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A novel entomological index, Aedes aegypti
Breeding Percentage, reveals the
geographical spread of the dengue vector
in Singapore and serves as a spatial risk
indicator for dengue
Janet Ong1, Xu Liu1, Jayanthi Rajarethinam1, Grace Yap1, Derek Ho2 and Lee Ching Ng1,3*

Abstract

Background: Aedes aegypti is an efficient primary vector of dengue, and has a heterogeneous distribution in
Singapore. Aedes albopictus, a poor vector of dengue, is native and ubiquitous on the island. Though dengue risk
follows the dispersal of Ae. aegypti, the spatial distribution of the vector is often poorly characterized. Here, based on
the ubiquitous presence of Ae. albopictus, we developed a novel entomological index, Ae. aegypti Breeding Percentage
(BP), to demonstrate the expansion of Ae. aegypti into new territories that redefined the dengue burden map in
Singapore. We also determined the thresholds of BP that render the specific area higher risk of dengue transmission.

Methods: We performed analysis of dengue fever incidence and Aedes mosquito breeding in Singapore by utilizing
island-wide dengue cases and vector surveillance data from 2003 to 2013. The percentage of Ae. aegypti breeding
among the total Aedes breeding habitats (BP), and the reported number of dengue fever cases in each year were
calculated for each residential grid.

Results: The BP of grids, for every year over the 11-year study period, had a consistent positive correlation with the
annual case counts. Our findings suggest that the geographical expansion of Ae. aegypti to previously “non-dengue” areas
have contributed substantially to the recent dengue fever incidence in Singapore. Our analysis further indicated that non-
endemic areas in Singapore are likely to be at risk of dengue fever outbreaks beyond an Ae. aegypti BP of 20%.

Conclusions: Our analyses indicate areas with increasing Ae. aegypti BP are likely to become more vulnerable to dengue
outbreaks. We propose the usage of Ae. aegypti BP as a factor for spatial risk stratification of dengue fever in endemic
countries. The Ae. aegypti BP could be recommended as an indicator for decision making in vector control efforts, and
also be used to monitor the geographical expansion of Ae. aegypti.
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Background
Dengue fever has caught global attention due to its in-
creasing frequency of major epidemics in recent years. It
is estimated that 2.5 billion individuals, residing in more
than 100 countries, are at risk of dengue fever, with an
annual case burden of approximately 50–100 million in-
fections [1]. Facilitated by the rapid urbanization and in-
creased global travel, dengue fever continues to make its
geographical spread across the world.
Dengue fever is caused by the dengue virus (DENV), ex-

ists as four different serotypes, DENV1-4. Infection with
one serotype confers lifelong immunity only to that particu-
lar serotype [2]. Hence, repeated outbreaks in a given popu-
lation at short intervals are generally due to different
serotypes. All four dengue serotypes can be found co-circu-
lating in Singapore at all times [3]. It has been observed pre-
viously that there is a cyclical pattern of outbreaks that
peaks every five to seven years in Singapore [4, 5].
Dengue fever is transmitted to humans by Aedes spp.

mosquitoes, mainly by Ae. aegypti. Aedes albopictus has
also been incriminated as an important vector of DENV.
In Hawaii, parts of China, Seychelles, and more recently,
France, where Ae. aegypti was absent or had limited
presence, Ae. albopictus was identified as the main vec-
tor in the dengue outbreaks [6, 7]. However, reported
transmission due to Ae. albopictus is typically less in-
tense and short-lived [8].
In Singapore, the vector status of Ae. aegypti and Ae.

albopictus reflects the global situation. Dengue transmis-
sion, as indicated by a cluster of cases located within a
150 m radius and with onset of illness within a 14-day
period, co-locates with presence of Ae. aegypti [9, 10].
There is no evidence of transmission in places with only
Ae. albopictus. The vector status of the two Aedes mos-
quitoes is corroborated by vector surveillance studies
using Gravitraps, which found that mosquitoes caught in
areas with clusters of dengue cases were predominantly
Ae. aegypti [11]. Potentially infective Aedes, as demon-
strated by the presence of dengue viruses in the head of
the mosquito, were found to be Ae. aegypti [12]. Aedes
aegypti, found in urbanized built-up areas, is thus the
primary vector of DENV in the country. Aedes aegypti is
known to originate from Africa and was introduced into
the coastal cities of South East Asia around 19th century
via the shipping industry [13]. The precise time of its ar-
rival to Singapore is not known. In contrast, Ae. albopic-
tus is native and ubiquitous throughout Singapore, due
in part to the abundant greenery that lines the streets
and adorns the housing estates.
Despite a low Aedes house index of around 2%, Singapore

continues to experience regular outbreaks [14]. In 2005,
2007 and 2013, Singapore experienced explosive dengue
fever outbreaks that resulted in 14,032, 8287 and 22,170 in-
digenous cases, respectively, with incidence rates of 322.5,

180.6, and 404.9 per 100,000 population [15–17]. All three
outbreaks were associated with the replacement of
predominant DENV serotypes, which was believed to
have played an important role in the escalating num-
ber of cases [15, 18].
Factors that may have contributed to the population’s

sensitivity to outbreaks include: (i) rapid increase in popula-
tion, which grew from 2.1 million in 1970 to 5.4 million by
2013; (ii) rapid urbanization with an extensive transport
network of 164 km of expressway and 199.6 km of mass
rapid transit (MRT) lines across the 720 km2 island; (iii) in-
creased globalization as demonstrated by 26.5 million air
arrivals in 2013, as compared to 1.7 million recorded in
1970; (iv) low herd immunity, especially among younger
generations, due to decades of low local transmission; and
(v) presence of cryptic breeding sites which are difficult to
identify and henceforth implement vector control [19–27].
Some of these developments have undoubtedly favoured
the expansion of Aedes population as well as the frequent
importation of new viruses and rapid dispersal of viruses
within the country, all of which facilitate human, vector
and virus encounters [28–30]. Expansion of Ae. aegypti to
historically ‘non-dengue’ areas in the country has the po-
tential to expose an immunologically naïve human popula-
tion to DENV, increasing the risk of outbreaks.
Vector surveillance, recommended by the World

Health Organization (WHO), is a routine practice in
many dengue endemic countries to provide quantifiable
measure of fluctuations in magnitude of dengue vector
populations [31, 32]. Globally, the most commonly used
indices for vector surveillance are House Index (HI),
Container Index (CI) and Breteau index (BI). In
Singapore, HI has been used for monitoring the Ae.
aegypti population in the community. However, Singa-
pore’s vector control programme has brought the HI
down from about 50% in the 1960s to 0.30% in the
2000s, way below the target levels for HI set by the
WHO [9, 11, 33]. The low Aedes HI has rendered HI in-
sensitive for gauging Ae. aegypti population in the com-
munity and hence, HI is no longer sensitive for dengue
risk assessment. This study therefore aims to introduce a
novel vector index based on routine inspection data,
with higher spatial resolution and better relevance to
spatial dengue transmission risk.

Methods
Data collection and preparation
Georeferenced data on dengue fever cases and Aedes spp.
larval counts from routine surveillance in the main island of
Singapore from 2003 to 2013 were extracted from the Geo-
graphical Information System (GIS) Database of the National
Environment Agency (NEA), Singapore. The daily-updated
database is part of the national vector control programme.
Dengue is a notifiable disease in Singapore. It is mandatory
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for medical practitioners and clinical laboratories to notify
all clinically diagnoses and laboratory-confirmed dengue
cases to the Ministry of Health (MOH), Singapore [34].
The laboratory confirmation of clinical diagnoses is
achieved through either NS1 antigen detection or viral
RNA detection by PCR or IgM detection [35, 36]. The noti-
fication information included demographic data, travel his-
tory, onset of illness, residential and workplace address.
Dengue cases were tagged to the address, either residential
or workplace address, after epidemiological investigation
had been carried out by officers to determine and confirm
the location where the cases acquired dengue. The Aedes
larval surveillance data are derived from daily inspection of
residential and non-residential premises for mosquito
breeding in habitats such as drains, gutters and containers,
conducted by approximately 1000 vector control officers.
These inspections include those scheduled for regular pre-
ventive surveillance, and those conducted in response to
dengue transmission in a location. If mosquito breeding
was discovered or suspected, a georeferenced sample would
be taken and sent to NEA laboratory for species identifica-
tion. The Aedes larvae were identified by trained taxono-
mists using morphological keys [37]. A breeding site was
defined as a positive Ae. aegypti breeding site if the sample
was identified to contain at least one Ae. aegypti larva. We
also obtained data of annual total population, resident
population and residential dwelling units from reports pub-
lished by the Singapore Department of Statistics [20, 38].
As administrative areas of Singapore are of irregular

shapes and varying sizes, we superimposed a 1 × 1 km
grid system on the map of the main island and used
these fixed grid cells as study units to minimize the
normalization required. We choose 1 × 1 km to balance
the need for a relatively large area of each study unit and
a large sample size at the same time, given Singapore’s
size. Grids were categorized into non-residential and
residential based on the land use in 2013 as determined
by where the centroids of grids fall within. After exclud-
ing major industrial and forested areas, 213 residential
grids were included in the analyses.

Definition and estimation of Ae. aegypti Breeding
Percentage (BP)
Aedes aegypti Breeding Percentage (BP) was defined as
the proportion of Ae. aegypti positive breeding sites of
the total number of Aedes spp. positive breeding sites
found (Ae. aegypti and Ae. albopictus) in a defined area
within a defined time period:

BP ¼ ðNo:of Ae:aegypti positive breeding sites=

No:of Aedes spp:positive breeding sitesÞ � 100

BP, expressed as a percentage, assumes the ubiquitous
presence of native Ae. albopictus population in Singapore,

and uses total Aedes breeding for the normalization of field
data in order to cancel out the sampling error from
non-systematic inspection and cryptic breeding sites. Only
positive breeding sites were taken to avoid inclusion of
grids with no data which could arise because the grids have
not been visited or checked thoroughly by the field inspec-
tors. This seeks to address non-systematic operational in-
spection, which tends to bias towards outbreak areas.
To estimate the yearly BP for each grid, we mapped

the location of Aedes breeding sites onto each grid and
extracted the number of Ae. aegypti and/or Ae. albopic-
tus breeding sites found within each grid, for each year
from 2003 to 2013. Due to the fact that breeding data
are the result of non-probability sampling, BP estimated
by percentage of Ae. aegypti breeding among all Aedes
breeding found could incur a large error, especially when
the denominator was small. Here, we set the threshold
of denominator to be ten, after examining the distribu-
tion of the number of Aedes breeding sites found. BP for
grids with at least ten Aedes breeding found in a year
was calculated by definition. For other grids, the small
number of breeding sites gives low confidence, BP were
thus estimated using ordinary Kriging with a spherical
variogram model (Additional file 1: Figure S1). BP in
residential grids were compared graphically year to year
to assess the change in geographical distribution of Ae.
aegypti population over the years. Temporal trend of BP
was assessed by the median BP of each year.

Estimation and analysis of case burden
To estimate yearly dengue case burden for each grid,
dengue fever cases from 2003 to 2013 were plotted
spatially onto the grids. Case burden in residential grids
was plotted as pixel images and compared yearly to as-
sess the change in geographical distribution of dengue
transmission over the years. Temporal trend of case bur-
den was assessed by median case count of each year.
Some analyses involving case burden used the trans-
formed variant of case count to stabilize the variance
across different scales. The transformation used was
f (Y) = log (Y + 1) where Y is the grid case count.

Association between BP and case burden
The spatial relationship between BP and case count was
assessed by Spearman’s correlation between grid BP and
grid case count. The correlation was analyzed separately
for each year to check for consistency and robustness of
the relationship.

Determination of BP thresholds for risk stratification
To use BP in novel dengue areas as a risk flag for pre-
ventive surveillance, we defined case burden as a cat-
egorical variable. For a particular year, a grid was
classified as high dengue burden if it contributed at least
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0.5% of all cases, moderate dengue burden if it contrib-
uted 0.1–0.5%, and low dengue burden if less than 0.1%.
For example, if a grid reported less than 22 cases in
2013, it was labelled as low burden area in 2013. There-
fore, each grid scored 11 class labels of “high burden”,
“moderate burden” or “low burden” during the 11-year
study period. The accuracy of using BP to discriminate
these areas was determined based on the standard values
of area under the ROC curve (AUC): AUC < 0.5
(not discriminative); 0.5 < AUC < 0.7 (less discrim-
inative); 0.7 < AUC < 0.9 (moderately discrimina-
tive); and 0.9 < AUC < 1.0 (highly discriminative).

Alignment between increase in BP and increase human
population and number of housing units
The alignment between increase in BP and increase in
human population and residential dwelling units was
assessed by Spearman’s correlation, in attempt to pro-
vide an explanation for the increased BP.

Data analysis
Data and statistical analyses were conducted using R ver-
sion 3.1.1 [39]. R packages utilized in the study include
sp, gstat, sciplot and pROC [40–43]. All methods used
for analyses are described in respective sections. P-values
of Spearman’s correlation tests were computed via the
asymptotic t-approximation. A significance level of 0.05,
and with Bonferroni correction in the case of multiple
comparisons, was utilized in this study.

Results
In the present study, we used a novel entomological
index, Ae. aegypti BP, which has consistent positive
spatial correlation with localized dengue fever burden to
demonstrate the geographical expansion of Ae. aegypti
in Singapore. This simple index uses field entomological
data that need not be consistently and systematically col-
lected. Analysis using the BP further revealed that the
geographical expansion of Ae. aegypti has contributed to
the recent increase and altered corresponding distribu-
tion of dengue cases in Singapore.

Association between BP and case burden
Every geographical grid was tagged with case count and BP
for each of the 11 years. BP was consistently positively asso-
ciated with case count, though the Spearman’s correlation
coefficient varies across the years, ranging between 0.547–
0.737 (Fig. 1). All correlations were significant (P < 0.0001)
with respect to the significance level of 0.05.

Determination of BP thresholds for risk stratification for
dengue control
Based on the contribution to national burden of dengue,
the grids were stratified into three levels of disease burden

and their average BP were calculated yearly. Through the
11 years, each of the high burden grids (> 0.5% of national
annual cases) was characterized by BP of range 40–60%,
moderate burden grids (0.1–0.5% of national annual cases)
were associated with BP of 20–40%, mostly more than
30%, and low burden grids (< 0.1% of national annual
cases) had BP less than 20% (Fig. 2). As a result, grids with
BP less than 20% were considered “low risk”, BP of 20–
40% as “moderate risk”, and BP above 40% as “high risk”.
Figure 3 shows the ROC curve of using BP to categorize

risk of dengue transmission. For classification of low den-
gue burden versus other categories, the AUC was 0.812
(95% CI: 0.793–0.831), indicating moderately discrimina-
tive capability of BP. Using a low BP as threshold to pre-
dict dengue risk was less sensitive and highly specific,
whereas using high BP, though highly sensitive, resulted in
low specificity. Setting the 20% BP as a threshold to pre-
dict dengue risk resulted in 75.31% specificity and 75.28%
sensitivity. The 20% BP was based on the cut-off between
the low and moderate burden grids. At higher level of 40%
derived from BP of high burden grids, specificity was
71.69% and sensitivity was 83.85%.

Spatial and temporal characteristics of BP
Graphical presentation of BP in 2003 and 2013 (Fig. 4, left
panels) showed that in 2003, Ae. aegypti was present in
moderate and high proportion (BP ≥ 20%), mostly in the
central and eastern part of Singapore. However, by 2013,
grids with BP ≥ 20% were found in the western part and
north corner. Areas in the central and eastern part also
showed higher BP values in 2013. The right panels of Fig. 4
show the corresponding spread of dengue from the central
and eastern part of Singapore to the northern and western
parts. Of significance are areas that had evolved from low
risk to high risk in the last 11 years. These areas include the
Jurong and Choa Chu Kang areas around 2004–2005; Cle-
menti, Bukit Batok and Pasir Ris areas around 2006 and
2007; Queenstown and Central areas during 2008–2012;
and the Upper Thomson area around 2013.
In general, there has been an increase in the percent-

age of geographical grids that show moderate or high
level of BP (Fig. 5). In 19 of the grids, Ae. aegypti was
not found in 2003 (BP = 0%) but was found to have BP
ranging between 5–80% by 2013. This demonstrates the
spatial expansion of Ae. aegypti over the 11-year period.
At the same time, the median grid BP increased from
15.87% in 2003 to 42.47% in 2013 (Fig. 6), indicating a
general increasing trend of BP over time, regardless of
lull or outbreak (2005, 2007 and 2013) years.

Alignment between increase in BP and increase in human
population and number of housing units
Increase in BP corresponds to increase in human popu-
lation and number of residential dwelling units (Fig. 7).
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Fig. 1 Relationship between Breeding Percentage (BP) and case count assessed by Spearman’s rank correlation test. Asterisks indicate statistical significance

Fig. 2 Differences in Breeding Percentage (BP) between low burden, moderate burden and high burden areas. Average BP for low burden (light grey bars),
moderate burden (grey bars) and high burden (dark grey bars) areas are shown with standard error bars
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Fig. 3 Receiver operating characteristics curves (black thick line) of classification of areas as “high-burden”, “moderate burden” and “low burden” by
Breeding Percentage, and the 95% CI (grey shaded area) of sensitivity over a selected set of specificity. a Classification of “high-burden” or “moderate
burden” versus “low burden”. The area under the curve is 0.812 with 95% CI: 0.793–0.831. The sensitivity-specificity combination given by the chosen
threshold 20% is indicated on the curve: sensitivity = 75.28% (95% CI: 73.22–77.22%); specificity = 75.31% (95% CI: 71.89–78.57%). b Classification of “high-
burden” versus “moderate burden” or “low burden”. The area under the curve is 0.840 with 95% CI: 0.824–0.856. The sensitivity-specificity combination
given by the chosen threshold 40% is indicated on the curve: sensitivity = 83.85% (95% CI: 80.55–86.97%); specificity = 71.69% (95% CI: 69.52–73.86%)

Fig. 4 Spatial distribution of Breeding Percentage (BP) and transformed dengue case burden in 2003 and 2013. Left panels: values of BP are
color-coded, with difference shades of green indicating BPs < 20%, yellow shades indicating BPs between 20% and 40%, and orange through
dark red indicating BPs ≥ 40%. Residential grids with BP 0% in 2003 were highlighted in gray and outlined in black in the 2013 map. In 2003,
areas with higher BP were exclusively in the eastern part of the island. By 2013, Ae. aegypti has expanded into the northern and western part of
the island. The spatial expansion of Ae. aegypti is also illustrated by areas that turn from a BP of 0% to having a BP of > 0%. Furthermore, areas
that had relatively higher BPs in 2003 also registered higher levels of BPs in 2013, as visualized by the color gradient. Right panels: transformed
dengue case burden in residential grids in 2003 and 2013 are represented by colors, with green being the least dengue burden and dark red
being the highest burden. Vertical comparisons illustrate the spatial expansion of Ae. aegypti and dengue transmission. Horizontal comparisons
reveal a likely association between BP and dengue transmission
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The annual median BP has a strong significant positive
correlation with total population (Spearman’s correlation:
r(11) = 0.893, P < 0.0001) and the number of residential
dwelling units (Spearman’s correlation: r(11) = 0.875,
P < 0.0001) (Fig. 8).

Discussion
Vector indices are key risk factors in dengue transmis-
sion. Commonly used indices are house index, container
index and Breteau index [1]. Globally these indices have
been used for risk assessment and early warning for den-
gue epidemics [44, 45]. However, there is little solid evi-
dence to quantify the relationship between these indices
and dengue transmission [46]. In Singapore, the House

Index has been used by authorities for dengue risk as-
sessment since 1960s and it has been brought down and
maintained at low levels by NEA’s intensive vector con-
trol programme [14]. In spite of the consistent low HI,
Singapore remains susceptible to dengue outbreaks, sug-
gesting that the low HI is no longer sensitive for risk as-
sessment. It highlights the need for a new vector index
that accounts for the spatial heterogeneity of dengue
transmission risk.
This study introduced a new entomological index, the

Ae. aegypti Breeding Percentage (BP), presented its associ-
ation with case burden, and proposed thresholds for its
applications as a risk indicator for dengue control inter-
ventions. Absolute number of reported cases was used to

Fig. 5 Grids with different range of Breeding Percentage (BP)

Fig. 6 Annual median grid Breeding Percentage (BP) and median grid case count. Median BP increased over time, regardless of lull (2008–2012)
or outbreak years
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measure case burden instead of incidence rate because
control interventions are directly related to case count.
Aedes aegypti BP, reported in the present study was de-

veloped using the existing Aedes breeding data obtained
through the routine vector surveillance programme in
Singapore. As routine larval collection efforts are not uni-
form spatially as well as temporally, using the absolute
data for risk assessment would be biased. The develop-
ment of Ae. aegypti BP takes into consideration the ubi-
quitous presence of Ae. albopictus and normalizes the
data with the total Aedes breeding sites, which comprises
of Ae. aegypti and Ae. albopictus breeding sites. When
compared with the traditional Aedes HI, which is reported
only on a national level, the main strength of BP is its
higher resolution and usefulness for spatial analyses of
dengue transmission. We have shown that on a yearly
basis, areas with higher BP tend to have higher case count
based on historical data. Therefore, BP can be used as a

risk factor in spatial risk mapping of dengue transmission
together with other factors.
The new index has also demonstrated the expansion

of Ae. aegypti into new territories from 2003 to 2013.
The strong correlation between annual median BP and
annual total population and residential dwelling units
suggests the expansion might be a result of rapid
population growth and urbanization. However, more
thorough analysis is needed to pinpoint the causes con-
clusively. These new territories have become highly vul-
nerable to dengue fever outbreaks, probably contributed
by the minimal prior exposure of inhabitants to DENV.
The low level of immunity to DENV has been demon-
strated by our seroprevalence studies [47].
Cases in areas where Ae. aegypti was absent occurred

as isolated cases throughout the years, with no evidence
of temporal and spatial link among these cases. This
could be due to cases acquiring dengue outside of home

Fig. 7 Population and residential dwelling units in Singapore from 2003 to 2013

Fig. 8 Relationship between Median Breeding Percentage (BP) with total population and number of residential dwelling units, assessed by
Spearman’s correlation. Asterisks indicate statistical significance
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and workplace (where cases were tagged to), which is not
unexpected considering the dynamic human movement in
a city. Alternatively, these small number of cases could be
due to the low transmission of Ae. albopictus, which is
recognised as a secondary vector of dengue globally.
Thresholds were derived with respect to Singapore’s

dengue situation and vector population, to ease the ap-
plication of BP in guiding decisions on the ground to al-
locate vector control resources. In areas where Ae.
aegypti is entrenched (BP ≥ 20%), more resources should
be assigned for intensive vector control. In areas where
Ae. aegypti has recently infiltrated (BP < 20%), the focus
could aim at elimination of the vector. In more recent
years, BP at the national level has been incorporated into
a dengue forecast model, which has been useful in predict-
ing dengue trends at least 3 months ahead [48]. BP of each
grid has also been incorporated into a spatial risk map
which is developed annually, to guide prioritization of re-
sources [49]. These are part of a general effort to stratify
risk of dengue temporally and spatially [50].
In view of how chikungunya has adapted to Ae. albopictus,

and the increasing number of reports of Ae. albopictus-dri-
ven dengue outbreaks internationally, the epidemiology
could be dynamic and demands close monitoring to ensure
that any change in vector status is detected [51, 52].

Conclusions
With the disease burden of dengue fever increasing
across the world, a similar approach would be applicable
to other dengue endemic areas, where Ae. albopictus is
prevalent, e.g. most of tropical and sub-tropical Asia.
The Ae. aegypti BP could be recommended as an indica-
tor for decision making in vector control efforts. It can
also be used to monitor the geographical expansion of
Ae. aegypti.

Additional file

Additional file 1: Figure S1. Empirical variogram (circle) and modelled
spherical variogram (line) for the residuals of the Breeding Percentage.
(TIF 245 kb)
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