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Learning Discriminative Hierarchical Features for
Object Recognition

Zhen Zuo, and Gang Wang

Abstract—Hierarchical feature learning methods have demon-
strated substantial improvements over the conventional hand-
designed local features. However, recent approaches mainly per-
form feature learning in an unsupervised manner, where subtle
differences between different classes can hardly be captured.
In this letter, we propose a discriminative hierarchical feature
learning method, which learns a non-linear transformation to
encode discriminative information in the feature space. We apply
our features on two general image classification benchmarks:
Caltech 101, STL-10, and a new fine-grained image classification
dataset: NTU Tree-51. The results show that by employing
discriminative constraint, our method consistently improves the
performance with 3% to 7% in classification accuracy.

Index Terms—Discriminant analysis, hierarchical feature
learning, patch-to-class distance, object recognition.

I. INTRODUCTION

FEATURE representation is a critical component of a mod-
ern visual recognition system. Numerous works have been

done to develop advanced hand-crafted feature descriptors,
famous works include SIFT [1], HOG [2], etc. Although such
descriptors can lead to good performance, they might not
be able to capture the essential information hidden in the
data. In contrast, feature learning has shown great advantages
in learning data-adaptive image representation. Especially re-
cently, deep learning techniques, such as Auto-Encoders [3],
and Hierarchical Spatial-Temporal Feature [4], have achieved
great success on many challenging research problems.

However, most existing feature learning methods process
in an unsupervised manner, which might miss discriminative
information, and limit the representation capability. In this let-
ter, we propose a discriminative information encoding method
to improve the discriminative power of the learned features.
Specifically, we assume the local image patches contain the
class specific information. Based on this assumption, we assign
all the local image patches the same class labels as the
images they extracted from. To get more discriminative local
image representation, we aim to learn such a feature space,
in which, the feature patches (transformed image patches)
from the same class are close together, while the feature
patches from different classes are separable from each other.
However, local patches from the same class can be highly
diverse. Simply forcing all the feature patches from the same
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Fig. 1. Schematic diagram of our discriminative information encoding
scheme. The square in green denotes the training patch; the circles in red
denote patches from the same category (positive); the triangles in blue denote
patches from other categories (negative). This framework aims to reduce
P2CD(q, NNp), while elongate P2CD(q, NNn).

class to be close will bring too much noise. Instead, a feature
patch only needs to be close to a small subset of the patches
from the same class. Thus, we introduce the ‘Patch-to-Class’
distance (P2CD) (inspired by the ‘Image-to-Class’ distance
proposed in Naive Bayes Nearest Neighbour [5]) to directly
measure the distance between each feature patch and its
nearest neighbour patches from difference classes. As shown
in Figure 1, this framework forces the training feature patches
to be close to their corresponding classes (positive), while
to be far away from other classes (negative), which means
shortening P2CD(q, NNp) while elongating P2CD(q, NNn).

In this letter, we build a discriminative hierarchical feature
learning framework based on the hierarchical Reconstruction
Independent Component Analysis (RICA) structure [4], [6],
[7] (our method can also be applied in other feature learn-
ing frameworks involving learning transformation matrix). As
shown in the orange box on the left of Figure 2, the first
layer features are learned through small input image patches
(yellow boxes), then they are convolved with a larger region
(red box) to generate the inputs to the second layer. The final
features are the combination of outputs of both layers. Since
we focus on learning discriminative multi-layer local features,
we simply follow the Bag-of-Words (BoW) to get global image
representation, and use linear SVM to do classification. Our
overall object recognition pipeline is shown in Figure 2.

II. DISCRIMINATIVE HIERARCHICAL FEATURE LEARNING

We aim to learn a transformation matrix to transform the
local image patches from the original image space to the
discriminative feature space. Recently, RICA has shown its
power in several challenging image and video recognition
tasks. Thus, we build our discriminative hierarchical feature
learning scheme based on the RICA structure, but our method
can also be applied in other feature learning frameworks, such
as Convolutional Neural Networks [8].
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Fig. 2. Illustration of our object recognition pipeline. (Best viewed in color.)

A. Basic Single Layer RICA Learning Module

The basic single layer RICA learning module [7] consists of
a linear auto-encoder term and a non-linear term, as shown in
Figure 2. We set the non-linear function in an ‘energy pooling’
manner. Given x ∈ R

d as a raw-pixel value training patch with
dimensionality d, the RICA 1) uses the matrix W ∈ R

d×d to
linearly transform the input data into Wx; 2) applies energy
pooling [9] to represent the subspace structure of Wx, and get
the non-linear transformed feature vector q ∈ R

d/2:

q =

√
H(Wx)

2 (1)

where the square of Wx and the square root of H(Wx)
2

are processed element-wisely. H ∈ R
d/2×d is the subspace

pooling matrix used to reduce feature dimension, each row of
H selects and sums two adjacent feature dimensions without
overlapping. While W can be learned by minimizing the
following equation:∑N

j=1

(∥∥xj −WTWxj
∥∥2
2
+ γ

∑d/2

r=1
qjr

)
(2)

in which, xj and qj denote the jth training patch in the
image space and feature space respectively, and N denotes
the number of training patches. The first ‘auto-encoder’ term
is used to prevent the bases of W from degenerating. The
second ‘sparse’ term is used to ensure the sparsity of the
learned feature descriptors.

B. Discriminative Hierarchical Feature Learning

1) Single Layer Discriminative Feature Learning: The
basic learning method described in SectionII-A can hardly
capture discriminative information hidden in different classes.
Ideally, for classification, we expect the learned features to
be close to the features from the same class, while to be far
away from the features from other classes. Thus, we propose
the following framework to encode discriminative information.

In our discriminative learning scheme, we aim to maximize
the following function for a training feature patch q:

P (c|q)
P (c̄|q) =

P (q|c) · P (c)

P (q|c̄) · P (c̄)
(3)

where c̄ denotes all the classes except class c, and q is from c.
Assuming the class priors are equal, then the posteriors

are equal to the likelihoods, which can be approximated by

applying the Parzen window estimator as described in [5]:

P̂ (q|c) = exp

(
− 1

2σ2
‖q −NNc (q)‖2

)
(4)

in which, NN c (q) is the nearest neighbour belonging to class
c of the training patch q in the feature space. If we further take
the log probability and ignore the constant, we can rewrite
the right-hand side of Equation 4 as −‖q−NNc (q)‖2, which
can be considered as the negative ‘Patch-to-Class’ distance
(P2CD). Then Equation 3 can be written in a simplified form:

log
P (q|c)
P (q|c̄) = −‖q−NNc (q)‖2 + ‖q−NNc̄ (q)‖2 (5)

where NN c̄ (q) is the nearest neighbour of q in the feature
space, and it is from classes other than c. Based on our
discriminative learning method, we get the representation of
the single layer learning module:

min
W

Eu + ηEs

where, Eu=
∑N

j=1

(∥∥xj−WTWxj
∥∥2
2
+ γ

∑d/2

r=1
qjr

)
Es=

∑N

j=1

(∥∥qj −NNc

(
qj
)∥∥2

2
− ∥∥qj −NNc̄

(
qj
)∥∥2

2

) (6)

where Eu represents the unsupervised term used to enforce
low reconstruction error and sparsity, Es represents the su-
pervised discriminative constraint. γ and η are the tradeoff
parameters used to control the level of sparsity and discrimi-
native power.

We adopt the gradient descent to optimize the object func-
tion 6, and the gradients can be computed as follows:

∂Eu

∂Wmn
=

N∑
j=1

∂
∥∥xj−WTWxj

∥∥2
2

∂Wmn
+ γ

N∑
j=1

d/2∑
r=1

∂qjr
∂Wmn

=
∑N

j=1

∂Eae

∂Wmn
+ γ

∑N

j=1

∑d/2

r=1

∂Esparse

∂Wmn

∂Es

∂Wmn
=

N∑
j=1

∂
∥∥qj−NN c

(
qj
)∥∥2

2

∂Wmn
−

N∑
j=1

∂
∥∥qj−NN c̄

(
qj
)∥∥2

2

∂Wmn

=
∑N

j=1

∂Epos

∂Wmn
−

∑N

j=1

∂Eneg

∂Wmn

where
∂Esparse

∂Wmn
=Hrm

(
Wmxj

)
xj
n/

√
Hr(Wxj)

2

∂Eae

∂Wmn
=−4Wmxjxjn+Tr

[[
2WTW

(
xj
(
xj
)T)]T(

WTJmn+JnmW
)]

∂Epos

∂Wmn
=2

(
qj −NN c

(
qj
))T (

∂qj

∂Wmn
− ∂NN c

(
qj
)

∂Wmn

)

∂qj

∂Wmn
=Hm

(
Wmxj

)
xj
n/

√
H(Wxj)

2
, (Jmn)kl=δmkδnl

(7)

where ∂Eneg/∂Wmn has the same form as ∂Epos/∂Wmn,
∂NN c

(
qj
)
/∂Wmn and ∂NN c̄

(
qj
)
/∂Wmn have the same

form as ∂qj/∂Wmn . The transformation matrix W can be
updated with step size α until convergence: W = W − α ×
(∂Eu/∂W + η∂Es/∂W ).

2) Hierarchical Learning Structure: Though the single
layer feature learning module can achieve good performance,
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it still has some limitations. For example, it is not able to
share statistical information among different local features,
and it cannot extract information from multiple visual levels.
To get higher level visual representations that can not only
tolerate non-trivial transformations in small local areas, but
also capture contextual information of the first layer features,
we leverage a multi-layer scheme to learn hierarchical features.
In this letter, we adopt a two-layer framework: in the first layer,
feature learning is performed on small image areas (16x16
image patches) to extract the first layer discriminative features;
while in the second layer, higher level image representation is
learned from bigger image areas (32x32 image patches) to get
the second layer discriminative features.

To get the second layer inputs, convolution is applied on
the first layer outputs at multiple grid locations to get a highly
over-complete set of first layer features in the 32x32 image
areas. Concatenating these first layer features will generate a
high-dimensional representation, which cannot be efficiently
processed. Thus, PCA is applied for dimension reduction and
data whitening, the output of which is the input to the second
layer. We get the final feature descriptors by concatenating the
output features of both layers as shown in Figure 2.

3) Approximation: In each layer, it’s time consuming to
search nearest neighbour from a large collection of image
patches. Especially in our case, the membership of nearest
neighbours NN (q) of each training patch x change when the
feature transformation matrix W updates. For simplification,
firstly, we fix NN (q) and update W until W converges to
a suboptimal value. Secondly, we search nearest neighbours
in the learned suboptimal feature space, and renew the mem-
bership of nearest neighbours NN (q). We iterate these two
steps for several times. In our experiments, when the number
of iterations increases, the performance slightly increases. For
efficiency consideration, we merely apply one iteration. We
initialize W as the matrix learned by the basic learning module
without discriminative term, and then search for NN (q) based
on this W , and update W afterwards. Furthermore, to speed
up the procedure of nearest neighbour search, we use FLANN
[10], which is a library making use of multiple randomized
k-d trees to achieve fast NN approximation.

III. EXPERIMENTS AND ANALYSIS

We test our discriminative hierarchical feature learning
algorithm on two general image classification benchmarks:
Caltech-101, STL-10, and one new fine-grained image clas-
sification dataset we collected: NTU Tree-51. To make a
better comparison with other methods, we only use gray-
scale images. In layer 1, we learn on 16x16 patches, and
get 128 dimensional first layer features. In layer 2, based
on the learned first layer features, we convolve them within
the larger 32x32 patches with a stride of 2. We concatenate
the responses and get 10,368 dimensional data, then PCA
is applied to produce 300 dimensional input data for the
second layer. After processing layer 2, we get 150 dimensional
second layer features. Since this letter focuses on local feature
learning, we simply employ the most general settings in the
BoW framework. We use Spatial Pyramid Matching [11] to get
the global image representation, and linear SVM as classifier.

(a) Examples of STL-10

Dypsis madagascariensis Wodyetia bifurcata

Roystonea oleracea Archontophoenix alexandrae

(b) Examples of NTU Tree-51

Fig. 3. (a) Examples from STL-10 dataset. (b) Examples from four different
tree species of NTU Tree-51 dataset.

To ensure the accuracy of nearest neighbour search, we
densely extract patches from the training images to build the
positive and negative patch pool. Additionally, we discard
patches extracted from the low contrast areas for denoising.
Specifically, for each class, we densely extract 1000-2000
patches per training image for the first layer, and 200-400
patches for the second layer to build the positive patch
pool. Meanwhile, we randomly select patches from images
belonging to negative categories, and build the negative patch
pool with 10 times the size of the positive pool. Finally, we
randomly select 10% of the patches from each class-specific
positive patch pool as the training patches, and learn our
features based on 100,000-500,000 training patches in the first
layer, and 30,000-100,000 training patches in the second layer.

A. Results

Caltech-101 [12] has images from 101 different object
classes with high intra-class variance. There are 31 to 800
images in each class. Following the most general settings,
we randomly select 30 images per class for training, and 50
images for testing. We resize all the images to 150x150 pixels.
The numerical results of our method and other algorithms
are reported in Table I. We test the hierarchical RICA with
training patches randomly extracted from training images, and
get 66.7% in accuracy as the baseline. With our discriminative
learning method, the accuracy can be improved to 73.0%,
which is 6.3% higher than the baseline.

STL-10 [13] is a newly proposed challenging dataset for
deep learning networks, which contains 96x96 pixel images
from 10 classes as shown in Figure 3(a). We only use the
provided labelled data: 5,000 images for training and 8,000
images for testing. The training sets are predefined in 10
folders, where each folder contains 1,000 training images.
According to the testing protocol, we train our method on
the pre-defined folders, and use the average results as the
final testing accuracy. The results are shown in Table II. As
this dataset is very challenging, the accuracy is relatively low,
but we can still get 2.3% improvement compared with the
baseline, and achieve 56.7% in accuracy.

NTU Tree-51 is a fine-grained image dataset we collected,
it aims to recognize trees at a distance. All the images were
cropped from Google Street View images, which were cap-
tured continuously from a distance on a moving vehicle. This
dataset contains 2613 street view tree images in total, which is
composed of 51 common tree species in Singapore, and each
species contains 30-70 samples. This dataset is challenging
because of its large intra class variance, and relatively small
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inter class variance. Image samples of the dataset are shown
in Figure 3(b). We resize all the images to 150x150 pixels, for
each species, we use 20 images for training, and the rest for
testing. The numerical results are shown in Table III. With our
discriminative term, we can improve the baseline with 7.2%
in accuracy.

Furthermore, according to the comparison results of using
the first layer only and two layers shown in Table I, II,
and III, with the stacked second layer, the performance can
be significantly improved, thus, the hierarchical structure is
crucial.

Algorithm Acc.
SPM [11] 64.6%
Hierarchical RICA [4], [7] 66.7%
NBNN [5] 70.4%
local NBNN [14] 71.9%
LLC [15] 73.4%
Hierarchical SC [16] 74.0%
CRBM [17] 77.8%
Ours (first layer) 66.3%
Ours (two layers) 73.0%

TABLE I
RESULTS ON CALTECH-101

Algorithm Acc.
K-means (Triangle) [13] 51.5%
RICA [7] 52.9%
Hierarchical RICA [4], [7] 54.4%
Sum-Product networks[18] 62.3%
Ours (first layer) 53.3%
Ours (two layers) 56.7%

TABLE II
RESULTS ON STL-10

Algorithm Acc.
SPM [11] 69.6%
Hierarchical RICA [4] 70.9%
LLC [15] 75.3%
Ours (first layer) 74.9%
Ours (two layers) 78.1%

TABLE III
RESULTS ON NTU TREE-51

B. Parametric Analysis

We observe the sparse term γ does not bring much influence
to the performance, hence we fix it as a constant for all the
datasets (50 in the first layer, and 1 in the second layer), and
focus on η: weight of the discriminative term in layer 1 and
layer 2. In this section, we experimentally investigate how they
may affect the performance.

We vary the value of the regularization parameter η in
layer 1 and layer 2 separately. By applying cross validation,
we get the results as shown in Figure 4. The performance
numbers do not change very dramatically. With layer 1 only,
as shown in Figure 4(a), when η = 10, our method can
bring 5% improvement compared to the single layer RICA.
Figure 4(b) shows the comparison result of our hierarchical
discriminative method versus the hierarchical RICA. Here
we fix the η in layer 1 as 10. In layer 2, when η = 0,
it corresponds to the result of only applying discriminative
learning on layer 1, and using the basic RICA in layer 2. As
the accuracy steadily increase when the value of η increase,
we can get 3% improvement when η = 20. This indicates
that our discriminative learning method not only improves the
performance of the first layer, but also further improves the
performance of the second layer. Generally, setting η to 10 for
both layers will lead to good performance on all the datasets.

IV. CONCLUSION

In this paper, we proposed a discriminative hierarchical
feature learning algorithm, which aims to force the features
from the same class to be close, while features from different
classes to be separated. We propose P2CD to measure the
distance between a feature descriptor and a class. By applying
a two-layer discriminative learning method, we obtain a hier-
archical feature representation that can not only represent local
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(b) Influence of η in layer 2
Fig. 4. Accuracy of our method on Caltech-101 versus the weight of the
discriminative term. Green lines represent the accuracy results of applying
the hierarchical RICA, while the red lines indicate the accuracy of our
discriminative hierarchical method.

discriminative features, but also express multiple visual level
features with larger receptive fields by applying convolution
and stacking. On two general object recognition benchmarks
and a new fine-grained image classification dataset, we ex-
perimentally show that learning discriminative features signif-
icantly improve the performance. In the future, we will explore
information in higher visual levels, and build hierarchical
feature learning framework with more layers.
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