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Recent research has reported the application of image fusion technologies in medical
images in a wide range of aspects, such as in the diagnosis of brain diseases, the
detection of glioma and the diagnosis of Alzheimer’s disease. In our study, a new
fusion method based on the combination of the shuffled frog leaping algorithm
(SFLA) and the pulse coupled neural network (PCNN) is proposed for the fusion
of SPECT and CT images to improve the quality of fused brain images. First, the
intensity-hue-saturation (IHS) of a SPECT and CT image are decomposed using a non-
subsampled contourlet transform (NSCT) independently, where both low-frequency and
high-frequency images, using NSCT, are obtained. We then used the combined SFLA
and PCNN to fuse the high-frequency sub-band images and low-frequency images. The
SFLA is considered to optimize the PCNN network parameters. Finally, the fused image
was produced from the reversed NSCT and reversed IHS transforms. We evaluated our
algorithms against standard deviation (SD), mean gradient (Ḡ), spatial frequency (SF)
and information entropy (E) using three different sets of brain images. The experimental
results demonstrated the superior performance of the proposed fusion method to
enhance both precision and spatial resolution significantly.

Keywords: single-photon emission computed tomography image, computed tomography image, image fusion,
pulse coupled neural network, shuffled frog leaping

INTRODUCTION

In 1895 Rontgen obtained the first human medical image by X-ray, after which research of medical
images gained momentum, laying the foundation for medical image fusion. With the development
of both medical imaging technology and hardware facilities, a series of medical images with
different characteristics and information were obtained, contributing to a key source of information
for disease diagnosis. At present, clinical medical images mainly include Computed Tomography
(CT) images, Magnetic Resonance Imaging (MRI) images, Single-Photon Emission Computed
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Tomography (SPECT) images, Dynamic Single-Photon Emission
Computed Tomography (DSPECT) and ultrasonic images, etc.
(Jodoin et al., 2015; Hansen et al., 2017; Zhang J. et al., 2017).
It is necessary to fuse different modes of medical images into
more informative images based on fusion algorithms, in order to
provide doctors with more reliable information during clinical
diagnosis (Kavitha and Chellamuthu, 2014; Zeng et al., 2014).
At present, medical image fusion has been considered in many
aspects, such as the localization of brain diseases, the detection of
glioma, the diagnosis of AD (Alzheimer’s disease), etc. (Huang,
1996; Singh et al., 2015; Zeng et al., 2018).

Image fusion is the synthesis of images into a new image
using a specific algorithm. The space-time relativity and
complementarity of information in fused images can be fully
used in the process of image fusion, contributing to a more
comprehensive expression of the scene (Wu et al., 2005; Choi,
2006). Conventional methods of SPECT and CT fusion images
mainly include component substitution and multi-resolution
analysis (Amolins et al., 2007; Huang and Du, 2008; Huang and
Jiang, 2012). Component substitution mainly refers to intensity-
hue-saturation (IHS) transform, with the advantage of improving
the spatial resolution of SPECT images (Huang, 1999; Rahmani
et al., 2010). The limitation of transform invariance leads to
difficulty in extracting both image contour and edge details. In
order to solve this problem, contourlet transform was proposed
by Da et al. (2006), Zhao et al. (2012), Xin and Deng (2013).
Moreover, non-subsampled contourlet transform (NSCT) was
also proposed to fully extract the directional information of
SPECT images and CT images to be fused, providing better
performance in image decomposition (Da et al., 2006; Wang and
Zhou, 2010; Yang et al., 2016).

The Pulse Coupled Neural Network (PCNN) was discovered
by Eckhorn et al. (1989) in the 1990s while studying the imaging
mechanisms of the visual cortex of small mammals. No training
process is required in the PCNN and useful information can
be obtained from a complex background through the PCNN.
Nevertheless, the PCNN has its shortcomings, such as the
numerous parameters and the complicated process of setting
parameters. Thus, novel algorithms to optimize the PCNN
parameters has been introduced to improve the calculation speed
of PCNN (Huang, 2004; Huang et al., 2004; Jiang et al., 2014;
Xiang et al., 2015). SFLA is a new heuristic algorithm first
presented by Eusuff and Lansey, which combines the advantages
of the memetic algorithm and particle swarm optimization. The
algorithm can search and analyze the optimal value in a complex
space with fewer parameters and has a higher performance and
robustness (Samuel and Asir Rajan, 2015; Sapkheyli et al., 2015;
Kaur and Mehta, 2017).

In our study, a new fusion approach based on the SFLA
and PCNN is proposed to address the limitations discussed
above. Our proposed method not only innovatively uses SFLA
optimization to effectively learn the PCNN parameters, but also
produces high quality fused images. A series of contrasting
experiments are discussed in view of image quality and
objective evaluations.

The remaining part of the paper is organized as follows.
Related work is introduced in Section “Related Works.”

The fusion method is proposed in Section “Materials and
Methods.” The experimental results are presented in Sections
“Result” and “Conclusion” concludes the paper with an
outlook on future work.

RELATED WORKS

Image fusion involves a wide range of disciplines and can be
classified under the category of information fusion, where a series
of methods have been presented. A novel fusion method, for
multi-scale images has been presented by Zhang X. et al. (2017)
using Empirical Wavelet Transform (EWT). In the proposed
method, simultaneous empirical wavelet transforms (SEWT)
were used for one-dimensional and two-dimensional signals, to
ensure the optimal wavelets for processed signals. A satisfying
visual perception was achieved through a series of experiments
and in terms of objective evaluations, it was demonstrated
that the method was superior to other traditional algorithms.
However, time consumption of the proposed method is high,
mainly during the process of image decomposition, causing
application difficulties in a real time system. Noised images
should also be considered in future work where the process of
generating optimal wavelets may be affected (Zeng et al., 2016b;
Zhang X. et al., 2017).

Aishwarya and Thangammal (2017) also proposed a fusion
method based on a supervised dictionary learning approach.
During the dictionary training, in order to reduce the
number of input patches, gradient information was first
obtained for every patch in the training set. Second, both
the information content and edge strength was measured
for each gradient patch. Finally, the patches with better
focus features were selected by a selection rule, to train
the over complete dictionary. Additionally, in the process of
fusion, the globally learned dictionary was used to achieve
better visual quality. Nevertheless, high computational costs
also exist in this proposed approach during the process
of sparse coding and final fusion performance, which may
be affected by high frequency noise (Zeng et al., 2016a;
Aishwarya and Thangammal, 2017).

Moreover, an algorithm for the fusion of thermal and visual
images was introduced by M Kanmani et al. in order to
obtain a single comprehensive fused image. A novel method
called self tuning particle swarm optimization (STPSO) was
presented to calculate the optimal weights. A weighted averaging
fusion rule was also used to fuse the low frequency- and high
frequency coefficients, obtained through Dual Tree Discrete
Wavelet Transform (DT-DWT) (Kanmani and Narasimhan,
2017; Zeng et al., 2017a). Xinxia Ji et al. proposed a new
fusion algorithm based on an adaptive weighted method in
combination with the idea of fuzzy theory. In the algorithm,
a membership function with fuzzy logic variables were designed
to achieve the transformation of different leveled coefficients
by different weights. Experimental results indicated that the
proposed algorithm outperformed existing algorithms in aspects
of visual quality and objective measures (Ji and Zhang, 2017;
Zeng et al., 2017b).
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MATERIALS AND METHODS

The Image Fusion Method Based on
PCNN and SFLA
The algorithm 3.1 represents an image fusion algorithm based
on the PCNN and SFLA, where SPECT and CT images are
fused. In our proposed algorithm, a SPECT image is first
decomposed on three components using IHS transform, which
include saturation S, hue H and intensity I. Component I is
then decomposed to a low-frequency and high-frequency image
through NSCT decomposition. Additionally, a CT image is
decomposed into a low-frequency and high-frequency image
through NSCT decomposition. Moreover, the two low-frequency
images obtained above are fused in a new low-frequency image
through the SFLA and PCNN combination fusion rules, while
the two high-frequency images obtained above are fused into
a new high-frequency image through the SFLA and PCNN
combination fusion rules. Next, the new low-frequency and new
high-frequency images are fused to generate a new image with
intensity I’ using reversed NSCT. Finally, the target image is
achieved by using reversed IHS transform to integrate the three
components S, H and I’.

Algorithm 1: An image fusion algorithm based on PCNN
and SFLA

Input: A SPECT image A and a CT image B
Output: A fused image F
Step 1: Obtain three components of image A using IHS
transform; saturation S, hue H and intensity I.
Step 2: Image decomposition
(1) Decompose the component I of image A to a
low-frequency image AL and high-frequency image AH
through NSCT decomposition.
(2) Decompose image B to a low-frequency image BL and
high-frequency image BH through NSCT decomposition.
Step 3: Image fusion
(1) Fuse the low-frequency images AL and BL to a new
low-frequency image CL through the SFLA and PCNN
combination fusion rules.
(2) Fuse the high-frequency images AH and BH to form a
new high-frequency image CH through the SFLA and
PCNN combination fusion rules.
Step 4: Inverse transform
Fuse the low-frequency image CL and high-frequency image
CH to a new image with intensity I’ using reversed NSCT.
Step 5: Reversed IHS transform
Through the reversed IHS transform, integrate the three
components S, H and I’, then obtain the target image F.

The overall method of the proposed algorithm for the fusion
of a SPECT and CT image is outlined in Figure 1.

Decomposition Rule
In our proposed method, the SPECT image and CT image
are decomposed into a low-frequency and high-frequency
image using NSCT.

Non-subsampled contourlet transform (Huang, 1999;
Rahmani et al., 2010) is composed of a non-subsampled pyramid
filter bank (NSPFB) and a non-subsampled directional filter
bank (NSDFB). The source image is decomposed into a high-
frequency sub-band and a low-frequency sub-band by NSPFB.
The high-frequency sub-band is then decomposed into a sub-
band of each direction by NSDFB. The structure diagram of the
two-level decomposition of NSCT is shown in Figure 2.

An analysis filter {H1 (z) ,H2 (z)} and a synthesis filter
{G1 (z) ,G2 (z)} are used when using NSCT to decompose images
and the two filters satisfy H1(z)G1(z)+H2(z)G2(z) = 1. The
source image can generate low-frequency and high-frequency
sub-band images when it is decomposed by NSP. The next level of
NSP decomposition is performed on low-frequency components
obtained by the upper-level decomposition. An analysis
filter {U1 (z) ,U2 (z)} and synthesis filters {V1 (z) ,V2 (z)} are
contained in the design structure of NSDFB with the requirement
of U1(z)V1(z)+ U2(z)V2(z) = 1. The high-pass sub-band image
decomposed by J-level NSP is decomposed by L-level NSDFB,
and the high-frequency sub-band coefficients can be obtained
at the number of 2n, where n is an integer higher than 0.
A fused image with clearer contours and translation invariants
can be obtained through the fusion method based on NSCT
(Xin and Deng, 2013).

Fusion Rule
Fusion rules affect image performance, so the selection of fusion
rules largely determines the quality of the final fused image.
In this section, the PCNN fusion algorithm based on SFLA
is introduced for low-frequency and high-frequency sub-band
images decomposed by NSCT.

Pulse Coupled Neural Network
The PCNN is a neural network model of single-cortex feedback,
to simulate the processing mechanism of visual signals in the
cerebral cortex of cats. It consists of several neurons connected
to each other, where each neuron is composed of three parts: the
receiving domain, the coupled linking modulation domain and
the pulse generator. In image fusion using the PCNN, the M ∗ N
neurons of a two-dimensional PCNN network correspond to the
M ∗ N pixels of the two-dimensional input image, and the gray
value of the pixel is taken as the external stimulus of the network
neuron. Initially, the internal activation of neurons is equal to
the external stimulation. When the external stimulus is greater
than the threshold value, a natural ignition will occur. When
a neuron ignites, its threshold will increase sharply and then
decay exponentially with time. When the threshold attenuates
to less than the corresponding internal activation, the neuron
will ignite again, and the neuron will generate a pulse sequence
signal. The ignited neurons stimulate the ignition of adjacent
neurons by interacting with adjacent neurons, thereby generating
an automatic wave in the activation region to propagate outward
(Ge et al., 2009).
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FIGURE 1 | The proposed method for the process of fusion.

FIGURE 2 | The structure diagram of the two-level decomposition of NSCT.

The parameters of the PCNN affect the quality of image
fusion, and most current research uses the method of regressively
exploring the values of parameters, which is subjective to a certain
degree. Therefore, how to reasonably set the parameters of the
PCNN is the key to improving its performance. In our paper,
SFLA is used to optimize the PCNN network parameters.

Shuffled Frog Leaping Algorithm
Shuffled frog leaping algorithm is a particle swarm search method
based on groups to obtain optimal results. The flowchart of
SFLA is shown in Figure 3. First, the population size F, the
number of sub populations m, the maximum iterations of local
search for each sub population N and the number of frogs in
each sub population n were defined. Second, a population was
initialed, and the fitness value of each frog was calculated and
sorted in a descending order. A memetic algorithm is used in the
process of the search, and the search is carried out in groups. All
groups are then fused, and the frogs are sorted according to an
established rule. Moreover, the frog population is divided based
on the established rules, and the overall information exchange
is achieved using this method until the number of iterations are
equal to the maximum iterations N (Li et al., 2018).

F(x) is defined as a fitness function and� is a feasible domain.
In each iteration, Pg is the best frog for a frog population,
Pb represents the best frog for each group and Pw is the worst
frog for each group. The algorithm adopts the following update
strategy to carry out a local search in each group:{

Sj = rand() · (Pb − Pw), −Smax ≤ Sj ≤ Smax

Pw,new = Pw + Sj
(1)

where Sj represents the updated value of frog leaping, rand () is
defined as the random number between 0 and 1, Smax is described
as the maximum leaping value, and Pw,new is the worst frog of
updated group. If Pw,new ∈ � and F(Pw,new) > F(Pw), Pw can be
replaced by Pw,new, otherwise, Pb will be replaced by Pg. At the
same time, if P′w,new ∈ � and F(P′w,new) > F(Pw), Pw can be
replaced by P′w,new, otherwise Pw can be replaced by a new frog
and then the process of iteration will continue until the maximum
iterations is reached.

PCNN Fusion Algorithm Based on SFLA
Three parameters αθ, β and Vθ in PCNN are essential for the
results of image fusion. Therefore, as it is shown in Figure 4,
in our study, the SFLA is used to optimize the PCNN in order
to achieve the optimal solution of the PCNN parameters. Each
frog is defined as a spatial solution X(αθ, β,Vθ) and the optimal
configuration scheme of the PCNN parameters can finally be
obtained by searching for the best frog Xb(αθ, β,Vθ).

In our proposed method, possible configuration schemes of
parameters are defined, which constitute a solution space for the
parameter optimization. After generating an initial frog solution
space, F frogs in the population are divided into m groups, and
each group is dependent on one another. Starting from the initial
solution, the frogs in each group first carry out an intraclass
optimization by a local search, thereby continuously updating
their own fitness values. In N iterations of local optimization,
the quality of the whole frog population is optimized with the
improvement of the quality of frogs in all groups. The frogs
of the population are then fused and regrouped according to
the established rule, and local optimization within the group is
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FIGURE 3 | The flowchart of the shuffled frog leaping algorithm.

carried out until reaching the final iteration conditions. Finally,
the global optimal solution of the frog population is defined as the
optimal PCNN parameter configuration. The final fusion image is
thus obtained using the optimal parameter configuration above.

RESULTS

In order to verify the accuracy and preservation of the edge
details in our proposed method, three sets of CT and SPECT
images were fused based on our method. The results of each
set were compared with four fusion methods; IHS, NSCT+FL,
DWT, NSCT+PCNN. In the method of NSCT+FL, images are
first decomposed by NSCT to obtain high-frequency and low-
frequency coefficients, and then fusion images are obtained by
taking large value high-frequency coefficients and taking average
value low-frequency coefficients. In NSCT+PCNN, images are
decomposed by NSCT and fused by the PCNN.

Subjective Evaluations of
Experimental Results
Experiments were implemented on the image database from the
Whole Brain Web Site of Harvard Medical School (Johnson and
Becker, 2001) which contains two groups of images including CT
and SPECT images. Each group has three examples including
normal brain images, glioma brain images and brain images of
patients diagnosed with Alzheimer’s disease. The testing images
have been used in many related papers (Du et al., 2016a,b,c) and
the platform is MATLAB R2018a.

A series of fusion results of SPECT and CT images,
based on different methods including IHS, NSCT+FL,
DWT, NSCT+PCNN, and our proposed method is shown
in Figures 5–7. The fusion results of a set of normal brain images
are shown in Figure 5, the fusion results of a set of glioma
brain images are presented in Figure 6, while a set of brain
images of patients diagnosed with Alzheimer’s disease are shown
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FIGURE 4 | The process of PCNN parameter optimization based on SFLA.

FIGURE 5 | A series of contrasting experiments for normal brain images on fusion images based on different fusion methods (set 1). (A,H,O) are source CT images;
(B,I,P) are source SPECT images; (C,J,Q) are fused images based on IHS; (D,K,R) are fused images based on NSCT+FL; (E,L,S) are fused images based on DWT;
(F,M,T) are fused images based on the combination of NSCT+PCNN; (G,N,U) are fused images based on the proposed method.
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FIGURE 6 | A series of contrasting experiments for glioma brain images on fusion images based on different fusion methods (set 2). (A,H,O) are source CT images;
(B,I,P) are source SPECT images; (C,J,Q) are fused images based on IHS; (D,K,R) are fused images based on NSCT+FL; (E,L,S) are fused images based on DWT;
(F,M,T) are fused images based on the combination of NSCT+PCNN; (G,N,U) are fused images based on the proposed method.

FIGURE 7 | A series of contrasting experiments for brain images of patients diagnosed with Alzheimer’s disease on fusion images based on different fusion methods
(set 3). (A,H,O) are source CT images; (B,I,P) are source SPECT images; (C,J,Q) are fused images based on IHS; (D,K,R) are fused images based on NSCT+FL;
(E,L,S) are fused images based on DWT; (F,M,T) are fused images based on the combination of NSCT+PCNN; (G,N,U) are fused images based on the proposed
method.

Frontiers in Neuroscience | www.frontiersin.org 7 March 2019 | Volume 13 | Article 210

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00210 March 19, 2019 Time: 9:50 # 8

Huang et al. Brain Medical Image Fusion

in Figure 7. In Figures 5–7, (a), (h) and (o) are source CT images;
(b), (i), (p) are source SPECT images; (c), (j) and (q) are fused
images based on IHS; (d), (k) and (r) are fused images based
on NSCT+FL; (e), (l) and (s) are fused images based on DWT;
(f), (m) and (t) are fused images based on the combination of
NSCT+PCNN; (g), (n) and (u) are fused images based on the
proposed method. It can be seen that the fusion results based
on our proposed method are more accurate and clearer than
those based on various other methods. Our proposed method
contributes to a higher brightness of fusion images and more
information on the edge details.

Objective Evaluations of
Experimental Results
A set of metrics is used to compare the performance of the fusion
methods including IHS, DWT, NSCT, PCNN, a combination of
NSCT and the PCNN, and our proposed method. The evaluation
metrics including standard deviation (SD), mean gradient (Ḡ),
spatial frequency (SF) and information entropy (E) are entailed
as follows (Huang et al., 2018):

(1) Standard deviation
Standard deviation is used to evaluate the contrast of the
fused image, which is defined as

σ =

√√√√ M∑
i=1

N∑
j=1

(Z(i, j)− Z̄)2/(M × N) (2)

where Z(i, j) represents the pixel value of the fused image
and Z̄ is the mean value of the pixel values of the image.
The SD reflects the discrete image gray scale relative to
the mean value of gray scale. And a higher value of SD
demonstrates the performance of a fused image.

(2) Mean gradient (Ḡ)
Ḡ corresponds to the ability of a fused image to
represent the contrast of tiny details sensitively. It can be
mathematically described as

Ḡ =
1

(M − 1)(N − 1)

M−1∑
i=1

N−1∑
j=1

×

√
((
∂Z(xi, yj)
∂xi

)2 + (
∂Z(xi, yj)
∂yi

)2)/2 (3)

The fused image is clearer when the value of mean gradient
is higher.

(3) Spatial frequency (SF)
Spatial frequency is the measure of the overall activity in
a fused image. For an image with a gray value Z(xi, yj) at
position (xi, yj), the spatial frequency is defined as

SF =
√
RF2 + CF2 (4)

Where row frequency

RF =

√√√√ 1
M × N

M∑
i=1

N∑
j=2

[Z(xi, yj)− Z(xi, yj−1)]2 (5)

Column frequency

CF =

√√√√ 1
M× N

M∑
i=2

N∑
j=1

[Z(xi, yj)− Z(xi−1, yj)]2 (6)

The higher the value of frequency, the better the
fused image quality.

(4) Information entropy (E)
Information entropy is provided by the below equation

E = −
L−1∑
i=0

pi log2 pi (7)

TABLE 1 | Performance evaluations on normal brain fused images based on
different methods.

Metric IHS NSCT+FL DWT NSCT+PCNN Proposed

Set 1 Standard deviation 51.6141 55.2178 42.5312 57.1188 57.2258

Mean gradient 8.8561 8.714 6.2027 8.8568 8.8071

Spatial frequency 33.5851 33.2324 22.0093 33.7566 33.6546

Information entropy 2.6859 2.7565 3.0483 2.7729 3.0621

Set 2 Standard deviation 43.278 49.5989 43.0915 52.9246 53.1691

Mean gradient 6.686 6.6633 4.5622 6.5672 6.7489

Spatial frequency 20.3855 19.9558 12.7416 19.8214 20.0956

Information entropy 3.6325 3.9243 4.2501 3.8386 3.9424

Set 3 Standard deviation 50.0926 55.7124 47.4476 57.1246 57.1268

Mean gradient 6.2153 6.1775 4.1822 6.086 6.1796

Spatial frequency 19.244 18.9682 12.0096 18.7269 18.7335

Information entropy 3.6226 3.7122 4.0074 3.7139 3.7399

TABLE 2 | Performance evaluations on glioma brain fused images based on
different methods.

Metric IHS NSCT+FL DWT NSCT+PCNN Proposed

Set 1 Standard deviation 41.7514 55.2055 39.8132 58.0374 58.3122

Mean gradient 5.2953 5.5442 3.8166 5.459 5.5678

Spatial frequency 16.2064 16.5277 10.1649 16.466 16.4776

Information entropy 3.9255 4.1433 4.6303 4.08 4.1788

Set 2 Standard deviation 44.154 55.5879 42.436 57.7284 57.775

Mean gradient 6.2881 6.6316 4.595 6.535 6.7276

Spatial frequency 17.6675 17.9369 11.359 17.9359 17.9095

Information entropy 4.3966 4.7513 5.1901 4.6312 4.837

Set 3 Standard deviation 48.6572 54.0708 41.78 56.2065 56.3546

Mean gradient 6.8855 6.8515 4.8166 6.774 6.7977

Spatial frequency 27.8964 27.8583 17.8725 27.7365 27.7654

Information entropy 2.4852 2.5749 2.8442 2.5239 2.658

TABLE 3 | Performance evaluations on fused brain images of patients diagnosed
with Alzheimer’s disease, based on different methods.

Metric IHS NSCT+FL DWT NSCT+PCNN Proposed

Set 1 Standard deviation 66.1357 65.3766 51.0336 69.5392 66.5782

Mean gradient 9.9938 10.0303 6.509 10.0089 10.2068

Spatial frequency 26.7087 26.7329 16.1614 26.6568 27.1771

Information entropy 4.7735 4.834 5.4105 4.8036 4.8966

Set 2 Standard deviation 59.1931 59.2093 52.0837 61.4981 60.6457

Mean gradient 6.7482 7.0266 4.5756 7 7.0461

Spatial frequency 19.0263 19.3264 11.8249 19.3257 19.512

Information entropy 3.9901 4.1834 4.5922 4.0985 4.2156

Set 3 Standard deviation 56.0974 58.787 47.6032 56.0943 57.7578

Mean gradient 7.9023 8.111 5.4579 7.9592 7.966

Spatial frequency 22.2846 22.4084 13.907 21.9421 22.0022

Information entropy 3.895 4.1058 5.1943 4.2228 4.2897
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where L is image gray scale and Pi is the proportion of
the pixel of the gray value i in whole pixels. A higher
value of entropy indicates more information contained in
the fused image.

Experiment results on fused images of SPECT images and CT
images are shown in Tables 1–3. The fusion results of a set of
normal brain images are shown in Table 1, the fusion results of
a set of glioma brain images are presented in Table 2, while a set
of brain images of patients diagnosed with Alzheimer’s disease
are shown Table 3. It can be seen that compared to other fusion
methods, our proposed method generally has higher values in
SD, Ḡ, SF and E. The experimental results demonstrate that
information of fusion images obtained by our proposed method
is more abundant, the inheritance of detail information performs
better, while the resolution is significantly improved.

CONCLUSION

In this paper, a new fusion method for SPECT brain and CT brain
images was put forward. First, NSCT was used to decompose the
IHS transform of a SPECT and CT image. The fusion rules, based
on the regional average energy, was then used for low-frequency
coefficients and the combination of SFLA and the PCNN was
used for high-frequency sub-bands. Finally, the fused image was
produced by reversed NSCT and reversed IHS transform. Both
subjective evaluations and objective evaluations were used to
analyze the quality of the fused images. The results demonstrated
that the method we put forward can retain the information
of source images better and reveal more details in integration.
It can be seen that the proposed method is valid and effective in

achieving satisfactory fusion results, leading to a wide range of
applications in practice.

The paper focuses on multi-mode medical image fusion.
However, there is a negative correlation between the real-
time processing speed and the effectiveness of medical image
fusion. Under the premise of ensuring the quality of fusion
results, how to improve the efficiency of the method should be
considered in the future.
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