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Fractional Regularization to Improve Photoacoustic Tomographic Image
Reconstruction

Jaya Prakash†, Dween Sanny†, Sandeep Kumar Kalva, Manojit Pramanik,
and Phaneendra K. Yalavarthy∗, Senior Member, IEEE

Abstract— Photoacoustic tomography involves reconstructing
the initial pressure rise distribution from the measured acoustic
boundary data. The recovery of the initial pressure rise distribution
tends to be an ill-posed problem in presence of noise and when
limited independent data is available, necessitating regularization.
The standard regularization schemes include, Tikhonov, `1-norm,
and total-variation. These regularization schemes weigh the sin-
gular values equally irrespective of the noise level present in
the data. This work introduces a fractional framework, to weigh
the singular values with respect to a fractional power. This frac-
tional framework was implemented for Tikhonov, `1-norm, and
total-variation regularization schemes. Moreover, an automated
method for choosing the fractional power was also proposed. It
was shown theoretically and with numerical experiments that the
fractional power is inversely related to the data noise level for
fractional Tikhonov scheme. The fractional framework outperforms
the standard regularization schemes, Tikhonov, `1-norm, and total-
variation by 54% in numerical simulations, experimental phantoms
and in vivo rat data in terms of observed contrast/signal-to-noise-
ratio of the reconstructed images.

Index Terms— Photoacoustic tomography, image recon-
struction, regularization theory, fractional methods, com-
pressive sensing.

I. INTRODUCTION

Photoacoustic tomography (PAT) also known as optoacoustic to-
mography is a hybrid non-invasive imaging technique which can
provide optical absorption contrast at high ultrasonic resolution [1]–
[5]. In PAT, a nanosecond pulsed laser source operating in the near-
infrared (NIR) window, i.e., 600− 1000 nm irradiates the biological
tissue under investigation, the delivered light gets absorbed by differ-
ent tissue chromophores causing an increase in the temperature (in
the order of milli Kelvin). This rise in temperature generates pressure
(photoacoustic (PA)) waves due to thermo-elastic expansion in the
tissue. The generated PA waves propagate through the biological
tissue and are detected by ultrasonic transducers placed outside the
biological tissue. The measured acoustic data at the boundary of
tissue becomes input to the reconstruction method for estimating
the initial pressure rise distribution. This initial pressure rise map
is proportional to the product of light fluence and optical absorption
coefficient. The absorption coefficient is very sensitive to the tissue
patho-physiology, thus revealing the patho-physiological status of
the tissue under investigation at higher contrast compared to other
imaging methods. PA imaging has been used extensively in the
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area of oncology and pathology [3] and also enables deep tissue
imaging as light penetration in the biological tissue is higher in
the NIR-window compared to other optical ranges [6]. PA imaging
has another advantage of being a scalable with an ability to reveal
structural and functional information for both pre-clinical and clinical
applications [7]–[13]. It can also be used for noninvasive monitoring
of traumatic brain injury and post-traumatic rehabilitation with high-
quality reconstructed images [14]. With the help of targeted contrast
agents, PA imaging has been shown to be a strong contender for
molecular imaging [15]–[17].

An important aspect for translating PAT to clinical/pre-clinical
applications is to develop reconstruction methods that can generate
accurate PA images. The acoustic inverse problem in PAT is to
accurately determine the initial pressure rise distribution from the
acoustic measurements. Several reconstruction algorithms exists to
solve this inverse problem. Analytical algorithms including filtered
backprojection and Fourier transform based reconstructions were
proposed in the literature [15], [16]. Analytical algorithms are based
on the spherical Radon transform which is useful for solving three-
dimensional PA reconstruction problem due to low computational
footprint of analytical methods. However analytical methods have a
requirement of large number of data points around the target object.
Large number of data points require transducer arrays with more
detector elements or long data acquisition time (if single element
transducer is used). Most practical cases results in limited data and in
these cases, analytical reconstruction as well as time-reversal methods
often suffer from inferior spatial resolution in the reconstructed image
and lack desired quantitative accuracy [18], [19]. Recent emphasis
has been on model-based reconstruction techniques that are capable
of providing quantitatively accurate PA images in these limited
data cases [15], [16], [18]–[22], which can potentially reduce data
acquisition time and cost associated with transducer arrays. It is also
important to note that in limited data cases, the inverse problem
becomes ill-posed and requires regularization to result in meaningful
solutions [15], [16], [18]–[22].

The regularization used for solving the inverse problem in limited
data cases provide a balance between the residual and quantita-
tive accuracy. Regularization constraints the solution space making
model-based reconstruction schemes more robust in noisy data cases
[21], [23]–[25]. The standard regularization method in PA imaging
is based on Tikhonov minimization, which uses the `2-norm of the
expected solution, thus reconstructing a smoother PA image [20],
[23], [26]–[28]. The regularization parameter (which balances the
data-model misfit to the expected solution) in the Tikhonov regular-
ization scheme plays an important role in determining the required
resolution characteristics in the reconstructed PA image. Several
methods were proposed for determination of regularization parameter
in an automated fashion, such as the Morozov discrepancy principle
[31], the Generalized Cross Validation (GCV) and the L-curve
method [18], [21], [25], [28]. The discrepancy principle requires
an estimation of noise in the experimental data for automatically
choosing the regularization parameter. Note that in real experimental
setting, the measurements are influenced by electronic noise and
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estimation of the same is possible both in the projection space and
image space [29], [30]. The GCV and L-curve methods doesn’t
require any prior information about noise statistics as required by
discrepancy principle. Further, basis pursuit deconvolution (BPD) in
the framework of least-squares QR (LSQR) has been used previously
in PA imaging, as the state-of-the-art technique, to perform efficient
reconstruction in these limited data cases [18].

Exponential filtering of singular values was proposed in the frame-
work of Tikhonov filtering for carrying out the image reconstruction
in PAT which provides superior PA images with better quantitative
accuracy and was observed to be less biased towards the regulariza-
tion parameter [19]. Singular value decomposition (SVD) enables us
to study how a particular filtering scheme effects the reconstructed
solution by analyzing the spectral (eigen) spread of the system matrix
[25]. Even the standard method (such as Tikhonov regularization) or
recently proposed exponential filtering method were formulated and
studied in the framework of filtering the singular values obtained
from the system matrix used in PAT. Further advanced reconstruction
methods based on sparse recovery (`1-norm and total-variation (TV))
has been proposed to improve PAT reconstruction [32]–[35]. More
recently, sparse recovery methods was shown to have an advantage for
performing reconstruction with very less data, thereby allowing rapid
three-dimensional PA acquisitions to enable real-time pre-clinical
studies [32]. In this work, regularization parameter was automatically
chosen using discrepancy principle during Tikhonov inversion, while
empirically chosen (to result in best possible figure of merit) in the
case of `1-norm and TV based reconstruction.

However Tikhonov, TV or `1-norm based methods assume equal
weight to all singular values (in the data fidelity term) irrespective of
the amount of noise in the data. But ideally, in noisy environments
the lower singular values needs to be weighed lesser. This work
introduces a weighting matrix to a fractional power (which can vary
with noise) to result in more accurate reconstructions compared to
standard methods based on Tikhonov, sparse recovery or TV. To this
end, a fractional filtering framework was utilized with the help of
semi-norm in the residual error during the Tikhonov regularization,
`1 and total-variation based optimization. The developed fractional
filtering framework was compared with standard Tikhonov, `1-
norm and total-variation based reconstruction. Here the fractional
term is applied via a weighting matrix to a fractional power. The
fractional power controls the amount of damping or smoothness in
the reconstructed solution. Fractional Tikhonov was proven earlier
to be effective for solving linear discrete ill-posed problem using
closed form expression [36], [37], however the fractional power was
chosen empirically. The earlier works have restricted themselves to
implementing Fractional filtering in Tikhonov framework [36], [37],
in this work we have extended the same to other standard state-
of-the-art methods like `1-norm and TV regularization. Further an
automated way of choosing the fractional power by maximizing a
figure of merit has been proposed in this work.

Specifically, the contributions of the presented work is (a) A new
methodology for automatically choosing the fractional power using
a simplex method (by maximizing the signal to noise (SNR)/contrast
to noise (CNR) of the reconstruction) in the fractional Tikhonov
scheme for PAT. Specifically the fractional power was chosen au-
tomatically using simplex method and regularization parameter was
chosen automatically using discrepancy principle in the fractional
Tikhonov scheme. (b) Further, it was shown mathematically that the
fractional power is inversely related to the noise in the data, i.e., the
fractional power reduces as the noise in the data increases in the
context of fractional Tikhonov scheme, same was established with
numerical simulations. (c) Implementation of the fractional TV and
fractional `1-norm schemes within the split augmented Lagrangian

shrinkage algorithm (SALSA) framework. A systematic approach
was developed to automatically estimate the fractional power using
a simplex method in fractional TV and fractional `1-norm based
scheme. However, the alternating direction majorization minimization
(ADMM) parameters within the SALSA framework was chosen
empirically to result in best possible figure of merit as automatically
optimizing for all the parameters is not computationally feasible. (d)
Lastly, by using numerical simulations, experimental phantom and
in vivo data, the proposed fractional filtering framework was shown
to provide better performance in terms of standard figures of merit
compared to state-of-the art reconstruction methods (i.e., Tikhonov,
`1-norm and total-variation) in PAT.

II. METHODS AND MATERIALS

A. Forward Problem
The PAT forward problem computes the acoustic field given

spatially varying PA source H(~r, t) (ultrasonic energy deposited in
the medium per unit volume and per unit time). The physical process
leading to the generation of H(~r, t) can be found in Refs. [15], [38].

Assuming that the medium is acoustically homogeneous and under
the condition of thermal and stress confinements, the PA pressure
wave P (~r, t) at a point ~r and time t can be written as [15],

∇2P (~r, t)− 1

c2
∂2P (~r, t)

∂t2
=
−β
Cp

∂H(~r, t)

∂t
, (1)

where c is the speed of sound in the medium, β is the thermal
expansion coefficient, and Cp is the specific heat. The solution to
Eq. (1) can be obtained by Green’s function approach [38] and
other approaches such as finite-difference, finite element, and pseudo-
spectral methods.

In this work, k-space pseudo-spectral method is utilized to solve
the PA wave equation. The imaging grid and measured wave field
on the boundary (sensor points) can be simulated with the help
of open-source k-Wave toolbox [39]. The forward problem solution
(to estimate the acoustic data at sensor locations) given the initial
pressure rise distribution, was obtained with the help of k-wave tool
box [39]. This limited boundary measurements were then used to
obtain initial pressure rise (P (~r, 0)) inside the imaging domain.

B. System Matrix based Approach
The process of collecting the PA data at the sensor location can

be represented as a time varying causal system [24]. The impulse
response of the imaging grid is stored pixel by pixel in the system
matrix as columns for geometry under consideration as described in
Refs. [18], [28].

The imaging grid (containing initial pressure in a discretized form)
of size n × n pixels is converted into a tall column vector of size
n2×1 by stacking all columns one below another. The initial pressure
rise at these pixels (which is unknown) can be represented as x. The
system matrix A having a dimension of m × n2, i.e., each column
of the system matrix is the impulse response of corresponding pixel
of the image in a vectorized form [28]. The time varying columns of
measured data at the sensor locations (detectors) are also stacked as
long column vector of dimension m× 1, this is represented by b.

While generating the system matrix for numerical simulations, it
was assumed that the medium has homogeneous ultrasound properties
and the speed of sound is constant (1500 m/s). The computational
grid having size of 501×501 pixels (50.1 mm×50.1 mm) with a
resolution of 0.1 mm/pixel was used while generating the system
matrix and 60 detectors were placed equidistantly on a circle of 22
mm radius (to represent limited data case). Although in practice, large
area detectors are used, for simplicity, the detectors were assumed
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to be point detectors having a center frequency of 2.25 MHz and
70% bandwidth. The imaging region was restricted to 201×201
pixels located at the center, resulting in n2 = 40401. A perfectly
matched layer (PML) was used to satisfy the boundary condition.
The time step for data collection was 50 ns, with a total of 512 steps
(m = 512 × 60 = 30720). The size of the matrix A (m × n2)
thus becomes 30720×40401. The forward model for the generation
of acoustic data utilized a fine grid having an imaging region as
402×402 (within the computational grid of size 1002 × 1002).
The inverse problem utilized a grid size of 201×201 (within the
computational grid of size 501 × 501) imaging region in order to
avoid inverse crime, as typically the object is in continuous domain
and during PA image reconstruction the domain gets discretized to
enable computations. In this work, the signals coming from outside
the imaging region were not considered as water (coupling medium)
absorbs very weakly in the near infrared region and the tissue under
investigation is completely contained within the imaging domain.

The forward model of PA imaging can be summarized as,

Ax = b (2)

where A is the system matrix containing impulse responses of
all pixels in the imaging region as columns, x is initial value of
pressure at each pixel in the imaging domain, and b is the measured
acoustic data on the boundary (detector locations). The singular value
decomposition (SVD) of the system matrix can be represented as,

A = USVT

A =

k∑
i=1

uiσivi (3)

where k is min(m,n2), U and V are left and right orthogonal
matrices (UUT = UTU = Im,VVT = VTV = In2) with ui
and vi representing the columns of U and V, respectively. S is a
(m×n2) diagonal matrix with non-negative diagonal elements called
as singular values arranged as,

σ1 ≥ σ2 ≥ ... ≥ σk

Note that the simplest method of obtaining x will be to use back-
projection, which simply becomes xbp = AT b [40], [41]. The
quality of the reconstructed image (xbp) using this method is often
limited especially when limited data is available.

C. Standard Model-Based Reconstruction Methods

1) `2-Norm Based Tikhonov Regularization: The Tikhonov
regularization method is the most common method for solving dis-
crete ill-posed inverse problems in limited-data settings. As it uses `2-
norm based regularization of the solution, it promotes the smoothness
in the desired solution. The Tikhonov minimization function can be
written as,

ΓTikh = min
x

(‖Ax− b‖22 + λ‖x‖22) (4)

where, λ is a regularization parameter providing the balance between
residue of the linear equations (first term on the right-hand side) and
expected initial pressure distribution (x). Higher regularization tends
to oversmooth the image, while a smaller value of λ amplifies the
noise in the image. The function ΓTikh is minimized with respect
to x, resulting in [18], [20],

xTikh = (ATA + λI)−1ATb (5)

Using SVD of A (Eq. (3)), Eq. (5) can be reduced to,

xTikh = (VSTSVT + λI)−1VSTUTb

= V(STS + λI)−1STUT b

=

k∑
i=1

σi(u
T
i b)

σ2i + λ
vi

=

k∑
i=1

φ(σi)(u
T
i b)vi

(6)

where, φ(σi) are the filter factors [36], [37] that can be written as,

φ(σi) =
σi

σ2i + λ
(7)

The regularization parameter λ can be found using algorithms such as
GCV, L-curve, or minimal residual method (MRM) [42]. Numerical
experiments found that GCV and L-curve algorithms do not converge
for ill-posed problems, as also observed in Ref. [28]. In this work,
the discrepancy principle [25], [31] has been utilized for computing
the regularization parameter. The discrepancy principle is the most
widespread ||e||2-based parameter choice method. If the ill-posed
problem is consistent in the sense that Axtrue = btrue then the
amount of noise in b can be expressed as,

b = btrue + e

= Axtrue + e
(8)

The idea is to choose the regularization parameter λ such that the
residual norm (also known as discrepancy) is equal to a-priori upper
bound δ for ||e||2, i.e.,

||b−Axλ||2 = δ (9)

where, ‖e‖2 ≤ δ and xλ is the computed regularized solution [25],
[36]. Alternatively,

F (λ) = ‖b−Axλ‖22 − δ2 = 0 (10)

In case of Tikhonov regularization, the Eq. (10) will be reduced using
singular value decomposition as follows,

FTikh(λ) =

k∑
i=1

(
λ(uTi b)

σ2i + λ

)2

+

m∑
j=k+1

(uTj b)
2 − δ2 = 0 (11)

Eq. (11) can then be solved by Newton’s Method [31] and it is
implemented using open-source regularization toolbox [43]. The
generalized inverse solution can be interpreted as follows: in case
of sufficient noiseless independent data (k = m = n2) the solution
obtained during inversion is unique and exact. When k = m < n2,
the least norm solution will be obtained, where the noiseless data
can be fitted exactly, but the solution is non-unique. Considering
k = n2 < m, a least square solution which is unique will be
recovered, but may not fit the generic noisy data. When k < m < n2

the generalized inverse solution encapsulates the behaviour of both
least norm and least squares, also known as truncated singular value
solution [21].

2) `1-Norm Based Regularization: The Tikhonov method is
known to generate smooth PA image, the typical PA image can be
assumed to be a sparse image as it represents vasculature. Thus
utilization of non-smooth regularizers, like the `1-norm based one
will result in better accurate solution. There are many approaches
for performing `1-norm based reconstruction in PAT [18], [33], [44],
[45]. The `1-norm based minimization can be written as,

Γ`1 = min
x

(‖Ax− b‖22 + λ‖x‖1) (12)
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where, ||.||1 represents the `1-norm. In this work, the previously
developed split augmented Lagrangian shrinkage algorithm (SALSA)
was utilized for solving the `1-norm based minimization in PAT, the
same is explained in [45], [46]. The reconstruction parameters in the
SALSA framework were chosen heuristically to result in best possible
figure of merit, i.e., contrast to noise ratio.

3) Total-Variation (TV) Based Regularization: Another state of
the art approach for performing reconstructions in PAT is based on
total-variation (TV), wherein a constraint is applied on the edges
in the PA image. Similar to `1-norm based ones, there are many
approaches for performing TV based reconstruction in PAT [34],
[47]–[49]. The TV based minimization can be written as,

ΓTV = min
x

(‖Ax− b‖22 + λ‖x‖TV ) (13)

where, ||.||TV represents an isotropic total-variation function. Here,
the SALSA framework was utilized for solving the isotropic TV
based minimization in PAT and Chambolle-Pock iteration was used
for minimizing the TV function, the same is explained in Refs.
[34], [46], [50]. The reconstruction parameters for performing the
TV minimization in the SALSA framework is heuristically chosen to
result in best possible figure of merit, i.e., contrast to noise ratio.

D. Proposed Fractional Regularization Methods

1) Fractional Tikhonov Method: The Tikhonov regularization
method with `2-penalty over-smooths the solution, i.e., loss of sharp
or fine features of the reconstructed solution. Ref. [36] proposes a
scheme for measuring the residual error in Tikhonov regularization
with a seminorm that uses a fractional power of the Moore-Penrose
pseudoinverse of AAT as weighting matrix. As a result, the data
fidelity term in Eq. (4) penalized by fractional Tikhonov method can
be rewritten as,

Γfrac = min
x

(‖Ax− b‖2W + λ‖x‖22) (14)

where, ‖x‖W = (xTWx)
1
2 and W is symmetric positive semidef-

inite matrix given as,

W = (AAT )
(α−1)

2 (15)

where, α represents the fractional power with α > 0. Eq. (14) has
a unique solution for all positive values of regularization parameter
λ. The semi-norm ‖.‖W allows the parameter α to be chosen such
that the reconstruction solution from Eq. (14) is of improved image
quality. Differentiating Eq. (14) with respect to x and equating to
zero results in,(

(ATA)(α+1)/2 + λI
)
x = (ATA)(α−1)/2AT b (16)

Eq. (16) can be rewritten as,

(ATWA + λI)x = ATWb (17)

Using the SVD of A in Eq. (17) results in,

(VSUTUSα−1UTUSVT + λI)x = VSUTUSα−1UTb (18)

(VSα+1VT + λI)x = VSαUTb (19)

The solution is given by [36],

xfrac =

k∑
i=1

σαi
σα+1
i + λ

(uTi b)vi

=

k∑
i=1

φfrac(σi)(u
T
i b)vi

(20)

The filter function of fractional Tikhonov method for α > 0 is given
by [36],

φfrac(σ) =
σα

σα+1 + λ
(21)

The hypothesis is that applying the above scaling on singular val-
ues will result in improved reconstruction compared to Tikhonov
regularization method. In this work, the fractional power (α) was
chosen automatically based on maximizing the SNR/CNR of the
reconstructed image (note that by SNR/CNR, we mean that SNR
was maximized for experimental cases and CNR was maximized
for numerical simulations for automatically choosing the fractional
power) using a simplex approach. The same has been detailed in the
flow-chart given in Fig. 1. Further relationship between the fractional
power and smoothness of the reconstructed image is established in
Appendix-I.

2) Fractional-`1 Method: Fractional-`1 based reconstruction re-
lies on minimizing the residual error to the fractional-power of the
Moore-Penrose pseudoinverse of AAT along with using a sparsity
constraint. The objective function to be minimized in the case of
fractional-`1 scheme will be,

Γfracl1 = min
x

(‖Ax− b‖2W + λ‖x‖1) (22)

The fractional-`1 objective function can now be minimized in the
SALSA framework, wherein two new objective function will be
minimized that are given as,

Γfracl1−obj1 = min
x

(‖Ax− b‖2W + µ‖x− vk − dk‖2) (23)

Γfracl1−obj2 = min
v

(λ||v||1 +
µ

2
‖xk+1 − v − dk‖2) (24)

where, λ is the regularization parameter, µ is the ADMM parameter
and dk, vk are the iterating vectors. Specifically the difference in
implementing the fractional schemes inside the SALSA frameworks
comes in Eq. (23), which is minimized similar to fractional Tikhonov
case explained in Sec. II-D.1. Further we have automatically chosen
the fractional power (α) within each iterations of fractional-`1
framework. The other reconstruction parameters like λ and µ were
empirically chosen to result in best possible figure of merit i.e.
SNR/CNR. The implementation details are presented in Algorithm-1.

3) Fractional-TV Method: Fractional-TV method incorporates
variational penalty function as regularization, and minimizes
weighted least square norm. Total variation is used to obtain a
non-smooth reconstructed solution. The objective function to be
minimized in fractional-TV approach is given as,

ΓfraclTV = min
x

(‖Ax− b‖2W + λ‖x‖TV ) (25)

Again the SALSA framework is used to solve the minimization
problem. The `2-norm regularization step (i.e., Eq. (23)) in the
original SALSA framework is replaced by fractional Tikhonov-type
regularization to provide solutions that are not as smooth as Tikhonov
scheme. Even here the fractional power (α) is chosen automatically
to result in maximum SNR/CNR values. Other reconstruction param-
eters are chosen heuristically to result in best possible figure of merit.
The algorithmic details of fractional-TV/`1 are given in Algorithm-1.

The first step of the algorithm consists of minimizing strictly
convex quadratic function (i.e., Eq. (23)). The solution for (i.e., Eq.
(23)) is given by fractional Tikhonov method as,

xk+1 =
k∑
i=1

σαi
σα+1 + µ

(uTi b)vi +

k∑
i=1

1

σα+1
i + λ

[vTi (vk + dk)]vi

(26)
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Fig. 1. Flow diagram illustrating the procedure for automatically choosing fractional power and regularization parameter in fractional Tikhonov
method (Sec. II-D.1).

Algorithm 1: fractional-TV/`1
Input: SVD of A : U,Σ,V, data b, ADMM parameter

µ, d0, v0
Output: fractional-TV/`1 solution x

1 xk+1 = min
x

(‖Ax− b‖2W + µ‖x− vk − dk‖2)

Simplex method is used to determine the parameter α by
maximizing SNR/CNR as explained in flow chart of Fig.1 ;

2 vk+1 = min
v

(λψ(v) + µ
2 ‖xk+1 − v − dk‖2) ;

(ψ(v) = ||v||1 for `1-norm minimization, and ψ(v) = ||v||TV
for TV minimization)

3 dk+1 = dk − (xk+1 − vk+1);
4 k ← k + 1 ;
5 until ‖Axk+1 − b‖22 < δ

The solution for the second objective function in the SALSA frame-
work for TV based minimization is given by Moreau proximity
mapping of ψ applied to (xk+1 − dk), and the solution is given
as,

vk+1 = Ψλ,µ(xk+1 − dk) (27)

Whereas minimum for the second objective function in the fractional-
`1 case (Eq. (24)), Ψλ,µ is computed exactly which is a soft
thresholding operator. But in the case of TV, Ψλ,µ doesn’t have a
closed form and Ψλ,µ is approximated by fixed number of Chambolle
iteration [50]. The convergence of both fractional-`1 and fractional-
TV is same as SALSA algorithm given in Ref. [46].

E. Figures of Merit

The efficacy of the different methods described above were quan-
tified using the following figures of merit on numerical simulations
and experimental datasets.

1) The Pearson correlation (PC) coefficient is a quantitative metric
that measures the degree of correlation between the target and
the reconstructed image [18], [19]. It is defined by:

PC(xtarget, xrecon) =
cov(xtarget, xrecon)

s(xtarget)s(xrecon)
(28)

where, xtarget is the expected initial pressure distribution and
xrecon is the reconstructed initial pressure distribution. cov
denotes the covariance, and s denotes the standard deviation.
PC ranges between -1 to 1. Higher value of PC indicates better
detectability of the targets in the reconstructed image.

2) Contrast-to-Noise Ratio (CNR) was also used to evaluate per-
formance of different algorithms in numerical simulations. The
contrast-to-noise ratio is a measure of the image quality based
on the contrast, typically used to compare the reconstructed
images [51]. The CNR is defined as [19]:

CNR =
µroi − µback

(s2roiaroi + s2backaback)1/2
(29)

where, µ denotes the mean and s represents the standard
deviation. The subscript roi and back represent the region of in-
terest and the background correspondingly in the reconstructed
image. The area ratio is represented as aroi = Aroi

Atotal
and

aback =
Aback
Atotal

.
3) In case of experimental data, the signal to noise ratio (SNR)

was used to evaluate the performance of different reconstruction
scheme as the expected distribution is unknown, the SNR is
given as,

SNR = 20log10(
xsignal
xnoise

) (30)

where, xsignal are the pixels corresponding to the recon-
structed region of interest in the PA image and xnoise are
the pixels corresponding to the background noise in the re-
constructed PAT image.

4) For quantitatively comparing the performance of different re-
construction methods in case of numerical simulations, root
mean square error (RMSE) figure of merit was utilized. RMSE
can be defined as,

RMSE =

√∑4n2

i (xitruth − x
i
recon)2

4n2
(31)

where xtruth indicates the ground truth and xrecon represent
the reconstructed image.
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Fig. 2. Numerical phantoms used in this work. a) Blood vessel phantom,
b) Realistic Breast phantom.

F. Numerical Simulations and Experimental data
1) Numerical Simulations: Two numerical phantoms (shown in

Fig. 2) were considered for comparing the quantitative accuracy of
the different reconstruction algorithms. A numerical blood vessel
phantom (uni-polar in nature) with initial pressure rise of 1 kPa
was used to evaluate the performance of different methods. Secondly
a realistic numerical breast phantom (multi-polar in nature) created
from contrast-enhanced magnetic resonance (MR) imaging data was
also used for the evaluation [52].

A K-wave based forward model [39] was used for generating the
acoustic data (i.e. b), a fine computational grid having a size of
50.1×50.1 mm (discretized to 1002×1002 pixels) was utilized and
the imaging region used for numerical phantoms was 20.1×20.1 mm,
this imaging region had a grid size of 402 × 402 pixels [39]. In
order to avoid inverse crime, the collected data was reconstructed on
a 201×201 grid. For obtaining the numerically simulated data, sixty
detectors having 70% bandwidth and a center frequency of 2.25 MHz,
are placed equi-distantly on a circle of radius 22 mm from the center
of the imaging region. The data was sampled at 50 ns with the total
time samples being 512. Gaussian noise was added to the in-silico
forward data to result in SNR’s of 20 dB, 40 dB, and 60 dB. A Linux
workstation with dual six-core Intel Xeon processor having a speed
of 2.66 GHz with 64 GB RAM was used to perform the described
reconstructions.

2) Experimental data: The experimental setup used for PAT is
shown in Fig. 2 of Ref. [40]. A Q-switched Nd:YAG laser operating
at 532 nm was used to deliver laser pulses having pulse width of
5 ns with 10 Hz repetition rate. The laser pulses were delivered
on the sample with the help of Four right-angle uncoated prisms
(PS911, Thorlabs) and one uncoated Plano-concave lens (LC1715,
Thorlabs). The light fluence on the phantom was measured to be
about 9 mJ/cm2 (< 20 mJ/cm2 : ANSI safety limit [53]). A triangular
shaped horse hair phantom was utilized for imaging. The side-
length and diameter of hair are 10 and 0.15 mm, respectively. The
hair phantom was glued to the pipette tips adhered on acrylic slab
[54]. A 2.25 MHz flat ultrasound transducer (Olympus-NDT, V306-
SU) of 13 mm diameter active area and ∼70% nominal bandwidth
was rotated over 360◦ around the sample for recording the PA
signals. The acquired PA signals were first amplified and filtered
using a pulse amplifier (Olympus-NDT, 5072PR) and then recorded
using a data acquisition (DAQ) card (GaGe, compuscope 4227)
having a sampling frequency of 25 MHz. Synchronization of data
acquisition with laser illumination was achieved using a sync signal
from laser. The reconstructed PA imaging region has a size of
40 mm×40 mm containing 200×200 pixels. For the experimental
data, a system matrix having a dimension of 51200×40000 (51200:
512 time samples for 100 detector positions and 40000: 200×200
reconstruction grid) was used. The same setup was used to acquire
the experimental in− vivo rat brain data.

Fig. 3. Reconstruction results with simulated blood vasculature phan-
tom (target is shown in Fig. 2(a)). a-c) shows the results using the
Tikhonov reconstruction scheme with simulated data having an SNR of
60 dB, 40 dB and 20 dB, respectively. d-f) shows the results using the
fractional Tikhonov reconstruction scheme with simulated data having
an SNR of 60 dB, 40 dB and 20 dB, respectively. g-i) shows the results
using the `1-regularization scheme with simulated data having an SNR
of 60 dB, 40 dB and 20 dB, respectively. j-l) shows the results using
the fractional-`1 reconstruction scheme with simulated data having an
SNR of 60 dB, 40 dB and 20 dB, respectively. m-o) shows the results
using TV reconstruction scheme with simulated data having an SNR of
60 dB, 40 dB and 20 dB, respectively. p-r) shows the results using the
fractional-TV scheme with simulated data having an SNR of 60 dB, 40
dB and 20 dB, respectively.

III. RESULTS

Figure 3 shows the reconstruction results with simulated blood
vasculature phantom. Figs. 3(a), (b), and (c) shows the results using
the Tikhonov reconstruction scheme with simulated data having an
SNR of 60 dB, 40 dB, and 20 dB respectively. Figs. 3(d), (e),
and (f) indicates the PAT images generated using the proposed
fractional Tikhonov framework (Sec. II-D.1) with the simulated data
having an SNR of 60 dB, 40 dB, and 20 dB respectively. Figs.
3(a)-(f) illustrates that the fractional Tikhonov method outperforms
the standard Tikhonov reconstruction in highly noisy environment
(indicated by red arrow in Fig. 3f) with an advantage of converging
to similar solution in low-noise cases. Note that automatically chosen
α’s in fractional Tikhonov scheme for the 60 dB, 40 dB, and 20
dB cases are 0.7611, 0.5893, and 0.1305, respectively, this indicates
that the fractional power is inversely proportional to data noise
level for fractional Tikhonov reconstruction. Figs. 3(g), (h), and (i)
are reconstructions obtained using the `1-norm based reconstruction
scheme with simulated data having an SNR of 60 dB, 40 dB, and
20 dB respectively. Figs. 3(j), (k), and (l) are the initial pressure rise
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Fig. 4. Same effort as Fig. 3 with simulated Breast phantom shown in
Fig. 2(b).

distributions obtained using the fractional-`1 framework (Sec. II-D.2)
with the in-silico data having an SNR of 60 dB, 40 dB, and 20 dB,
respectively. Figs. 3(g)-(l) illustrates that fractional framework results
in better reconstruction than standard `1-norm based method and is
superior in terms of suppressing the noise, as shown by red arrow
in Fig. 3(k). The reconstruction results using TV based algorithm
on simulated data having an SNR of 60 dB, 40 dB, and 20 dB is
given in Figs. 3(m), (n), and (o), respectively. Lastly, Figs. 3(p),
(q), and (r) shows the PA images with the fractional-TV method
(Sec. II-D.3) on simulated data having an SNR of 60 dB, 40 dB,
and 20 dB, respectively. Overall, Fig. 3 demonstrates that fractional
framework converges to more accurate solution with superior image
quality when compared to standard methods (Sec. II-C). Specifically
fractional-TV based methods showed greater superiority in low-noise
cases and fractional Tikhonov method performed well in high noise
environments.

Figure 4 shows the reconstruction results with a realist numerical
breast phantom case having multi-polar characteristics. Figs. 4(a), (b),
and (c) indicates the reconstruction results corresponding to Tikhonov
method with simulated data having an SNR of 60 dB, 40 dB, and
20 dB, respectively. Figs. 4(d), (e), and (f) are PAT images generated
using the proposed fractional Tikhonov framework with the numerical
data having an SNR of 60 dB, 40 dB, and 20 dB, respectively. Figs.
4(a)-(f) shows the potential of fractional Tikhonov method over the
standard Tikhonov scheme in accurately reconstructing the structures
even in an highly noisy environment (indicated by red arrows in
Fig. 4(f)). Figs. 4(g), (h), and (i) are reconstructions obtained using
the `1-norm based algorithm on data generated from breast phantom

Fig. 5. Figures of merit for numerical phantom case results shown in
Figs. 3 and 4. a) CNR comparison with numerical blood vessel. b) CNR
comparison with numerical breast phantom case. c) PC comparison
with numerical blood vessel shown in Fig. 2(a). d) PC comparison with
numerical breast phantom shown in Fig. 2(b).

Fig. 6. Root mean square error (RMSE) comparison for a) numerical
blood vessel case (reconstruction results are shown in Fig. 3) b) numer-
ical breast phantom case (reconstruction results are shown in Fig. 4).

having a SNR of 60 dB, 40 dB, and 20 dB, respectively. Figs. 4(j),
(k), and (l) are the initial pressure rise distributions corresponding
to the fractional-`1 framework with the numerical data having an
SNR of 60 dB, 40 dB, and 20 dB, respectively. As can be seen,
the fractional-`1 framework provides higher contrast compared to
standard `1-norm based method. The reconstructions corresponding
to numerical breast phantom with TV based method on simulated
data having an SNR of 60 dB, 40 dB, and 20 dB, are given in Figs.
4(m), (n), and (o), respectively. Figs. 4(p), (q), and (r) shows the
PA images with the fractional-TV method on simulated data having
a SNR of 60 dB, 40 dB, and 20 dB respectively. Overall, Fig. 4
reveals that fractional framework converges to more accurate solution
having superior image quality when compared to standard often used
state-of-the-art reconstruction method. For the breast phantom case,
the α’s in fractional Tikhonov scheme for the 60 dB, 40 dB, and
20 dB, cases are 0.5784, 0.2151, and 0.1759, respectively, again the
fractional power reduced by increasing the data noise level.

Even in case of breast phantom case fractional-TV based methods
showed greater superiority in low-noise cases and fractional Tikhonov
method performed well in high noise environments as indicated by
red arrows in Fig. 4. From Fig. 4, it is apparent that fractional methods
are able to recover the varying contrast levels accurately compared to
standard reconstruction schemes (Fig. 4(p) vs Fig. 4(m)). Moreover,
the automatically chosen fractional power values were lower in the
case of breast phantom in comparison with the blood vessel phantom
indicating that the fractional power depends on the target image
to be reconstructed. Fig. 5 indicates the CNR and PC comparison
of the different reconstruction methods with the numerical blood
vasculature (Fig. 3) and simulated breast phantom case (Fig. 4),
the CNR values demonstrates that the proposed fractional power
based framework is on-par/outperform the standard Tikhonov, TV and
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Fig. 7. Eigen modes comparison for Tikhonov and fractional Tikhonov
scheme. Eigenmode pertaining to 1st singular value for a) Tikhonov and
d) fractional Tikhonov method. Eigenmode corresponding to 5000th

singular for b) Tikhonov and e) fractional Tikhonov method. Eigenmode
for 8000th singular for c) Tikhonov and f) fractional Tikhonov method.

`1-norm based reconstruction framework. Similarly, the PC values
indicate that fractional-TV is performing better in low-noise cases
while fractional-Tikhonov show superior results in high-noise case.
Further, quantitative comparison of the performance of different
reconstruction methods via utilization of RMSE as metric was
performed. The RMSE values were plotted in Fig. 6. As expected the
fractional Tikhonov method converged to Tikhonov scheme in low-
noise environment. However a similar trend was not observed for `1-
norm and TV based reconstructions, as these methods are non-linear,
do not have closed form solutions and relies on iterative methods.
Notable in high-noise cases, the fractional framework outperformed
the standard reconstruction methods.

Figure 7 indicates the eigen modes for Tikhonov and fractional
Tikhonov based reconstruction. The ith eigen mode is calculated
as, EMi = σiV ui. As can be seen from Figs. 7(a), and (d), both
fractional Tikhonov and Tikhonov method shows similar distribution
while weighting the solution corresponding to larger singular values.
But as we move to lower singular values in the Tikhonov framework,
i.e., Figs. 7(b), and (c), the contribution from lower singular values are
smoothed out, therefore in a noisy environment the high frequency
content (edges) tends to get suppressed and even the contrast will
be defined by only the higher singular values. In contrary with
the fractional Tikhonov framework, i.e., Figs. 7(e), and (f), there is
sufficient contribution from the lower singular values as indicated by
cyan arrows in Fig. 7, which allows us to reconstruct high frequency
information having higher contrast even in noisy environments.

Next, fractional framework utilization in experimental setting was
tested. Fig. 8 indicates the reconstruction results with different
methods (Sec. II-C and II-D) using the horse hair phantom. Figs.
8(a), (b), and (c) illustrate the reconstruction results corresponding to
Tikhonov, `1-norm and TV based methods using horse hair phantom.
The SNR’s for each of these methods are indicated below each image.
Figs. 8(d), (e), and (f) shows the initial pressure rise distribution
corresponding to the developed fractional Tikhonov, fractional-`1
and fractional-TV based algorithms along with the SNR’s indicated
below the image. Tikhonov reconstruction produces artifacts indicated
by red arrow in Fig. 8(a), which seems to have reduced using the
fractional Tikhonov based reconstruction (indicated by red arrow
in Fig. 8(d)). Moreover the `1-norm and TV based methods were
able to generate reconstructions devoid of these artifacts, with `1-
norm reconstructions being more discontinuous (and having speckle
pattern) compared to TV based reconstruction. However the fractional

Fig. 8. Reconstructed PA images using experimental horse hair
phantom data with a) Tikhonov, b) `1-regularization, c) TV, d) fractional
Tikhonov, e) fractional-`1, and f) fractional-TV. The SNR of these re-
constructed images is indicated below. Scalebar shown in Fig. 8(a) is 5
mm.

Fig. 9. Reconstructed initial pressure rise distribution using experimen-
tal in vivo rat brain data with a) Tikhonov, b) `1-regularization, c) TV,
d) fractional Tikhonov, e) fractional-`1, and f) fractional-TV. The SNR of
these reconstructed images is indicated below. Scalebar shown in Fig.
9(a) is 5 mm.

counterparts of `1-norm and TV based algorithms seems to produced
much better reconstruction devoid of artifacts as in Tikhonov scheme
and more continuous distribution (indicated by red arrow in Fig.
8(f)). Importantly SNRs of reconstruction results using the fractional
framework were much higher compared to standard reconstruction
methods, improving more than 33.2%.

Lastly, the fractional regularization methods were evaluated using
in vivo rat brain imaging to verify if the proposed framework could
add value for performing real biological studies. Figure 9 illustrates
the reconstruction results using different algorithms for in vivo brain
PA imaging. The reconstruction results pertaining to Tikhonov and
`1-norm based methods are very noisy as indicated by red arrow in
Figs. 9(a), and (b). However, the fractional Tikhonov and fractional-`1
based methods were able to generate reconstruction results that have
lesser noise (compared to Tikhonov and `1-norm reconstructions),
the same can be seen in Figs. 9(d), and (e). On the other hand,
Fig. 9(c) show the TV based reconstruction with in vivo brain data,
which seems to be more blurry due to the piece-wise constraint
applied in TV based minimization. Finally the fractional-TV based
reconstruction is demonstrated in Fig. 9(f), the inferior cerebral vein,
superior sagittal sinus and transverse sinus can be inferred clearly
using the fractional-TV method as indicated by red arrows in Fig.
9(f). The SNR using each of the methods is given below each image.
The SNR values indicate that the fractional framework seems to
generate PA images with greater image quality compared to standard
reconstruction methods.
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IV. DISCUSSION

Quantitative PAT involves solving two inverse problems: one
acoustical and one optical. Acoustic inversion problem involves
retrieving the absorbed optical energy distribution in the tissue by
measuring the tomographic acoustic waves. As the deposited energy
is proportional to the optical absorption coefficient, the optical
inverse problem involves turning the acoustic reconstruction into
a quantified image of the optical absorption coefficient. In order
to solve the acoustic inverse problem associated with PAT numer-
ous inversion techniques have been developed: time-domain (back-
projection) algorithms, frequency-domain algorithms, time-reversal
algorithms, and model-based algorithms. Model-based algorithms
represent the most general category of algorithms which has a better
performance over analytical and time-reversal solutions especially
in limited data cases [15], [19], [20]. The requirement of model
based reconstruction techniques is a existence of a linear relation
between the optoacoustic source and the measured acoustic wave
fields. Thus any linear effect which is related to the pressure wave
propagation or to the acoustic detection can be included in the
system matrix of the model-based algorithm. This helps us to take
into account the finite detection apertures or more generally, any
spatio-temporal detection response in the inversion technique, as long
as it can be modeled or measured. The model plays an important
role in improving the reconstruction performance, which accurately
accounts for the physics of the PA wave generation, propagation,
and detection. Post-processing of model-based reconstructed images
are performed in order to improve the reconstruction performance.
This post-processing can be performed by applying deconvolution or
other image enhancement schemes. Additional computational burden
in performing the deconvolution step is justified as they provide much
desired quantification in the reconstructed PA images.

Furthermore standard model-based reconstruction methods, i.e.,
Tikhonov, `1-norm, and TV are widely used to perform reconstruction
in PAT [18], [19], [34]. These standard methods are known to
generate accurate reconstructions in low noise environment, as both
larger and smaller singular values are treated similarly irrespective of
data noise levels. Generalized regularization schemes, which weigh
the data-fidelity or prior information also manipulate the singular
values to obtain accurate solution [55], however these generalized
schemes are a different class from fractional methods and the same
is explained in Appendix-III. In this work, an effective way of
performing PA image reconstruction with the help of fractional regu-
larization scheme was presented, which can parameterize the singular
value filtering by taking fractional powers of the spectrum during
the inversion. Importantly in this work, the fractional power was
chosen automatically using a simplex method based on maximizing
figure of merit like SNR/CNR. It was demonstrated with numerical
experiments that the fractional power varies by varying the SNR of
the acquired PA data in fractional Tikhonov scheme. Specifically,
it was observed that the fractional power reduces by increasing
the noise in the data and the same was theoretically established as
explained in Appendix-II. More importantly, with α = 1, this method
will yield results same as standard Tikhonov filtering, assuring
that the proposed framework is more generic. However establishing
similar trend with fractional-`1/TV methods would be difficult as
analytical closed form solution does not exist for these framework and
minimization in these frameworks rely on iteratively converging to a
solution. Within each iteration the value of α changes based on the
SALSA alternating direction maximization-minimization (ADMM)
parameter, making it difficult to establish a relationship between α
and data noise level with fractional-`1/fraction-TV cases, however as
explained in Algorithm-1 the fractional power was chosen automati-

cally with fractional-`1/fraction-TV algorithms. Note that the ADMM
reconstruction parameters were chosen empirically to result in best
SNR/CNR, with standard `1-norm, TV based reconstruction and in
the proposed fractional `1-norm/TV based reconstruction.

The fractional framework developed for `2-norm, `1-norm and
TV minimization was superior to the state-of-the-art reconstruction
methods. For high noise cases, the traditional model based algorithms
seems to over-smooth the solution by decreasing the norm of the
solution. The problem of over-smoothing can be mitigated by auto-
matically choosing the fractional power in the developed fractional
framework. The results presented in this work were unbiased as all
reconstruction parameters in standard and proposed scheme were
chosen to result in highest figure of merit value, i.e., SNR/CNR.
Having the SVD matrix precomputed, the fractional Tikhonov, `1-
norm and TV based methods take about 101 , 249, and 150 seconds
to converge to the solution (including automatic fractional factor
estimation) as opposed to 7.33, 184.89, and 185.25 seconds for
standard Tikhonov, `1-norm and TV schemes. Also, as it requires
computation of the SVD of the model matrix, any change in the
detection geometry requires recomputation of SVD, which is an
computationally expensive procedure therefore implementing the
same on graphics processing units will enable real-time PAT. It can
be seen that automated choice of the fractional power requires about
100 seconds, while performing the reconstruction using Tikhonov
method takes about 7 seconds, the process of automatically choosing
the fractional power with simplex method can be parallelized using
GPUs [56].

Recent emphasis in PAT is to develop handheld systems in two-
[57], [58] and three-dimensions (3D) [33], these systems acquire data
from one side of the sample and therefore will have limited coverage
of the sample. Moreover these systems are found to add greater
value in clinical and pre-clinical scenarios [59], [60]. The presented
work has demonstrated the potential of fractional methods using a
single element transducer with full 360 degree coverage (limited
sensor positions) spanning the entire sample being imaged. The
problem becomes more complex with handheld systems due to very
less independent measurements in comparison to the experimental
setting used in our study, therefore future work will involve studying
the utility of the developed fractional framework with handheld
configuration. Further, it is well known that using `1-norm based
framework could potentially accelerate PA image acquisition (along
with data sampling methods) [32] enabling 3D imaging with frame-
rates reaching few kilohertz. Hence performing data sampling studies
in the context of fractional algorithms will add tremendous potential
in realizing real-time 3D PAT imaging.

V. CONCLUSION

Model-based reconstruction algorithms improve the quantitative
accuracy of PA images. This work introduced fractional regulariza-
tion framework implemented for Tikhonov, `1-norm and TV based
algorithms to improve the reconstructed image quality in PAT. The
fractional method is identical to standard Tikhonov, `1-norm and
TV regularization schemes when fractional parameter is taken as
one making it more generic and appealing. The performance of the
proposed fractional methods has been superior compared to standard
state-of-the-art methods like Tikhonov, `1-norm, and TV based
reconstruction. The superior performance can be attributed to the
inclusion of fractional power which controls the level of smoothness
by increasing the norm of the reconstructed solution. Further the
fractional power was chosen automatically using a simplex method
by maximizing the SNR/CNR of the reconstructed PA image. The
results indicate that the fractional power was inversely proportional to
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the data noise level in the case of fractional Tikhonov scheme, same
was proven both theoretically and found in numerical simulations.
It was found that the fractional framework is superior to standard
reconstruction methods (with improvement being as high as 54%) in
numerical simulations, experimental phantom and in vivo rat data.

APPENDIX I
CONTROLLING THE SMOOTHNESS WITH FRACTIONAL

PARAMETER α

The singular vectors associated with small singular values usually
contain high frequency oscillations. Analyzing the filter factors of
fractional Tikhonov method (given in Eq. 21) for smaller singular
values i.e., σ << 1 and expanding Eq. 21 using Taylor series and
neglecting higher order term leads to,

φ(σ) =
σα

λ
− σ2α+1

λ2
(32)

Considering φt(α) = σα in Eq. 32 as a function of α and
differentiating with respect to α results in,

φ′t(α) = σα ln(σ) (33)

For this analysis, one can consider σ << 1 for which φt(α) is a
decreasing function as φ′t(α) < 0 for σ << 1. Following this, each
term in Eq. 32 is decreasing function of α. Thus, reducing the fraction
power from α = 1 (Tikhonov) increases φ(σ), implying increased
high frequency contents in the fractional Tikhonov reconstructed
solution (in other words, reducing the smoothness in the image).

APPENDIX II
RELATIONSHIP OF α WITH NOISE

λ is a function of δ and can be derived from discrepancy principle
given in Eq. 9. Substituting Eq. 20 in Eq. 9 and taking F as an n×m
matrix with its diagonal elements being filter factors of fractional
Tikhonov scheme, i.e., diag(F ) = φfrac(σi) results in,

‖UUT b−UΣFUT b‖22 = δ2

‖U(I −ΣF)UT b‖22 = δ2

‖
m∑
i=1

(1− σiφfrac(σi))(uTi b)ui‖
2
2 = δ2

(34)

Rewriting the above equation (considering k = min(m,n2)),

k∑
i=1

(1− σiφfrac(σi))2(uTi b)
2 +

m∑
j=k+1

(uTj b)
2 = δ2

k∑
i=1

λ2σα+1
i

(σα+1
i + λ)2

(uTi b)
2 +

m∑
j=k+1

(uTj b)
2 = δ2

(35)

Differentiating Eq. 35 w.r.t. λ, i.e. taking δ(λ) as an inverse
function of λ(δ) results in,

2δ(λ)δ′(λ) =

k∑
i=1

2λσ2α+2
i

(σα+1
i + λ)3

(uTi b)
2 (36)

It follows that δ′(λ) > 0, i.e., δ(λ) is a monotonically increasing
function, which implies the existence of its inverse λ(δ) being
monotonically decreasing.

Hence the regularization parameter decreases with increasing
noise. Now taking two different noise cases δ1 > δ2, one has
λ1 < λ2. Considering two different filter factors corresponding to

each of the regularization parameters λ1 and λ2 in the fractional
Tikhonov case results in,

φ1(σ) =
σα1

λ1
− σ2α1+1

λ21
φ2(σ) =

σα2

λ2
− σ2α2+1

λ22
(37)

Note that these filter factors are associated with lower singular values
for the noise levels δ1 and δ2 correspondingly. From Eq. 37, one
can establish that the filter factors are decreasing functions of λ.
For the case of λ1 < λ2, the corresponding filter factors will be
related as φ1 > φ2. This means that the high frequency contents
are suppressed while performing reconstructions with noisy data (as
λ1 < λ2 implies δ1 > δ2). Ideally one wants a solution with equal
high frequency content both at high noise and low noise scenarios,
implying φ1 ≈ φ2. From Appendix-I, it is clear that increasing φ
will reduce α, making α1 < α2. Therefore when δ1 > δ2, results
in α1 < α2 i.e. fractional power reduces by increasing noise in the
data.

APPENDIX III
DIFFERENCE BETWEEN WEIGHTED- AND FRACTIONAL

REGULARIZATION METHODS

Generalized Weighted Regularization:
In case of weighted Tikhonov scheme, the data fidelity term and
regularization term in Eq. (4) can be penalized using weight matrices,
which is given as,

ΓWTikh = min
x

[
((Ax− b)TWb(Ax− b)) + λ(xTWxx)

]
(38)

where Wb and Wx are diagonal weight matrices corresponding to
the data-fidelity and prior constraint, which are given as,

Wb = (COV (Ax− b))−1; Wx = (COV (x))−1 (39)

where COV indicates the covariance matrix. Differentiating Eq. (38)
with respect to x and equating to zero results in,(

(ATWbA) + λWx

)
xgeneral = (ATWbb) (40)

Using the SVD of A in Eq. (40) results in,

(VSTUTWbUSVT + λWx)xgeneral = VSTUTWbb (41)

Assuming that we are weighting only the prior constraint i.e. Wb =
I, we will get,

(VSTUTUSVT + λWx)xwx = VSTUTb (42)

In other words, weighting the regularization term will lead to,

xwx = (VSTSVT + λWx)−1VSTUTb (43)

We can rewrite the above equation as,

xwx = (VSTSVT + λVVTWxVVT)−1VSUT b (44)

Further, rearranging the terms results in,

xwx = V(STS + λVTWxV)−1SUTb (45)

The solution is given by,

xwx =

k∑
i=1

σi

σ2i + λvTi wxvi
(uTi b)vi

=

k∑
i=1

φwx(σi)(u
T
i b)vi

(46)

The filter function while weighting the regularization will be,

φwx(σ) =
σi

σ2i + λvTi wxvi
(47)
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On similar lines, we can write xwb i.e. assuming Wx = I as,

xwb = V(STUTWbUS + λI)−1STUTWbb (48)

The filter function while weighting the data-fidelity can be written
as,

φwb(σ) =
σiwb

σiu
T
i wbuiσi + λ

(49)

Fractional Regularization Method:
In case of fractional Tikhonov scheme, the data fidelity term in Eq.
(4) is penalized using fractional power and can be rewritten as,

Γfrac = min
x

(‖Ax− b‖2W + λ‖x‖22) (50)

where, ‖x‖W = (xTWx)
1
2 and W is symmetric positive semidef-

inite matrix given as,

W = (AAT )
(α−1)

2 (51)

where, α represents the fractional power with α > 0. Differentiating
Eq. (50) with respect to x and equating to zero results in,(

(ATA)(α+1)/2 + λI
)
x = (ATA)(α−1)/2AT b (52)

The final solution is given by,

xfrac =

k∑
i=1

σαi
σα+1
i + λ

(uTi b)vi

=

k∑
i=1

φfrac(σi)(u
T
i b)vi

(53)

The filter function of fractional Tikhonov method for α > 0 is given
by,

φfrac(σ) =
σα

σα+1 + λ
(54)

Comparing Eq. (46), Eq. (49) and Eq. (54), it is clear that the
weighted regularization indeed scales or shifts the singular values
based on the weight matrix entries, in contrary the fractional method
raises the singular value to fractional power.
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