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ABSTRACT Different from conventional wireless sensor networks (WSNs), ultra-reliable and low-latency
WSNs (uRLLWSNs), being an important application of 5G networks, must meet more stringent performance
requirements. In this paper, we propose a novel algorithm to improve uRLLWSNs’ performance by applying
machine learning techniques and genetic algorithms. Using the K -means clustering algorithm to construct
a 2-tier network topology, the proposed algorithm designs the fetal dataset, denoted by the population,
and develops a clustering method of energy conversion to prevent overloaded cluster heads. A multi-
objective optimization model is formulated to simultaneously satisfy multiple optimization objectives
including the longest network lifetime and the highest network connectivity and reliability. Under this model,
the principal component analysis algorithm is adopted to eliminate the various optimization objectives’
dependencies and rank their importance levels. Considering the NP-hardness of wireless network scheduling,
the genetic algorithm is used to identify the optimal chromosome for designing a near-optimal clustering
network topology. Moreover, we prove the convergence of the proposed algorithm both locally and globally.
Simulation results are presented to demonstrate the viability of the proposed algorithm compared to state-
of-the-art algorithms at an acceptable computational complexity.

INDEX TERMS Machine learning (ML), genetic algorithms (GAs), multi-objective optimization, near-
optimal clustering network topology, ultra-reliable and low-latency wireless sensor networks (uRLLWSNs).

I. INTRODUCTION
The number of networked entities is reaching unprecedented
levels, resulting in great challenges for ultra-reliable and low-
latency Internet of Things (uRLLIoT) applications. Integrat-
ing both enhanced mobile broadband (eMBB) and massive
machine-type communications (mMTC), ultra-reliable and
low-latency communications (uRLLC) has been identi�ed
as a key 5G feature by the International Telecommunication
Union (ITU) [1]�[4]. Being a crucial part of uRLLIoT, ultra-
reliable and low-latency wireless sensor networks (uRLL-
WSNs) deserve special investigation. The uRLLWSNs evo-
lution is required not only to allow a near-optimal operation
in the monitoring environment, but also to conduct further

extensions and enhancements, especially for hazardous sce-
narios such as volcano monitoring. In such scenarios, it is
dif�cult to replace or recharge the sensor battery while being
subject to ultra-reliability and low-latency requirements.
Hence, further research on uRLLWSNs is indispensable for
simultaneously satisfying multiple optimization objectives
such as the longest network lifetime, the highest network con-
nectivity and reliability, and so forth. One effective approach
to enhance uRLLWSNs is to design ef�cient routing schemes
based on the clustering network topology [5]�[10].

Reviewing the literature, the LEACH (low-energy adaptive
clustering hierarchy) protocol in [11] optimizes the energy
consumption by dynamically creating clusters. Although
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TABLE 1. The key strengths and weaknesses of the various algorithms.

LEACH selects sensors as cluster headers (CHs) in the
autonomous and decentralized mode, it designs unevenly
distributed CHs [12]. The HEED (hybrid energy-ef�cient
distributed clustering) algorithm in [13] adjusts the trans-
mit power levels of a node to improve energy ef�ciency
by considering its residual energy and the number of its
neighbors. Although HEED can improve the clustering speed,
it excludes some sensors from joining any clusters due to
the clustering competition [14]. The LELE (leader election
with load balancing energy) algorithm in [15] selects CHs
by considering the node residual energy and transmission
distance, but suffers from the issue of unevenly distributed
CHs [14]. DORAHP, the distributed joint optimization rout-
ing algorithm based on the analytic hierarchy process [16],
in [17] selects the next hop based on the key criteria of energy,
distance, and the number of neighbors. It is suitable for small-
scale WSNs and suffers from high network latency due to
multiple forwarding operations [18]. The EEUC (energy-
ef�cient unequal clustering) algorithm in [19] utilizes the
distance between sensors and the base station (BS) to select
CHs, but is similar to DORAHP in suffering from the network
latency problem. The GASONeC (genetic algorithm-based
self-organizing network clustering) method in [12] provides
a framework to optimize clusters. However, its computational
complexity is signi�cantly high due to more evolutionary
generations [14]. The HHCA (hybrid hierarchical clustering
approach) in [20] optimizes network topology to balance the
communication load and to increase the network lifetime by
designing a three-layer hierarchy, but it lacks analysis of some
important network metrics such as network coverage and reli-
ability. To improve the ultra-dense WSN energy ef�ciency,
our prior work in [18] utilizes both unsupervised learning
and genetic algorithms, named ULGAT, to identify a near-
optimal network topology. However, it is a single-objective
optimization and only suitable for the WSN scenario with
the deterministic deployment of sensed objects, resulting in
over-textitasizing the importance of energy ef�ciency. The
key strengths and weaknesses of the various algorithms are
presented in TABLE 1.

To study uRLLWSNs with many stringent requirements,
we propose a multi-objective optimization algorithm by
applying machine learning techniques and genetic algo-
rithms to identify a near-optimal clustering network topology.

The algorithm satis�es multiple optimization objectives
including the longest network lifetime and the highest net-
work connectivity and reliability. The proposed algorithm,
called MLPGA, has the following main advantages

1) Formulating the plane network as a two-dimensional
(2D) graph, the proposed algorithm utilizes the popu-
lar K -means clustering algorithm of machine learning
to design the 2-tier network topology for encoding
sensors as the chromosome. Various chromosomes for
diverse network topologies construct the population,
from which the optimal chromosome is identi�ed to
design a near-optimal network topology for routing
scheduling.

2) The proposed algorithm develops a clustering method
of energy conversion to transform the CH’s commu-
nication energy consumption into virtual CMs. Inte-
grating both virtual CMs and real CMs, a clustering
network topology without overloaded CHs is designed.
Based on the multiple investigated network objectives,
a fair optimization model is developed to identify
the optimal chromosome for designing a near-optimal
clustering network topology without overloaded CHs.
Using the principal component analysis (PCA) algo-
rithm of machine learning, the proposed algorithm
eliminates dependencies between the multiple opti-
mization objectives and ranks their importance levels
to construct the �tness function for evaluating different
chromosomes. The minimal schema is de�ned as the
convergence condition of identifying the optimal chro-
mosome in this optimization model. In addition, con-
sidering the NP-hardness of nonlinear multi-objective
optimization, a genetic algorithm is adopted to learn the
optimal chromosome by using selection, crossover, and
mutation procedures.

3) The convergence property of the proposed algorithm
is proved both locally and globally. Simulation results
demonstrate that the proposed algorithm has an accept-
able complexity while outperforming state-of-the-art
algorithms in terms of the network lifetime, the num-
ber of alive sensors, the energy consumption, and
the network connectivity and reliability. In addition,
we analyze the effect of PCA on improving the network
performance.
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The remainder of this paper is organized as follows.
Section II describes the network model and the proposed
algorithm. The convergence property of the proposed algo-
rithm is proved in Section III. Simulation results are presented
in Section IV and the paper is concluded in Sections V.

II. MODEL AND PROPOSED ALGORITHM
In this section, we encode sensors as the chromosome
of genetic algorithms and develop a clustering method of
energy conversion to prevent overloaded CHs. In addition,
a multi-objective optimization model satisfying the strin-
gent uRLLWSNs requirements is formulated to identify the
optimal chromosome for designing a near-optimal clustering
network topology by using the genetic algorithm. Based on
machine learning principles [21], the proposed MLPGA is
composed of the dataset, the cost function, and the opti-
mization model and procedures. In addition, MLPGA is a
centralized scheme using a static optimization mode that pre-
learns a near-optimal clustering network topology without
overloaded CHs.

A. NETWORK MODEL AND ENERGY MODEL
We formulate the plane network as a 2D graph G(V;E), where
V D fv0; v1; : : : ; vn; : : : ; vN g represents the set of sensors
and E represents the set of communication links between
sensors [22]. The routing scheme is de�ned as the process
of learning the optimum routing path from sensor vn; n D
1; : : : ;N , to the gateway or BS v0. We make the following
assumptions:

1) Communication links for neighbor sensors are set up
by the broadcast that includes the basic sensor infor-
mation such as the current energy and location of the
sensor [22];

2) Sensors can adjust the amount of transmission power
using power control according to the distance between
the transmitter and the receiver [23];

3) Sensors are equipped with the Global Position System
(GPS) to be location-aware, and are identical in terms
of hardware, software, and energy storage while the BS
can be manually maintained [17].

Sensors are denoted as s D [s1; : : : ; sn; : : : ; sN ]T , termed a
chromosome, where sn represents the CH when sn D 1 and sn
represents the CM when sn D 0. Massive chromosomes can
establish the population that is the fetal dataset for the multi-
objective optimization model. We represent a population of
the m chromosomes as follows

S D

26666664

sT
1
:::

sT
m
:::

sT
M

37777775 D
26666664

�
s1;1 : : : s1;n : : : s1;N

�
:::�

sm;1 : : : sm;n : : : sm;N
�

:::�
sM ;1 : : : sM ;n : : : sM ;N

�

37777775:
(1)

The CH directly communicates with the BS whereas each
CM joins one cluster. In general, the CM joins the nearest

cluster, being prone to construct an unreasonable clustering
network topology due to some overloaded CHs. CHs close
to the BS consume less communication energy while those
distant from the BS consume more communication energy
leading to their premature death. To design the network
topology without overloaded CHs, a clustering method of
energy conversion is designed by considering both the CH’s
transmission energy consumption and the distance. In this
algorithm, each CH’s transmission energy consumption is
transformed into some virtual CMs. For the WSN energy
model, in addition to the �xed energy consumption asso-
ciated with data acquisition and processing, two key sys-
tem parameters are the distance and the message size for
WSN routing scheduling. According to these two parameters,
Heinzelman et al. [24] proposed a simpli�ed energy loss
model, where the energy consumptions for transmitting and
receiving the l-bit message over a transmission distance d are,
respectively, given by

Etx .l; d/ D

(
lEelec C l�fsd2; d < d0

lEelec C l�mpd4; d � d0;
(2a)

Erx .l/ D lEelec; (2b)

where Eelec is the energy consumption due to data acqui-
sition and processing, while the ampli�er energy, given by
�fsd2 or �mpd4, depends on the distance d and the speci�ed

bit-error rate, and d0 D

q
�fs
�
�mp is the threshold distance.

Typical values for these parameters are given in TABLE 3.
For example, the number of virtual CMs for CH vc;p is given
by

np D Etx(l; d(vc:p; v0))
�

Erx(l); (3)

where d(vc;p; v0) is the distance from CH vc;p to the BS
v0. According to the sum of the real CMs and virtual CMs,
the average number of CMs for each cluster is computed.
Each CM joins a nearer cluster whose number of CMs must
be not greater than the average number of CMs. The cluster-
ing method of energy conversion is presented in Algorithm 1.

B. MULTI-OBJECTIVE OPTIMIZATION MODEL
In general, the network coverage, the network connectiv-
ity and reliability, and the network latency are major per-
formance metrics of uRLLWSNs [25]�[27]. Furthermore,
the energy ef�ciency of sensors is equally important because
it is dif�cult to recharge or replace the sensor battery [28].
For some monitoring applications such as seismic wave,
sensors conduct the detection task periodically, for example
every hour. The network lifetime is de�ned as the number
of transmission rounds from the network birth until sensor
deaths lead to network coverage failure [18]. A sensed object
is covered by the minimum number of sensors, needed for
network coverage. Hence, it is denoted as the critical sensed
object [29]. Assume that sensed object o� is the critical
sensed object and its collection of sensors is denoted by
V� D

�
v�;1; : : : ; v�;k ; : : : ; v�;K

	
. All sensors in collection V�
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Algorithm 1 The Clustering Method of Energy Conversion

Require: The collection of CHs V c D
�
vc;1; : : : ; vc;P

	
, the

collection of real CMs Vm D
�
vm;1; : : : ; vm;Q

	
.

Ensure: The clustering network topology of balanced load.

1: for p D 1 to P do
2: Compute the number of virtual CMs np.
3: end for
4: Compute the average number of CMs for each cluster:

n D
�
QC n1 C � � � C np C � � � nP

��
P.

5: for q D 1 to Q do
6: Order CHs according to the distances between CM

vm;q and CHs in the ascend mode and compute their
respect number of CMs: n01; : : : ; n

0
p; : : : n

0
P.

7: for p D 1 to P do
8: if n0p < n then
9: CM vm;q joins the pth cluster: Vp D Vp [

�
vm;q

	
.

10: end if
11: end for
12: end for
13: return The clustering network topology

V c D
SP

pD1 Vp;

Vp D
�
vp;1 : : : ; vp;k ; : : :

	
;

V s \ V t D ;; s; t 2 f1; : : : ; p; : : :Pg ; s 6D t:

die due to energy exhaustion, resulting in network coverage
failure [25]. Hence, the network lifetime can be expressed as

Tnet / max
v�;k2V�

"�;k ; (4)

where "�;k is the residual energy of sensor v�;k .
To capture the probability of not having a failure within

the time interval (0; tn), the sensor reliability is described by
the sensor tolerance that is modeled as a Poisson Distribution
[25], [30]. Hence, the network reliability is denoted as

R .V/ D
XN

nD1
R .vn/ D

XN

nD1
exp.�� tn/; (5)

where the failure rate of the sensor is a constant, denoted
by � [31]. In typical routing protocols, the fault tolerance
is viewed as an ability to maintain the network operation
without any interruption [25]. When sensor vn is encoded as
a CH vc;p or CM vm;q based on Algorithm 1, the lifetime of
sensor vn is, respectively, approximated as

tn D
"n

Ebro(l 0)C Etx
�
l; d(vc;p; v0)

�
C �Erx .l/

; (6)

tn D
"n

Ebro .l 0/C Etx
�
l; d(vm;q; vc;p)

� ; (7)

where d(vc;p; v0) is the distance from CH vc;p to the BS v0 and
parameter � is the number of received data messages, when
sensor vn is encoded as CH vc;p. d(vm;q; vc;p) is the distance
from sensor vm;q to its CH vc;p when sensor vn is encoded as
CM vm;q. In addition, Ebro(l 0) represents the broadcast energy
consumption and is given by

Ebro(l 0) D Etx(l 0;Rc;n)C 
Erx(l 0); (8)

where the sizes of the broadcast message and the data mes-
sage are l 0 and l, respectively. Parameter 
 is the number
of received broadcast messages and is determined by the
communication range Rc;n. Based on the de�nition of Rc;n
in [23], the communication range is given by

Rc;n D

�
1�

dmax � d .vn; v0/

� .dmax � dmin/

�
Rmax; (9)

where dmax and dmin are, respectively, the maximum and min-
imum distances between sensors and the BS while d(vn; v0)
represents the distance between sensor vn and the BS v0.
Parameter � is a prede�ned constant that can be adjusted
according to the environment. Rmax is the maximum distance
from the BS to the monitoring �eld.

In uRLLWSNs, each sensor is within the communication
range of one or more sensors to form a connected network.
Hence, maintaining the network connectivity is important for
guaranteeing that the messages are indeed propagated to the
BS. Given that the network connectivity is closely related
to the network coverage [32], the network connectivity is
expressed as

H .V/ D
XN

nD1
.h .vn//; (10a)

h .vn/ D 1� exp
�
�
�
Rc;n � Rs;n

��
; (10b)

where Rc;n�Rs;n > 0 must be satis�ed to achieve the network
connectivity, and Rs;n is the sensing range of sensor vn. We set
Rc;n D 2Rs;n to achieve satisfactory performance based on the
analysis in [32].

In the monitoring �eld, each sensed object is observed
by at least one sensor. Given that the sensed objects are
deployed differently in diverse WSNs’ applications, we adopt
a general deployment scenario where massive sensed objects,
denoted by O D fo1; : : : ; oj; : : : ; oJ g, are distributed ran-
domly. Adopting the simple binary sensor coverage model
in [33], the network coverage is de�ned as [25]

C .O/ D
1
J

XJ

jD1
c(oj); (11a)

c
�
oj
�
D

(
1; if 9vn 2 V; d

�
vn; oj

�
� Rs;n;

0; otherwise;
(11b)

where d(vn; oj) is the Euclidean distance between sensor vn
and sensed object oj.

For the transmission between sensor vn and the BS v0,
the network latency is de�ned as the time elapsed between
the departure of a sensed message from sensor vn to the BS
v0 [25] as follows

D .vn; v0/ D
�
Tq C Tp C Td

�
� N .vn; v0/

D c� N .vn; v0/

/ N .vn; v0/; (12)

where Tq, Tp, and Td are the queue delay, the propagation
delay, and the transmission delay, respectively. The sum of
the various delays can be approximated as a constant, denoted
by c D

�
Tq C Tp C Td

�
.
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For the WSN optimization problem, it is common to de�ne
a single network metric as the optimization objective and
treat the other network metrics as optimization constraints,
which arti�cially over-textitasizes the importance of one met-
ric [25]. Hence, a fair optimization model is constructed
to simultaneously satisfy multiple optimization objectives
including the longest network lifetime and the highest net-
work reliability and connectivity, which is formulated as

max fTnet ; R .V/ ; H .V/g I (13a)

s:t: "n � En; 8vn 2 VI (13b)

C .O/ D 1I (13c)

D .vi; v0/ 2 f1; 2g: (13d)

For this optimization model, Equation (13a) is an optimiza-
tion objective function, Equation (13b) is the least residual
energy limit for guaranteeing the sensor’s regular functions,
and Equation (13d) is the network latency condition. Most
importantly, Equation (13c) is the network coverage limit.

C. OPTIMIZATION PROCEDURE
References [29] and [34] prove that it is NP-hard to learn an
optimal routing scheduling in WSNs using classical gradient-
or Hessian-based algorithms, especially for the multi-
objective optimization model. However, the bio-mimetic
heuristics-based strategy, for example genetic algorithms, has
been widely used to solve NP-hard problems. The reason
is that it is capable of obtaining an optimal solution to the
optimization problem characterized by the non-differentiable
nonlinear objective function [12], [25], [29], [35].

In the genetic-based algorithm optimization procedures,
the �tness function, named the cost function in machine
learning, is an evaluation function for chromosomes. The
objective function in Equation (13a) is a preferred alternative
for designing the �tness function due to its ef�cient assess-
ment of chromosomes. However, the nonlinear dependencies
between the multiple optimization objectives may result in
ranking unreasonable importance levels of the optimization
objectives, which is insuf�cient for learning an optimal net-
work scheduling strategy. Fortunately, the PCA algorithm
based on the singular value decomposition (SVD) is capa-
ble of eliminating dependencies [21]. For chromosome sm,
denote the various optimization objectives’ values of Equa-
tion (13a) by xm D

�
xm;1 xm;2 xm;3

�T . Hence, an evaluation
dataset for population S is given by

X D

26666664

xT
1
:::

xT
m
:::

xT
M

37777775 D
26666664

�
x1;1 x1;2 x1;3

�
:::�

xm;1 xm;2 xm;3
�

:::�
xM ;1 xM ;2 xM ;3

�

37777775; (14)

where dataset X is an M � 3 matrix of real-valued data with
rank equal to 3 according to Equations (1) and (13a).

When using the PCA algorithm, it is necessary to ensure
that samples of dataset X have zero means [21]. The sample

means vector of dataset X is approximated by

x D
1
M

hXM

i
xi;1

XM

i
xi;2

XM

i
xi;3

iT
: (15)

Hence, an improved dataset for dataset X is given by

X D
�
.x1 � x/ � � � .xm � x/ � � � .xM � x/

�T
:

(16)

Dataset X is also an M � 3 matrix of real-valued data with
rank equal to 3 and is decomposed as X D U6VT . Accord-
ing to the SVD de�nition in [36], matrix U is (M � M )
orthonormal matrix including the left-singular vectors, matrix
6 is (M � 3) diagonal matrix, and matrix V is (3 � 3)
orthonormal matrix including the right-singular vectors. The
mth sample of dataset X is projected to sample zm via the
linear transformation V as follows

zm D (xm � xm)T V ; (17)

resulting in a projection dataset denoted by Z D XV . Hence,
the covariance variance of dataset Z is given by

Cov [Z] D
1

M � 1
ZT Z

D
1

M � 1

�
XV

�T �
XV

�
D

1
M � 1

VT X
T

XV

D
1

M � 1
VT

�
U6VT

�T �
U6VT

�
V

D
1

M � 1
VT V6UT U6VT V

D
1

M � 1
62; (18)

where VT V D I and UT U D I . Using the linear trans-
formation V , dataset X is transformed into dataset Z with
the diagonal covariance matrix denoted by 62. According to
the PCA principle in [37], the diagonal elements of matrix
6 are eigenvalues of matrix Z and their respective ratios ofP3

jD16j;j are used to rank the importance levels of multiple
variances in sample zm. Hence, the �tness function can be
formulated as

fm D zT
m

 
diag(6)P3

iD16i;i

!
D

1P3
iD16i;i

 
3X

iD1

�
zm;i6i;i

�!
: (19)

Therefore, a �tness vector is formed as follows

f D
�

f1 � � � fm � � � fM
�T
: (20)

Using the search mechanism of genetic algorithms,
MLPGA learns the optimal chromosome to design a near-
optimal clustering network topology. First, the selection pro-
cess is accomplished by using the roulette wheel selection,
in which each chromosome is given a probability of being
copied into the next generation. For example, chromosome
sm is selected with the following likelihood

’ .sm/ D
fmPM
iD1 fi

: (21)
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Algorithm 2 Roulette Wheel Selection
Require: f , S;
Ensure: The selection population Sc

1: Generate r D
�

r0 r1 � � � rm � � � rM
�
,

where r0 D 0; rm 2 U (0; 1), q0=0;
2: for m D 1 to M do
3: Compute probability mass function:

qm D
Pm

kD1 ’(sk );
4: for j D 1 to M do
5: if qm�1 < rj � qm then
6: Add the chromosome: Sc [ fsmg ) Sc;
7: end if
8: end for
9: end for

10: return Sc

The roulette wheel selection process [38] is presented in
Algorithm 2, while TABLE 2 presents an example about
generating a population of the 10 chromosomes as follows

Sc D R(S j f ) D fs0iji D 1; 2; : : : ; 10g: (22)

In the population Sc, each chromosome is randomly
selected once for the crossover process. Two selected chro-
mosomes, for example s0i and s0j, generate two offsprings by
exchanging their corresponding genes based on the crossover
rate � [39], which is illustrated in Fig. 1 and denoted as

C(s0i; s
0
j j �)) fs00i ; s00j g: (23)

Different from the crossover process, the mutation pro-
cess involves altering the values at several randomly selected
genes with a lower mutation rate � [39]. The crossover chro-
mosomes, denoted by s00i and s00j , evolve into the mutation
chromosomes as follows

M(s00i j �)) s000i ; M(s00j j �)) s000j : (24)

To identify the optimal chromosome, the diversity of the
nth gene for population S is de�ned as

dn .S/ D
XM

iD1
si;n: (25)

FIGURE 1. Illustration for the chromosome crossover.

If satisfying dn .S/ D M , the nth gene is certain and is added
into a minimal schema 0 .S/, which is expressed as

0 .S/ [ fng ) 0 .S/; (26a)

0 .S/ D fn j dn .S/ D Mg: (26b)

The minimal schema is developed according to the principles
of unsupervised learning of machine learning that classi-
�es the samples set into different groups by investigating
their similarity [22]. To identify the optimal chromosome,
the successive processes (given by selection, crossover, and
mutation) continue and repeat until the convergence condition
is satis�ed, denoted by k0 .S/k D C , which is described in
Algorithm 3.

III. PROOF OF MLPGA CONVERGENCE
In this section, MLPGA is proved to converge to the optimal
chromosome under the above-described optimization model.
Our proof is divided into the following two steps:

1) Based on the �tness values of chromosomes, the selec-
tion process converges to the locally optimal chromo-
some with the largest �tness value;

2) The crossover and mutation processes make it possible
to access arbitrary chromosomes, which helps to con-
verge to the globally optimal chromosome.

A. LOCAL CONVERGENCE FOR SELECTION
Theorem 1 (Convergence to the Locally Optimal Chromo-
some via the Selection Process): Denote the initial population
by S0 D [ s1 � � � sm � � � sM ]T and its probability distribution
by P0 D [ ’ .s1/ � � � ’(sm) � � � ’ .sM / ]T . After performing
k selections on S0, the selection population converges to the
population denoted by S0 D fsmjsm D arg max

sk2S0
fkg, in which

TABLE 2. An example for selection population of 10 chromosomes.
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Algorithm 3 Machine-Learning-Based Parallel Genetic Algorithms for Multi-Objective Optimization (MLPGA)

Require: The model parameters, G(V;E), N , C , Eelec, �fs, �mp, l, l 0, �, �, � D 0,eS D ;, 0(eS) D ;;
Ensure: The minimal schema 0(S);

1: Generate a population of M chromosomes: S D
�

s1 � � � sm � � � sM
�T ;

2: for m D 1 to M do
3: 8sm 2 S, construct the sample (xm � x), establish dataset X ;
4: Translate dataset X into dataset Z using PCA, and compute the �tness vector f ;
5: end for
6: while � < C do
7: Generate a selection population Sc of M chromosomes using Algorithm 2:

Sc D R(Sjf ) D fs0iji D 1; 2; : : : ;Mg;
8: for m D 1 to (M

2 ) do
9: Randomly select chromosomes s0i and s0j from Sc once to perform crossover with the crossover rate �:

C(s0i; s
0
j j �)) s00i ; s00j ;

10: Perform mutation on s00i and s00j with the mutation rate �:
M(s00i j �)) s000i ; M(s00j j �)) s000j ;

11: Add s000i and s000j to the new populationeS: eS [ fs000i ; s000j g )eS;
12: end for
13: for n D 1 to N do
14: Evaluate the diversity of the nth gene ofeS according to (25) and calculate dn(eS);
15: if dn(eS) DD M then
16: 0(eS) [ fng ) 0(eS) and 0

�eS� D �n j dn(eS) D M
	
;

17: end if
18: end for
19: Evaluate the size of the minimal schema 0(eS): � D k0(eS)k;
20: Prepare for the next iteration by assigning the population, S DeS;
21: end while
22: return 0(S);

the �tness values of chromosomes are much larger than those
of chromosomes outside selection population S0. The proba-
bility of local convergence is given by

e’(sm) D lim
k!1

PfR.k/ �S0jf 0
�
D smjP0g

D

8>><>>:
’(sm)P

si2S0

’ .si/
; sm 2 S0

0; sm =2 S0;

(27)

and 91 > 0 that is subject toX
sm2S0

���PfR(k)(S0jf 0) D smjP0g �e’(sm)
��� � (��k

�1);

(28)

where � D minfmax f 0
f .sm/
j’ .sm/ > 0; sm =2 S0g.

Proof: De�ne the basic functions �ij D
�

1; i D j
0; i 6D j

and

Fij D �ijfifj, then we obtain a matrix F0 D
�
Fij
�
.M�M/.

When performing the �rst selection procedure based on the
�tness values, the transform is given by

bF .P0/ D .F0P0/
.�

1T .F0P0/
�
; (29)

where 8sm 2 S0 satis�es the following sub-transform

bF .P0/m D .fm � ’ .sm//
.X

sk2S0

.fk’ .sk//: (30)

Assume that the selection process has been performed for k
times, then the transform can be described as follows

bF.k/ .P0/m D PfR.k/ �S0jf 0
�
D s.k/m jP0g

D PfR
�
Sn�1jf n�1

�
D s.k/m j

bF.n�1/
.P0/g

D bF(bF(n�1)
(P0))m: (31)

Therefore, the transform for (k C 1) selections is given by

bF.kC1/
.P0/m

D bF(bF.k/ .P0/)m

D

0B@fm
f k
m � ’(sm)P

si2S0

(f k
i � ’(si))

1CA,
0B@X

sj2S0

(f k
j

f k
j � ’(sj)P

si2S0

(f k
i � ’(si))

)

1CA
D

�
f kC1
m � ’(sm)

�,0@X
sj2S0

�
f kC1
m � ’(sj)

�1A: (32)

Hence, by using mathematical induction, the transform for
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the selection procedure satis�es the following relation

bF.k/ .P0/m D
�
f k
m � ’(sm)

�.X
si2S0

�
f k
i � ’ .si/

�
: (33)

We obtain the transition probability for k selections as follows

lim
k!1

PfR(k) �S0jf 0
�
D smjP0g

D lim
k!1

0@f k
m � ’ .sm/

.
(
X
si2S0

(f k
i � ’(si)))

1A
D lim

k!1

0@’(sm)

,X
si2S0

 
f k
i

f k
m
� ’(si)

!1A
D ’ .sm/

,0@X
si2S0

 
lim

k!1

 
f k
i

f k
m
� ’(si)

!!1A: (34)

When satisfying sm 2 S0, lim
k!1

( f .si/
f .sm/

)k D 0 if and only if

si =2 S0. When satisfying sm =2 S0, lim
k!1

( f .si/
f .sm/

)k D 1 if and

only if f .si/ > f .sm/. Hence, Equation (27) is proved. Next,
by using mathematical deduction, Equation (28) is proved as
followsX

sm2S0

���PfR.k/ �S0jf 0
�
D smjP0g �e’ .sm/

���
D

X
sm2S0

�������
�
max f 0

�k
� ’ .sm/P

si2S0

(f k
i � ’ .si/)

�
’ .sm/P

si2S0

’ .si/

�������
D

X
sm2S0

��������
’ .sm/P

si2S0

�
( fi

max f 0
)k � ’ .si/

� � ’ .sm/P
si2S0

’ .si/

��������
�

X
sm2S0

0BBB@
���������

P
si =2S0

��
fi

max f 0

�k
� ’ .si/

�
P

si2S0

’ .si/C
P

si =2S0

��
fi

max f 0

�k
� ’ .si/

�
���������

’ .sm/P
si2S0

’ .si/

1CCCA
�

X
sm2S0

0B@ ’ .sm/P
si2S0

’ .si/

�������
��k
�
P

si =2S0

’ .si/P
si2S0

’ .si/

�������
1CA

� ��k
�

0B@
P

si =2S0

’ .si/P
si2S0

’ .si/

1CA: (35)

Therefore, the convergence to the locally optimal chromo-
some based on the selection procedure is proved.

B. GLOBAL CONVERGENCE FOR CROSSOVER
AND MUTATION
Theorem 2 (Convergence to the Globally Optimal Chro-
mosome via Crossover and Mutation): Assume that the
whole chromosome space and its probability distribu-
tion are, respectively, denoted by S D f0; 1gN D�
smj1 � m � 2N ;m 2 NC

	
and P D f’ .sm/ jsm 2 Sg. After

k iterations of crossover and mutation, convergence to the
global optimal chromosome s� is achieved with the following
probability

PfT(k)(S0j� ) D s�jPg

D

X
st2S

[’(st )
NY

nD1

(0:5C (�s�;nst;n � 0:5)(1� 2� )k )];

(36a)

PfT.k/(S0j� ) D s�jPg > 0; (36b)

where the operator T(S0j� ) D (C(S0j�)�M(S0j�)) is the com-
posed operation of crossover and mutation and its transition
probability is denoted by � D ��.

Proof: The mathematical induction method is adopted to
prove the global convergence for crossover and mutation.

The nth gene si;n of si is obtained using one iteration of
crossover and mutation with the probability

PfT(S0j� ) D si;ng D

(
1� �; st;n D si;n

�; st;n 6D si;n

D � C �st;nsi;n .1� 2� /; (37)

where st 2 S0. Then, chromosome si is obtained with the
following probability

PfT(S0j� ) D sijPg

D

X
st2S0

(’(st )
NY

nD1

PfT(S0j� ) D si;ng)

D

X
st2S0

(’ .st/

NY
nD1

(� C �st;nsi;n .1� 2� /))

D

X
st2S0

(’ .st/

NY
nD1

(0:5C (�st;nsi;n � 0:5) .1� 2� /)): (38)

Hence, Equation (36a) is satis�ed when k D 1. Assume that
Equation (36a) is true for k(k > 1) iterations of crossover and
mutation and its corresponding probability is expressed as

Pk D PfT.k/(S0j� ) D sijPg: (39)

Then, for (k C 1) iterations, we obtain

PfT(kC1)(S0j� ) D s�jPg

D

X
st2Sk

h
PfT(Sk

j� ) D s�g � Pk

i

D

X
st2Sk

(’(st )
NY

nD1

(� C �st;ns�;n (1� 2� )) � Pk ); (40)
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X
st;n

�
(� C �st;ns�;n (1� 2� )) �(0:5C (�st;nsi;n � 0:5)(1� 2� )k )

i
D �si;ns�;n

h
(1� � )(0:5C 0:5(1� 2� )k ) C� (0:5� 0:5(1� 2� )k )

i
C (1� �si;ns�;n )

h
(1� � )(0:5� 0:5(1� 2� )k ) C� (0:5C 0:5(1� 2� )k )

i
D �si;ns�;n � (0:5C 0:5(1� 2� )kC1)C (1� �si;ns�;n ) � (0:5� 0:5(1� 2� )kC1)

D 0:5C (�si;ns�;n � 0:5)(1� 2� )kC1 > 0: (41)

where Sk is the selection population that is generated
after k iterations of crossover and mutation. We analyze
st;n; si;n; s�;n under the two different conditions below

1) When satisfying si;n D s�;n, there are two conditions,
denoted by si;n D st;n and si;n 6D st;n;

2) When satisfying si;n 6D s�;n, there are two conditions,
denoted by s�;n D st;n and s�;n 6D st;n; si;n D st;n.

Then, Equation (41) is obtained.
Therefore, according to the above reasoning, Equa-

tion (36a) and Equation (36b) are proved, which, in turn,
proves the convergence of the globally optimal chromosome
via the crossover and mutation processes.

IV. PERFORMANCE EVALUATION
In this section, simulations are performed to demonstrate
the viability of the proposed algorithm compared to state-
of-the-art algorithms. We analyze many important network
metrics including the network lifetime, the number of alive
sensors, the energy consumption, and the network connectiv-
ity and reliability. Considering the stringent resource-limited
uRLLWSNs environment, the computational complexity is
also analyzed.

A. EXPERIMENT SETTING
In our experiments, the monitoring �eld is set as a square
and the BS is located outside the monitoring �eld. Fig. 2
shows an application instance with a random deployment
of 100 sensors and 64 sensed objects, where the symbols
‘‘�’’ and ‘‘?’’ represent the sensor and the sensed object,
respectively. The network parameters are listed in TABLE 3
[13], [25], [40]. In addition, to achieve a high con�dence
level, we perform 100 trials per simulation instance and plot
the �gures by averaging simulation results.

TABLE 3. The network parameters.

FIGURE 2. A deployment instance with 100 sensors and 64 sensed
objects.

MLPGA is similar to HEED and HHCA in using the clus-
tering strategy, and is an improvement of ULGAT in using the
machine learning and genetic algorithms techniques. Hence,
the network performance of MLPGA is compared to those
of HEED, HHCA, and ULGAT. To verify the effect of the
PCA algorithm, MLPAG without PCA (denoted henceforth
by MLGANP) is also compared to MLPGA. The �tness
function of MLGANP is de�ned as follows

fm D
1
3
jxm � xj D

1
3

3X
iD1

��xm;i � x i
��: (42)

B. NUMBER OF ALIVE SENSORS AND NETWORK LIFETIME
In this subsection, the number of alive sensors and the net-
work lifetime are evaluated when uRLLWSNs cannot ful�ll
its mission due to network coverage failure. These two per-
formance metrics are affected by multiple critical parameters
including the number of sensors N , the communication range
parameter �, and the number of sensed objects J . Parameter
N corresponds to the network scale, while parameters �
and J have an effect on the amount of sensed messages
and energy consumption. More explicitly, Fig. 3 and Fig. 6
show the number of alive sensors and the network lifetime
versus the number of sensors N , respectively. It can be seen
that MLPGA can ful�ll the network mission for a smaller
number of alive sensors than those of the other algorithms
and outperforms those algorithms in prolonging the network
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FIGURE 3. The number of alive sensors versus the number of sensors
deployed.

FIGURE 4. The number of alive sensors versus communication range
parameter.

lifetime. Fig. 4 and Fig. 7 present the number of alive sensors
and the network lifetime versus the communication range
parameter �, respectively. MLPGA also demonstrates better
performance in terms of the number of alive sensors and
the network lifetime. Fig. 5 and Fig. 8 show the number of
alive sensors and the network lifetime versus the number
of sensed objects J , respectively. It can be seen that the
number of sensed objectives J has a slight impact on both the
number of alive sensors and the network lifetime. The reason
is that the network coverage is affected by the deployed
sensors and their sensing range, not the number of sensed
objects. Considering 100 trials’ simulations, it is necessary
to analyze the standard deviation of one or more network
metrics. The standard deviation of the network lifetime is
shown in TABLE 4. The standard deviations of MLGANP
and MLPGA are smaller than those of the other algorithms,
implying that MLPGA and MLGANP are more suitable for
the arbitrary deployment scenario.

Different from HEED, HHCA, and ULGAT, the proposed
algorithms, called MLPGA and MLGANP, design a near-
optimal clustering network topology, in which a clustering
method of energy conversion is developed to prevent over-
loaded CHs. The transmitting energy consumption of each
CH is transformed into virtual CMs to participate in the
network clustering process with real CMs, which balances
the sensors’ communication load and avoids premature death
of sensors due to energy exhaustion. In addition, the PCA
algorithm enhances assessment of the network topology by
eliminating dependencies between optimization objectives

FIGURE 5. The number of alive sensors versus the number of objects
deployed.

FIGURE 6. The network lifetime versus the number of sensors deployed.

FIGURE 7. The network lifetime versus the communication range
parameter.

FIGURE 8. The network lifetime versus the number of sensed objects
deployed.

and ranking their importance levels. Hence, the MLPGA
algorithm not only ful�lls the network mission with a smaller
number of alive sensors, but also prolongs the network
lifetime.
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TABLE 4. Standard deviation of the network lifetime for 100 trials’ simulations.

FIGURE 9. The network lifetime versus the residual energy of sensors.

FIGURE 10. The network lifetime versus the network connectivity.

C. ENERGY CONSUMPTION, NETWORK CONNECTIVITY
AND RELIABILITY
In addition to the network lifetime, it is important to analyze
the other network metrics such as the energy consumption,
the network connectivity and reliability. Assuming the fol-
lowing typical values for the key parameters N D 100,

FIGURE 11. The network lifetime versus the network reliability.

� D 2, and J D 64, the network performance versus the
transmission round are, respectively, shown in Fig. 9, Fig. 10,
and Fig. 11, where ‘‘�’’ is the in�ection point (IP) whose
abscissa represents the network termination. The horizontal
line after IP indicates that the network performance remains
unchanged, because the network does not function properly.
Fig. 9 implies that MLPGA achieves better energy ef�ciency
due to its higher average residual energy. From Fig. 10 and
Fig. 11, it can be seen that MLPGA outperforms the other
algorithms on the network connectivity and reliability.

The MLPGA algorithm formulates the uRLLWSNs prob-
lem into a fair multi-objective optimization model by de�ning
the network lifetime and the network connectivity and relia-
bility as optimization objectives, where the energy ef�ciency
is the foundation of these optimization objectives. In this
model, the PCA algorithm and the genetic algorithm are
used to identify a near-optimal clustering network topology.
Hence, MLPGA improves simultaneously the network life-
time and the network connectivity and reliability compared
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FIGURE 12. Iterations for various numbers of sensors.

FIGURE 13. Iterations for various numbers of objects.

to HEED, HHCA, ULGAT, and MLGANP.

D. DISCUSSION ON COMPUTATIONAL COMPLEXITY
The bio-mimetic algorithms including ULGAT, MLGANP,
and MLPGA involve optimization iterations due to using
genetic algorithms. For various numbers of sensors and
sensed objects with random deployments, optimization iter-
ations per transmission round are shown in Fig. 12 and
Fig. 13. It can be seen that MLPGA always performs a
smaller number of optimization iterations than ULGAT and
MLGANP and the PCA algorithm contributes to reducing the
number of optimization iterations. It is necessary to further
quantify the complexity with MATLAB
2017b on a Core
I7-CPU@2.80GHz computer. Fig. 14 and Fig. 15 present the
average execution time per transmission round for various
numbers of sensors and sensed objects, respectively. These
�gures demonstrate that the execution time almost linearly
increases with an increasing number of sensors except for
HHCA and HEED. However, the number of sensed objects
has a slight effect on the execution time, which implies that
the number of sensed objects is not the key factor in the execu-
tion time. The reason is that the sensed objects’ monitoring is
related to the network coverage while not affecting the pro-
cess of identifying a near-optimal clustering network topol-
ogy. HEED and HHCA are, respectively, the distributed and
semi-distributed algorithms, whose clustering operations for

FIGURE 14. The execution time for various numbers of sensors.

FIGURE 15. The execution time for various numbers of O.

all sensors can be performed in parallel. Hence, the execution
times of HEED and HHCA are lower compared to those of
MLPGA, MLGANP, and ULGAT. Different from HEED and
HHCA, the other algorithms need more execution time due to
both their centralized scheme and using the genetic algorithm.
The execution time of MLPGA is slightly larger than that of
ULGAT due to processing of the multi-objective optimization
model, while more optimization iterations for MLGANP cost
more execution time than MLPGA. However, the computa-
tional complexity of MLPGA is still acceptable for monitor-
ing applications such as volcano monitoring, because it is less
than 1s for small to medium scale uRLLWSNs.

V. CONCLUSION
In this paper, we utilize machine learning techniques and
genetic algorithms to develop the MLPGA algorithm, which
identi�es the optimal chromosome to design a near-optimum
clustering network topology. This network topology provides
an ef�cient communication architecture for ultra-reliable
and low-latency wireless sensor networks, to simultaneously
satisfy the multiple network objectives including a longer
network lifetime and a higher network connectivity and reli-
ability. More explicitly, the proposed algorithm utilizes the
popular K -means clustering algorithm of machine learn-
ing to design a 2-tier network topology that is modeled
into a chromosome, and develops a clustering method of
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energy conversion to prevent overloaded CHs. To identify
the optimal chromosome, the proposed algorithm constructs
a multi-objective optimization model according to the crit-
ical network metrics and performs this optimization using
the genetic algorithm. In this model, the minimal schema
of the population is de�ned as the convergence condition,
and the principal component analysis algorithm is adopted
to transform the multi-objective function of the optimization
model into the �tness function by eliminating dependencies
between the multiple optimization objectives and ranking
importance levels of various optimization objectives. The
proposed algorithm is proved to converge to the optimal
chromosome both locally and globally. Simulation results
demonstrate that the principal component analysis algo-
rithm improves the network performance and the proposed
algorithm is superior to state-of-the-art algorithms including
HEED, HHCA, ULGAT, and MLGANP at a comparable
complexity.

Interesting future research topics include improving the
proposed MLPGA by investigating other performance met-
rics such as bit error rate and investigating multi-hop routing
scheduling under uRLLWSN’s stringent requirements.
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