are

limited to the 3D locations of the major body joints at each frame. Recurrent neural

networks have been successfully applied to this problem recently [3, 5, 1]. LSTM

networks [114] are among the most successful extensions of recurrent neural networks.

A gating mechanism controlling the contents of an internal memory cell is adopted

by the LSTM model to learn a better and more complex representation of long-term

dependencies in the input sequential data. Consequently, LSTM networks are very

suitable for feature learning over time series data (such as human skeletal sequences

over time).

We will briefly review the original LSTM model in this section, and then introduce

our ST-LSTM network and the tree-structure based traversal approach. We will also

introduce a new gating mechanism for ST-LSTM to handle the noisy measurements in

the input data for better action recognition. Finally, an internal feature fusion strategy

for ST-LSTM will be proposed.
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3.2.1 Temporal Modeling with LSTM

In the standard LSTM model, each recurrent unit contains an input gate it , a forget

gate ft , an output gate ot , and an internal memory cell state ct , together with a hidden

state ht . The input gate it controls the contributions of the newly arrived input data

at time step t for updating the memory cell, while the forget gate ft determines how

much the contents of the previous state (ct−1) contribute to deriving the current state

(ct). The output gate ot learns how the output of the LSTM unit at current time step

should be derived from the current state of the internal memory cell. These gates and

states can be obtained as follows:



it

ft

ot

ut


=



σ

σ

σ

tanh


M

 xt

ht−1


 (3.1)

ct = it ⊙ut + ft ⊙ ct−1 (3.2)

ht = ot ⊙ tanh(ct) (3.3)

where xt is the input at time step t, ut is the modulated input, ⊙ denotes the element-

wise product, and M : RD+d → R4d is an affine transformation. d is the size of the

internal memory cell, and D is the dimension of xt .

3.2.2 Spatio-Temporal LSTM

RNNs have already shown their strengths in modeling the complex dynamics of

human activities as time series data, and achieved promising performance in skeleton-

based human action recognition [3, 5, 4, 1]. In the existing literature, RNNs are

mainly utilized in temporal domain to discover the discriminative dynamics and
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Fig. 3.1 Illustration of the spatio-temporal LSTM network. In temporal dimension, the
corresponding body joints are fed over the frames. In spatial dimension, the skeletal
joints in each frame are fed as a sequence. Each unit receives the hidden representation
of the previous joints and the same joint from previous frames.

motion patterns for action recognition. However, there is also discriminative spatial

information encoded in the joints’ locations and posture configurations at each video

frame, and the sequential nature of the body joints makes it possible to apply RNN-

based modeling to spatial domain as well.

Different from the existing methods which concatenate the joints’ information as

the entire body’s representation, we extend the recurrent analysis to spatial domain by

discovering the spatial dependency patterns among different body joints. We propose

a spatio-temporal LSTM (ST-LSTM) network to simultaneously model the temporal

dependencies among different frames and also the spatial dependencies of different

joints at the same frame. Each ST-LSTM unit, which corresponds to one of the body

joints, receives the hidden representation of its own joint from the previous time step

and also the hidden representation of its previous joint at the current frame. A schema

of this model is illustrated in Fig. 3.1.

In this section, we assume the joints are arranged in a simple chain sequence, and

the order is depicted in Fig. 3.3(a). In section 3.2.3, we will introduce a more advanced

traversal scheme to take advantage of the adjacency structure among the skeletal joints.
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Fig. 3.2 Illustration of the proposed ST-LSTM with one unit.

We use j and t to respectively denote the indices of joints and frames, where

j ∈ {1, ...,J} and t ∈ {1, ...,T}. Each ST-LSTM unit is fed with the input (x j,t , the

information of the corresponding joint at current time step), the hidden representation

of the previous joint at current time step (h j−1,t), and the hidden representation of the

same joint at the previous time step (h j,t−1).

As depicted in Fig. 3.2, each unit also has two forget gates, f T
j,t and f S

j,t , to handle

the two sources of context information in temporal and spatial dimensions, respectively.

The transition equations of ST-LSTM are formulated as follows:



i j,t

f S
j,t

f T
j,t

o j,t

u j,t


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
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M


x j,t

h j−1,t
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 (3.4)

c j,t = i j,t ⊙u j,t + f S
j,t ⊙ c j−1,t + f T

j,t ⊙ c j,t−1 (3.5)

h j,t = o j,t ⊙ tanh(c j,t) (3.6)
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3.2.3 Tree-Structure Based Traversal
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Fig. 3.3 (a) The skeleton of the human body. In the simple joint chain model, the
joint visiting order is 1-2-3-...-16. (b) The skeleton is transformed to a tree structure.
(c) The tree traversal scheme. The tree structure can be unfolded to a chain with the
traversal scheme, and the joint visiting order is 1-2-3-2-4-5-6-5-4-2-7-8-9-8-7-2-1-10-
11-12-13-12-11-10-14-15-16-15-14-10-1.

Arranging the skeletal joints in a simple chain order ignores the kinematic interde-

pendencies among the body joints. Moreover, several semantically false connections

between the joints, which are not strongly related, are added.

The body joints are popularly represented as a tree-based pictorial structure [115,

116] in human parsing, as shown in Fig. 3.3(b). It is beneficial to utilize the known
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interdependency relations between various sets of body joints as an adjacency tree

structure inside our ST-LSTM network as well. For instance, the hidden representation

of the neck joint (joint 2 in Fig. 3.3(a)) is often more informative for the right hand

joints (7, 8, and 9) compared to the joint 6, which lies before them in the numerically

ordered chain-like model. Though using a tree structure for the skeletal data sounds

more reasonable here, tree structures cannot be directly fed into our current form of

the ST-LSTM network.

In order to mitigate the aforementioned limitation, a bidirectional tree traversal

scheme is proposed. In this scheme, the joints are visited in a sequence, while the

adjacency information in the skeletal tree structure will be maintained. At the first

spatial step, the root node (central spine joint in Fig. 3.3(c)) is fed to our network.

Then the network follows the depth-first traversal order in the spatial (skeleton tree)

domain. Upon reaching a leaf node, the traversal backtracks in the tree. Finally, the

traversal goes back to the root node.

In our traversal scheme, each connection in the tree is met twice, thus it guarantees

the transmission of the context data in both top-down and bottom-up directions within

the adjacency tree structure. In other words, each node (joint) can obtain the context

information from both its ancestors and descendants in the hierarchy defined by the

tree structure. Compared to the simple joint chain order described in section 3.2.2, this

tree traversal strategy, which takes advantage of the joints’ adjacency structure, can

discover stronger long-term spatial dependency patterns in the skeleton sequence.

Our framework’s representation capacity can be further improved by stacking

multiple layers of the tree-structured ST-LSTMs and making the network deeper (see

Fig. 3.4).

It is worth noting that at each step of our ST-LSTM framework, the input is limited

to the information of a single joint at a time step, and its dimension is much smaller

compared to the concatenated input features used by other existing methods. Therefore,
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our network has much fewer learning parameters. This can be regarded as a weight

sharing regularization for our learning model, which leads to better generalization

in the scenarios with relatively small sets of training samples. This is an important

advantage for skeleton-based action recognition, since the numbers of training samples

in most existing datasets are limited.

Skeletal joints ST-LSTM units (Layer 1) Softmax classifier

t1
t2

t3

ST-LSTM units (Layer 2)

Fig. 3.4 Illustration of the deep tree-structured ST-LSTM network. For clarity, some
arrows are omitted in this figure. The hidden representation of the first ST-LSTM layer
is fed to the second ST-LSTM layer as its input. The second ST-LSTM layer’s hidden
representation is fed to the softmax layer for classification.

3.2.4 Spatio-Temporal LSTM with Trust Gates

In our proposed tree-structured ST-LSTM network, the inputs are the positions of

body joints provided by depth sensors (such as Kinect), which are not always accurate

because of noisy measurements and occlusion. The unreliable inputs can degrade the

performance of the network.

To circumvent this difficulty, we propose to add a novel additional gate to our

ST-LSTM network to analyze the reliability of the input measurements based on

the derived estimations of the input from the available context information at each

spatio-temporal step. Our gating scheme is inspired by the works in natural language

processing [92], which use the LSTM representation of previous words at each step to

predict the next coming word. As there are often high dependency relations among
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the words in a sentence, this idea works decently. Similarly, in a skeletal sequence,

the neighboring body joints often move together, and this articulated motion follows

common yet complex patterns, thus the input data x j,t is expected to be predictable by

using the contextual information (h j−1,t and h j,t−1) at each spatio-temporal step.

Inspired by this predictability concept, we add a new mechanism to our ST-LSTM

calculating a prediction of the input at each step and comparing it with the actual

input. The amount of estimation error is then used to learn a new “trust gate”. The

activation of this new gate can be used to assist the ST-LSTM network to learn better

decisions about when and how to remember or forget the contents in the memory cell.

For instance, if the trust gate learns that the current joint has wrong measurements,

then this gate can block the input gate and prevent the memory cell from being altered

by the current unreliable input data.

Concretely, we introduce a function to produce a prediction of the input at step

( j, t) based on the available context information as:

p j,t = tanh

Mp

 h j−1,t

h j,t−1


 (3.7)

where Mp is an affine transformation mapping the data from R2d to Rd , thus the

dimension of p j,t is d. Note that the context information at each step does not only

contain the representation of the previous temporal step, but also the hidden state of

the previous spatial step. This indicates that the long-term context information of both

the same joint at previous frames and the other visited joints at the current frame are

seamlessly incorporated. Thus this function is expected to be capable of generating

reasonable predictions.
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In our proposed network, the activation of trust gate is a vector in Rd (similar to

the activation of input gate and forget gate). The trust gate τ j,t is calculated as follows:

x′j,t = tanh
(
Mx

(
x j,t

))
(3.8)

τ j,t = G(p j,t − x′j,t) (3.9)

where Mx : RD → Rd is an affine transformation. The activation function G(·) is an

element-wise operation calculated as G(z) = exp(−λ z2), for which λ is a parameter to

control the bandwidth of Gaussian function (λ > 0). G(z) produces a small response

if z has a large absolute value and a large response when z is close to zero.

Adding the proposed trust gate, the cell state of ST-LSTM will be updated as:

c j,t = τ j,t ⊙ i j,t ⊙u j,t

+(1− τ j,t)⊙ f S
j,t ⊙ c j−1,t

+(1− τ j,t)⊙ f T
j,t ⊙ c j,t−1 (3.10)

This equation can be explained as follows: (1) if the input x j,t is not trusted (due to

the noise or occlusion), then our network relies more on its history information, and

tries to block the new input at this step; (2) on the contrary, if the input is reliable, then

our learning algorithm updates the memory cell regarding the input data.

The proposed ST-LSTM unit equipped with trust gate is illustrated in Fig. 3.5. The

concept of the proposed trust gate technique is theoretically generic and can be used in

other domains to handle noisy input information for recurrent network models.

3.2.5 Feature Fusion within ST-LSTM Unit

As mentioned above, at each spatio-temporal step, the positional information of the

corresponding joint at the current frame is fed to our ST-LSTM network. Here we
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Fig. 3.5 Illustration of the proposed ST-LSTM with trust gate.
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Fig. 3.6 Illustration of the proposed structure for feature fusion inside the ST-LSTM
unit.
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call joint position-based feature as a geometric feature. Beside utilizing the joint

position (3D coordinates), we can also extract visual texture and motion features (e.g.,

HOG, HOF [117, 118], or ConvNet-based features [119, 120]) from the RGB frames,

around each body joint as the complementary information. This is intuitively effective

for better human action representation, especially in the human-object interaction

scenarios.

A naive way for combining geometric and visual features for each joint is to

concatenate them in the feature level and feed them to the corresponding ST-LSTM

unit as network’s input data. However, the dimension of the geometric feature is very

low intrinsically, while the visual features are often in relatively higher dimensions.

Due to this inconsistency, simple concatenation of these two types of features in the

input stage of the network causes degradation in the final performance of the entire

model.

The work in [1] feeds different body parts into the Part-aware LSTM [1] sepa-

rately, and then assembles them inside the LSTM unit. Inspired by this work, we

propose to fuse the two types of features inside the ST-LSTM unit, rather than simply

concatenating them at the input level.

We use xF
j,t (F ∈ {1,2}) to denote the geometric feature and visual feature for a

joint at the t-th time step. As illustrated in Fig. 3.6, at step ( j, t), the two features (x1
j,t

and x2
j,t) are fed to the ST-LSTM unit separately as the new input structure. Inside

the recurrent unit, we deploy two sets of gates, input gates (iFj,t), forget gates with

respect to time ( f T,F
j,t ) and space ( f S,F

j,t ), and also trust gates (τF
j,t ), to deal with the

two heterogeneous sets of modality features. We put the two cell representations

(cF
j,t) together to build up the multimodal context information of the two sets of

modality features. Finally, the output of each ST-LSTM unit is calculated based on the

multimodal context representations, and controlled by the output gate (o j,t) which is

shared for the two sets of features.
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For the features of each modality, it is efficient and intuitive to model their context

information independently. However, we argue that the representation ability of each

modality-based sets of features can be strengthened by borrowing information from

the other set of features. Thus, the proposed structure does not completely separate the

modeling of multimodal features.

Let us take the geometric feature as an example. Its input gate, forget gates, and

trust gate are all calculated from the new input (x1
j,t) and hidden representations (h j,t−1

and h j−1,t), whereas each hidden representation is an associate representation of two

features’ context information from previous steps. Assisted by visual features’ context

information, the input gate, forget gates, and also trust gate for geometric feature can

effectively learn how to update its current cell state (c1
j,t). Specifically, for the new

geometric feature input (x1
j,t), we expect the network to produce a better prediction

when it is not only based on the context of the geometric features, but also assisted by

the context of visual features. Therefore, the trust gate (τ1
j,t) will have stronger ability

to assess the reliability of the new input data (x1
j,t).

The proposed ST-LSTM with integrated multimodal feature fusion is formulated

as:



3.2 Spatio-Temporal Recurrent Networks 35
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3.2.6 Learning the Classifier

As the labels are given at video level, we feed them as the training outputs of our

network at each spatio-temporal step. A softmax layer is used by the network to predict

the action class ŷ among the given class set Y . The prediction of the whole video can

be obtained by averaging the prediction scores of all steps. The objective function of

our ST-LSTM network is as follows: L = ∑
J
j=1 ∑

T
t=1 l(ŷ j,t ,y), where l(ŷ j,t ,y) is the
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negative log-likelihood loss [121] that measures the difference between the prediction

result ŷ j,t at step ( j, t) and the true label y.

The back-propagation through time (BPTT) algorithm [121] is effective for mini-

mizing the objective function for the RNN/LSTM models. As our ST-LSTM model

involves both spatial and temporal steps, we adopt a modified version of BPTT for

training. The back-propagation runs over spatial and temporal steps by starting at

the last joint at the last frame. To clarify the error accumulation in this procedure,

we use eT
j,t and eS

j,t to denote the error back-propagated from step ( j, t + 1) to ( j, t)

and the error back-propagated from step ( j + 1, t) to ( j, t), respectively. Then the

errors accumulated at step ( j, t) can be calculated as eT
j,t + eS

j,t . Consequently, before

back-propagating the error at each step, we should guarantee both its subsequent

spatial step and subsequent temporal step have already been computed.

The left-most units in our ST-LSTM network do not have preceding units in the

spatial dimension, as shown in Fig. 3.1. To update the cell states of these units

in the feed-forward stage, a popular strategy is to feed zeros to them as the hidden

representations from the preceding nodes. In our implementation, we link the last

unit at the previous time step to the first unit at the current time step. We call the new

connection as “last-to-first link”. In the tree traversal, the first and last nodes refer to

the same joint (root node of the tree). However, the last node contains holistic context

information of the human skeleton structure in the corresponding frame. Linking

the last node to the start node of the next time step provides the start node with the

whole body structure configuration, rather than initializing it with less meaningful zero

values. Thus, the network with last-to-first link has better ability to effectively learn

the action patterns in the skeleton data.
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3.3 Experiments

The proposed method is evaluated and empirically analyzed on seven benchmark

datasets for which the coordinates of skeletal joints are provided. These datasets

are NTU RGB+D, UT-Kinect, SBU Interaction, SYSU-3D, ChaLearn Gesture, MSR

Action3D, and Berkeley MHAD. We conduct extensive experiments with different

models to verify the effectiveness of individual technical contributions proposed, as

follows:

(1) “ST-LSTM (Joint Chain)”. In this model, the joints are visited in a simple chain

order, as shown in Fig. 3.3(a);

(2) “ST-LSTM (Joint Chain) + Trust Gate”. This model uses the trust gate to

handle the noisy input.

(3) “ST-LSTM (Tree)”. In this model, the tree traversal scheme illustrated in Fig.

3.3(c) is used to take advantage of the tree-based spatial structure of skeletal joints;

(4) “ST-LSTM (Tree) + Trust Gate”. In this model, the tree traversal is used. The

trust gate is also added.

The input to every unit of of our network at each spatio-temporal step is the location

of the corresponding skeletal joint (i.e., geometric features) at the current time step.

We also use two of the datasets (NTU RGB+D dataset and UT-Kinect dataset) as

examples to evaluate the performance of our fusion model within the ST-LSTM unit

by fusing the geometric and visual features. These two datasets include human-object

interactions (such as making a phone call and picking up something) and the visual

information around the major joints can be complementary to the geometric features

for action recognition.
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3.3.1 Implementation Details

In our experiments, each video sequence is divided to T sub-sequences with the same

length, and one frame is randomly selected from each sub-sequence. This sampling

strategy has the following advantages: (1) Randomly selecting a frame from each

sub-sequence can add variation to the input data, and improve the generalization

strengths of our trained network. (2) Assume each sub-sequence contains n frames,

so we have n choices to sample a frame from each sub-sequence. Accordingly, for

the whole video, we can obtain a total number of nT sampling combinations. This

indicates that the training data can be greatly augmented. We use different frame

sampling combinations for each video over different training epochs. This strategy

is useful for handling the over-fitting issues, as most datasets have limited numbers

of training samples. We observe this strategy achieves better performance in contrast

with uniformly sampling frames. We cross-validated the performance based on the

leave-one-subject-out protocol on the large scale NTU RGB+D dataset, and found

T = 20 as the optimum value.

We use Torch7 [122] as the deep learning platform to perform our experiments. We

train the network with stochastic gradient descent, and set the learning rate, momentum,

and decay rate to 2×10−3, 0.9, and 0.95, respectively. We set the unit size d to 128,

and the parameter λ used in G(·) to 0.5. Two ST-LSTM layers are used in our stacked

network. Although there are variations in terms of joint number, sequence length,

and data acquisition equipment for different datasets, we adopt the same parameter

settings mentioned above for all datasets. Our method achieves promising results on

all the benchmark datasets with these parameter settings untouched, which shows

the robustness of our method. An NVIDIA TitanX GPU is used to perform our

experiments. We evaluate the computational efficiency of our method on the NTU

RGB+D dataset and set the batch size to 100. On average, within one second, 210,
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100, and 70 videos can be processed by using “ST-LSTM (Joint Chain)”, “ST-LSTM

(Tree)”, and “ST-LSTM (Tree) + Trust Gate”, respectively.

3.3.2 Experiments on the NTU RGB+D Dataset

The NTU RGB+D dataset has two standard evaluation protocols [1]. The first protocol

is the cross-subject (X-Subject) evaluation protocol, in which half of the subjects

are used for training and the remaining subjects are kept for testing. The second

is the cross-view (X-View) evaluation protocol, in which 2/3 of the viewpoints are

used for training, and 1/3 unseen viewpoints are left out for testing. We evaluate the

performance of our method on both of these protocols. The results are shown in Table

3.1.

Table 3.1 Experimental results on the NTU RGB+D Dataset. “X-S” and “X-V” denote
X-Subject and X-View, respectively.

Method Feature X-S X-V

Lie Group [42] Geometric 50.1% 52.8%
Cippitelli et al. [123] Geometric 48.9% 57.7%
Dynamic Skeletons [85] Geometric 60.2% 65.2%
FTP [124] Geometric 61.1% 72.6%
Hierarchical RNN [3] Geometric 59.1% 64.0%
Deep RNN [1] Geometric 56.3% 64.1%
Part-aware LSTM [1] Geometric 62.9% 70.3%

ST-LSTM (Joint Chain) Geometric 61.7% 75.5%
ST-LSTM (Joint Chain)+Trust Gate Geometric 64.9% 76.8%
ST-LSTM (Tree) Geometric 65.2% 76.1%
ST-LSTM (Tree) + Trust Gate Geometric 69.2% 77.7%

In Table 3.1, the deep RNN model concatenates the joint features at each frame

and then feeds them to the network to model the temporal kinetics, and ignores the

spatial dynamics. As can be seen, both “ST-LSTM (Joint Chain)” and “ST-LSTM

(Tree)” models outperform this method by a notable margin. It can also be observed

that our approach utilizing the trust gate brings significant performance improvement,
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Fig. 3.7 Recognition accuracy per class on the NTU RGB+D dataset

because the data provided by Kinect is often noisy and multiple joints are frequently

occluded in this dataset. Note that our proposed models (such as “ST-LSTM (Tree) +

Trust Gate”) reported in this table only use skeletal data as input.

We compare the class specific recognition accuracies of “ST-LSTM (Tree)” and

“ST-LSTM (Tree) + Trust Gate”, as shown in Fig. 3.7. We observe that “ST-LSTM

(Tree) + Trust Gate” significantly outperforms “ST-LSTM (Tree)” for most of the

action classes, which demonstrates our proposed trust gate can effectively improve the

human action recognition accuracy by learning the degrees of reliability over the input

data at each time step.

A notable portion of videos in the NTU RGB+D dataset were collected in side

views. Due to the design of Kinect’s body tracking mechanism, skeletal data is

less accurate in side view compared to the front view. To further investigate the

effectiveness of the proposed trust gate, we analyze the performance of the network by

feeding the side views samples only. The accuracy of “ST-LSTM (Tree)” is 76.5%,
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while “ST-LSTM (Tree) + Trust Gate” yields 81.6%. This shows how trust gate can

effectively deal with the noise in the input data.

To verify the performance boost by stacking layers, we limit the depth of the

network by using only one ST-LSTM layer, and the accuracies drop to 65.5% and

77.0% based on the cross-subject and cross-view protocol, respectively. This indicates

our two-layer stacked network has better representation power than the single-layer

network.

To evaluate the performance of our feature fusion scheme, we extract visual

features from several regions based on the joint positions and use them in addition

to the geometric features (3D coordinates of the joints). We extract HOG and HOF

[117, 118] features from a 80× 80 RGB patch centered at each joint location. For

each joint, this produces a 300D visual descriptor, and we apply PCA to reduce the

dimension to 20. The results are shown in Table 3.2. We observe that our method

using the visual features together with the joint positions improves the performance.

Besides, we compare our newly proposed feature fusion strategy within the ST-LSTM

unit with two other feature fusion methods: (1) early fusion which simply concatenates

two types of features as the input of the ST-LSTM unit; (2) late fusion which uses

two ST-LSTMs to deal with two types of features respectively, then concatenates the

outputs of the two ST-LSTMs at each step, and feeds the concatenated result to a

softmax classifier. We observe that our proposed feature fusion strategy is superior to

other baselines.

We also evaluate the sensitivity of the proposed network with respect to the

variation of neuron unit size and λ values. The results are shown in Fig. 3.8. When

trust gate is added, our network obtains better performance for all the λ values

compared to the network without the trust gate.

Finally, we investigate the recognition performance with early stopping conditions

by feeding the first p portion of the testing video to the trained network based on the
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Table 3.2 Evaluation of different feature fusion strategies on the NTU RGB+D dataset.
“Geometric + Visual (1)” indicates the early fusion scheme. “Geometric + Visual (2)”
indicates the late fusion scheme. “Geometric

⊕
Visual” means our newly proposed

feature fusion scheme within the ST-LSTM unit.

Feature Fusion Method X-Subject X-View

Geometric Only 69.2% 77.7%
Geometric + Visual (1) 70.8% 78.6%
Geometric + Visual (2) 71.0% 78.7%
Geometric

⊕
Visual 73.2% 80.6%
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Fig. 3.8 (a) Performance comparison of our approach using different values of neuron
size (d) on the NTU RGB+D dataset (X-subject). (b) Performance comparison of our
method using different λ values on the NTU RGB+D dataset (X-subject). The blue
line represents our results when different λ values are used for trust gate, while the
red dashed line indicates the performance of our method when trust gate is not added.

cross-subject protocol (p ∈ {0.1,0.2, ...,1.0}). The results are shown in Fig. 3.9. We

observe that the results are improved when a larger portion of the video is fed to our

network.

3.3.3 Experiments on the UT-Kinect Dataset

There are two evaluation protocols for the UT-Kinect dataset in the literature. The

first is the leave-one-out-cross-validation (LOOCV) protocol [7]. The second protocol

is suggested by [8], for which half of the subjects are used for training, and the

remaining are used for testing. We evaluate our approach using both protocols on this
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Fig. 3.9 Experimental results of our method by early stopping the network evolution at
different time steps.

dataset. Using the LOOCV protocol, our method achieves better performance than

other methods, as shown in Table 3.3. Using the second protocol (see Table 3.4), our

method achieves competitive result (95.0%) to the Elastic functional coding method

[38] (94.9%), which is an extension of the Lie Group model [42].

Table 3.3 Experimental results on the UT-Kinect dataset (LOOCV protocol [7])

Method Feature Acc.

Grassmann Manifold [125] Geometric 88.5%
Jetley et al. [126] Geometric 90.0%
Histogram of 3D Joints [7] Geometric 90.9%
Space Time Pose [127] Geometric 91.5%
Riemannian Manifold [128] Geometric 91.5%
SCs (Informative Joints) [129] Geometric 91.9%
Chrungoo et al. [130] Geometric 92.0%
Key-Pose-Motifs Mining[131] Geometric 93.5%

ST-LSTM (Joint Chain) Geometric 91.0%
ST-LSTM (Joint Chain) + Trust Gate Geometric 94.5%
ST-LSTM (Tree) Geometric 92.4%
ST-LSTM (Tree) + Trust Gate Geometric 97.0%

Table 3.4 Results on the UT-Kinect dataset (half-vs-half protocol [8])

Method Feature Acc.

Skeleton Joint Features [8] Geometric 87.9%
Chrungoo et al. [130] Geometric 89.5%
Lie Group [42] (reported by [38]) Geometric 93.6%
Elastic functional coding [38] Geometric 94.9%

ST-LSTM (Tree) + Trust Gate Geometric 95.0%
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Some actions in the UT-Kinect dataset involve human-object interactions, thus

appearance based features representing visual information of the objects can be com-

plementary to the geometric features. Thus we can evaluate our proposed feature

fusion approach within the ST-LSTM unit on this dataset. The results are shown in

Table 3.5. Using geometric features only, the accuracy is 97%. By simply concatenat-

ing the geometric and visual features, the accuracy improves slightly. However, the

accuracy of our approach can reach 98% when the proposed feature fusion method is

adopted.

Table 3.5 Evaluation of our approach for feature fusion on the UT-Kinect dataset
(LOOCV protocol [7]).

Feature Fusion Method Acc.

Geometric Only 97.0%
Geometric + Visual (1) 97.5%
Geometric + Visual (2) 97.5%
Geometric

⊕
Visual 98.0%

3.3.4 Experiments on the SBU Interaction Dataset

We follow the standard evaluation protocol in [39] and perform 5-fold cross validation

on the SBU Interaction dataset. As two human skeletons are provided in each frame of

this dataset, our traversal scheme visits the joints throughout the two skeletons over

the spatial steps. We report the results in terms of average classification accuracy in

Table 3.6. The methods in [5] and [3] are both LSTM-based approaches, which are

more relevant to our method.

The results show that the proposed “ST-LSTM (Tree) + Trust Gate” model outper-

forms all other skeleton-based methods. “ST-LSTM (Tree)” achieves higher accuracy

than “ST-LSTM (Joint Chain)”, as the latter adds some false links between less related

joints.
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Table 3.6 Experimental results on the SBU Interaction dataset

Method Feature Acc.

Yun et al. [39] Geometric 80.3%
Ji et al. [132] Geometric 86.9%
CHARM [133] Geometric 83.9%
Hierarchical RNN [3] Geometric 80.4%
Co-occurrence LSTM [5] Geometric 90.4%
Deep LSTM [5] Geometric 86.0%

ST-LSTM (Joint Chain) Geometric 84.7%
ST-LSTM (Joint Chain) + Trust Gate Geometric 89.7%
ST-LSTM (Tree) Geometric 88.6%
ST-LSTM (Tree) + Trust Gate Geometric 93.3%

Both Co-occurrence LSTM [5] and Hierarchical RNN [3] adopt the Svaitzky-

Golay filter in temporal domain to smooth the skeletal joint positions and reduce the

influence of noise in the data collected by Kinect. The proposed “ST-LSTM (Tree)”

model without the trust gate mechanism outperforms Hierarchical RNN, and achieves

comparable result (88.6%) to Co-occurrence LSTM. When the trust gate is used, the

accuracy of our method jumps to 93.3%.

3.3.5 Experiments on the SYSU-3D Dataset

We follow the standard evaluation protocol in [85] on the SYSU-3D dataset. The

samples from 20 subjects are used to train the model parameters, and the samples of

the remaining 20 subjects are used for testing. We perform 30-fold cross validation

and report the mean accuracy in Table 3.7.

The results in Table 3.7 show that our proposed “ST-LSTM (Tree) + Trust Gate”

method outperforms all the baseline methods on this dataset. We can also find that the

tree traversal strategy can help to improve the classification accuracy of our model. As

the skeletal joints provided by Kinect are noisy in this dataset, the trust gate, which
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Table 3.7 Experimental results on the SYSU-3D dataset

Method Feature Acc.

LAFF (SKL) [6] Geometric 54.2%
Dynamic Skeletons [85] Geometric 75.5%

ST-LSTM (Joint Chain) Geometric 72.1%
ST-LSTM (Joint Chain) + Trust Gate Geometric 74.8%
ST-LSTM (Tree) Geometric 73.4%
ST-LSTM (Tree) + Trust Gate Geometric 76.5%

aims at handling noisy data, brings significant performance improvement (about 3%

improvement).

There are large viewpoint variations in this dataset. To make our model reliable

against viewpoint variations, we adopt a similar skeleton normalization procedure as

suggested by [1] on this dataset. In this preprocessing step, we perform a rotation

transformation on each skeleton, such that all the normalized skeletons face to the

same direction. Specifically, after rotation, the 3D vector from “right shoulder” to “left

shoulder” will be parallel to the X axis, and the vector from “hip center” to “spine”

will be aligned to the Y axis (please see [1] for more details about the normalization

procedure).

We evaluate our “ST-LSTM (Tree) + Trust Gate” method by respectively using

the original skeletons without rotation and the transformed skeletons. We observe the

accuracy is 73.0% if we use the original skeletons, which is lower than the accuracy

(76.5%) achieved by using the transformed skeletons. The results show that it is

beneficial to use the transformed skeletons as the input for action recognition.

3.3.6 Experiments on the ChaLearn Gesture Dataset

We follow the evaluation protocol adopted in [134, 135] and report the F1-score

measures on the validation set of the ChaLearn Gesture dataset.
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Table 3.8 Experimental results on the ChaLearn Gesture dataset

Method Feature F1-Score

Portfolios [136] Geometric 56.0%
Wu et al. [137] Geometric 59.6%
Pfister et al. [138] Geometric 61.7%
HiVideoDarwin [134] Geometric 74.6%
VideoDarwin [135] Geometric 75.2%
Deep LSTM [1] Geometric 87.1%

ST-LSTM (Joint Chain) Geometric 89.1%
ST-LSTM (Joint Chain) + Trust Gate Geometric 90.6%
ST-LSTM (Tree) Geometric 89.9%
ST-LSTM (Tree) + Trust Gate Geometric 92.0%

As shown in Table 3.8, our method surpasses the state-of-the-art methods [136–

138, 134, 135, 1], which demonstrates the effectiveness of our method in dealing with

skeleton-based action recognition problem.

Compared to other methods, our method focuses on modeling both temporal and

spatial dependency patterns in skeleton sequences. Besides, the proposed trust gate is

also incorporated to our method to handle the noisy skeleton data captured by Kinect,

which further improves the results.

3.3.7 Experiments on the MSR Action3D Dataset

We follow the experimental protocol in [3] on the MSR Action3D dataset, and show

the results in Table 3.9.

On the MSR Action3D dataset, our proposed method, “ST-LSTM (Tree) + Trust

Gate”, achieves 94.8% of classification accuracy, which is superior to the Hierarchical

RNN model [3] and other baseline methods.
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Table 3.9 Experimental results on the MSR Action3D dataset

Method Feature Acc.

Histogram of 3D Joints [7] Geometric 79.0%
Joint Angles Similarities [44] Geometric 83.5%
SCs (Informative Joints) [129] Geometric 88.3%
Oriented Displacements [139] Geometric 91.3%
Lie Group [42] Geometric 92.5%
Space Time Pose [127] Geometric 92.8%
Lillo et al. [31] Geometric 93.0%
Hierarchical RNN [3] Geometric 94.5%

ST-LSTM (Tree) + Trust Gate Geometric 94.8%

Table 3.10 Experimental results on the Berkeley MHAD dataset

Method Feature Acc.

Ofli et al. [37] Geometric 95.4%
Vantigodi et al. [140] Geometric 96.1%
Vantigodi et al. [141] Geometric 97.6%
Kapsouras et al. [142] Geometric 98.2%
Hierarchical RNN [3] Geometric 100%
Co-occurrence LSTM [5] Geometric 100%

ST-LSTM (Tree) + Trust Gate Geometric 100%

3.3.8 Experiments on the Berkeley MHAD Dataset

We adopt the experimental protocol in [3] on the Berkeley MHAD dataset. 384 video

sequences corresponding to the first seven persons are used for training, and the 275

sequences of the remaining five persons are held out for testing. The experimental

results in Table 3.10 show that our method achieves very high accuracy (100%) on

this dataset. Unlike [3] and [5], our method does not use any preliminary manual

smoothing procedures.

3.3.9 Visualization of Trust Gates

In this section, to better investigate the effectiveness of the proposed trust gate scheme,

we study the behavior of the proposed framework against the presence of noise in
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Fig. 3.10 Visualization of the trust gate’s behavior when inputting noisy data. (a) j3′
is a noisy joint position, and j3 is the corresponding rectified joint location. In the
histogram, the blue bar indicates the magnitude of trust gate when inputting the noisy
joint j3′ . The red bar indicates the magnitude of the corresponding trust gate when j3′
is rectified to j3. (b) Visualization of the difference between the trust gate calculated
when the noise is imposed at the step ( jN , tN) and that calculated when inputting the
original data.

skeletal data from the MSR Action3D dataset. We manually rectify some noisy joints

of the samples by referring to the corresponding depth images. We then compare

the activations of trust gates on the noisy and rectified inputs. As illustrated in Fig.

3.10(a), the magnitude of trust gate’s output (l2 norm of the activations of the trust

gate) is smaller when a noisy joint is fed, compared to the corresponding rectified joint.

This demonstrates how the network controls the impact of noisy input on its stored

representation of the observed data.

In our next experiment, we manually add noise to one joint for all testing samples on

the Berkeley MHAD dataset, in order to further analyze the behavior of our proposed

trust gate. Note that the Berkeley MHAD dataset was collected with motion capture

system, thus the skeletal joint coordinates in this dataset are much more accurate than

those captured with Kinect sensors. We add noise to the right foot joint by moving

the joint away from its original location. The direction of the translation vector is

randomly chosen and the norm is a random value around 30cm, which is a significant

noise in the scale of human body. We measure the difference in the magnitudes of trust
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gates’ activations between the noisy data and the original ones. For all testing samples,

we carry out the same operations and then calculate the average difference. The results

in Fig. 3.10(b) show that the magnitude of trust gate is reduced when the noisy data is

fed to the network. This shows that our network tries to block the flow of noisy input

and stop it from affecting the memory. We also observe that the overall accuracy of

our network does not drop after adding the above-mentioned noise to the input data.

3.3.10 Evaluation of Different Spatial Joint Sequence Models

The previous experiments showed how “ST-LSTM (Tree)” outperforms “ST-LSTM

(Joint Chain)”, because “ST-LSTM (Tree)” models the kinematic dependency struc-

tures of human skeletal sequences. In this section, we further analyze the effectiveness

of our “ST-LSTM (Tree)” model and compare it with other baseline models.

The “ST-LSTM (Joint Chain)” has fewer steps in the spatial dimension than the

“ST-LSTM (Tree)”. One question that may rise here is if the advantage of “ST-LSTM

(Tree)” model could be only due to the higher length and redundant sequence of

the joints fed to the network, and not because of the proposed semantic relations

between the joints. To answer this question, we evaluate the effect of using a double

chain scheme to increase the spatial steps of the “ST-LSTM (Joint Chain)” model.

Specifically, we use the joint visiting order of 1-2-3-...-16-1-2-3-...-16, and we call

this model as “ST-LSTM (Double Joint Chain)”. The results in Table 3.11 show that

the performance of “ST-LSTM (Double Joint Chain)” is better than “ST-LSTM (Joint

Chain)”, yet inferior to “ST-LSTM (Tree)”.

This experiment indicates that it is beneficial to introduce more passes in the spatial

dimension to the ST-LSTM for performance improvement. A possible explanation is

that the units visited in the second round can obtain the global level context representa-

tion from the previous pass, thus they can generate better representations of the action

patterns by using the context information. However, the performance of “ST-LSTM
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Table 3.11 Performance comparison of different spatial sequence models

Dataset NTU NTU UT- SBU ChaLearn
(X-Subject) (X-View) Kinect Interaction Gesture

ST-LSTM (Random Chain) 59.9% 73.9% 88.4% 78.8% 86.2%
ST-LSTM (Joint Chain) 61.7% 75.5% 91.0% 84.7% 89.1%
ST-LSTM (Double Joint Chain) 63.5% 75.6% 91.5% 85.9% 89.2%
ST-LSTM (Tree) 65.2% 76.1% 92.4% 88.6% 89.9%

(Double Joint Chain)” is still worse than “ST-LSTM (Tree)”, though the numbers of

their spatial steps are almost equal.

Our proposed tree traversal scheme is superior because it connects the most se-

mantically related joints and avoids false connections between the less-related joints

(unlike the other baseline models).

To further investigate the importance of maintaining the adjacency structure among

the skeletal joints, we also evaluate a model “ST-LSTM (Random Chain)”. In this

model, the adjacency structure of the body joints is totally ignored, and the joints

are arranged with a random order in spatial dimension. Concretely, we generate five

random chains, and report the mean accuracy of them in Table 3.11. The results

show that the performance of “ST-LSTM (Random Chain)”, which totally ignores the

semantic spatial dependence, is obviously worse than other models.

In our “ST-LSTM (Tree)” model, the root node of the tree is the central spine

joint (see Fig. 3.3(b)), thus the first visited joint (start joint) in spatial dimension is

also this joint (see Fig. 3.3(c)). We also explore different methods to transform the

skeleton to a tree structure. Concretely, we select different joints as the root nodes,

and thereby generate different tree structures. We respectively set ‘central spine joint’,

‘head joint’ , ‘left hand joint’, ‘right hand joint’, ‘left foot joint’, and ‘right foot joint’

as the root nodes, and accordingly construct six tree structures, which correspond to

six different tree traversal sequences. We compare their performance in Table 3.12.

We find their results are comparable. Though the joint visiting orders are different in
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Table 3.12 Comparison of different start joints (root nodes) of the tree traversal on the
NTU RGB+D dataset. “S.D.” denotes standard deviation.

Root node of the tree NTU (X-Subject) NTU (X-View)

Central spine joint 65.2% 76.1%
Head joint 65.4% 76.4%

Left hand joint 64.9% 75.9%
Right hand joint 65.2% 76.1%
Left foot joint 65.5% 75.9%

Right foot joint 65.7% 76.0%

Mean Acc. & S.D. 65.3±0.3% 76.1±0.2%

these tree traversal sequences, all of them can well maintain the semantic dependency

information in the structured skeleton, thus they all obtain promising results.

3.3.11 Evaluation of Temporal Average, LSTM and ST-LSTM

To further investigate the effect of simultaneous modeling of dependencies in spatial

and temporal domains, in this experiment, we replace our ST-LSTM with the original

LSTM which only models the temporal dynamics among the frames without explicitly

considering spatial dependencies. We report the results of this experiment in Table

3.13. As can be seen, our “ST-LSTM + Trust Gate” significantly outperforms “LSTM

+ Trust Gate”. This demonstrates that the proposed modeling of the dependencies in

both temporal and spatial dimensions provides much richer representations than the

original LSTM.

The second observation of this experiment is that if we add our trust gate to the

original LSTM, the performance of LSTM can also be improved, but its performance

gain is less than the performance gain by adding trust gate to our ST-LSTM. A possible

explanation is that we have both spatial and temporal context information at each

step of ST-LSTM to generate a good prediction of the input at the current step (see

Eq. (3.7)), thus our trust gate can achieve a good estimation of the reliability of the

input at each step by using the prediction (see Eq. (3.9)). However, in the original
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Table 3.13 Performance comparison of Temporal Average, LSTM, and our proposed
ST-LSTM

Dataset NTU NTU UT- SBU ChaLearn
(X-Subject) (X-View) Kinect Interaction Gesture

Temporal Average 47.6% 52.6% 81.9% 71.5% 77.9%

LSTM 62.0% 70.7% 90.5% 86.0% 87.1%
LSTM + Trust Gate 62.9% 71.7% 92.0% 86.6% 87.6%

ST-LSTM 65.2% 76.1% 92.4% 88.6% 89.9%
ST-LSTM + Trust Gate 69.2% 77.7% 97.0% 93.3% 92.0%

LSTM, the available context at each step is from the previous temporal step, i.e., the

prediction can only be based on the context in the temporal dimension, thus our trust

gate is less effective when it is added to the original LSTM. This further demonstrates

the effectiveness of our ST-LSTM framework for spatio-temporal modeling of the

skeleton sequences.

In addition, we investigate the effectiveness of the LSTM structure for handling

the sequential data. We evaluate a baseline method (called “Temporal Average”)

by averaging the features from all frames instead of using LSTM. Specifically, the

geometric features are averaged over all the frames of the input sequence (i.e., the

temporal ordering information in the sequence is ignored), and then the resultant

averaged feature is fed to a two-layer network, followed by a softmax classifier. The

performance of this scheme is much weaker than our proposed ST-LSTM with trust

gate, and also weaker than the original LSTM, as shown in Table 3.13. The results

demonstrate the representation strengths of the LSTM networks for modeling the

dependencies and dynamics in sequential data, when compared to traditional temporal

aggregation methods of input sequences.

3.3.12 Evaluation of the Last-to-first Link Scheme

In this section, we evaluate the effectiveness of the last-to-first link scheme in our

model (see section 3.2.6). The results in Table 3.14 show that the performance is



54
Skeleton-Based Action Recognition Using Spatio-Temporal LSTM Network with

Trust Gates

Table 3.14 Evaluation of the last-to-first link in our proposed network

Dataset NTU NTU UT- SBU ChaLearn
(X-Subject) (X-View) Kinect Interaction Gesture

Without last-to-first link 68.5% 76.9% 96.5% 92.1% 90.9 %
With last-to-first link 69.2% 77.7% 97.0% 93.3% 92.0 %

improved after adding the last-to-first link to our network. We analyze the benefits of

the last-to-first link as follows. In the spatial dimension of our ST-LSTM network (see

Fig. 3.1), the hidden representation of each node is fed to its next node. However, at

each time step, the first node does not have preceding node in the spatial dimension.

Thus zero values are used to substitute the hidden representation of the preceding node

when the last-to-first link is not used. However, when we add the last-to-first link,

the first node can obtain the hidden representation from the last node of the previous

time step, which contains the context information of the skeleton structure in a frame.

Thus the performance after using the last-to-first link scheme is better compared to the

alternative method by simply feeding zero values.

3.4 Chapter Summary

In this chapter, we have extended the RNN-based action recognition method to both

spatial and temporal domains. Specifically, we have proposed a novel ST-LSTM

network which analyzes the 3D locations of skeletal joints at each frame and at each

processing step. A skeleton tree traversal method based on the adjacency graph of body

joints is also proposed to better represent the structure of the input sequences and to

improve the performance of our network by connecting the most related joints together

in the input sequence. In addition, a new gating mechanism is introduced to improve the

robustness of our network against the noise in input sequences. A multi-modal feature

fusion method is also proposed for our ST-LSTM framework. The experimental results

have validated the contributions and demonstrated the effectiveness of our approach
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which achieves better performance over the existing state-of-the-art methods on seven

challenging benchmark datasets.





Chapter 4

Skeleton-Based Action Recognition

with Global Context-Aware Attention

LSTM Networks

In the previous chapter, a spatio-temporal LSTM network is introduced for skeleton-

based action recognition. However, it does not have explicit capability to selectively

focus on the informative (important) body joints of each action sequence. In this

chapter, we improve its design and propose a Global Context-Aware Attention LSTM

network to emphasize the features of the informative joints that are more relevant to

the action performed in a sequence.

4.1 Introduction

As shown in [143, 3], human actions can be represented by a combination of the

motions of skeletal joints in 3D space. However, this does not indicate all joints in the

skeleton sequence are informative for action recognition. For instance, the hand joints’

motions are quite informative for the action clapping, while the movements of the foot
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joints are not. Different action sequences often have different informative joints, and

in the same sequence, the informativeness degree of a body joint may also change

over the frames. Thus, it is beneficial to selectively focus on the informative joints

in each frame of the sequence, and try to ignore the features of the irrelevant ones,

as the latter contribute very little for action recognition, and even bring noise which

corrupts the performance [129]. This selectively focusing scheme can also be called

attention, which has been demonstrated to be quite useful for various tasks, such as

speech recognition [144], image caption generation [96], machine translation [145],

and so on.

Long Short-Term Memory (LSTM) networks have strong power in handling se-

quential data [114]. They have been successfully applied to language modeling [94],

RGB based video analysis [103, 67, 108, 111, 109, 64, 146, 98, 104], and also skeleton-

based action recognition [3, 5, 21]. However, the original LSTM does not have strong

attention capability for action recognition. This limitation is mainly owing to LSTM’s

restriction in perceiving the global context information of the video sequence, which is,

however, often very important for the global classification problem – skeleton-based

action recognition.

In order to perform reliable attention over the skeletal joints, we need to assess

the informativeness degree of each joint in each frame with regarding to the global

action sequence. This indicates that we need to have global contextual knowledge

first. However, the available context information at each evolution step of LSTM is

relatively local. In LSTM, the sequential data is fed to the network as input step by step.

Accordingly, the context information (hidden representation) of each step is fed to the

next one. This implies the available context at each step is the hidden representation
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from the previous step, which is quite local when compared to the global information

1.

In this chapter, we extend the original LSTM model and propose a Global Context-

Aware Attention LSTM (GCA-LSTM) network which has strong attention capability

for skeleton-based action recognition. In our method, the global context information

is fed to all evolution steps of the GCA-LSTM. Therefore, the network can use it

to measure the informativeness scores of the new inputs at all steps, and adjust the

attention weights for them accordingly, i.e., if a new input is informative regarding to

the global action, then the network takes advantage of more information of it at this

step, on the contrary, if it is irrelevant, then the network blocks the input at this step.

Our proposed GCA-LSTM network for skeleton-based action recognition includes

a global context memory cell and two LSTM layers, as illustrated in Fig. 4.1. The

first LSTM layer is used to encode the skeleton sequence and initialize the global

context memory cell. And the representation of the global context memory is then fed

to the second LSTM layer to assist the network to selectively focus on the informative

joints in each frame, and further generate an attention representation for the action

sequence. Then the attention representation is fed back to the global context memory

cell in order to refine it. Moreover, we propose a recurrent attention mechanism for

our GCA-LSTM network. As a refined global context memory is produced after the

attention procedure, the global context memory can be fed to the second LSTM layer

again to perform attention more reliably. We carry out multiple attention iterations to

optimize the global context memory progressively. Finally, the refined global context

is fed to the softmax classifier to predict the action class.

In addition, we also extend the aforementioned design of our GCA-LSTM network

in this chapter, and further propose a two-stream GCA-LSTM, which incorporates

1Although in LSTM, the hidden representations of the latter steps contain wider range of context
information than that of the initial steps, their context is still relatively local, as LSTM has trouble in
remembering information too far in the past [147].
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Fig. 4.1 Skeleton-based human action recognition with the Global Context-Aware
Attention LSTM network. The first LSTM layer encodes the skeleton sequence and
generates an initial global context representation for the action sequence. The second
layer performs attention over the inputs by using the global context memory cell to
achieve an attention representation for the sequence. Then the attention representation
is used back to refine the global context. Multiple attention iterations are performed
to refine the global context memory progressively. Finally, the refined global context
information is utilized for classification.
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fine-grained (joint-level) attention and coarse-grained (body part-level) attention, in

order to achieve more accurate action recognition results.

The contributions of this chapter are summarized as follows: (1) A GCA-LSTM

model is proposed, which retains the sequential modeling ability of the original

LSTM, meanwhile promoting its selective attention capability by introducing a global

context memory cell. (2) A recurrent attention mechanism is proposed, with which the

attention performance of our network can be improved progressively. (3) A stepwise

training scheme is proposed to more effectively train the network. (4) We further

extend the design of our GCA-LSTM model, and propose a more powerful two-stream

GCA-LSTM network. (5) The proposed end-to-end network yields state-of-the-art

performance on the evaluated benchmark datasets.

The rest of this chapter is organized as follows. In Section 4.2, we introduce the

proposed GCA-LSTM network. In Section 4.3, we introduce the two-stream attention

framework. We provide the experimental results in Section 4.4. Finally, we conclude

the chapter in Section 4.5.

4.2 GCA-LSTM Network

4.2.1 Spatio-Temporal LSTM

In order to put our proposed network into context, we first briefly review the spatio-

temporal LSTM (ST-LSTM) model, since our GCA-LSTM network is based on this

model.

In a generic skeleton-based human action recognition problem, the 3D coordinates

of the major body joints in each frame are provided. The spatial dependence of

different joints in the same frame and the temporal dependence of the same joint

among different frames are both crucial cues for skeleton-based action analysis.
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In Chapter 3, we introduce a ST-LSTM network for skeleton-based action recogni-

tion, which is capable of modeling the dependency structure and context information

in both spatial and temporal domains simultaneously. In ST-LSTM model, the skele-

tal joints in a frame are arranged and fed as a chain (the spatial direction), and the

corresponding joints over different frames are also fed in a sequence (the temporal

direction).

Specifically, each ST-LSTM unit is fed with a new input (x j,t , the 3D location of

joint j in frame t), the hidden representation of the same joint at the previous time step

(h j,t−1), and also the hidden representation of the previous joint in the same frame

(h j−1,t), where j ∈ {1, ...,J} and t ∈ {1, ...,T} denote the indices of joints and frames,

respectively. The ST-LSTM unit has an input gate (i j,t), two forget gates corresponding

to the two sources of context information ( f (T )j,t for the temporal dimension, and f (S)j,t

for the spatial domain), together with an output gate (o j,t). The transition equations of

ST-LSTM are formulated as:



i j,t

f (S)j,t

f (T )j,t

o j,t

u j,t


=



σ

σ

σ

σ

tanh



W


x j,t

h j−1,t

h j,t−1


 (4.1)

c j,t = i j,t ⊙u j,t

+ f (S)j,t ⊙ c j−1,t (4.2)

+ f (T )j,t ⊙ c j,t−1

h j,t = o j,t ⊙ tanh(c j,t) (4.3)

where c j,t and h j,t denote the cell state and hidden representation of the unit at the

spatio-temporal step ( j, t), respectively, u j,t is the modulated input, ⊙ denotes the



4.2 GCA-LSTM Network 63

First LayerST-LSTM 

Second ST-LSTM Layer

0.0

0.0

0.3 0.1

0.4

0.0 Global Context

Refine

Initialize

(n)Memory

j,th

j,t

(0)

(n)

j,tr (n)

(J,T)

Fig. 4.2 Illustration of our GCA-LSTM network. Some arrows are omitted for clarity.

element-wise product, and W is an affine transformation consisting of model parame-

ters.

4.2.2 Global Context-Aware Attention LSTM

Several previous works [129, 46] have shown that in each action sequence, there is

often a subset of informative joints which are important as they contribute much more

to action analysis, while the remaining ones may be irrelevant (or even noisy) for this

action. As a result, to obtain a high accuracy of action recognition, we need to identify

the informative skeletal joints and concentrate more on their features, meanwhile

trying to ignore the features of the irrelevant ones, i.e., selectively focusing (attention)

on the informative joints is useful for human action recognition.

Human action can be represented by a combination of skeletal joints’ movements.

In order to reliably identify the informative joints in an action instance, we can evaluate

the informativeness score of each joint in each frame with regarding to the global action

sequence. To achieve this purpose, we need to obtain the global context information

first. However, the available context at each evolution step of LSTM is the hidden
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representation from the previous step, which is relatively local when compared to the

global action.

To mitigate the aforementioned limitation, we propose to introduce a global context

memory cell for the LSTM model, which keeps the global context information of the

action sequence, and can be fed to each step of LSTM to assist the attention procedure,

as illustrated in Fig. 4.2. We call this new LSTM architecture as Global Context-Aware

Attention LSTM (GCA-LSTM).

Overview of the GCA-LSTM network

We illustrate the proposed GCA-LSTM network for skeleton-based action recognition

in Fig. 4.2. Our GCA-LSTM network contains three major modules. The global

context memory cell maintains an overall representation of the whole action sequence.

The first ST-LSTM layer encodes the skeleton sequence, and initializes the global

context memory cell. The second ST-LSTM layer performs attention over the inputs at

all spatio-temporal steps to generate an attention representation of the action sequence,

which is then used to refine the global context memory.

The input at the spatio-temporal step ( j, t) of the first ST-LSTM layer is the 3D

coordinates of the joint j in frame t. The inputs of the second layer are the hidden

representations from the first layer.

Multiple attention iterations (recurrent attention) are performed in our network

to refine the global context memory iteratively. Finally, the refined global context

memory can be used for classification.

To facilitate our explanation, we use h j,t instead of h j,t to denote the hidden

representation at the step ( j, t) in the first ST-LSTM layer, while the symbols, including

h j,t , c j,t , i j,t , and o j,t , which are defined in Section 4.2.1, are utilized to represent the

components in the second layer only.



4.2 GCA-LSTM Network 65

Initializing the Global Context Memory Cell

Our GCA-LSTM network performs attention by using the global context information,

therefore, we need to obtain an initial global context memory first.

A feasible scheme is utilizing the outputs of the first layer to generate a global con-

text representation. We can average the hidden representations at all spatio-temporal

steps of the first layer to compute an initial global context memory cell (IF(0)) as

follows:

IF(0) =
1

JT

J

∑
j=1

T

∑
t=1

h j,t (4.4)

We may also concatenate the hidden representations of the first layer and feed

them to a feed-forward neural network, then use the resultant activation as IF(0). We

empirically observe these two initialization schemes perform similarly.

Performing Attention in the Second ST-LSTM Layer

By using the global context information, we evaluate the informativeness degree of

the input at each spatio-temporal step in the second ST-LSTM layer.

In the n-th attention iteration, our network learns an informativeness score (r(n)j,t ) for

each input (h j,t) by feeding the input itself, together with the global context memory

cell (IF(n−1)) generated by the previous attention iteration to a network as follows:

e(n)j,t =We1

tanh

We2

 h j,t

IF(n−1)



 (4.5)

r(n)j,t =
exp(e(n)j,t )

J
∑

u=1

T
∑

v=1
exp(e(n)u,v)

(4.6)
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where r(n)j,t ∈ (0,1) denotes the normalized informativeness score of the input at the step

( j, t) in the n-th attention iteration, with regarding to the global context information.

The informativeness score r(n)j,t is then used as a gate of the ST-LSTM unit, and we

call it informativeness gate. With the assistance of the learned informativeness gate,

the cell state of the unit in the second ST-LSTM layer can be updated as:

c j,t = r(n)j,t ⊙ i j,t ⊙u j,t

+ (1− r(n)j,t )⊙ f (S)j,t ⊙ c j−1,t (4.7)

+ (1− r(n)j,t )⊙ f (T )j,t ⊙ c j,t−1

The cell state updating scheme in Eq. (4.7) can be explained as follows: (1)

if the input (h j,t) is informative (important) with regarding to the global context

representation, then we let the learning algorithm update the cell state of the second

ST-LSTM layer by importing more information of it; (2) on the contrary, if the input is

irrelevant, then we need to block the input gate at this step, meanwhile relying more

on the history information of the cell state.

Refining the Global Context Memory Cell

We perform attention by adopting the cell state updating scheme in Eq. (4.7), and

thereby obtain an attention representation of the action sequence. Concretely, the

output of the last spatio-temporal step in the second layer is used as the attention

representation (F (n)) for the action. Finally, the attention representation F (n) is fed

to the global context memory cell to refine it, as illustrated in Fig. 4.2. The refinement

is formulated as follows:

IF(n) = ReLu

W (n)
F

 F (n)

IF(n−1)


 (4.8)
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where IF(n) is the refined version of IF(n−1). Note that W (n)
F is not shared over different

iterations.

Multiple attention iterations (recurrent attention) are carried out in our GCA-LSTM

network. Our motivation is that after we obtain a refined global context memory cell,

we can use it to perform the attention again to more reliably identify the informative

joints, and thus achieve a better attention representation, which can then be utilized to

further refine the global context. After multiple iterations, the global context can be

more discriminative for action classification.

Classifier

The last refined global context memory cell IF(N) is fed to a softmax classifier to

predict the class label:

ŷ = softmax
(

Wc

(
IF(N)

))
(4.9)

The negative log-likelihood loss function [121] is adopted to measure the difference

between the true class label y and the prediction result ŷ. The back-propagation

algorithm is used to minimize the loss function. The details of the back-propagation

process are described in Section 4.2.3.

4.2.3 Training the Network

In this part, we first briefly describe the basic training method which directly optimizes

the parameters of the whole network, we then propose a more advanced stepwise

training scheme for our GCA-LSTM network.
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Fig. 4.3 Illustration of the two network training methods. (a) Directly train the whole
network. (b) Stepwise optimize the network parameters. In this figure, the global
context memory cell IF(n) is unfolded over the attention iterations. The training step
#n corresponds to the n-th attention iteration. The black and red arrows denote the
forward and backward passes, respectively. Some passes, such as those between the
two ST-LSTM layers, are omitted for clarity. Better viewed in colour.

Directly Train the Whole Network

Since the classification is performed by using the last refined global context, to train

such a network, it is natural and intuitive to feed the action label as the training output

at the last attention iteration, and back-propagate the errors from the last step, i.e.,

directly optimize the whole network as shown in Fig. 4.3(a).

Stepwise Training

Owing to the recurrent attention mechanism, there are frequent mutual interactions

among different modules (the two ST-LSTM layers and the global context memory

cell, see Fig. 4.2) in our network. Moreover, during the progress of multiple attention

iterations, new parameters are also introduced. Due to these facts, it is rather difficult

to simply optimize all parameters and all attention iterations of the whole network

directly as mentioned above.

Therefore, we propose a stepwise training scheme for our GCA-LSTM network,

which optimizes the model parameters incrementally. The details of this scheme are

depicted in Fig. 4.3(b) and Algorithm 1.
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Algorithm 1 Stepwise train the GCA-LSTM network.
1: Randomly initialize the parameters of the whole network with zero-mean Gaus-

sian.
2: for n = 0 to N do // n is the training step
3: Feed the action label as the training output at the

attention iteration n.
4: do
5: Training an epoch: optimizing the parameters used

in the iterations 0 to n via back-propagation.
6: while Validation error is decreasing
7: end for

The proposed stepwise training scheme is effective and efficient in optimizing the

parameters and ensuring the convergence of the GCA-LSTM network. Specifically,

at each training step n, we only need to optimize a subset of parameters and modules

which are used by the attention iterations 0 to n. 2 Training this shrunken network is

more effective and efficient than directly training the whole network. At the step n+1,

a larger scale network needs to be optimized. However, the training at step n+1 is

also very efficient, as most of the parameters and passes have already been optimized

(pre-trained well) by its previous training steps.

4.3 Two-stream GCA-LSTM Network

In the aforementioned design (Section 4.2), the GCA-LSTM network performs action

recognition by selectively focusing on the informative joints in each frame, i.e., the

attention is carried out at joint level (fine-grained attention). Beside fine-grained

attention, coarse-grained attention can also contribute to action analysis. This is

because some actions are often performed at body part level. For these actions, all the

joints from the same informative body part tend to have similar importance degrees.

For example, the postures and motions of all the joints (elbow, wrist, palm, and finger)

2Note that #0 is not an attention iteration, but the process of initializing the global context memory
cell (IF(0)). To facilitate the explantation of the stepwise training, we here temporally describe it as an
attention iteration.
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Fig. 4.4 Illustration of the two-stream GCA-LSTM network, which incorporates
fine-grained (joint-level) attention and coarse-grained (body part-level) attention. To
perform coarse-grained attention, the joints in a skeleton are divided into five body
parts, and all the joints from the same body part share a same informative score. In the
second ST-LSTM layer for coarse-grained attention, we only show two body parts at
each frame, and other body parts are omitted for clarity.

from the right hand are all important for recognizing the action salute in the NTU

RGB+D dataset [1], i.e., we need to identify the informative body part “right hand”

here. This implies coarse-grained (body part-level) attention is also useful for action

recognition.

As suggested by Du et al. [3], the human skeleton can be divided into five body

parts (torso, left hand, right hand, left leg, and right leg) based on the human physical

structure. These five parts are illustrated as the right part of Fig. 4.4. Therefore, we

can measure the informativeness degree of each body part with regarding to the action

sequence, and then perform coarse-grained attention.

Specifically, we extend the design of out GCA-LSTM model, and introduce a

two-stream GCA-LSTM network here, which jointly takes advantage of a fine-grained

(joint-level) attention stream and a coarse-grained (body part-level) attention stream.

The architecture of the two-stream GCA-LSTM is illustrated in Fig. 4.4. In each

attention stream, there is a global context memory cell to maintain the global attention

representation of the action sequence, and also a second ST-LSTM layer to perform
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attention. This indicates we have two separated global context memory cells in the

whole architecture, which are respectively the fine-grained attention memory cell

(IF(n)
(F)

) and the coarse-grained attention memory cell (IF(n)
(C)

). The first ST-LSTM layer,

which is used to encode the skeleton sequence and initialize the global context memory

cells, is shared by the two attention streams.

The process flow (including initialization, attention, and refinement) in the fine-

grained attention stream is the same as the GCA-LSTM model introduced in Section

4.2. The operation in the coarse-grained attention stream is also similar. The main

difference is that, in the second layer, the coarse-grained attention stream performs

attention by selectively focusing on the informative body parts in each frame.

Concretely, in the attention iteration n, the network learns an informativeness score

(r(n)P,t ) for each body part P (P ∈ {1,2,3,4,5}) as:

e(n)P,t =We3

tanh

We4

 h̄P,t

IF(n−1)
(C)



 (4.10)

r(n)P,t =
exp(e(n)P,t )

5
∑

u=1

T
∑

v=1
exp(e(n)u,v)

(4.11)

where h̄P,t is the representation of the body part P at frame t, which is calculated based

on the hidden representations of all the joints that belong to P, with average pooling

as:

h̄P,t =
1
JP

∑
j∈P

h j,t (4.12)

where JP denotes the number of joints in body part P.

To perform coarse-grained attention, we allow each joint j in body part P to share

the informativeness degree of P, i.e., at frame t, all the joints in P use the same

informativeness score r(n)P,t , as illustrated in Fig. 4.4. Hence, in the coarse-grained

attention stream, if j ∈ P, then the cell state of the second ST-LSTM layer is updated
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at the spatio-temporal step ( j, t) as:

c j,t = r(n)P,t ⊙ i j,t ⊙u j,t

+ (1− r(n)P,t )⊙ f (S)j,t ⊙ c j−1,t (4.13)

+ (1− r(n)P,t )⊙ f (T )j,t ⊙ c j,t−1

Multiple attention iterations are also performed in the proposed two-stream GCA-

LSTM network. Finally, the refined fine-grained attention memory IF(N)
(F)

and coarse-

grained attention memory IF(N)
(C)

are both fed to the softmax classifier, and the prediction

scores of these two streams are averaged for action recognition.

The proposed step-wise training scheme can also be applied to this two-stream

GCA-LSTM network, and at the training step #n, we simultaneously optimize the two

attention streams, both of which correspond to the n-th attention iteration.

4.4 Experiments

We evaluate our proposed method on the NTU RGB+D [1], SYSU-3D [85], UT-Kinect

[7], SBU-Kinect Interaction [39], and Berkeley MHAD [88] datasets. To investigate

the effectiveness of our approach, we conduct extensive experiments with the following

different network structures:

• “ST-LSTM + Global (1)”. This network architecture is similar to the original

two-layer ST-LSTM network in [21], but the hidden representations at all spatio-

temporal steps of the second layer are concatenated and fed to a one-layer feed-

forward network to generate a global representation of the skeleton sequence,

and the classification is performed on the global representation; while in [21],

the classification is performed on single hidden representation at each spatio-

temporal step (local representation).
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• “ST-LSTM + Global (2)”. This network structure is similar to the above “ST-

LSTM + Global (1)”, except that the global representation is obtained by aver-

aging the hidden representations of all spatio-temporal steps.

• “GCA-LSTM”. This is the proposed Global Context-Aware Attention LSTM

network. Two attention iterations are performed by this network. The classi-

fication is performed on the last refined global context memory cell. The two

training methods (direct training and stepwise training) described in Section

4.2.3 are also evaluated for this network structure.

In addition, we also adopt the large scale NTU RGB+D and the challenging

SYSU-3D as two major benchmark datasets to evaluate the proposed “two-stream

GCA-LSTM” network.

We use Torch7 framework [122] to perform our experiments. Stochastic gradient

descent (SGD) algorithm is adopted to train our end-to-end network. We set the

learning rate, decay rate, and momentum to 1.5×10−3, 0.95, and 0.9, respectively.

The applied dropout probability [55] in our network is set to 0.5. The dimensions of

the global context memory representation and the cell state of ST-LSTM are both 128.

4.4.1 Experiments on the NTU RGB+D Dataset

There are two standard evaluation protocols for the NTU RGB+D dataset [1]: (1)

Cross subject (CS): 20 subjects are used for training, and the remaining subjects are

used for testing; (2) Cross view (CV): two camera views are used for training, and one

camera view is used for testing. To extensively evaluate the proposed method, both

protocols are tested in our experiment.

We compare the proposed GCA-LSTM network with state-of-the-art approaches, as

shown in Table 4.1. We can observe that our proposed GCA-LSTM model outperforms

the other skeleton-based methods. Specifically, our GCA-LSTM network outperforms
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the original ST-LSTM network in [21] by 6.9% with the cross subject protocol, and

6.3% with the cross view protocol. This demonstrates that the attention mechanism in

our network brings significant performance improvement.

Both “ST-LSTM + Global (1)” and “ST-LSTM + Global (2)” perform classification

on the global representations, thus they achieve slightly better performance than the

original ST-LSTM [21] which performs classification on local representations. We

also observe “ST-LSTM + Global (1)” and “ST-LSTM + Global (2)” perform similarly.

The results in Table 4.1 also show that using the stepwise training method can

improve the performance of our network in contrast to using the direct training method.

Table 4.1 Experimental results on the NTU RGB+D dataset.

Method CS CV

Skeletal Quads [43] 38.6% 41.4%
Lie Group [42] 50.1% 52.8%
Dynamic Skeletons [85] 60.2% 65.2%
HBRNN [3] 59.1% 64.0%
Deep RNN [1] 56.3% 64.1%
Deep LSTM [1] 60.7% 67.3%
Part-aware LSTM [1] 62.9% 70.3%
JTM CNN [148] 73.4% 75.2%
STA Model [149] 73.4% 81.2%
SkeletonNet [54] 75.9% 81.2%
Visualization CNN [150] 76.0% 82.6%

ST-LSTM [21] 69.2% 77.7%

ST-LSTM + Global (1) 70.5% 79.5%
ST-LSTM + Global (2) 70.7% 79.4%
GCA-LSTM (direct training) 74.3% 82.8%
GCA-LSTM (stepwise training) 76.1% 84.0%

We also evaluate the performance of the two-stream GCA-LSTM network, and

report the results in Table 4.2. The results show that by incorporating fine-grained

attention and coarse-grained attention, the proposed two-stream GCA-LSTM network

achieves better performance than the GCA-LSTM with fine-grained attention only.
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We also observe the performance of two-stream GCA-LSTM can be improved with

the stepwise training method.

Table 4.2 Performance of the two-stream GCA-LSTM network on the NTU RGB+D
dataset.

Method CS CV

GCA-LSTM (coarse-grained only) 74.1% 81.6%
GCA-LSTM (fine-grained only) 74.3% 82.8%
Two-stream GCA-LSTM 76.2% 84.7%
Two-stream GCA-LSTM with stepwise training 77.1% 85.1%

4.4.2 Experiments on the SYSU-3D Dataset

We follow the standard cross-validation protocol in [85] on the SYSU-3D dataset [85],

in which 20 subjects are adopted for training the network, and the remaining subjects

are kept for testing. We report the experimental results in Table 4.3. We can observe

that our GCA-LSTM network surpasses the state-of-the-art skeleton-based methods in

[6, 85, 21], which demonstrates the effectiveness of our approach in handling the task

of action recognition in skeleton sequences. The results also show that our proposed

stepwise training scheme is useful for our network.

Table 4.3 Experimental results on the SYSU-3D dataset.

Method Accuracy

LAFF (SKL) [6] 54.2%
Dynamic Skeletons [85] 75.5%

ST-LSTM [151] 76.5%

ST-LSTM + Global (1) 76.8%
ST-LSTM + Global (2) 76.6%
GCA-LSTM (direct training) 77.8%
GCA-LSTM (stepwise training) 78.6%
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Using this challenging dataset, we also evaluate the performance of the two-stream

attention model. The results in Table 4.4 show that the two-stream GCA-LSTM

network is effective for action recognition.

Table 4.4 Performance of the two-stream GCA-LSTM network on the SYSU-3D
dataset.

Method Accuracy

GCA-LSTM (coarse-grained only) 76.9%
GCA-LSTM (fine-grained only) 77.8%
Two-stream GCA-LSTM 78.8%
Two-stream GCA-LSTM with stepwise training 79.1%

4.4.3 Experiments on the UT-Kinect Dataset

We follow the standard leave-one-out-cross-validation protocol in [7] to evaluate our

method on the UT-Kinect dataset [7]. Our approach yields state-of-the-art performance

on this dataset, as shown in Table 4.5.

Table 4.5 Experimental results on the UT-Kinect dataset.

Method Accuracy

Grassmann Manifold [125] 88.5%
Histogram of 3D Joints [7] 90.9%
Riemannian Manifold [128] 91.5%
Key-Pose-Motifs Mining [131] 93.5%
Action-Snippets and Activated Simplices [152] 96.5%

ST-LSTM [21] 97.0%

ST-LSTM + Global (1) 97.0%
ST-LSTM + Global (2) 97.5%
GCA-LSTM (direct training) 98.5%
GCA-LSTM (stepwise training) 99.0%
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4.4.4 Experiments on the SBU-Kinect Interaction Dataset

We perform 5-fold cross-validation evaluation on the SBU-Kinect Interaction dataset

by following the standard protocol in [39]. The experimental results are depicted

in Table 4.6. In this table, HBRNN [3], Deep LSTM [5], Co-occurrence LSTM [5],

and ST-LSTM [21] are all LSTM based models for action recognition in skeleton

sequences, and are very relevant to our network. We can see that the proposed GCA-

LSTM network achieves the best performance among all of these methods.

4.4.5 Experiments on the Berkeley MHAD Dataset

We adopt the standard experimental protocol on the Berkeley MHAD dataset, in which

7 subjects are used for training and the remaining 5 subjects are held out for testing.

The results in Table 4.7 show that our method achieves very high accuracy (100%) on

this dataset.

As the Berkeley MHAD dataset was collected with a motion capture system rather

than a Kinect, thus the coordinates of the skeletal joints are relatively accurate. To

evaluate the robustness with regarding to the input noise, we also investigate the

performance of our GCA-LSTM network on this dataset by adding zero mean input

Table 4.6 Experimental results on the SBU-Kinect Interaction dataset.

Method Accuracy

Yun et al. [39] 80.3%
CHARM [133] 83.9%
Ji et al. [132] 86.9%
HBRNN [3] 80.4%
Deep LSTM [5] 86.0%
Co-occurrence LSTM [5] 90.4%
SkeletonNet [54] 93.5%

ST-LSTM [21] 93.3%

GCA-LSTM (direct training) 94.1%
GCA-LSTM (stepwise training) 94.9%
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Table 4.7 Experimental results on the Berkeley MHAD dataset

Method Accuracy

Ofli et al. [37] 95.4%
Vantigodi et al. [140] 96.1%
Vantigodi et al. [141] 97.6%
Kapsouras et al. [142] 98.2%

ST-LSTM [21] 100%

GCA-LSTM (direct training) 100%
GCA-LSTM (stepwise training) 100%

noise to the skeleton sequences, and show the results in Table 4.8. We can see that even

if we add noise with the standard deviation (σ ) set to 12cm (which is significant noise

in the scale of human body), the accuracy of our method is still very high (92.7%).

This demonstrates that our method is quite robust against the input noise.

Table 4.8 Evaluation of robustness against the input noise. Gaussian noise N (0,σ2)
is added to the 3D coordinates of the skeletal joints.

Standard deviation (σ ) of noise 0.1cm 1cm 2cm 4cm

Accuracy 100% 99.3% 98.5% 97.5%

Standard deviation (σ ) of noise 8cm 12cm 16cm 32cm

Accuracy 95.6% 92.7% 80.4% 61.5%

4.4.6 Evaluation of Attention Iteration Numbers

We also test the effect of different attention iteration numbers on our GCA-LSTM

network, and show the results in Table 4.9. We can observe that increasing the

iteration number can help to strength the classification performance of our network

(using 2 iterations obtains higher accuracies compared to using only 1 iteration). This

demonstrates that the recurrent attention mechanism proposed by us is useful for the

GCA-LSTM network.
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Table 4.9 Performance comparison of different attention iteration numbers (N).

#Attention Iteration NTU RGB+D NTU RGB+D UT- SYSU- Berkeley
(CS) (CV) Kinect 3D MHAD

1 72.9% 81.8% 98.0% 77.8% 100%
2 76.1% 84.0% 99.0% 78.6% 100%

Specifically, we also evaluate the performance of 3 attention iterations by using

the large scale NTU RGB+D dataset, and the results are shown in Table 4.10. We

find the performance of 3 attention iterations is slightly better than 2 iterations if we

share the parameters over different attention iterations (see columns (a) and (b) in

Table 4.10). This consistently shows using multiple attention iterations can improve

the performance of our network progressively. We do not try more iterations due to

the GPU’s memory limitation.

We also find that if we do not share the parameters over different attention iterations

(see columns (c) and (d) in Table 4.10), then too many iterations can bring performance

degradation (the performance of using 3 iterations is worse than that of using 2

iterations). In our experiment, we observe the performance degradation is caused by

over-fitting (increasing iteration number will introduce new parameters if we do not

share parameters). But the performance of two iterations is still significantly better

than one iteration in this case. We will also give the experimental analysis of the

parameter sharing schemes detailed in Section 4.4.7.

4.4.7 Evaluation of Parameter Sharing Schemes

As formulated in Eq. (4.5), the model parameters We1 and We2 are introduced for

calculating the informativeness score at each spatio-temporal step in the second layer.

Also multiple attention iterations are carried out in this layer. To regularize the

parameter number inside our network and improve the generalization capability, we

investigate two parameter sharing strategies for our network: (1) Sharing within
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Table 4.10 Performance comparison of different parameter sharing schemes.

#Attention Iteration
(a) (b)

w/o sharing within iteration w/ sharing within iteration
w/ sharing cross iterations w/ sharing cross iterations

1 71.0% 72.9%
2 73.0% 74.3%
3 73.1% 74.4%

#Attention Iteration
(c) (d)

w/o sharing within iteration w/ sharing within iteration
w/o sharing cross iterations w/o sharing cross iterations

1 71.0% 72.9%
2 73.4% 76.1%
3 69.3% 73.2%

iteration: We1 and We2 are shared by all spatio-temporal steps in the same attention

iteration; (2) Sharing cross iterations: We1 and We2 are shared over different attention

iterations. We investigate the effect of these two parameter sharing strategies on our

GCA-LSTM network, and report the results in Table 4.10.

In Table 4.10, we can observe that: (1) Sharing parameters within iteration is

useful for enhancing the generalization capability of our network, as the performance

in columns (b) and (d) of Table 4.10 is better than (a) and (c), respectively. (2) Sharing

parameters over different iterations is also helpful for handling the over-fitting issues,

but it may limit the representation capacity, as the network with two attention iterations

which shares parameters within iteration but does not share parameters over iterations

achieves the best result (see column (d) of Table 4.10). As a result, in our GCA-LSTM

network, we only share the parameters within iteration, and two attention iterations

are used.
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4.4.8 Evaluation of Training Methods

The previous experiments showed that using the stepwise training method can improve

the performance of our network in contrast to using direct training (see Table 4.1, 4.5,

4.3, 4.6). To further investigate the performance of these two training methods, we

plot the convergence curves of our GCA-LSTM network in Fig. 4.5.

We analyze the convergence curves (Fig. 4.5) of the stepwise training method

as follows. By using the proposed stepwise training method, at the training step #0,

we only need to train the subnetwork for initializing the global context (IF(0)), i.e.,

only a subset of parameters and modules need to be optimized, thus the training is

very efficient and the loss curve converges very fast. When the validation loss stops

decreasing, we start the next training step #1. Step #1 contains new parameters and

modules for the first attention iteration, which have not been optimized yet, therefore,

loss increases immediately at this epoch. However, most of the parameters involved at

this step have already been pre-trained well by the previous step #0, thus the network

training is quite effective, and the loss drops to a very low value after only one training

epoch.

By comparing the convergence curves of the two training methods, we can find (1)

the network converges much faster if we use stepwise training, compared to directly

train the whole network. We can also observe that (2) the network is easier to get

over-fitted by using direct training method, as the gap between the train loss and

validation loss starts to rise after the 20th epoch. These observations demonstrate that

the proposed stepwise training scheme is quite useful for effectively and efficiently

training our GCA-LSTM network.
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Fig. 4.5 Convergence curves of the GCA-LSTM network with two attention iterations
by respectively using stepwise training (in red) and direct training (in green) on the
NTU RGB+D dataset. Better viewed in colour.

4.4.9 Evaluation of Initialization Methods and Attention Designs

In Section 4.2.2, we introduce two methods to initialize the global context memory

cell (IF(0)). The first is averaging the hidden representations of the first layer (see Eq.

(4.4)), and the second is using a one-layer feed-forward network to obtain IF(0). We

compare these two initialization methods in Table 4.11. The results show that these two

methods perform similarly. In our experiment, we also find that by using feed-forward

network, the model converges faster, thus the scheme of feed-forward network is used

to initialize the global context memory cell in our GCA-LSTM network.

Table 4.11 Performance comparison of different methods of initializing the global
context memory cell.

Method NTU RGB+D (CS) NTU RGB+D (CV)

Averaging 73.8% 83.1%
Feed-forward network 74.3% 82.8%
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to 
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Action

Fig. 4.6 Examples of qualitative results on the NTU RGB+D dataset. Three actions
(taking a selfie, pointing to something, and kicking other person) are illustrated. The
informativeness scores of two attention iterations are visualized. Four frames are shown
for each iteration. The circle size indicates the magnitude of the informativeness score
for the corresponding joint in a frame. For clarity, the joints with tiny informativeness
scores are not shown.

In the GCA-LSTM network, the informativeness score r(n)j,t is used as a gate within

LSTM neuron, as formulated in Eq. (4.7). We also explore to replace this scheme with

soft attention method [96, 153], i.e., the attention representation F (n) is calculated

as ∑
J
j=1 ∑

T
t=1 r(n)j,t h j,t . Using soft attention, the accuracy drops about one percentage

point on the NTU RGB+D dataset. This can be explained as equipping LSTM neuron

with gate r(n)j,t provides LSTM better insight about when to update, forget or remember.

In addition, it can keep the sequential ordering information of the inputs h j,t , while

soft attention loses ordering and positional information.
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4.4.10 Visualizations

To better understand our network, we analyze and visualize the informativeness score

evaluated by using the global context information on the large scale NTU RGB+D

dataset in this section.

We analyze the variations of the informativeness scores over the two attention

iterations to verify the effectiveness of the recurrent attention mechanism in our method,

and show the qualitative results of three actions (taking a selfie, pointing to something,

and kicking other person) in Fig. 4.6. The informativeness scores are computed with

soft attention for visualization. In this figure, we can see that the attention performance

increases between the two attention iterations. In the first iteration, the network tries

to identify the potential informative joints over the frames. After this attention, the

network achieves a good understanding of the global action. Then in the second

iteration, the network can more accurately focus on the informative joints in each

frame of the skeleton sequence. We can also find that the informativeness score of

the same joint can vary in different frames. This indicates that our network performs

attention not only in spatial domain, but also in temporal domain.

In order to further quantitatively evaluate the effectiveness of the attention mecha-

nism, we analyze the classification accuracies of the three action classes in Fig. 4.6

among all the actions. We observe if the attention mechanism is not used, the accu-

racies of these three classes are 67.7%, 71.7%, and 81.5%, respectively. However,

if we use one attention iteration, the accuracies rise to 67.8%, 72.4%, and 83.4%,

respectively. If two attention iterations are performed, the accuracies become 67.9%,

73.6%, and 86.6%, respectively.

To roughly explore which joints are more informative for the activities in the NTU

RGB+D dataset, we also average the informativeness scores of the same joint in all

the testing sequences, and visualize it in Fig. 4.7. We can observe that averagely, more
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Right hand Left hand

Fig. 4.7 Visualization of the average informativeness gates for all testing samples.
The size of the circle around each joint indicates the magnitude of the corresponding
informativeness score.

attention is assigned to the hand and foot joints. This is because in the NTU RGB+D

dataset, most of the actions are related to the hand and foot postures and motions. We

can also find that the average informativeness score of the right hand joint is higher

than that of left hand joint. This indicates most of the subjects are right-handed.

4.5 Chapter Summary

In this chapter, we have extended the original LSTM network to construct a Global

Context-Aware Attention LSTM (GCA-LSTM) network for skeleton-based action

recognition, which has strong ability in selectively focusing on the informative joints in

each frame of the skeleton sequence with the assistance of global context information.

Furthermore, we have proposed a recurrent attention mechanism for our GCA-LSTM

network, in which the selectively focusing capability is improved iteratively. In

addition, a two-stream attention framework is also introduced. The experimental results

validate the contributions of our approach by achieving state-of-the-art performance

on five challenging datasets.





Chapter 5

Skeleton-Based Online Action

Prediction Using Scale Selection

Network

The ST-LSTM network introduced in Chapter 3 and the GCA-LSTM network in-

troduced in Chapter 4 both focus on action recognition in well-segmented skeleton

sequences, in which each sequence contains one action sample. In this chapter, we

focus on a more challenging task: online action prediction in untrimmed skeleton

sequences, in which each sequence contains multiple action instances.

5.1 Introduction

In action prediction (early action recognition), the goal is to predict the class label

of an ongoing action using its observed part so far. Predicting actions before they

get completely performed is a subset of a broader research domain on human activity

analysis. It has attracted lots of attention due to its wide range of application in security

surveillance, human-machine interaction, patient monitoring, etc [6, 60]. Most of the
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Fig. 5.1 Figure (a) illustrates an untrimmed streaming sequence that contains multiple
action instances. We need to recognize the current ongoing action at each time step
when only a part (e.g., 10%) of it is performed. Figure (b) depicts our SSNet for
online action prediction. At time t, only a part of the action waving hand is observed.
Our SSNet selects the convolutional Layer #2 rather than #3 for prediction, as the
perception window of #2 mainly covers the performed part of current action, while #3
involves too many frames from the previous action which can interfere the prediction
at time step t.

existing works [6, 63, 154] focus on action prediction in well-segmented videos, for

which each video contains only one action instance. However, in practical scenarios,

such as online human-machine interaction systems, plenty of action instances are

contained in a streaming sequence, which are not segmented. In this chapter, we

address the more challenging task: “online action prediction in untrimmed video”,

i.e., we want to recognize the current ongoing action from the observed part of it at

each time step of the data stream, which can include multiple actions, as illustrated in

Fig. 5.1(a).

We investigate real-time action prediction with the continuous 3D skeleton data in

this chapter. To predict the class label of the current ongoing action at each time step,
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we adopt a sliding window method over the frames of the streaming skeleton sequence,

and the data frames inside the window are utilized to perform action prediction.

The sliding window design has been widely employed for a series of machine

vision tasks, such as object recognition [155], pedestrian detection [156], activity

detection [69, 80, 49, 82], etc. Most of these works utilize one fixed scale or combine

multi-scale multi-pass scans at each sliding position. However, in our online action

prediction task, we need to predict the ongoing action at each observation ratio, while

there are significant temporal scale variations in the observed part of the ongoing

action. This makes it quite difficult to determine the scale of the sliding window.

The untrimmed streaming sequence may contain multiple action instances, as

shown in Fig. 5.1(a). The order of the actions can be arbitrary, and the durations

of different instances are often not the same. Moreover, the observed (per whole)

ratio of the ongoing action changes over time, which makes it even more challenging

to obtain a proper temporal window scale for online prediction. For instance, at an

early temporal stage, it is beneficial to use a relatively small scale, because the larger

window sizes may include frames from the previous action instance which can mislead

the recognition of the current instance. Conversely, if a large part of the current action

has already been observed, it is beneficial to use a larger window size to cover more of

its performed parts in order to achieve a reliable prediction.

In order to tackle the aforementioned challenges, in this chapter, a novel Scale

Selection Network (SSNet) is proposed for online action prediction. Instead of using a

fixed scale or multi-scale multi-pass scans at each time step, we supervise our network

to dynamically choose the proper temporal window scale at each step to cover the

performed part of the current action instance. In our approach, the network predicts

the ongoing action at each frame. Beside predicting the class label, it also regresses

the temporal distance to the beginning of current action instance, which indicates the
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performed part of the ongoing action. Thus, at the next frame, we can utilize it as the

temporal window scale for action class prediction.

In our network, we apply convolutional analysis in temporal dimension to model the

motion dynamics over the frames for skeleton-based action prediction. A hierarchical

architecture with dilated convolution layers is leveraged to learn a comprehensive

representation over the frames within each perception window, such that different

layers in our SSNet correspond to different temporal scales, as shown in Fig. 5.1(b).

Therefore, at each time step, our network selects the proper convolutional layer

which covers the most similar window scale regressed by its previous step. Then

the activations of this layer can be used for action prediction. The proposed SSNet

is designed to select the proper window in order to cover the performed part of

current action and try to suppress the noisy data from the previous ones, hence it

produces reliable predictions at each step. To the best of our knowledge, this is the

first convolutional model with explicit temporal scale selection as its fundamental

capability for handling scale variations in online activity analysis.

In many existing approaches that utilize sliding window designs, the computational

efficiencies are often relatively low owing to the overlapping design and exhaustive

multi-scale multi-round scans. In our method, the action prediction is performed with

a regressed scale at each step, which avoids multi-pass scans. So the action prediction

and scale selection are performed by a single convolutional network very efficiently.

Moreover, we introduce an activation sharing scheme to deal with the overlapping

computations over different time steps, which makes our SSNet run very fast for

real-time online prediction.

In addition, to improve the performance of our network in handling the 3D skeleton

data as input, we also propose a hierarchy of dilated tree convolutions to learn the

multi-level structured semantic representations over the skeleton joints at each frame

for our action prediction network.
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The main contributions of this chapter are summarized as follows: (1) We study the

new problem of real-time online action prediction in continuous 3D skeleton streams

by leveraging convolutional analysis in temporal dimension. (2) Our proposed SSNet

is capable of dealing with the scale variations of the observed portion of the ongoing

action at different time steps. We propose a scale selection scheme to let our network

choose the proper temporal scale at each step, such that the network can mainly focus

on the performed part of the current action, and try to avoid the noise from the previous

action samples. (3) A hierarchy of dilated tree convolutions are also proposed to

learn multi-level structured representations for the input skeleton data and improve

the performance of our SSNet for skeleton-based action prediction. (4) The proposed

framework is very efficient for online action analysis thanks to the computation sharing

over different time steps. (5) We perform action prediction with our SSNet which is

end-to-end trainable, rather than using expensive multi-stage multi-network design at

each step. (6) The proposed method achieves superior performance on four challenging

datasets for 3D skeleton-based activity analysis.

The remainder of this chapter is organized as follows. In section 5.2, we introduce

our proposed SSNet for skeleton-based online action prediction in detail. We present

the experimental results and comparisons in section 5.3. Finally, we conclude the

chapter in section 5.4.

5.2 The Proposed Method

We introduce the proposed network architecture, Scale Selection Network (SSNet),

for skeleton-based online action prediction in this section. The overall schema of this

method is illustrated in Fig. 5.2. In the proposed network, the one dimensional (1-D)

convolutions are performed in temporal domain to model the motion dynamics over the

frames. The inputs of SSNet are the frames within a temporal window at each time step.

In order to tackle the scale variations in the partially observed action at different time
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Fig. 5.2 Illustration of the proposed SSNet for action prediction over the temporal axis.
The solid lines denote the SSNet links activated at current step t, and the dashed lines
indicate the links activated at other time steps. Our SSNet has 14 1-D convolutional
layers. Here we only show 3 layers for clarity. At each time step, SSNet predicts the
class (ĉt) of the ongoing action, and also estimates the temporal distance (ŝt) to current
action’s start point. Calculation details of ĉt and ŝt are shown in Fig. 5.3.
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steps, a scale selection method is proposed, which enables our SSNet to focus on the

observed part of the ongoing action by picking the most suitable convolutional layers.

To better deal with the input data modality, a hierarchy of dilated tree convolutions are

also introduced to process the input skeleton data for our network.

5.2.1 Temporal Modeling with Convolutional Layers

Convolutional networks [157] have proven their superior strength in modeling the

time series data [158, 159, 10]. For example, van den Oord et al. [158] proposed

a convolutional model, called WaveNet, for audio signal generation, and Dauphin

et al. [159] introduced a convolutional network for time series in language sequential

modeling. Inspired by the success of convolutional approaches in the analysis of

temporal sequential data, we leverage a stack of 1-D convolutional layers to model

the motion dynamics and context dependencies over the video sequence frames, and

inspired by the WaveNet model, we propose a network for the skeleton-based action

prediction task. Specifically, a hierarchical architecture with dilated convolutional

layers is leveraged in our model to learn a comprehensive representation over the video

frames within a temporal window.

Dilated convolution. The main building blocks of our network model are dilated

causal convolutions. Causal design [158] indicates action prediction at time t is based

on the available information before t (including t) without using the future information.

Dilated convolution [160] means the convolutional filter works over a larger field than

the filter’s length, and some input values inside the field are skipped with a certain

step.
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Fig. 5.3 Details of our SSNet that jointly predicts the class label ĉt and regresses the
start point’s distance ŝt for the current ongoing action at time t. If the regressed result
ŝt−1 at the previous time step (t −1) indicates that Layer #3 corresponds to the most
proper window scale (i.e., lp

t = 3), then our network will use Layers #1-3 for class
prediction, while the activations from the layers above #3 are dropped (marked with
cross in the figure). In this figure, we only show a subset of convolutional nodes of
our SSNet, and other ones in the hierarchical structure (depicted as the solid lines in
Fig. 5.2) are omitted for clarity.
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Fig. 5.4 Illustration of the dilated convolution layer used in our network. At each
position, the 1-D convolutional filter covers a time range (labeled as a red box), and
only the two boundary nodes (corresponding to two time steps) in the covered range
are used, while the other nodes between these two nodes are not used by the dilated
convolutional operation for this position.
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Concretely, dilated convolution [160] is also called “convolution with holes”,

which can be formulated as presented in [160]:

(X ∗d w)(p) = ∑
t+ds=p

X(t) w(s) (5.1)

where ∗d indicates the dilated convolutional operation, X is the input, w is the filter,

and d denotes the dilation rate of the convolution (d = 1 represents the standard

convolution).

In order to show how the dilated convolution is used in our model, we illustrate the

mechanism of a dilated convolutional layer in Fig. 5.4.

As shown in Fig. 5.4, at each position (e.g., the position t), the dilated convolutional

filter (with dilation rate d) works over two input time steps (t and t −d), and the other

time steps between these two steps are not considered for the convolutional operation

at this position. Let C(t, l) denote the activation of the convolutional node at the

position t in the dilated convolutional Layer #l (l ∈ [1,L ], and L denotes the number

of 1-D convolutional layers in our network). Then C(t, l) can be calculated as:

C(t, l) = f
(

W1 C(t −d, l −1)+W2 C(t, l −1)+b
)

(5.2)

where f (·) is a non-linear activation function. W1 and W2 (together with the bias b) are

the parameters of the dilated convolutional filter, which are shared at the same layer,

as illustrated in Fig. 5.4.

It is intuitive to use the aforementioned dilated convolution for human action analy-

sis, because the running time for longer actions can be very long and the convolutional

network needs to be able to cover a large receptive field. Applying standard convolu-

tion, the network needs more layers or larger filter sizes to achieve a broader receptive

field. However, both of these significantly increase the number of model parameters. In
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contrast, by configuring the dilation rate (d), dilated convolution can support expansion

of the receptive field very efficiently, without bringing more parameters [160]. In

addition, it does not need any extra pooling operations, thus it can well maintain the

ordering information of the inputs [160]. Therefore, dilated convolution is suitable for

the task of action prediction.

Multiple dilated convolutional layers. In our method, we stack multiple dilated

convolutional layers, as illustrated in Fig. 5.2. Specifically, the dilation rate increases

exponentially over the layers in our network, i.e., we set d to 1, 2, 4, 8, ... for Layers

#1, #2, #3, #4, ..., respectively.

This design results in an exponential expansion of the perception scale across the

network layers. For example, the perception temporal window of the convolutional

operation node C(t,2) in Layer #2 (see Fig. 5.2) is [t − 3, t] (4 frames), while the

node C(t,3) in Layer #3 corresponds to a larger scale of temporal window (8 frames:

[t −7, t]).

It is worth mentioning that all the video frames in the window [t − 7, t] can be

perceived by the node C(t,3) with the hierarchical structure. This shows how the field

of view expands over the layers in our network, while the coverage of the input is kept.

5.2.2 Scale Selection

For the streaming sequences, we can utilize the frames in a temporal window [t − s, t]

(with scale s) to perform action prediction at the time step t. However, finding a

proper temporal scale s for different steps and inputs is not easy. At the early stages

of an action, a relatively small scale is preferred, because larger windows can involve

too many frames from the previous action, which interfere the recognition. On the

contrary, if a large ratio of the action is observed (especially when the duration of this

action is long), to obtain a reliable prediction, we need a larger s to cover more of its
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observed parts. This implies the importance of finding a proper scale value at each

time step, rather than using a fixed scale at all steps.

We propose a scale selection scheme for online action prediction in this section.

The core idea is to regress a proper window scale at each time step, and then at the

next time step, the network can use this scale value to choose the proper layers for

action prediction.

At each step, as shown in Fig. 5.2, the class label (ĉt) of the current action is

predicted, and the temporal distance (ŝt) between the current action’s start point and

the current frame is also regressed. This distance indicates that the performed part of

the current action is assumed to be [t − ŝt , t] at step t.

Assuming that we have obtained the regression result ŝt−1 at step (t − 1), thus

at frame t, our network selects the time range [(t −1)− ŝt−1, t] for action prediction.

Specifically, in our network design, the nodes in different layers correspond to different

perception temporal window scales, thus we can select the node from the proper layer

to cover the performed part of the current action. For this proper layer l, we make

sure its perception window’s scale equals to (or slightly larger than) ŝt−1+1, while the

perception window of its previous layer (l −1) is smaller than ŝt−1 +1. For example,

Layer #2 in Fig. 5.1 is the proper layer in this case.

Let lp
t denote the selected proper layer at step t. Then we aggregate the activa-

tions of the nodes C(t, l) (l ∈ [1, lp
t ]) in our network to generate a comprehensive

representation for the selected time range as:

Gc
t =

1
lp
t

lp
t

∑
l=1

C(t, l) (5.3)

Note that we connect multiple layers ([1, lp
t ]) together to compute Gc

t , rather than using

lp
t only. This skip connection design can speed up convergence and enables the training

of much deeper models, as shown by [161, 162]. Besides, it can also help to improve
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the representation capability of our network, as the information from multiple layers

corresponding to multiple scales is fused for current action. Finally, Gc
t is fed to the

fully connected layers followed by a softmax classifier to predict the class label (ĉt)

for the current time step.

As shown in Fig. 5.3, beside predicting the action class (ĉt), our network also

generates a representation (Gs
t ) to regress the start point’s distance (ŝt):

Gs
t =

1
L

L

∑
l=1

C(t, l) (5.4)

For the distance regression, we directly adopt the top convolutional layer L (to-

gether with all the layers below it), which has a large perception window (generally

larger than the complete execution time of one action), rather than dynamically s-

electing a layer as in Eq (5.3). This is due to the essential difference between the

regression task and the action label prediction task. Start point’s distance regression

can be regarded as regressing the position of the bonding [163] between the current

action and its previous activities, thus involving information from the previous activity

will not reduce (or even benefit) the regression performance for current action. Using

Eq (5.4) also implies the distance regression is performed independently at each time

step, and is not affected by the regression results of the previous steps.

In the domain of object detection [164], such as Fast-RCNN [165], the bounding

box of the current object was shown to be accurately regressed by a learning scheme.

Similarly, our proposed network learns to regress the bounding (start point) of the

current ongoing action reliably.

The regression result produced by the previous step (t−1) is used to guide the scale

selection (with scale ŝt−1 +1) for action prediction at the current step t. An alternative

method can be: first regressing the scale ŝt at step t, then using the scale ŝt to directly

perform action prediction for the same step t. We observe these two choices perform
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Table 5.1 Details of the main structure of SSNet. Refer to Fig. 5.13 for the detailed
architecture configurations of SSNet.

1-D convolutional layer index #1 #2 #3 #4 #5 #6 #7

Dilation rate (d) 1 2 4 8 16 32 64
Perception temporal window scale (frames) 2 4 8 16 32 64 128

Output channels 50 50 50 50 50 50 50

1-D convolutional layer index #8 #9 #10 #11 #12 #13 #14

Dilation rate (d) 1 2 4 8 16 32 64
Perception temporal window scale (frames) 129 131 135 143 159 191 255

Output channels 50 50 50 50 50 50 50

similarly in practice. This is intuitive as ŝt−1 +1 is close to ŝt . The main difference of

these two choices is the scale used at the beginning of a new action, because if we use

the scale regressed by its previous step, the scale used at this step may be derived from

the previous action, which is not proper. However, at the beginning frame of an action,

too little information of the current action is observed, which makes prediction at this

step very difficult even using the proper scale (only one frame), thus these two choices

still perform similarly at this step. In the following frames, since more information is

observed and proper scales can be used, both choices perform reliably. The framework

will be less efficient if regressing for the same step, as the two tasks (regression and

prediction) need to be conducted as two sequential stages at each time step (cannot be

performed simultaneously).

5.2.3 Details of the Main Structure

The proposed SSNet has 14 dilated convolutional layers for temporal modeling. Specif-

ically, we stack two similar sub-networks with dilation rates (d) : 1,2,4,8, ...,64 over

the layers of each sub-network, i.e., the dilation rate (d) is reset to 1 at the beginning of

each sub-network, as shown in Table 5.1 and Fig. 5.13. The motivation of this design

is to achieve more variations for the temporal window scales (we obtain 14 different

scales from 2 to 255 here). Besides, each sub-network can be intuitively regarded and
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implemented as a large convolutional module. Moreover, such a design still guarantees

the node at each layer to perceive all the video frames in its perception window (i.e.,

without losing input coverage), due to the hierarchial structure of SSNet.

With such a design, the perception temporal window scale of the top layer in our

network is 255 frames, which covers more than 8-second sequence at the recording

frame rate of common video cameras like Kinect. Generally, the duration of a full

single action in most existing datasets is less than 8 seconds. Thus, the temporal scale

255 is large enough for action analysis. Even if the whole duration time of an action is

longer than 8 seconds, we believe the classification can be performed reliably when

such a long segment (8 seconds) of the action has been perceived.

5.2.4 Activation Sharing Scheme

Our framework can be implemented in a very computation-efficient way. Although

both action label prediction and distance regression are conducted on various window

scales at each step, all of the computational steps are encapsulated in a single network

with a hierarchical structure (see Fig. 5.2), i.e., we do not need separated networks or

multiple scanning passes for action prediction at each step.

In addition, although convolutional operations are performed over a sliding window

at each step, the redundant computations of the overlapping regions among different

sliding positions are avoided. With the causal convolution design, many features

(activations of convolutional operations) computed in previous steps can be reused by

the latter steps, which avoids redundant computation.

As depicted in Eqs (5.3) and (5.4), at time step t, the prediction and regression

are based on the nodes C(t, l), l ∈ [1, lp
t ] or l ∈ [1,L ]. Each node C(t, l) is calculated

based on only two input nodes, C(t −dl, l −1) and C(t, l −1), as shown in Fig. 5.2.

C(t − dl, l − 1) has already been computed at time step t − dl . Therefore, to obtain
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Fig. 5.5 (a) The skeleton joints of the human body form a tree structure. We set the
head joint (joint 1) as the root node, and the height of the tree in this figure is 8. (b)
Illustration of the convolution with triangular filters sliding over the tree structure. The
green and the blue triangles indicate the convolutions with two different filter sizes.

C(t, l), we only need to calculate the activation of C(t, l − 1). Similarly, C(t, l − 1)

can be computed after we get C(t, l −2).

As a result, although we feed a window of frames to SSNet at each time step (t),

we only need to calculate the activations of the nodes in column t of Fig. 5.2, and all

other convolutional operations in the hierarchical structure can be copied from the

previous time steps. This activation sharing makes our network efficient enough to be

used in real-time applications.

5.2.5 Multi-level Structured Skeleton Representations

As mentioned above, in our framework, the streaming 3D skeleton data is fed to the

SSNet. A naive way to perform action prediction with such an input data structure

is to concatenate the 3D coordinates of all joints at each frame to form a vector

(that we call it as coordinate concatenation representation). We can then feed this

coordinate concatenation representation of each frame to the SSNet as input (see
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Fig. 5.2). However, the semantic structure amongst the skeleton joints in a frame is

ignored in this representation. As illustrated in Fig. 5.5(a), the skeleton joints in every

human body configuration are physically connected in a semantical tree structure in

the spatial domain, and utilizing such structure information has shown to be quite

helpful for human activity analysis [3, 21, 27].

Instead of directly using the method of coordinate concatenation, in this chapter,

we model the spatial tree structure of the skeleton joints, in order to capture the posture

information of the human body more effectively at each frame and thus strengthen the

capability of our framework in skeleton-based action prediction.

Specifically, we propose a hierarchy of dilated tree convolutions in spatial domain

to learn the multi-level (local, mid-level, and holistic) structured representations for

the tree structure of the skeleton in each frame. The proposed hierarchical dilated tree

convolution for spatial domain modeling is essentially an extension of the multi-layer

1-D dilated convolution that is introduced in section 5.2.1 for temporal modeling.

Below we introduce this design in detail.

Convolution over tree structure. Convolutional networks are powerful tools in

modeling the spatial visual structures [157]. Here to model the discussed semantic

structure of the human skeleton, we propose to apply convolutions by using triangular

filters sliding over the nodes of the tree, as shown in Fig. 5.5(b). At each step of the

convolution, the triangular filter covers a sub-tree region, and the nodes in this region

are used to produce an activation as a semantic representation of this position. This

process is similar to the common convolutional operations that slide over the pixels of

an input image or previous layer’s feature maps. Different sizes of the triangular filters

can also be used for this process, as shown in Fig. 5.5(b).

In our method, zero padding is adopted for the convolution over the skeleton tree,

i.e., if a certain node (e.g., joint 2 in Fig. 5.5(a)) has only one child (joint 3), to perform

convolution at this node position, we set this child (joint 3) as the left node, and its
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right node is filled with zero. Similarly, for the leaf nodes (e.g., joint 20), both of the

child nodes are filled with zero.

A hierarchy of dilated tree convolutions. In order to learn representations that

are effective and discriminative for representing the skeletal data in a frame, we stack

multiple convolutional layers over the tree-structured skeleton joints, and perform

convolution with triangular filters at each layer, as illustrated in Fig. 5.6.

Dilated Tree Conv 
Layer#1 

Dilated Tree Conv 
Layer#2 

Skeleton Joints  
(Tree structure) 

(d=1) 

(d=2) 

Fig. 5.6 Illustration of the hierarchy of dilated tree convolutions that learns the multi-
level structured representations over the input skeleton joints (labeled in red) at each
frame. The solid arrows denote the dilated tree convolutions with triangular filters. In
our method, 3 dilated tree convolutional layers are used to cover the input skeleton
tree with height 8, while in this figure, we only show 2 layers that cover the tree with
height 4 for clarity. Note that the bottom of this figure shows a full binary tree, while
the human skeleton only has a subset of the nodes of a full binary tree. Therefore, in
implementation, the convolutional operations only need to be performed on a subset of
the nodes. The channel number of the input skeleton is 3, namely, the 3D coordinates
(x,y,z) of each joint. (Best viewed in color)

Dilated convolutions which are effective and efficient in computation are also used

here (similar to section 5.2.1). Only the top and the bottom nodes in each triangular

region of each position are used for activation calculation, as shown by the Layer #1
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(with dilation rate set to 1) and Layer #2 (with dilation rate set to 2) in Fig. 5.6. Here

we call this convolution design as dilated tree convolution.

Three dilated tree convolutional layers are stacked in our model, and their dilation

rates are 1, 2, and 4, respectively. Therefore, a hierarchy of dilated tree convolutions

are constructed over the skeletal data. The details of this hierarchy design are shown

in Table 5.2.

With this design, the nodes in different layers of the hierarchy perceive different

spatial ranges of the input skeleton joints. For example, each node in Layer #1 of

Fig. 5.6 learns a representation from a very local region of neighbouring joints of the

input skeleton (perception sub-tree height is 2), while each node in Layer #2 learns

a representation over a larger region of the skeleton (perception sub-tree height is 4).

Specifically, the top layer, #3, can learn a representation based on all the joints of

the whole skeleton tree (perception tree height is 8). This implies that the multi-level

(local, mid-level, and holistic) structured semantic representations of the skeleton data

are learned at different layers in this hierarchy.

Finally, we aggregate the multi-level representations by averaging the activations

of all the convolutional nodes in the hierarchy, and the aggregated result is fed to our

SSNet as the representation of the skeleton data at each frame (see Fig. 5.2).

Since the multi-level structured semantic representations are learned, which are

effective for representing the spatial structure and posture of the human skeleton at

each frame, the performance of our SSNet for action prediction is improved. Moreover,

this structured skeleton representation learning procedure can be attached to our SSNet

as an input processing module of it (see Fig. 5.2), such that the whole model of our

SSNet is still end-to-end trainable.
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Table 5.2 Details of the hierarchy of dilated tree convolutions (corresponding to
Fig. 5.6).

Dilated tree convolutional layer index #1 #2 #3

Dilation rate (d) 1 2 4
Perception sub-tree height 2 4 8

Output channels 75 75 75

5.2.6 Objective Function

The objective function of our SSNet is formulated as:

ℓ= ℓc(ĉt ,ct)+ γℓs(ŝt ,st) (5.5)

where ct is the ground truth class label, and st is the ground truth distance between

the start point of the action and the current frame t. γ is the weight for the regression

task. ℓc is the negative log-likelihood loss measuring the difference between the true

class label ct and the predicted result ĉt at time step t. ℓs is the regression loss defined

as ℓs(ŝt ,st) = (ŝt − st)
2. Our objective function is minimized by stochastic gradient

descent.

To train our SSNet, we generate fixed-length clips from the annotated long se-

quences with sliding temporal windows. The length of each clip is equal to the

perception temporal scale of the top convolutional layer (255 frames). Each clip can

then be fed to the SSNet. In the training phase, class prediction is performed using the

proper layer that is chosen based on the ground truth distance to the start point. We also

observe adding small random noise to the layer choosing process during training is

helpful for improving the generalization capability of our network for class prediction.

In the testing phase, the action prediction is performed frame-by-frame through a

sliding window, and the proper layer for prediction at each time step is determined by

the distance regression result of its previous step. The ground truth information of the

start point is not used during testing.
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5.3 Experiments

The proposed method is evaluated on four challenging datasets: the OAD dataset [78],

the ChaLearn Gesture dataset [86], the PKUMMD dataset [89], and the G3D dataset

[90]. In all the datasets, multiple action instances are contained in each long video.

Beside the predefined action classes, these datasets also contain frames which belong

to the background activity, thus we add a blank class to represent the frames in this

situation.

We conduct extensive experiments with the following different architectures:

1. SSNet. This is our proposed network for skeleton-based action prediction, which

can select a proper layer to cover the performed part of the current ongoing

action at each time step by using the start point regression result. The multi-level

structured skeleton representations are used in this network.

2. FSNet (S ). Fixed Scale Network (FSNet) is similar to SSNet, but the action

prediction is directly performed using the top layer. This indicates scale selection

scheme is not used, and the prediction is based on a fixed window scale (S ) at

all steps. We configure the structure and propose a set of FSNets, such that they

have different perception window scales at the top layer. Concretely, five FSNets

with different fixed scales (S = 15, 31, 63, 127, 255) are evaluated. To make

a fair comparison, skip connections (see Eq (5.3)) are also used in each FSNet,

i.e., all layers (corresponding to different scales) in a FSNet are connected as Eq

(5.3) for action prediction at each step.

3. FSNet-MultiNet. This baseline is a combination of multiple FSNets. A set of

FSNets with different scales (S = 15, 31, 63, 127, 255) are used for each time

step. We then fuse the results of them, i.e., exhaustive multi-scale multi-round

scans are used to perform action prediction at each time step.
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4. SSNet-GT. Beside the aforementioned models, we also evaluate an “ideal”

baseline, SSNet-GT. Action prediction in SSNet-GT is also performed at the

selected layer. However, we do not use the regression result to select the scale,

instead, we directly use the ground truth (GT) distance of the start point to select

the layer for action prediction at each step.

Note that the multi-level structured skeleton representations are used in all of the

above architectures (SSNet, FSNet (S ), FSNet-MultiNet, and SSNet-GT) for fair

comparisons.

Our proposed approach is also compared to other state-of-the-art methods for

skeleton-based activity analysis:

1. ST-LSTM [151]. This network achieves superior performance on 3D skeleton-

based action recognition task. We adapt it to our online action prediction task

and generate a prediction of the action class at each frame of the streaming

sequence.

2. JCR-RNN [78]. This network is a variant of LSTM, which models the context

dependencies in temporal dimension of the untrimmed sequences. It obtains

state-of-the-art performance of action detection in skeleton sequences on some

benchmark datasets. A prediction of the current action class is provided at each

frame of the streaming sequence.

3. Attention Net [166]. This network adopts an attention mechanism to dynam-

ically assign weights to different frames and different skeletal joints for 3D

skeleton-based action classification. A prediction of the action class is produced

at each time step.
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5.3.1 Implementation Details

The experiments are conducted with the Torch7 toolbox [122]. Our network is trained

from scratch, i.e., the network parameters are initialized with small random values

(uniform distribution in [-0.08, 0.08]). The learning rate, momentum, and decay rate

are set to 10−3, 0.9, and 0.95, respectively. The output dimensions of FC1, FC3, FC4,

and FC5 in Fig. 5.3 are set to 50, 50, 50, and 1, respectively. FC2’s output dimension

is determined by the class number of each specific dataset. GLU [159] is the activation

function used for the convolutional operations in our network (see Eq (5.2)). Residual

connections [161] are used over different convolutional layers. The output channels of

the convolutional nodes for temporal modeling (see Fig. 5.2) are all 50. The output

channels of the convolutional nodes for structured skeleton representation learning

are equal to the dimension of the coordinate concatenation representation of a frame.

In our experiment, γ in Eq (5.5) is set to 0.01. The above-mentioned parameters are

obtained by cross-validation on the training sets.

In our SSNet, the proposed hierarchy of dilated tree convolution is used to learn the

multi-level structured representation for each skeleton in a frame. If two skeletons are

contained in a frame, then their structured representations are averaged. The averaged

result is used as the representation for this frame.

We show the number of parameters of our SSNet with the two different skeleton

representations in Table 5.3. By attaching the multi-level structured representation,

the parameter number in the whole model of SSNet is only slightly larger than the

configuration in which we use coordinate concatenation representation. This implies

that the number of parameters in the hierarchy of dilated tree convolutions is quite

small (only 13% of the whole model).

We also summarize the numbers of network parameters for different methods.

The numbers of network parameters of SSNet, FSNet(15), FSNet(31), FSNet(63),
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FSNet(127), FSNet(255), FSNet-MultiNet, SSNet-GT, ST-LSTM, JCR-RNN, and

AttentionNet are 310K, 170K, 200K, 240K, 270K, 310K, 1M, 310K, 420K, 290K,

and 3M, respectively.

We perform our experiments with a single NVIDIA TitanX GPU. We evaluate

the efficiency of our method for online action prediction in the streaming sequence,

and show the running speed of it in Table 5.3. Our network responds fast for online

action prediction. The low computational cost of our method is partially due to

(1) the concise skeleton data as input, (2) the efficient dilated convolution, and (3)

our activation sharing scheme. Besides, even if we learn the multi-level structured

representations, the overall speed of our SSNet is still very fast.

Table 5.3 Number of parameters and computational efficiency of our SSNet when
using different skeleton representations within it.

Skeleton representations in SSNet #Parameters Speed

With coordinate concatenation 270K 50 f ps
With multi-level structured representation 310K 40 f ps

5.3.2 Experiments on the OAD Dataset

For the OAD dataset, 30 long sequences are used for training, and 20 long sequences

are used for testing. The action prediction results on the OAD dataset are shown

in Fig. 5.7 and Table 5.4. In the figures and tables, the prediction accuracy of an

observation ratio p% denotes the average accuracy of the predictions during the

observed segment (p%) of the action instance.

Note that the special baseline SSNet-GT performs action prediction with the ground

truth scale at each step, thus it provides the best results. Our SSNet with regressed

scale even achieves comparable results to this “ideal” baseline (SSNet-GT), which

indicates the effectiveness of our scale selection scheme for online action prediction at

each progress level.
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Table 5.4 Action prediction accuracies on the OAD dataset. Note that in the last row,
SSNet-GT is an “ideal” baseline, in which the ground truth (GT) scales are used for
action prediction. Our SSNet, which performs prediction with the regressed scales, is
even comparable to SSNet-GT. Refer to Fig. 5.7 for more results.

Observation Ratio 10% 50% 90%

JCR-RNN 62.0% 77.3% 78.8%
ST-LSTM 60.0% 75.3% 77.5%
Attention Net 59.0% 75.8% 78.3%

FSNet (15) 58.5% 75.4% 75.9%
FSNet (31) 62.3% 75.2% 76.2%
FSNet (63) 62.2% 77.1% 78.9%
FSNet (127) 63.6% 76.3% 78.9%
FSNet (255) 57.2% 70.3% 71.2%
FSNet-MultiNet 62.6% 79.1% 81.6%

SSNet 65.8% 81.3% 82.8%

SSNet-GT 66.7% 81.7% 83.0%
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Fig. 5.7 Action prediction results on the OAD dataset.
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Apart from the “ideal” SSNet-GT model, our proposed SSNet yields the best

prediction results among all methods at all observation ratios. Specifically, our SSNet

can even produce a quite reliable prediction (about 66% accuracy) at the early stage

when only a small ratio (10%) of the action instance is observed.

The performance of our SSNet is much better than FSNets which perform predic-

tion with fixed-scale windows at each time step. Even fusing a set of FSNets with

different scales, FSNet-MultiNet is still weaker than our single SSNet at all progress

levels. This demonstrates that our proposed scale selection scheme, which guides the

SSNet to dynamically cover the performed part of the current action at each step, is

very effective for online action prediction.

The proposed SSNet significantly outperforms the state-of-the-art RNN/LSTM

based methods, JCR-RNN [78] and ST-LSTM [151], which can handle continuous

streaming skeleton sequences. The performance disparity could be explained as: (1)

At the early stages (eg. 10%), our SSNet can focus on the performed part of current

action by using the selected scale, while RNN models [78, 151] may bring information

from the previous actions which can interfere the prediction for current action. (2) At

the latter stages (eg. 90%), the context information from the early part of current action

may vanish in RNN model with its hidden state evolving frame by frame, while our

SSNet, which uses convolutional layers to model the temporal dependencies over the

frames, can still handle the long-term context dependency information in the temporal

window. Our SSNet also outperforms the Attention Net [166] which assigns weights

to differen frames and joints. This indicates the superiority of our SSNet with explicit

scale selection.

We also observe the average action prediction accuracy decreases at the ending

stages. A possible explantation is that the frames at the ending stages of some action

instances contain postures and motions that are not very relevant to the current action’s

class label.



112 Skeleton-Based Online Action Prediction Using Scale Selection Network

5.3.3 Experiments on the ChaLearn Gesture Dataset

On the ChaLearn Gesture dataset, 3/4 of the annotated videos are used for training,

and the remaining annotated videos are held for testing. We sample 1 frame from every

4 frames considering the large amount of data. We report the action prediction results

in Fig. 5.8 and Table 5.5. Our SSNet outperforms other methods at all observation

ratios on this large-scale dataset.

Table 5.5 Action prediction accuracies on the ChaLearn Gesture dataset. Refer to
Fig. 5.8 for more results.

Observation Ratio 10% 50% 90%

JCR-RNN 15.6% 51.6% 64.7%
ST-LSTM 15.8% 51.3% 65.1%
Attention Net 16.8% 52.1% 65.3%

FSNet (15) 16.6% 50.8% 62.0%
FSNet (31) 16.9% 53.2% 64.4%
FSNet (63) 15.8% 49.8% 60.8%
FSNet (127) 14.8% 46.4% 56.4%
FSNet (255) 14.5% 45.7% 55.4%
FSNet-MultiNet 17.5% 54.1% 65.9%

SSNet 19.5% 56.2% 69.1%

SSNet-GT 20.1% 56.8% 70.0%
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Fig. 5.8 Action prediction results on the ChaLearn Gesutre dataset.
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5.3.4 Experiments on the PKUMMD Dataset

Cross-subject evaluation protocol is used for the PKUMMD dataset [89], in which 57

subjects are used for training, and the remaining 9 subjects are for testing. Considering

the large amount of data, we use the videos that contain the challenging interaction

actions for our experiment, and sample 1 frame from every 4 frames for these videos.

The comparison results of the prediction performance on this dataset are presented in

Fig. 5.9 and Table 5.6.

Our method achieves the best results at all the progress levels on this dataset.

Specifically, our SSNet outperforms other methods significantly, even when only a

very small ratio (10%) of the action is observed. This indicates that our method can

produce a much better prediction at the early stage by focusing on the current action,

compared to other methods which do not explicitly consider the scale selection.

Another observation is that the FSNet with fixed scale at each time step is quite

sensitive to the scale used, as different scales provide very different results. This

further demonstrates that our SSNet, which dynamically chooses the proper scale at

each step to perform prediction, is effective for online action prediction.

Table 5.6 Action prediction accuracies on the PKUMMD dataset. Refer to Fig. 5.9 for
more results.

Observation Ratio 10% 50% 90%

JCR-RNN 25.3% 64.0% 73.4%
ST-LSTM 22.9% 63.0% 74.5%
Attention Net 19.8% 62.9% 74.9%

FSNet (15) 27.1% 67.4% 76.2%
FSNet (31) 30.6% 69.9% 79.8%
FSNet (63) 25.3% 63.5% 72.1%
FSNet (127) 25.9% 60.6% 71.0%
FSNet (255) 20.2% 50.9% 62.4%
FSNet-MultiNet 27.4% 71.8% 80.3%

SSNet 33.9% 74.1% 82.9%

SSNet-GT 34.8% 74.2% 83.1%
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Fig. 5.9 Action prediction results on the PKUMMD dataset.

5.3.5 Experiments on the G3D Dataset

For the G3D dataset [90], we use 104 videos for training, and the remaining ones are

used for testing. Our SSNet achieves superior performance on this challenging dataset,

as shown in Fig. 5.10 and Table 5.7.

Table 5.7 Action prediction accuracies on the G3D dataset. Refer to Fig. 5.10 for more
results.

Observation Ratio 10% 50% 90%

JCR-RNN 70.0% 79.1% 81.9%
ST-LSTM 67.3% 75.6% 76.8%
Attention Net 67.4% 76.9% 79.3%

SSNet 72.0% 81.2% 83.7%

SSNet-GT 73.5% 81.5% 84.0%

5.3.6 Evaluation of Skeleton Representations

We compare the performance of our SSNet when using the multi-level structured

skeleton representations to that when using the coordinate concatenation representation,

and report the results in Table 5.8.
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Fig. 5.10 Action prediction results on the G3D dataset.

The comparison results show that by using the hierarchy of dilated tree convolu-

tions to learn the multi-level structured representation for the skeleton data in each

frame, the action prediction performance of our SSNet is significantly improved. This

clearly demonstrates the effectiveness of our newly proposed method in learning a

discriminative representation of the human skeleton data in the spatial domain.

It is worth noting that, even if we do not use the powerful multi-level structured

representation, but directly use the coordinate concatenation representation, our SSNet

still outperforms the state-of-the-art skeleton-based activity analysis methods, JCR-

RNN [78], ST-LSTM [151], and Attention Net [166], on all the four datasets.

5.3.7 Evaluation of Distance Regression

We adopt the metric SL-Score proposed in [78] to evaluate the distance regression

performance of our network, which is calculated as e−|ŝ−s|/d , where s and ŝ are

respectively the ground truth distance and regressed distance to the action’s start point,

and d is the length of the action instance. For false classification samples, the score is

set to 0.
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Table 5.8 Action prediction accuracies (%) of SSNet with different skeleton represen-
tations.

Skeleton representations
OAD ChaLearn Gesture

Observation Ratio Observation Ratio

10% 50% 90% 10% 50% 90%

Coordinate concatenation 65.6 79.2 81.6 17.5 53.5 65.9
Multi-level structured representation 65.8 81.3 82.8 19.5 56.2 69.1

Skeleton representations
PKUMMD G3D

Observation Ratio Observation Ratio

10% 50% 90% 10% 50% 90%

Coordinate concatenation 30.0 68.5 78.6 70.1 79.1 82.0
Multi-level structured representation 33.9 74.1 82.9 72.0 81.2 83.7

Table 5.9 Start point regression performance (SL-Score). SSNetC indicates that we use
the coordinate concatenation representation for the network.

Dataset JCR-RNN SSNetC SSNet

OAD 0.42 0.69 0.71
ChaLearn Gesture 0.49 0.58 0.60

PKUMMD 0.61 0.72 0.75
G3D 0.62 0.72 0.74

We report the regression performance of our SSNet in Table 5.9. As the action

detection method, JCR-RNN [78], also estimates the start point, we also compare

our method with it. Besides, we investigate the regression performance of the SSNet

when we do not use multi-level structured representation but directly use coordinate

concatenation for it (here we denote this case as SSNetC).

The results show that our SSNet provides the best regression performance. Specif-

ically, we observe that the regression result of SSNet (with multi-level structured

representation) is better than SSNetC (with coordinate concatenation). This indicates

that by effectively learning the spatial tree structure of the input skeleton data, the

accuracy of temporal distance regression can also be improved.
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Table 5.10 Start point regression errors.

Observed Segment 5% 10% 30% 50% 70% 90%

Error (frames) 6 4 3 3 3 3

TimeAction: writing

Ground Truth
Regression@10%
Regression@30%
Regression@50%
Regression@70%
Regression@90%

10% 30% 50% 70% 90%

(a)
TimeGesture: fame

Ground Truth
Regression@10%
Regression@30%
Regression@50%
Regression@70%
Regression@90%

10% 30% 50% 70% 90%

(b)

TimeAction: handshaking

Ground Truth
Regression@10%
Regression@30%
Regression@50%
Regression@70%
Regression@90%

10% 30% 50% 70% 90%

(c)
TimeAction: swing

Ground Truth

Regression@30%
Regression@50%
Regression@70%
Regression@90%

10% 30% 50% 70% 90%

Regression@10%

(d)

Fig. 5.11 Examples of the start point regression results on the four datasets. The
leftmost point of the green bar is the ground truth start point position of the current
ongoing action. The leftmost point of each red bar (ending at p%) is the regressed
start point position when p% of the action instance is observed.

We also evaluate the average regression errors during the observed segment (p%)

on the large-scale ChaLearn Gesture dataset in Table 5.10. The regression error is

calculated as |ŝ− s|. We find our method regresses the distance reliably. When only a

small ratio (5%) of the action instance has been observed, the average regression error

is 6 frames. The regression becomes more reliable when more frames are observed.

We also visualize some examples in Fig. 5.11. It shows that our SSNet achieves

promising regression performance.

5.3.8 Evaluation of Network Configurations

We configure the maximum dilation rate and the layer number to generate a set of

SSNets, which have different maximum perception window scales at the top layers.
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Table 5.11 Evaluation of different configurations of the proposed network on the OAD
dataset.

Number of 1-D convolutional layers 8 10 12 14 16
Max. dilation rate 8 16 32 64 128

Max. perception window scale (frames) 31 63 127 255 511

Start point regression (SL-Score) 0.65 0.68 0.70 0.71 0.71
Prediction accuracy (%) 75.2 77.8 79.0 80.6 80.6
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Fig. 5.12 Action prediction results with different γ values on the OAD dataset.

The results in Table 5.11 show that using more layers are beneficial for performance

as the perception temporal window scale of the top layer increases. However, the

performance of 16 layers is almost the same as 14 layers. A possible explanation is

that the duration time of most actions is less than 255 frames. Besides, 255 frames are

long enough for activity analysis. Thus using the SSNet with 14 layers (with maximum

window scale 255) is suitable.

We also evaluate the performance of our SSNet with different γ values (see Eq

(5.5)) in Fig. 5.12. We observe our SSNet yields the best performance when γ is set to

0.01.

As shown in Eq (5.3) and Eq (5.4), in the modules of generating representations

for class prediction and distance regression, instead of using the activation from one

convolutional layer only, we add skip connections (links from the bottom convolutional

layers). In our experiment, we observe that using this skip connection design, the
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Table 5.12 Frame-level classification accuracies. FSNet(best) denotes the FSNet that
gives the best results among all FSNets.

Dataset ST-LSTM AttentionNet JCR-RNN FSNet(best) SSNet

OAD 0.77 0.75 0.79 0.80 0.82
ChaLearn 0.62 0.63 0.62 0.64 0.66

PKUMMD 0.78 0.80 0.79 0.82 0.85
G3D 0.70 0.71 0.74 0.75 0.76

action prediction accuracy can be improved by about 1.5%. We also investigate to

further add batch normalization (BN) layers [167] to our network, and we do not see

obvious performance improvement, thus BN layers are not used in our model.

5.3.9 Frame-level Classification Accuracies

As the action classification is performed at each frame of the videos, the average

classification accuracies over all frames are also evaluated, and the results are reported

in Table 5.12. The results show the superiority of our SSNet over the compared

approaches.

5.4 Chapter Summary

In this chapter, we have proposed a network model, SSNet, for online action prediction

in untrimmed skeleton sequences. A stack of convolutional layers are introduced

to model the dynamics and dependencies in temporal dimension. A scale selection

scheme is also proposed for SSNet, with which our network can choose the proper

layer corresponding to the most proper window scale for action prediction at each

time step. Besides, a hierarchy of dilated tree convolutions are designed to learn the

multi-level structured representations for the skeleton data in order to improve the

performance of our network. Our proposed method yields superior performance on all

the evaluated benchmark datasets.
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Fig. 5.13 Detailed network architecture configurations of SSNet (for action prediction
at the time step t). The distance regression is performed based on the top convolutional
layer (together with the layers below it with the skip connections), which has a large
perception window. The class prediction is performed based on the selected proper
layer (together with the layers below it), which is selected based on the estimated
window scale.
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Conclusion and Future Work

6.1 Conclusion

In this thesis, we have proposed three network models for human activity analysis

in 3D skeleton sequences.

First, we introduce a new ST-LSTM network to analyse the 3D location of each

individual joint in each video frame at each processing step, which models the context

dependency information in both the spatial and temporal dimensions. For better

representation of the structured input to the network, a skeleton tree traversal algorithm

is designed, which improves the performance of the ST-LSTM network. Due to the

unreliability of the 3D input data, a new gating mechanism is proposed to improve the

robustness of the network against noise and occlusion. In addition, a novel multi-modal

feature fusion strategy is described. The provided experimental results validate the

effectiveness of this network that achieves superior performance over the existing

state-of-the-art methods on the evaluated datasets for 3D human action recognition.

Second, we introduce a GCA-LSTM network to selectively focus on the informa-

tive joints in the action sequence with the assistance of global contextual information.

To achieve a reliable attention representation for the action sequence, a recurrent atten-
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tion mechanism is designed for the GCA-LSTM network, with which the attention

performance is improved iteratively. Besides, a two-stream framework that leverages

coarse-grained attention and fine-grained attention is proposed. A stepwise training

scheme is also introduced to more effectively train this network. Experiments show

that the GCA-LSTM network is able to reliably focus on the most informative joints

in each frame of the skeleton sequence. Moreover, this network yields state-of-the-art

performance on five challenging datasets for action recognition.

Finally, we introduce a SSNet model for online action prediction in streaming

3D skeleton sequences. A dilated convolutional architecture is introduced to model

the motion dynamics and context dependencies in temporal dimension via a sliding

window over the time axis, and a hierarchy of tree convolutions are used to learn

the multi-level structured representations for the 3D skeleton data to improve the

performance of our SSNet. Besides, a novel window scale selection scheme is proposed

to make our SSNet focus on the performed part of the ongoing action at each time step.

In addition, an activation sharing scheme is proposed to deal with the overlapping

computations among the adjacent steps, which allows our model to run more efficiently.

The extensive experiments show the effectiveness of the proposed action prediction

framework.

6.2 Future Work

In this section, we introduce some of our possible future research directions.

6.2.1 Multi-Modal Feature Fusion for Activity Analysis

The 3D skeleton data provides the geometrical posture and motion information of the

human actions. However, in some scenarios, especially the human-object interaction

cases, the appearance information can also be useful for human activity understanding.

This indicates it could be beneficial to fuse the RGB data, depth data, and skeleton
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data for activity analysis, since they provide appearance and geometrical information

respectively, which are often complementary for understanding the human behaviours.

Specifically, in most of the existing datasets for skeleton-based human activity

analysis, beside the 3D skeleton sequences, the corresponding RGB sequences and

depth sequences are also provided. As a result, we can design feature fusion models

to aggregate the features extracted from different data modalities provided by these

datasets for more accurate human activity analysis.

6.2.2 One-Shot Action Recognition in Skeleton Data

Existing works [168] show that once some categories have been learned, the knowledge

gained in this process can be abstracted and used to learn novel classes efficiently,

even if only one learning example per new class is given (i.e., via one-shot learning).

Since the samples of certain action categories (especially their 3D skeleton data)

may be difficult to collect [169], one-shot action recognition in skeleton data could

also be an important research branch of human activity analysis.

Specifically, we can define the one-shot skeleton-based action recognition scenario

as follows. We can setup an auxiliary set and an evaluation set, and there are no

overlaps of classes between these two sets. The auxiliary set contains multiple action

classes, and the samples of these classes can be used for learning (e.g., learning a

feature generation network). The evaluation set consists of the novel action classes for

one-shot recognition evaluation, and one sample from each novel class is picked as the

exemplar, while the remaining samples are used to test the recognition performance.

6.2.3 Online Action Detection in Untrimmed Skeleton Sequences

In our proposed Scale Selection Network (SSNet) for online action prediction (in

Chapter 5), at each time step, the proper temporal window scale is estimated (this scale
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indicates the distance to the starting point’s location of current action). Besides, the

current action’s label is also predicted at each step.

This indicates the proposed SSNet could be further extended to address the task of

action detection in streaming 3D skeleton data, which requires to identify the temporal

location of each action and meanwhile predict the class label of the action.
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