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Abstract—We study the rank weight hierarchy, thus in partic-
ular the rank metric, of cyclic codes over the finite field Fqm , q
a prime power, m ≥ 2. We establish the rank weight hierarchy
for [n, n− 1] cyclic codes and characterize [n, k] cyclic codes of
rank metric 1 when (1) k = 1, (2) n and q are coprime, and
(3) the characteristic char(Fq) divides n. Finally, for n and q
coprime, cyclic codes of minimal r-rank are characterized, and a
refinement of the Singleton bound for the rank weight is derived.

I. INTRODUCTION

Let Fq be the finite field with q elements, q a prime power,
and consider its field extension Fqm , m ≥ 1. Let C be an
[n, k] linear code over Fqm . For c = (c1, . . . , cn) a codeword
of C, we denote by λ(c) the matrix obtained by writing every
ci as a vector in a Fq-basis of Fqm :

λ(c) =

 c1,1 . . . cn,1
...

...
c1,m . . . cn,m

 .
The rank weight of the codeword c is defined [1] as its Fq-
rank, that is as the rank of λ(c), and the rank distance dR(C)
of the code C is

dR(C) = d1(λ(C)) = min
c6=0

c∈C

rk(λ(c)).

The notion of rank distance (or rank metric) of a code
has been extended to that of a rank weight hierarchy
d1(λ(C)), . . . , dk(λ(C)) in [2], [3]. More precisely, it was
shown in [4] that a refinement of the definition of [2] gives a
definition equivalent to that of [3], namely:

Definition 1. Let 1 ≤ r ≤ k and C be an [n, k] linear code
over Fqm . The rth rank weight of C is

dr(λ(C)) = min
V ∈Γ(Fn

qm
)

dim(C∩V )≥r

dimV,

where Γ(Fnqm) = {V ⊂ Fnqm | V q = V }, with V q =
{(cq1, . . . , cqn) | c ∈ V }.

Set D∗ =
∑m−1
j=0 Dqj . When n ≤ m, we also have

dr(λ(C)) = min
D⊂C

dimD=r

max
c∈D∗

rk(λ(c)),

The motivation (for both [2], [3]) to introduce this rank
weight hierarchy is to study the equivocation of wiretap codes
for network coding.

Basic properties of the rank weight hierarchy are known:
• The monotonicity property holds [3]:

d1(λ(C)) < . . . < dk(λ(C)) ≤ n. (1)

• There is a generalized Singleton bound [3]:

dr(λ(C)) ≤ n− k + r, (2)

and in the case of the rank weights, the Griesmer bound
is the same as the generalized Singleton bound [4].

Definition 2. An [n, k] linear code C is r-MRD (maximum
rank distance) if dr(λ(C)) = n− k + r, reaching (2).

Finally, the following is also known [4]:

Proposition 1. Let C⊥ be the dual code of C. Then

{dr(λ(C))|1 ≤ r ≤ k}
t{n+ 1− ds(λ(C⊥))|1 ≤ s ≤ n− k} = {1, ..., n}.

In this paper, we are interested in the rank weight hierarchy
of cyclic codes. Let C be a cyclic code of length n over Fqm
with generator polynomial g(x) of degree s. Then C is an ideal
of Fqm [x]/(xn − 1), and g(x) divides xn − 1. The dimension
of C is k = n− s, 1 ≤ s ≤ n− 1.

The rank distance of cyclic codes of dimension k = 1, 2 has
been studied in [5], where instead of computing the rank of
cyclic codes directly, the authors computed the discrete Fourier
transform of the cyclic codewords, and obtained characteriza-
tion of the rank distance in the Fourier domain.

Our results on the rank weight hierarchy of cyclic codes are
as follows. The rank weight hierarchy of [n, n−1] cyclic codes
is established in Section II. The rank distance of [n, 1] cyclic
code is computed in Section III. In particular, we recover the
rank metric of [n, 1] codes discussed in [5]. Cyclic codes of
dimension k else than 1 and n − 1 are discussed in Section
IV and V, where codes of rank weight 1 are characterized
respectively for the case when the length n is coprime to q
and the characteristic char(Fq) divides n. Finally, in Section
VI, cyclic codes of minimal r-rank are characterized, and
a refinement of the Singleton bound for the rank weight is
derived, under the assumption that n and q are coprime.



II. RANK WEIGHT HIERARCHY OF [n, n− 1] CYCLIC
CODES

A cyclic code of dimension n−1 has a generator polynomial
of degree 1. Its generator matrix G is by definition

g0 1 0 · · · 0

0 g0 1
. . .

...
...

. . . . . . . . . 0
0 · · · 0 g0 1

 . (3)

Lemma 1. If the generator polynomial g(x) of a cyclic code
C over Fqm has degree 1, then the minimum rank distance
d1(λ(C)) is 1.

Proof: Write g(x) = x+g0 ∈ Fqm [x]. Using the generator
matrix G defined in (3) of C, a direct computation shows that
a codeword of C is of the form

[c0, c1, c2, . . . , cn−2]G = [g0c0, c0+g0c1, c1+g0c2, . . . , cn−2].

To show that a code has rank distance 1, we only need to
exhibit a codeword with rank weight 1.

Let l be the degree of the minimal polynomial of g0 over Fq .
Since −g0 is a root of the polynomial xn−1 over Fq and since
1 is a trivial root, we have l ≤ n − 1. Let λ0, ..., λl−1 ∈ Fq
be the coefficients of this minimal polynomial, i.e., elements
of Fq such that

λlg
l
0 + λl−1g

l−1
0 + · · ·+ λ0 = 0, λl = 1.

Take for 0 ≤ i ≤ n−2−l, ci = 0 and for n−1−l ≤ i ≤ n−2

ci = (−1)n−i
n−2−i∑
j=0

λl−n+2+i+jg
j
0.

Since the ith coefficient of a codeword is ci−2 + g0ci−1, we
obtain a codeword whose ith coefficient is zero, for 1 ≤ i ≤
n− 1− l. For n− l ≤ i ≤ n, the ith coefficient is

ci−2 + g0ci−1

= (−1)n−(i−2)
n−2−(i−2)∑

j=0

λl−n+2+(i−2)+jg
j
0

+g0(−1)n−(i−1)
n−2−(i−1)∑

j=0

λl−n+2+(i−1)+jg
j
0

= (−1)n−i
n−i∑
j=0

λl−n+i+jg
j
0

+(−1)n−i+1
n−1−i∑
j=0

λl−n+1+i+jg
j+1
0

= (−1)n−i
(
λl−n+i +

n−i∑
j=1

λl−n+i+jg
j
0 −

n−i∑
j=1

λl−n+i+jg
j
0

)
= (−1)n−iλl−n+i,

and the nth coefficient is cn−2 = 1, showing that ci ∈ Fq ,
0 ≤ i ≤ n− 2.

Using Proposition 1, it is enough to determine the rank
hierarchy of the dual code C⊥ to know completely the rank
hierarchy of C.

Recall from (3) the (n − 1) × n generator matrix G of C.
The parity check matrix of the dual code C⊥ of C is then

Gt : a vector d = [d1, . . . , dn] ∈ Fnqm is in C⊥ if and only if
dGt = 0, which is equivalent to :

g0d1 + d2 = 0

g0d2 + d3 = 0
...

g0dn−1 + dn = 0.

Hence, C⊥ is the 1-dimensional vector space on Fqm
generated by the vector

[1,−g0, . . . , (−g0)n−1].

Therefore, the rank weight of this vector is the di-
mension of the Fq-vector space generated by the family
{(−g0)i}0≤i≤n−1: it is equal to the degree of the minimal
polynomial of −g0 (equivalently of g0) over Fq .

Hence, we have the following result :

Corollary 1. Keeping the notation as above, we have :
1) for 1 ≤ r ≤ n− [Fq(g0) : Fq],

dr(λ(C)) = r.

2) for n + 1 − [Fq(g0) : Fq] ≤ r ≤ n − 1, C is a r-MRD
code.

Proof: This follows from the monotonicity property (1),
from Proposition 1 and from the above computation of the
first rank distance of C⊥.

III. RANK WEIGHT OF [n, 1] CYCLIC CODES

Let g(x) = g0 + g1x + . . . + gn−2x
n−2 + xn−1 be the

generator polynomial of an [n, 1] cyclic code C, and let
h(x) = x+ h0 be its check polynomial, satisfying

g(x)h(x) = xn − 1.

Then g0h0 = −1 and h(x) = x− g−1
0 . The dual code C⊥ of

C has dimension n− 1, and generator polynomial

h−1
0 xh(x−1) = −g0x(x−1 − g−1

0 ) = x− g0.

The computations of Section II tell that the dual of C⊥, that
is C, is the 1-dimensional vector space on Fq generated by

[1, g0, g
2
0 , . . . , g

n−1
0 ]

and thus:

Lemma 2. Let C be an [n, 1] cyclic code with generator
polynomial g(x). Then its rank weight is [Fq(g(0)) : Fq].

As a consequence, we obtain the rank distance of the four
cyclic codes of dimension 1 computed in [6].

Example 1. Consider a primitive length cyclic code C over
F24 , that is of length n = |F24 | − 1 = 15, and dimension
k = 1. Then

x15 − 1 =

14∏
i=0

(x− α)



where α is a primitive element of F∗24 . Let g(x) be the
generator polynomial of C, whose constant coefficient g0 may
be any element of F∗24 . Since α is of order 15, α3i is of order
5, i = 1, 2, 3, 4, α5i is of order 3, i = 1, 2. Thus when g0 = α5

or α10, C has rank distance 2 (the minimum polynomial of
g0 is x2 + x + 1), which corresponds to Example 3 of [6].
Otherwise, the minimum polynomial of g0 has degree 4, and
the code has rank distance 4, as was computed in Example 2
of [6]. The other examples of [6] are computed similarly.

IV. CHARACTERIZATION OF [n, k] CYCLIC CODES OF
RANK WEIGHT 1 WHEN THE LENGTH IS COPRIME TO q

A. Case I: the Generator Polynomial is Split.

Let C be an [n, k] cyclic code. In this section, we assume
that n and q are coprime, which implies that all the roots
of xn − 1 are simple. We denote by α1, ..., αν those roots
belonging to Fqm (they are pairwise distinct). Let g(x) be
the generator polynomial of C. We assume that g(x) is split
in Fqm [x]. Since the dimension of C is k, g(x) has degree
n− k. Since g(x) divides xn − 1, we have n− k ≤ ν and up
to re-ordering the αi, we may assume that

g(x) =
∏

1≤j≤n−k

(x− αj).

Let G be the generator matrix of C. Then a codeword

[c0, c1, . . . , ck−1]G,

is written in terms of polynomial as

c(x)g(x), c(x) = c0 + c1x+ . . .+ ck−1x
k−1.

Since g(x) is of degree ≤ n−k, we indeed get a polynomial
of degree ≤ n − 1, whose n coefficients correspond to one
codeword. Thus any codeword can be written as

c(x)
∏

1≤j≤n−k

(x− αj).

Moreover, a code C has rank weight 1 if and only if there
exists a codeword with coefficients in Fq , which means here
that the corresponding polynomial c(x)

∏
1≤j≤n−k(x − αj)

lives in Fq[x].
Recall that g(x) is split with simple roots α1, . . . , αn−k. Up

to re-ordering the roots, let m1 ≥ 1 be such that α1, . . . , αm1

are roots of the minimal polynomial µα1
(x) of α1 over Fq ,

let m2 ≥ m1 + 1 be such that αm1+1, . . . , αm2 are roots of
the minimal polynomial µαm1+1(x) of αm1+1 over Fq ,... and
let ms ≥ ms−1 + 1 be such that αms−1+1, . . . , αms

= αn−k
are roots of the minimal polynomial µαms−1+1

(x) of αms−1+1

over Fq .
Now, for any 1 ≤ r ≤ s−1, µαmr+1

(x) divides xn−1. Since
Fqm/Fq is a Galois extension, µαmr+1

(x) has a root in Fqm
and is irreducible over Fq , then µαmr+1(x) splits over Fqm :
there exists a subset (maybe empty) Jr ⊂ {αn−k+1, ..., αν}

µαmr+1
(x) =

∏
mr+1≤t≤mr+1

(x− αt)
∏
j∈Jr

(x− αj).

Note that any two Jr are disjoint.

From now on, we will use the following terminology :

Definition 3. We denote by ηq(C) the quantity∑
1≤r≤s−1

[Fq(αmr+1) : Fq].

Note that ηq(C) only depends on the factorization of g(x)
in Fqm [x] and is then completely determined by C. In general,
we have ηq(C) ≤ n.

Proposition 2. Let C be an [n, k] cyclic code over Fqm , with
n coprime with q. Assume that the generator polynomial g(x)
is split in Fqm [x]. Keeping the notation introduced above, C
has rank weight 1 if and only if ηq(C) ≤ n− 1.

Proof: Assume first that ηq(C) ≤ n − 1. Using the
previous description of codewords of C, we set

c(x) =
∏

1≤r≤s−1

∏
j∈Jr

(x− αj).

Then the polynomial c(x)g(x) has coefficients in Fq since∏
1≤r≤s−1

∏
j∈Jr

(x− αj)
∏

1≤j≤n−k

(x− αj)

=
∏

1≤r≤s−1

∏
j∈Jr

(x− αj)
∏

1≤r≤s−1

∏
mr+1≤t≤mr+1

(x− αt)

=
∏

1≤r≤s−1

µαmr+1
(x).

Since this polynomial has degree ηq(C) ≤ n − 1, c(x)g(x)
corresponds to a codeword of C with coefficients in Fq .

We now show the converse. Assume that C has rank weight
1, i.e. that there exists a polynomial c(x) with degree ≤ k −
1 such that c(x)g(x) has coefficients in Fq . Since, for 1 ≤
r ≤ s− 1, αmr+1 is a root of c(x)g(x) ∈ Fq[x], its minimal
polynomial µαmr+1

(x) divides c(x)g(x) in Fq[x]. This being
true for every 1 ≤ r ≤ s − 1 and the polynomials µαmr+1

being pairwise coprime, the polynomial∏
1≤r≤s−1

µαmr+1(x)

divides c(x)g(x) in Fq[x]. Taking the degrees, we get the
desired inequality : ηq(C) ≤ n− 1.

Corollary 2. Let C be an [n, k] cyclic code with length n
dividing qm − 1. Then C has rank weight 1 if and only if
ηq(C) ≤ n− 1.

Proof: Indeed, since n|qm − 1, the polynomial xn − 1 is
split in Fqm [x] and we apply Proposition 2.

Recall that when n = qm − 1, a cyclic code is called
primitive, or of primitive length.

Corollary 3. Let C be an [n, n−k] cyclic code with primitive
length. Then C has rank weight 1 if km ≤ qm − 2.

Proof: We have ηq(C) =
∑

1≤r≤s−1

[Fq(αmr+1) : Fq], s−

1 ≤ deg g(x) = k and [Fq(αmr+1) : Fq] ≤ m for all 1 ≤



r ≤ s−1, since αmr+1 ∈ Fqm . Corollary 3 then follows from
Corollary 2.

Applying Corollary 3 when k = 2, since m ≥ 2, the only
case for which 2m > qm − 2 is when q = 2 and m = 2, that
is we have a [3, 1] cyclic code over F4. Using Lemma 2, its
rank weight is [F2(g(0)) : F2], where g(x) is a polynomial of
degree of 2 which divides x3 − 1 = (x − 1)(x2 + x + 1) =
(x − 1)(x − α)(x − α + 1). The rank weight is thus 1 if
g(x) = x2 + x + 1 and 2 otherwise. Note that we find the
same result using Corollary 2 and the Singleton bound.

B. Case II: the Generator Polynomial is not Split.

Let C be an [n, k] cyclic code such that n and q are coprime.
Let g(x) ∈ Fqm [x] be the generator polynomial of C. Let now
m′ be a multiple of m such that Fqm′ is a splitting field of
g(x). Since n and q are coprime, as before, the roots of xn−1
(and then of g(x)) are all simple (in Fqm′ ).

We extend the definition of ηq(C) as follows :

Definition 4.

ηq(C) = ηq(C ⊗Fqm
Fqm′ ).

As before, let α1, ..., αν be roots of g(x) in Fqm′ such that
every root of g(x) in Fqm′ is conjugate to exactly one αi, for
1 ≤ i ≤ ν. Let g(x) = g1(x) · · · gν′(x) be the factorization in
Fqm [x] into irreducible polynomials.

Lemma 3. We have ν′ = ν and up to re-ordering the roots
αi, for every 1 ≤ i ≤ ν, gi(x) is the minimal polynomial of
αi over Fqm .

Proof: The polynomial gi(x) also splits in Fqm′ [x] so has
a root α : therefore, the minimal polynomial of α over Fqm
divides gi(x) in Fqm [x] and since gi(x) is irreducible and
since both are monic, gi(x) is the minimal polynomial of α.
Yet, α is conjugate to one of the αj , say j = i if we re-order
correctly.

From Lemma 3, we can deduce that, for all 1 ≤ i ≤ ν, the
minimal polynomial µαi(x) of αi over Fq can be factorized
in Fqm [x] as :

µαi(x) =
∏
j∈Ji

gj(x)hi(x),

where

Ji = {j ∈ {1, ..., ν}|gj(x) and µαi
(x) have a common root}

and hi(x) is a factor of h(x) = xn−1
g(x) in Fqm [x]. Note

that some of the αi may have the same minimal polynomial
µαi(x) over Fq , so that two sets Ji and Ji′ are equal or have
empty intersection; simultaneously, the two corresponding
polynomials hi(x) and hi′(x) are either equal, either pairwise
coprime.

Proposition 3. Let C be an [n, k] cyclic code over Fqm , n
and q being coprime. Then C has rank weight 1 if and only
if ηq(C) ≤ n− 1.

Proof: Assume that ηq(C) ≤ n − 1. Keeping notation
above, let I ⊂ {1, ..., ν} be a set of indices such that the

subsets Ji are pairwise distinct and that for any 1 ≤ j ≤ ν,
hj(x) = hi(x) for some i ∈ I . We then set c(x) =

∏
i∈I
hi(x) ∈

Fqm [x]. Then we have

c(x)g(x) =
∏
i∈I
hi(x) · g1(x) · · · gν(x)

=
∏
i∈I
hi(x) ·

∏
i∈I

∏
j∈Ji

gj(x) =
∏
i∈I
µαi(x).

The latter product has factors lying in Fq[x] and has degree
ηq(C) ≤ n− 1. Therefore, the corresponding codeword of C
has coefficients in Fq and C has rank weight 1.

Conversely, assume that C has rank weight 1. Then there ex-
ists a polynomial c(x) ∈ Fqm [x] with degree ≤ k−1 such that
c(x)g(x) ∈ Fq[x]. But then c(x) ∈ Fqm′ [x], we can consider
the corresponding codeword as an element of C ⊗Fqm

Fqm′ .
Using now Proposition 2, we get that ηq(C) ≤ n− 1.

V. [n, k] CYCLIC CODES OF RANK WEIGHT 1 WHEN
char(Fq) DIVIDES n

Set p = char(Fq) and let n = ñ · pv . Then xn − 1 =
(xp

v

)ñ−1, so it has a factorization in Fqm [x] of the following
form :

xn − 1 =

ν∏
i=1

(
gi(x)

)pv
=

ν∏
i=1

gi(x
pv )

where for all 1 ≤ i ≤ ν, gi(x) ∈ Fqm [x] is irreducible. Let C
be an [n, k] cyclic code over Fqm and let g(x) be its generator
polynomial. There exists a subset J ⊂ {1, ..., ν} such that

g(x) =
∏
i∈J

(
gi(x)

)li
,

where li ≤ pv for all i ∈ J . In this section, we assume that
for all i ∈ J , li = pvi for some vi ≤ v. Set now

g̃(x) =
∏
i∈J

gi(x).

Then g̃(x) divides xñ − 1 in Fqm [x]. Let k̃ = ñ −∑
i∈J

deg(gi(x)) and let C̃ be the [ñ, k̃] cyclic code over Fqm

with generator polynomial g̃(x).

Proposition 4. Let C be an [n, k] cyclic code over Fqm
with generator polynomial g(x) of the form

∏
i∈J
(
gi(x)

)pvi
.

Keeping the notation above, if ηq(C̃) ≤ ñ − 1, then C has
rank weight 1.

Proof: Assume that ηq(C̃) ≤ ñ− 1. From Proposition 3,
C̃ has rank weight 1, so there exists some polynomial c̃(x) ∈
Fqm [x] such that c̃(x)g̃(x) has coefficients in Fq[x] and degree
≤ ñ − 1. If v0 = maxi∈J(vi), we set c(x) = c̃(xp

v0
). Then

c(x)g(x) is a polynomial with coefficients in Fq[x] and degree

deg c(x)g(x) = pv0(k̃ − 1) + deg g(x)

≤ pv0(k̃ − 1 + deg g̃(x))

≤ pv(ñ− 1) ≤ n− 1.

Hence, the corresponding codeword has rank weight 1.



VI. HIGHER RANK WEIGHTS AND DUAL CODES

A. Characterization of Cyclic Codes with Minimal r-Rank

As a natural generalization of Proposition 3, we have :

Proposition 5. Let C be an [n, k] cyclic code over Fqm with
n coprime with q and let 1 ≤ r ≤ k. Then dr(λ(C)) = r if
and only if ηq(C) ≤ n− r.

Proof: Assume first that ηq(C) ≤ n−r. Then, taking the
polynomial c(x) defined in the proof of Proposition 3:

c(x) =
∏
i∈I
hi(x),

we set, for every 0 ≤ u ≤ r − 1, cu(x) = xuc(x). Then, for
all 0 ≤ u ≤ r − 1, cu(x)g(x) is a polynomial lying in Fq[x]
with degree ≤ n − 1. It then corresponds to a codeword cu
with rank weight 1. Moreover, the subspace V of C generated
by the cu’s has dimension exactly r (for all 0 ≤ u ≤ r, the
polynomial cu(x)g(x) has degree n− r+ u, so the family of
the codewords cu is linearly independent) and V belongs to
Γ(Fnqm), as in Definition 1 (since the basis vectors cu lie in
Fnq ). Therefore, dr(λ(C)) ≤ dimV = r. Moreover, as a direct
consequence of the monotonicity property [3], r ≤ dr(λ(C)
and we get the desired equality.

Conversely, assume that dr(λ(C)) = r. Then there ex-
ists a subspace V ∈ Γ(Fnqm) with dimension r such that
dim(V ∩ C) ≥ r. Hence, V ⊂ C. Moreover, we know from
[7], that V has a basis of vectors having coefficients in Fq :
there exists some polynomials c1(x), ..., cr(x) ∈ Fqm [x] with
degree ≤ k − 1 such that ci(x)g(x) ∈ Fq[x] and the family
{ci(x)g(x)|1 ≤ i ≤ r} is linearly independent over Fqm .
Therefore, there exists a non-zero polynomial c(x) ∈ Fqm [x]
with degree ≤ k − r lying in the subspace spanned by the
ci(x)g(x) over Fq . Keeping the notation introduced in the
proof of Proposition 3, the minimal polynomial of any root α
(say in an algebraic closure of Fq) over Fq divides c(x)g(x),
hence (∏

i∈I
µαi

(x)
)
|c(x)g(x),

and taking degrees,

ηq(C) ≤ deg c(x) + deg g(x) ≤ k − r + n− k = n− r.

B. Refinement of the Singleton bound for the Rank Weight of
Cyclic Codes

Proposition 6. Let C be an [n, k] cyclic code over Fqm with
n and q coprime. Then d(λ(C)) ≤ ηq(C⊥)− k + 1.

Proof: From Proposition 5, dr(λ(C⊥)) = r if and only
if r ≤ n− ηq(C⊥). Hence,

d1(λ(C⊥)) = 1, . . . , dn−ηq(C⊥)(λ(C⊥)) = n− ηq(C⊥).

Now using Proposition 1 ([4]),

{dr(λ(C))|1 ≤ r ≤ k} ⊂
{1, ..., n} \ {n+ 1− ds(λ(C⊥))|1 ≤ s ≤ n− k}.

Therefore, for every 1 ≤ r ≤ k, we have

d1(λ(C)) < · · · < dk(λ(C)) ≤ ηq(C⊥) + 1.

Equivalently, d(λ(C)) = d1(λ(C)) ≤ ηq(C⊥)− k + 1.

Example 2. Let C be the [11, 8]-cyclic code over F35 with
generator polynomial (x+1)(x+α2+α−1)(x+α3+α2+α),
where α is a primitive element of F35 over F3 satisfying the
equation α5 = α + 1. Note here that 11 divides 35 − 1, so
x11 − 1 is split in F35 [x]. Then

η3(C) = [F3 : F3] + [F3(−α2 − α+ 1) : F3]

+ [F3(−α3 − α2 − α) : F3]

= 1 + 5 + 5 = 11

(−α2 − α + 1 and α + 1 are not conjugate over F3), so by
Proposition 2, we have d(λ(C)) > 1. Note that the Singleton
bound gives that

d(λ(C)) ≤ min(n− k + 1,m) = min(11− 8 + 1, 5) = 4.

Taking now the dual code C⊥, its generator polynomial is

g⊥(x) = h(0)−1x8h(x−1) =

(x+ α2 + α− 1)(x+ α3 + α2 + α)(x+ α3 + α2 − α− 1)

(x+ α3 + α− 1)(x+ α4 + α3 + 1)(x+ α4 − α3 + 1)

(x− α4 + α3 + α2 − α− 1)(x− α4 − α3 + α2 + 1),

with h(x) = xn−1
g(x) . This yields that η3(C⊥) = 5 + 5 = 10,

so, by Proposition 6,

d(λ(C)) ≤ 10− 8 + 1 = 3.

Finally, d(λ(C)) ∈ {2, 3}. In fact, it is equal to 2 here, the
codeword

[0, 0, 0, 0, 0, 0, 1,−α4 − α3 + 1, 0, 1,−α4 − α3 + 1]

having rank weight 2.
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