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Abstract

The rapid rise of the smartphone is mainly due to the availability of mobile ap-

plications (apps) that provide a wide range of functionalities. Statistics from In-

ternational Data Corporation (IDC) has shown that Android is the most popu-

lar smartphone platform over the past few years. Due to the openness and low

threshold of entering the Android app market, it has the largest collection of mo-

bile apps. Unfortunately, it’s popularity also attracts the unwanted attention of

cyber-criminals. McAfee has reported that the number of threats families found

in Google Play has increased by 30% in the year 2017, resulting in more than 4

thousand mobile threat families and variants in their sample database. Over the

past few years, concerns have been raised with respect to the increasing number

of malicious and clone apps infiltrating the Android markets. Android malware

may perform a range of malicious activities e.g., leakage of sensitive information or

encrypt data and lock the user out of the compromised device for ransom. On the

other hand, clone apps are repackaged apps that steal revenue from the original

developer of the popular apps.

Despite the advances in mobile security, the detection of malicious and clone mo-

bile apps is non-trivial and remains an open problem. In order to differentiate

these adversary apps from benign apps, an in-depth understanding of the apps

is required. However, due to the arms race between the adversary apps and the

detection algorithms, the adversary apps are constantly evolving and becoming

more sophisticated. Hence, new and more effective algorithms are imperative. In

this thesis, we address the problem of Android security by presenting new program

analysis and machine learning approaches we have developed for the vetting of

Android apps. The achievements made in this thesis are as follow:

1. We develop a novel approach to detect clone in Android apps by analyzing

runtime user interface (UI) information. We take advantage of the unique mul-

tiple entry points characteristic of Android apps, to collect the UI information

ii



efficiently and avoid the need for the tedious process of having to create multiple

sets of relevant inputs to navigate through the entire app. An inherent advanta-

geous characteristic of our approach is that is it resilient to code obfuscation since

semantics preserving obfuscation techniques do not have any influence on runtime

behaviors. The evaluation of the proposed approach was performed on a set of

real-world Android apps and the results reveal that it can achieve low false posi-

tive rate and false negative rate. We further analyze the results and observe that

our approach is effective in detecting different types of repackaging attacks.

2. Third-party libraries (TPLs) are commonly found in Android apps and various

reports on the privacy risks and security threats that are brought about by them

have surfaced. In addition, there have also been multiple complains of TPLs hin-

dering various program analysis tasks, such as clone detection, static taint analysis,

etc. Understandably, since TPLs are typically used as it is, it may include an abun-

dance of unnecessary code to the host app and may dilute the features and increase

the complexity of the code analysis, thus affecting the accuracy and scalability of

the tasks. A typical and straightforward solution for identifying and excluding the

TPLs is to match the name of the packages in the app to a whitelist which holds a

list of known TPL package names. However, these whitelists are vulnerable against

the commonly employed renaming obfuscation technique and given the fast-paced

ecosystem, it is also difficult for the whitelist to be exhaustive. Hence, we propose

LibSift, a tool which automates the process of identifying TPLs in Android apps.

It identifies TPLs by analyzing the package dependencies of the app allowing it to

be resilient to most of the typical obfuscation techniques.

3. In recent years, several promising Machine Learning (ML) based Android mal-

ware detection approaches that achieve remarkable results have been proposed

in the literature. Most of these approaches are built upon the batch learning

model, where a common assumption of such model is that the underlying prob-

ability distribution of the observed characteristics belonging to the data source

(i.e., malware samples) is stationary. However, apart from the arms race, mobile

apps are constantly evolving due to several factors such as environmental changes

and adding features. These evolutions cause the distribution of the population

to change over time. Moreover, in the real-world use case, the malware detection

models are trained on the existing dataset and used to predict forthcoming samples

that stream in. Consequently, in the face of malware evolution, the detection ac-

curacy of the model in the real-world scenario will degrade over time. We perform
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a systematic study to examine the challenges faced by state-of-the-art ML based

Android malware detection approaches in the presence of concept drift. Further-

more, we propose and evaluate the modification to the approaches that may help

them to overcome their limitations in handling streaming features, samples, and

classes.

4. Traditionally, extensive feature engineering effort is spent to develop a solution

for each of the critical Android program analytics tasks to address the multitude

of problems have plagued the Android ecosystem. Hence, we aim to build holistic

behavioral profiles of Android apps with rich and multi-modal information (e.g.,

incorporating several semantic views of an app such as API calls, system calls, etc.).

Such profiles could be used to address various downstream program analytics tasks

such as malware detection, clone detection, and app recommendation etc. Towards

this goal, we design a data-driven Representation Learning (RL) framework named

apk2vec which incorporates various state-of-the-art RL paradigm such as semi-

supervised, multiview and hash embedding techniques to automatically generate

succinct and versatile representation (aka profile or embedding) for Android apps.

In sum, this thesis proposes three methods and one empirical study with sug-

gestions for Android apps analysis. We address four specific issues that plague

Android security, namely, app clone detection, third-party library detection, mal-

ware detection, and concept drift. We do so through leveraging on techniques such

as program analysis, Machine Learning and Deep Learning.
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Chapter 1

Introduction

The Android Operating System (OS) dominates the worldwide smartphone market

share, holding as much as up to to 85% of the market share [5]. At its peak, the

official Android application (app) market from Google , namely, Google Play, has

hosted up to 3.5 million apps [6]. One of the main reasons for the large amount

of developers to be drawn to Android could be contributed to the ease of creating

an Android app and uploading it to the numerous app markets. A plethora of free

tutorials and tools for developing Android app are widely available online. There

are also multiple libraries (including TPLs) available to ease the developers’ job.

Consequently, the Android market is filled with millions of apps providing a wide

range of functionalities that become an indispensable part of the users’ life. The

users use these apps for their daily communications, such as email, social media,

online banking and online purchases. As a result, smartphones hold a wealth of

private information. For example, a typical smartphone will hold private informa-

tion such as call log, SMS, email, location, browsing history, banking information

etc. The popularity together with the plethora of private information have drawn

the extensive attention of the malicious authors and plagiarists. Recent studies

have shown that privacy leakage are commonly found in Android apps [7–9] and

privacy leakage introduced by TPL are prevalent [10]. Aggravating the situation,

the malicious apps created by the adversaries have been constantly evolving to

increase their propagation rate and to evade detection [11–16]. In sum, the An-

droid app market is plagued with different types of adversarial apps and there is an

imperative need for the development of effective and scalable techniques to detect

them.

1



Chapter 1. Introduction 2

1.1 Motivations and Goals

In particular, based on our observations of the Android ecosystem, we identify the

following problems to be addressed in this thesis:

• P1. Efficient and obfuscation resilient clone detection. App cloning is

a serious threat to the Android ecosystem in multiple ways. Firstly, a poorly

repackaged app may lead to poor app usage experience for the users. In more

severe cases the plagiarist may include malicious payload that may leak the

users private information or even perform operations that will incur costs for

the users. Secondly, app clones may reduce the revenue and reputation of the

developers. Lastly, with the users and developers having negative experience,

the health of the market will be negatively impacted. Therefore, it is critical

to develop an accurate and efficient clone detection approach.

• P2. Automated third-party libraries detection. The presence of TPLs

in Android apps affects the accuracy of static code-based feature app clone

detection, because the same TPL can appear in many different apps and the

TPLs in the original app can be easily replaced in the app clone. Similarly, the

presence of TPLs dilutes the features of static code-based malware detection

and affects the detection result. Besides app clone and malware detections,

TPLs have also been reported to contribute greatly to the overall time and

resource consumption of static code analysis task. Hence, effective third-

party libraries detection is crucial for Android program analytics tasks.

• P3. Machine learning based Android malware detection in face

of concept drift. Machine Learning based Android malware detection ap-

proaches are typically built upon the batch learning model, where a common

assumption of such models is that the underlaying probability distribution

of the observed characteristics belonging to the data source (i.e., malware

samples) is stationary. On the contrary, mobile apps in the real-world are

constantly evolving and these evolutions cause the underlaying distribution

of the population to change overtime. In practice, the malware detection

models are trained on existing dataset and used to predict the forthcoming

samples that stream in. In face of malware evolution, the detection accuracy

of the model in real-world scenario will degrade overtime.
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• P4. Holistic behavior profiles of Android apps. Due to the multiple

issues that plagued the Android app market, numerous program analytics

tasks are required to be performed to address them. Typically, ML algo-

rithms that work on vectorial representations are employed in these tasks.

Therefore, having high quality behavior profiles (representation) of the apps

are of paramount importance in achieving good performance in the afore-

mentioned tasks.

These problems motivate the main work in this thesis. They are non-trivial to

solve as there exist many technical challenges. The challenges for each problem are

listed in the following, respectively.

• C1.1. Obfuscation. Android apps typically employ certain form of obfus-

cation and doing so decrease the performance of static analysis techniques.

• C1.2. Scalability. Most obfuscation techniques are semantic preserving

and do not affect dynamic analysis. However, dynamic analysis suffers from

scalability issues due to the need for the execution of the entire app.

• C2.1. Dynamic ecosystem. Owing to its popularity, the Android ecosys-

tem is very dynamic and a whitelist of TPLs that can be used to identify the

TPLs in an app needs to be updated very rapidly.

• C2.2. Renaming obfuscation. It is common for Android apps to em-

ploy obfuscation technique which renames the packages, classes and methods,

thus, rendering the whitelist ineffective.

• C3.1. Concept drift. In order to stay relevant in face of concept drift,

a malware detection and malware family classification tool should be able

to administer any previously unseen features, samples and malware family.

However, due to the sheer volume of Android apps, it is impractical to fre-

quently retrain the detection model.

• C4.1. Handcrafted features. Recent studies [17–26] have shown that

graph representation is ideally-suited for app profiling. A typical solution

to representing graph as vectors is to use graph kernels which leverage on

graph substructures, such as graphlets, shortest-paths etc. However, this

often leads to building non-smooth, sparse and very high dimensional graph

embeddings, thus yielding suboptimal results.
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• C4.2. Supervised vs unsupervised learning. Fully supervised embed-

ding methods typically require an exceedingly large volume of labeled data to

learn meaningful embeddings and the resulting embeddings are not transfer-

able to other tasks. While unsupervised embedding methods do not exhibit

such limitations, they are unable to leverage on any available labeled data.

• C4.3. Scalability. Alternatives to graph kernels are data driven graph

embedding approaches that provide better generalization capabilities. How-

ever, due to the exceedingly large number of parameters, graph embedding

methods typically have poor memory and time scalability.

• C4.4. Integrating multiple views. Features providing different semantic

views can be extracted from Android apps. Effectively integrating such multi-

variant information while maintaining scalability is challenging, yet critical

in building holistic and versatile embeddings capable of catering to a variety

of tasks.

1.2 Main Work and Contributions

Four main works are conducted to solve the aforementioned problems and tech-

nical challenges as shown in Figure 1.1. First, we propose to detect Android app

clones through analyzing their user interfaces. Secondly, as mentioned in several

studies [30, 39, 51, 67, 72, 75] the use of TPLs have negative impact on Android

program analysis tasks such as clone detection. Therefore, we propose LibSift,

an automated tool that performs TPLs detection based on package dependencies.

Third, we evaluate the performance of state-of-the-art Android malware detection

approaches in the face of concept drift. We also propose solutions to address the

limitations of the approaches. Finally, to avoid the extensive feature engineering

to address each Android program analytics tasks respectively, we propose apk2vec

that builds holistic and task agnostic app behavior profiles that are capable of

catering to various downstream tasks. We elaborate these works as follows:

1. Clone detection through analyzing user interfaces. In recent years,

the repacking of app has become a major concern in the Android ecosystem.

Traditionally, work on software clone detection mainly focuses on code-based
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analysis. However, such methods are vulnerable to advanced obfuscation

techniques which are very common among Android apps. They also face

potential scalability issues, due to the large amount of apps and billions of

opcodes that need to be analyzed when performing app clone detection across

the numerous app markets. To this end, we propose a novel technique of de-

tecting Android application clones based on the analysis of user interface (UI)

information collected at runtime. Doing so provides two main advantages.

Firstly, by leveraging on the multiple entry points feature of Android applica-

tions, the UI information can be collected easily without the need to generate

relevant inputs and execute the entire application. Secondly, our technique

is obfuscation resilient since semantics preserving obfuscation techniques do

not affect runtime behaviors.

Clone Detection

Android Apps

Birthmarks

Malware Detection

State-of-the-art 
Malware Detection Tools

(SOTA MDT)

SOTA MDT with
Proposed Modifications

(Time)

(Accuracy)

(Time)
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APK Semi-supervised
Multi-view
Skipgram

Multi-view 
Dependency 

Graph

APK Profile

apk2vec

TPL Detection

PDG
Decoupled 
Modules

Module
Decoupling

Clone 
Threats

Malware

Threats

TPLs hinder 
program 

analytic tasks

Each program analytic task requires feature engineer, 
this is addressed through apk2vec

Streaming
Apps

Apps’ UI Clone Clusters

Figure 1.1: Overview of the thesis

Contributions. We make the following contributions in this work:

• We propose an novel approach to detect clones in Android app based on

dynamic features obtained from runtime UI information. To the best of

our knowledge, we are the first to leverage on such feature to address

Android app repacking problem.

• We leverage on the unique multiple entry points characteristic of the

Android apps to avoid the non-trivial generation of relevant inputs to

navigate the entire app.

• We evaluate our approach on a set of real-world top popular Android

apps from different categories and across four different Android markets.
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The result reveals that our approach has low false positive and false

negative rates.

• We also evaluate our approach on a collection of clone sets detected by

code analysis based approach. The results show that our approach can

effectively identify various types of repacking attacks.

2. Third-party libraries detection based on dependency graph. Typi-

cally each Android app encompasses several TPLs and there has been increas-

ing concerns on the potential security threats and privacy risks that TPLs

may induce to the host app. Furthermore, several recent studies has consid-

ered excluding the TPLs from their program analysis tasks as the presence

of TPLs may dilute the prominent features and affect their model’s accu-

racy. A majority of these studies employ a whitelist to identify the TPLs

to be excluded from their analysis. However, due to the dynamic ecosystem

the whitelists are often severely incomplete. They are also vulnerable to the

common obfuscation technique which renames the packages in the apps. In

this work, we propose LibSift, a tool which detect TPLs in Android apps

automatically. LibSift detects TPLs by analyzing the package dependen-

cies between the packages within the app, thus, resilient to most common

obfuscations.

Contributions. We make the following contributions in this work:

• We propose a tool to perform automated detection of TPLs in Android

apps based on package dependency graph, instead of assuming that

TPLs will occur frequently in a large number of apps.

• We design and implement a prototype of LibSift, and perform extensive

experiments to evaluate the effectiveness and efficiency of LibSift in

detecting TPLs.

• We compare our approach with two state-of-the-art approaches TPL

detection approaches, namely, LibRadar [2] and whitelist from Li et al.

[3]. We demonstrate on a set of real-world top popular Android apps

that LibSift can detect even not popular TPLs that are not picked out

but the state-of-the-art approaches.

3. Android malware detection in face of concept drift. Most of the

Android malware detection approaches are build upon ML technique that
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is based on the batch learning model, where an important assumption is

that the population distribution is stationary. However, in the real-world use

case, the detection models are first trained on the existing dataset and used to

predict on the forthcoming samples that are constantly evolving. Hence, we

perform a systematic study to examine the challenges faced by state-of-the-

art ML based Android malware detection approaches in presence of concept

drift. Furthermore, in areas where the approaches fail to perform well, we

suggest and empirically evaluate the modifications to the approaches that

may help them to overcome their limitations. To this end, we reimplemented

two state-of-the-art approaches and use them to perform a series of empirical

experiments on a large dataset of over 80K apps that spans from year 2009

to 2016. Our experiment results show that, the impact of malware evolution

in such approaches is significant and requires prompt attention. In addition,

our proposed modifications prove to significantly improve the performance of

the approaches.

Contributions. We make the following contributions in this work:

• We reimplemented two state-of-the-art malware detection approaches

with orthogonal choice in feature sets and use them to demonstrate the

limitations of existing batch learning ML based malware detection and

malware familial classification approaches in the face of concept drift.

• We suggest technique agnostic modifications to existing batch learn-

ing ML based malware detection and malware familial classification

approaches and demonstrate using two such state-of-the-art that the

suggested modifications significantly improve their effectiveness and ef-

ficiency.

4. Building holistic and task agnostic behavior profile of Android apps.

Most Android program analytics approaches including our earlier work men-

tioned above, require extensive feature engineering, targeted at excelling in

the respective task. For a different task, another round of feature engineer-

ing needs to be performed. As aforementioned, Android is plagued with

multiple problems that require immediate attention. Analyst perform differ-

ent program analytic tasks to address each problem. Building compact and

versatile behavior profiles of Android apps by incorporating semantic views

of different modality from the app, such as API sequences, system calls,
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etc., would enhance the capability of the profile to be applicable in various

downstream program analytics tasks such as clone and malware detection,

malware familial clustering and app recommendation. Thus, eliminating the

feature engineering effort necessary for each task. Towards this goal,we design

apk2vec, a Representation Learning (RL) framework which incorporates var-

ious state-of-the-artlearning paradigm to automatically generate a compact

representation (aka profile or embedding) for a given app.

Contributions. We make the following contributions in this work:

• We propose apk2vec, a static analysis based graph embeddings frame-

work, to build task-agnostic profiles for Android apps. To the best of

our knowledge, this is the first app profiling framework that has three

aforementioned unique characteristics.

• We propose a novel variant of the skipgram model which train via view-

specific negative sampling to facilitate integrating multi-variant learning

in a non-linear manner to obtain multi-view embeddings.

• We evaluate apk2vec with a large dataset of real-world apps on various

downstream program analytics tasks and demonstrate that apk2vec can

outperform several state-of-the-art graph RL approaches.

1.3 Thesis Outline

The roadmap for this dissertation is as depicted in Figure 1.2. It presents the se-

quence of our research work and thus reveals our train of thoughts. The conference

and journal publications made as part of this work are also labeled accordingly.

The remaining of the thesis is organized as follows:

In Chapter 2, we present the background and related work on Android security.

In particular, we introduce the preliminaries of the Android architecture, followed

by the status quo of Android clone detection and malware detection. The relevant

ML algorithm and paradigm are also discussed here.

Chapter 3 presents our work on Android app clone detection. We propose to ex-

plicitly start the activities within the app and extract their runtime UI information.

We then convert the UI structure information into feature vectors. To detect the
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Figure 1.2: Roadmap of the thesis

app clones, we apply LSH algorithm on the vectors to find the near neighbours be-

fore applying Hungarian algorithm to find the best match resulting in the highest

overall similarity. We also present the prototype implementation of our approach

and demonstrate its accuracy and scalability. We further examine the ability of

our approach to detect different types of app clone attacks.

In Chapter 4, we present LibSift, a tool to automatically detect TPLs in Android

apps. LibSift detects TPLs based on package dependencies that are resilient to

most common obfuscations. We demonstrate that LibSift can detect even the less

popular libraries that are not detected by two of the state-of-the-art approaches.

In Chapter 5, we present a systematic and empirical study to examine the chal-

lenges faced by state-of-the-art ML based Android malware detection approaches in

presence of concept drift. In addition, we also suggest and empirically evaluate the
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modifications to the approaches that may help them to overcome their limitations

in handling streaming features, samples and classes.

In Chapter 6, we present apk2vec, a semi-supervised Representation Learning (RL)

framework named apk2vec to automatically generate a compact representation (aka

profile or embedding) for a given app. Evaluations with more than 42,000 apps

demonstrate that apk2vecs app profiles could outperform state-of-the-art solutions

in four app analytics tasks namely, malware detection, familial classification, app

clone detection and app recommendation.

In Chapter 7, we conclude the work in the thesis and propose the potential direc-

tions in the future.



Chapter 2

Background and Preliminaries

This chapter provides background on the Android ecosystem and preliminaries on

the defense techniques. In particular, Section 2.1 presents the architecture of the

Android OS. Section 2.2 focuses on the Android security mechanism. Section 2.3

reviews the Android app fundamentals, such as apps development, app components

and inter-component communication. Section 2.4 discusses Android markets, the

main distribution channel of Android apps. Section 2.5 and Section 2.6 provide

an overview of app clone and TPLs and the threats that they have introduced to

the Android ecosystem, respectively. Section 2.7 discusses the defence technique

against adversary Android apps.

2.1 Android Architecture Overview

The Android OS which is built upon the Linux kernel, is an open source software

stack that is designed for mobile touch-enabled devices, such as smartphones or

tablets, which typically have low computational power and limited battery life. As

shown in Figure 2.1, the Android software stack can be generally divided into four

main layers and five sections.

Linux kernel. At the base of the layers is the Linux kernel, which provides a

level of abstraction between the device hardware and the layers above. It contains

the drivers for hardware such as camera, display, WiFi, etc. The Linux kernel also

11
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Figure 2.1: Android software stack. [1]

provides interfaces from the underlying functionalities such as low-level memory

management and multitasking.

Libraries. Above the Linux kernel layer, at the second layer is a set of native

libraries. These libraries are responsible for media playback, browser support and

SQLite database support, etc.

Android runtime. Along with the libraries section, the second layer also contains

the Android runtime section, which consists of the core libraries and Dalvik VM or

Android Runtime. The set of core libraries allows the developers to develop An-

droid apps in the Java programming language. The Dalvik VM is a register based

VM that is optimized for mobile devices as it can provide good performance with

less memory consumption. To improve the runtime performance, from Android

version 5.0, Google introduced Android Runtime as a replacement for Dalvik VM.

The Android Runtime practices Ahead-of-Time (AOT) compilation as contrast to

Dalvik VM Just-in-Time (JIT) compilation. The replacement of Dalvik VM with

Android Runtime is generally a trade-off between runtime performance and more

storage required for installation.

Application framework. The third layer is the application framework which

contains a set of services, in the form of Java classes, that Android app developers

can make use of in their apps.
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Applications. At the top of the stack is the Application layer, where the system

apps and third-party apps reside. These apps use the services provided by the

application framework and run within the Android runtime.

2.2 Android Security Framework

The Android security mechanism which helps to keep the platform and ecosystem

safe is built upon the Linux kernel. Since the release of Android, Google has

consistently issue updates to improve Androids security. In this section, we briefly

highlight the key Android security mechanisms.

Application isolation. The Android security philosophy requires that each An-

droid app runs in a sandbox, isolated from the other apps. That is, in the Android

device, each app runs in its own process, in its own instance of Dalvik Virtual

Machine (VM). Similar to the Linux kernel that Android is built on, when a third-

party app is being installed on the Android device, it is assigned a user ID (UID).

The UIDs are used to isolate the apps. App developers have the option to allow

their apps that are signed with the same key to share the same UID, and thus, run

in the same sandbox. Furthermore, based on the UID, each app is also assigned a

private directory in the file system. Apps sharing the same UID, may access each

other’s files. It is worth noting that, the TPLs that are included in the app also

run in the same process as the host app and have access to the files of the host

app.

Privilege separation. Android follows the Principle of Least Privilege [27], which

means that each app should only be allowed to access the resources that it requires

to complete its task. Hence, in order to achieve privilege separation between the

apps that are installed on the device, Android introduces a permission system.

Android app developers must declare in the manifest, the permissions that are

required for the app to function. Before Android version 6.0 (API level 23), users

are only given the choice to either grant all the permissions requested by the app

to continue the installation process or to abort the installation of the app entirely.

However, from Android version 6.0 or higher, no permission will be granted at

installation time, instead the permission request will be made during runtime when

it is needed. Currently, official Android framework does not support the separation
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privileges between the TPLs and host app, as such, TPLs are granted the same

privileges as the host app.

2.3 Android Application Fundamentals

An Android app is typically a compressed file that is signed with the developer’s

private key before publishing on the Android market. In this section, we review

the fundamental of Android apps, focusing on the app development, app compo-

nents and inter-component communication. Having this knowledge is helpful in

understanding the motivation and technical aspect of our work.

2.3.1 Android Application Development

Java programming language is primarily used to develop Android apps. However,

instead of stopping at being compiled into Java bytecode, Android apps are com-

piled into the Dalvik Executable (DEX) format. This allows the Android apps to

run in the Dalvik VM, which is optimised for mobile devices. The DEX file, along

with all the resources necessary for the app to function, are compressed into an

Android package (apk) archive with a .apk suffix. However, before the app can be

installed on the Android device, the app is required to be digitally signed with a

certificate. Currently, Android does not perform certificate authority verification

and the app can be self-signed. Hence, anyone can develop and publish their An-

droid app. After the app has been signed and published on the Android market,

the apk file can be downloaded by the user and installed on their Android device.

AndroidManifest.xml. One of the most important file in an Android app is its

AndroidManifest.xml. The Android system must be informed of the component

existence in an app before it can be started. In order to do so, the app devel-

oper have to declare the components in the AndroidManifest.xml. Otherwise, the

system is unable to identify the component and cannot execute them [28]. The

AndroidManifest.xml also contains several other important information, such as

package name and permission etc.
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2.3.2 Android Application Components

Android application is made up of several components. Unlike traditional software

program, Android apps possess multiple entry points. Each component can be an

entry point to the app. The four basic types of components that can be found in

Android apps are as follows:

Activity. An activity represents a single screen that displays the UIs for the user

to interact with. An Android app typically contains more than one independent

activity but work together to provide user with a smooth experience. Each activity

is made up of several widgets arranged in a hierarchical structure. For our app

clone detection work in Chapter 3 we focus our attention on analysing the activity

component.

Service. In contrast to the activity component, the service component are typi-

cally used for long running computational intensive task, that is performed in the

background, without the display of any graphic element. A service will continue

to run in the background even when the app is not in the foreground.

Content provider. The content provider component provides an interface for

apps to access a structured set of data. It allows content to be centralized and

multiple different apps can have access to it if permitted.

Broadcast receiver. A broadcast receiver is used to register for broadcast mes-

sages that may be raised by the system or other apps. Once the event occurs, all

the receivers that registered for the broadcast message will be notified.

2.3.3 Inter-Component Communication

The primary mechanism that Android app components use to communicate is

known as intents. They are asynchronous messages that are used by app compo-

nents to make request to other components. There are generally 2 types of intents,

explicit and implicit intents.

Explicit intent. An explicit intent specifies the explicit name of the targeted

component class. They are generally used to invoke components that are within

the app. A typical example will be to start a new activity.
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Implicit intent. On the other hand, an implicit intent does not specify the tar-

geted component class name, instead it indicate a general action to be performed.

When an implicit intent is being created, the Android system will look for the

appropriate component based on its intent filter. The appropriate component may

be from other apps that are installed in the same Android device.

2.4 Android Market

The Android markets are the main distribution channels for Android apps. After

signing their apps with private key, the developers have the options to publish their

apps on the official Android app market, third-party Android app market or even

multiple app markets. The developers are required to pay a small fee to publish

their apps on the official Android app market, whereas most third-party Android

app markets just require the developer to create a free account.

The relaxed Android market and app signing policy together with the range of

tools and tutorials freely available online, result in the increasing number of app

clones we see today. Furthermore, most Android markets do not vet the apps that

were published through them, but instead depend on user feedback to distinguish

between good apps and bad apps. The official Android app market does include

a service known as Bouncer [29], which scans the app market for malicious apps.

However, it is not clear whether Bouncer has the ability to identify app clones

which may or may not be malicious.

2.5 Android Application Clones

In recent years, concerns have been raised among the Android community with

regards to the increasing number of app clones in the Android app markets. Zhou

et al. [30] reported that among the apps in six third-party Android app markets, the

rate of app clones range from 5% to 13%. This is a serious problem as the threats

brought by app clones affect multiple stakeholders in the Android ecosystem. In

this section, we present an overview on app clones, different types of app clones

and threats that were brought by them.
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Android apps are distributed in the form of apk files and the source code of the apps

are generally not available. Despite this, the plagiarists can make use of the several

reverse engineering tools [31–33], that are freely available online to disassemble the

apps without much effort. Typically, the plagiarist may choose to convert the app

code to an intermediate representation (i.e., smali, jimple, jasmine), Java bytecode

or even Java source code. They might then modify the content of the app, which

include but not limited to injecting malicious payloads and redirecting advertising

revenues. Lastly, the plagiarist will sign the app clone using their own private key

and publish it on the Android app market.

2.5.1 Types of Application Clones

The similarity between the code or bytecode fragment of two applications can be

based on the similarity in their code statement or functionality. There are basically

four types of code clones:

Type 1. Identical code fragments except for variations in layout.

Type 2. Syntactically or structurally identical code fragments except for variations

in identifiers, literals, types, layout and comments, in addition to the variations in

Type 1.

Type 3. Copied fragments with further modifications. Statements can be changed,

added or removed in addition to Type 2.

Type 4. Code fragments that perform the same computation or functionality but

implemented through different syntactic variants.

Furthermore, based on the modifications of the clones, the authors of an Android

app clone detection study [34] suggested that we can generally classify the app

clone attacks into three categories:

Lazy attack. Lazy attacks consist of modifications that are simpler and does not

change the functionality of the app. An example of a lazy attack modification is

to replace the advertisement library. Simple automated code obfuscation may also

be applied to avoid detection.
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Amateur attack. Amateur attacks consist of more advanced modifications that

require more knowledge and effort from the plagiarist. For example, we have ob-

served that the plagiarist may modify the TPLs used in the original app. Instances

of such modifications are such as the addition of social media sharing function to

the original function of the app and the change of the advertising library to redi-

rect the revenue to the plagiarists own account. Automated or more advanced

obfuscation techniques may also be applied to avoid detection.

Malware. The last form of attack is whereby the plagiarist injects malicious

payload into the original functionality of the app. The malicious payload may

secretly leak the users private data or perform operations that will incur cost for

the user. In this case, the effort and knowledge required is higher or as much as

performing an amateur attack.

2.6 Third-party Libraries in Android Applications

Code reuse is a common practice in software development. It allows software de-

velopers to leverage on pre-written code and use the available functions without

writing the code. This practice simplifies the programming task and helps the

developers to be more productive as they can spend more time and effort to fo-

cus on solving the unique part of their software. In today’s competitive market,

Android app developers typically use several TPLs to provide multiple useful fea-

tures in their apps without having to spend long hours implementing it themselves.

However, despite all the advantages of using TPLs, there are also several threats

that come with it. Furthermore, these threats cannot be fully addressed without

knowing the cause of the threat and this cannot be achieved without an effective

TPLs detection tool. In this section, we briefly discuss some of these threats that

motivates our study on the detection of TPLs in Android apps.

Security and privacy threats. Firstly, the TPLs enjoy the same privileges

that was granted to the host app. It allows the TPLs to successfully request for

additional permissions granted to the host app but are not necessary for the TPLs

to complete their intended tasks. This violates the Principle of Least Privilege [27].

Secondly, TPLs are assigned the same internal storage space as the host, allowing

the TPLs to access any sensitive information stored by the host app. This may
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lead to the leakage of private information. Lastly, TPLs may introduce security

vulnerabilities and bugs in the host app. As with any other software program, the

TPLs may contain bugs and vulnerabilities and these program flaws are passed to

the host app that uses such TPLs. Several existing literatures has reported that

TPLs are responsible for such problems [35–37].

Program analysis. TPLs in Android apps are also known to hinder several

program analysis tasks that are performed on the Android apps. Firstly, TPLs

in Android apps have significant impact on the accuracy of Android app clone

detection [38]. This is because, TPLs in Android apps can be easily manipulated

and plagiarists are motivated to do so to evade detection or for financial gain (i.e.,

replace advertisement libraries). Secondly, in some analysis tasks a significant

amount of time is spent analysing irrelevant code due to the use of TPLs as it

typically contribute to large portion of the app code. A recent study has reported

that TPLs generally make up 60% of the app code [39] and there are reports that

the analysis of some app cannot be completed within a stipulated timing [40] or

ran out of memory [41]. Lastly, the presence of TPLs may dilute the features that

are used in malware detection. Consequently, it blurred the contrast between the

benign and malicious samples and thus reducing the accuracy of the detection.

2.7 Analysis Paradigm for Android Defence

Numerous defense techniques have been proposed for Android security. These tech-

niques are based on different analysis paradigms, that can generally be classified

into two types, namely, static and dynamic analysis.

Static Analysis. The static analysis techniques are performed without executing

the program. This form of analysis typically achieves better code coverage and

scalability over dynamic analysis. When the source code is not available, the anal-

ysis is performed on the bytecode obtained through reverse engineering. However,

the accuracy of such analysis is limited when obfuscation, dynamic code loading or

reflection exist. Static analysis when performed on Android apps typically involves

the extraction of features such as API sequences, permissions, instructions, control

flows and data flows. The majority of the Android defense techniques, such as
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clone detection [19, 39, 42] and malware detection [20, 21, 43–45], are based on

static analysis.

Dynamic Analysis. Dynamic analysis on the other hand, executes the program

under analysis to obtain the necessary data for performing the analysis. It typically

collects the execution traces or tracks the flow of sensitive information for analy-

sis. Dynamic analysis counteracts the limitations of static analysis, but has poor

scalability and code coverage. Dynamic analysis based Android defense technique

are for example, TaintDroid [8] and CrowdDroid [46].



Chapter 3

Detecting Clones in Android

Applications through Analyzing

User Interfaces

3.1 Introduction

The Android platform’s popularity together with the ease of repackaging Android

apps draws the interest of plagiarists and malware writers. Eventhough the source

code of published Android apps are usually unavailable, it is straightforward to

reverse engineer Android apps due to the availability of reverse engineering tools

such as apktool[47], dex2jar[31] and Dare[48]. With the help of these tools, the

plagiarists can easily repackage any apk file downloaded from any Android market

by first disassembling it then modify its content before repackaging and signing it

as their own app. This repackaging attack is also commonly known as cloning.

The presences of repackaged apps bring about several disadvantages and they are

growing in numbers. A repackaged app which redirects advertisement revenues or

contains malicious code fragments could potentially cause the legitimate developers

to lose their revenues and reputations. A recent study by Gibler et al. [49] reported

that assuming the users who downloaded the clones would have downloaded the

original app instead, the legitimate developer could lose about 10% of the user base

to the clones. Zhou et al. [50] found that 86% of the malware samples are clones

of the legitimate apps. In addition to the original app market, Google Play, there

21
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are a plethora third-party Android markets available for the developers, including

the plagiarists, to upload their apps. Most of these third-party Android markets

do not ensure for the quality of the apps that they host. A study by Zhou et al.

[30] found that out of six third-party markets, 5-13% of the apps hosted are clones.

Given the current Android market growth rate, we envision that these figures are

likely to increase further.

Based on the above-mentioned it is clear that app cloning is a severe problem that

needs to be addressed promptly. It not only affects the users and the developers,

it also destroy the health of the Android app market.

Existing literature on repackaged app detections are typically based on static code

analysis [19, 30, 51]. However, such approaches may posses several limitations.

For instance, the common practice of code reuse and the usage of the advanced

obfuscation techniques may have adversarial effects on such approaches [52]. Zhou

et al. [50] reported that malware writers tend to employ obfuscation to avoid

detection. Furthermore, since source code is generally not available, the analysis of

app is usually conducted on opcodes. A study [53] on 30,000 Android apps shows

that the apps with median size of 754KB have 20,555 median opcodes. With the

need for analysis to be conducted across multiple markets, the number of opcodes

that need to be analyzed would increase greatly, resulting in billions of opcodes to

be analyzed [19].

In this chapter, we propose a novel approach for cross-market Android app clone

detection based on robust dynamic software birthmarks. These birthmarks are

basically a set of features which uniquely identify each of the apps. They are

generated by leveraging on the view hierarchy information of the user interface

(UI). The view hierarchy can be extracted in XML format when the activity is

in the foreground of the system (displayed on the screen) where user can interact

with it. The intuition behind our approach is based on the following observations:

• Obfuscation techniques that preserve semantics do not affect runtime behav-

iors. Therefore, dynamic software birthmarks have a much better obfuscation

resistance compared to static software birthmarks.

• The plagiarists would want the UI design (i.e., look and feel) of the clone to

resemble that of the original app so as to leverage on the popularity of the
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original app. Furthermore, it may be easy to modify the position and size

of the UI, but modifying the functionality of the UI requires more effort and

understanding of the app code. Thus, app clones would likely have UIs which

resembles the original apps’ UIs.

• Differing from traditional software, Android apps have a unique feature of

having multiple entry points. We can leverage on this feature to access and

extract information from different components of the app directly.

Our approach provides an alternative to the traditional code-based static analysis

detection approaches and does not inherit all disadvantages of dynamic analysis

approaches. The main advantages of the proposed approach are as follows:

• Obfuscation resilient. Our approach is resilient to code obfuscation tech-

niques, since we use dynamic UI information as features. It is obtained

during runtime, thus, unaffected by semantics preserving code obfuscation

techniques.

• No input generation required. Despite the approach being based on

dynamic analysis, we leverage on the multiple entry points characteristic of

Android apps to avoid having to generate inputs to navigate through the

complex UI, which is a process that is hard to automate. More specifically,

we extract a list of activities from the apk , and start each of them explicitly

to obtain their runtime UI information.

Contributions. We make the following contributions in this chapter:

• We propose an approach to detect Android application clones based on the

birthmarks generated from runtime UI information. To the best of our knowl-

edge, we are the first to use runtime UI birthmarks for Android app clone

detection.

• By leveraging on the multiple entry points characteristic of the Android sys-

tem, our approach does not require the generation of relevant inputs for

execution of the entire app.
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• We evaluate our approach on a set of real-world data collected from four

different Android markets. Experimental results show that our approach has

low false positive and false negative rates.

• We also evaluate the effectiveness of our approach on a collection of clone set

data from another research group. The results show that our approach can

effectively detect different types of clone attacks.

3.2 Android User Interface

The activity component of an app contains UI components that are structured as

a hierarchy of views (e.g., Button, CheckBox, TextView) and view groups (e.g.,

FrameLayout, LinearLayout, RelativeLayout). Each of these UI components is

tasked to manage a particular rectangular space within the activity’s window. A

view group provides a layout of the interface for its child UI components. Therefore,

it can be a parent of multiple views and view groups [54].

3.2.1 UI Information Extraction

To extract UI information for analysis, we leverage on a tool in the Android SDK

known as “uiautomator”. It is a testing framework that allows the developers to

test the UI of their apps efficiently [55]. The tool provides a function which allows

the view hierarchy of the current activity to be extracted as an XML file. Figure 3.1

shows an example of an activity’s screenshot taken from an app and part of the

corresponding XML file obtained via the uiautomator tool.

The extracted XML file contains runtime information on all view objects in the

activity. Each view and view group is represented as a node in the XML. In

addition, each node has the exact same seventeen distinct attributes with different

possible values. However, if the uiautomator does not have access to a particular

node, then the node will have an additional NAF attribute.
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-<node index="1" text="" resource-id="android:id/content" class="android.widget.FrameLayout" 
package="com.langlearner.deviceid" content-desc="" checkable="false" checked="false" clickable="false" 
enabled="true" focusable="false" focused="false" scrollable="false" long-clickable="false" password="false" 
selected="false" bounds="[0,106][720,1184]">

-<node index="0" text="" resource-id="" class="android.widget.LinearLayout" 
package="com.langlearner.deviceid" content-desc="" checkable="false" checked="false" clickable="false" 
enabled="true" focusable="false" focused="false" scrollable="false" long-clickable="false" password="false" 
selected="false" bounds="[0,106][720,1184]">

-<node index="0" text="79e282c78b88011b" resource-id="com.langlearner.deviceid:id/textView1" 
class="android.widget.TextView" package="com.langlearner.deviceid" content-desc="" 
checkable="false" checked="false" clickable="false" enabled="true" focusable="false" focused="false" 
scrollable="false" long-clickable="false" password="false" selected="false" bounds="[0,106][720,288]" 
/>

-<node index="1" text="Send" resource-id="com.langlearner.deviceid:id/btnSend" 
class="android.widget.Button" package="com.langlearner.deviceid" content-desc="" checkable="false" 
checked="false" clickable="true" enabled="true" focusable="true" focused="false" scrollable="false" 
long-clickable="false" password="false" selected="false" bounds="[0,288][720,396]" />

Figure 3.1: Screenshot of an activity with partial corresponding XML

3.3 Methodology

An overview of our proposed approach is presented in Figure 3.2. Firstly, for a

given set of apks, we install them on an Android emulator and extract the names

of the activities. We then execute them and use uiautomator to gather their UI in-

formation in XML format. Secondly, the gathered information are passed through

two filters to exclude unnecessary information from the XML files and the remain-

ing information are used to generate birthmarks. Thirdly, we identify the near

neighbors of the activities based on locality-sensitive hashing (LSH). If the near

neighbor contains more than one activity from another app, we apply the Hun-

garian algorithm to find the pairs of activities that results in highest similarity.

Lastly, we cluster the apps into groups of clone sets. We describe the details of

each process in the following subsections.

3.3.1 Data Extraction

An Android app consists of multiple components. Each of these components can

act as an entry point in which the system can invoke to access different functions of

the app. Leveraging on said feature we use explicit intent to execute the activities

in the apps. In this case, we can avoid having to generate complex sequences

of inputs for the execution of each path in the app’s control flow graph (CFG).

However, a limitation of such method is that, in some cases, the components might

not be actual entry points or may not be independent. These components cannot

be accessed directly by using explicit intents.
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Figure 3.2: Overview of our clone detection approach

Nevertheless, the inaccessible components in the original app also highly likely to

be inaccessible in the clone. Thus, it may not affect the similarity between this

pair of apps, or at least not significantly.

Despite the risk of information lost when activities are unable to be executed using

explicit intents, the advantages of eliminating the effort of generating inputs for

the execution of the entire app greatly outweighs the disadvantages. The data

extraction process is automated with a script in the Java programming language.

In addition, we employ Android Debug Bridge (adb) and API libraries from the

Android SDK [56] to interact with the apk files and Android virtual device. The

details of the extraction process can be broken down into two main steps:

1. Extract activity names. It is necessary for the activities in the app to be

declared in the AndroidManifest.xml. Otherwise, the Android system will

not see the activities and is unable to execute them [28]. For each app, we

extract the fully qualified class names of the activities and use them to start

the activities explicitly. The activities in an app can be divided into two main

groups, the apps activities and third-party libraries activities. Apps activities

refer to the set of activities that are implemented by the app’s developer and

are unique to the app. On the other hand, TPLs activities refers to the set

of activities that are included by TPLs. In this study, we do not consider

TPLs activities, as they can be easily replaced or removed. For example, the

advertisement libraries that are commonly included in various apps typically
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have advertising activities and replacing the advertisement library in the app

will also cause a change in the activities.

2. Obtain XML file. In order to extract the UI information, the downloaded

apks first have to be installed on an Android environment to allow the UI to

be rendered. For this purpose, we use an Android emulator created from the

Android virtual device (AVD) Manager. We use adb commands to install the

app and use explicit intents to start the activities with their fully qualified

class names. When the activity is started, we use uiautomator to dump the

view hierarchy into an XML file. Thereafter, we stop the current activity and

repeat the process until all the activities have been exhausted.

3.3.2 Birthmark Generation

Software birthmark is a unique characteristic that the software possesses and serves

as its identity. Software birthmark can be further classified as static birthmark or

dynamic birthmark. In this work, we extract the dynamic software birthmark of

the app and use it for clone detection.

More specifically, we parse the XMLs obtained from the previous process to obtain

birthmark for each activity in the apps. As aforementioned, each node in the XML

has the exact same 17 distinct attributes with different possible values. One of the

most important attribute is the “class” attribute, since its value denotes the type

of view (e.g., Button, TextView, etc.) that represents the particular node. Each

birthmark is a vector where each element in the vector represents the frequency

count of a unique combination of the view class, selected attribute and value of

the selected attribute. If all 17 attributes were used to generate the birthmarks,

each vector would contain a large amount of elements. However, we observed that

the attributes are not equally informative for clone detection. Therefore, improve

accuracy and reduce computations, we apply two filters to exclude the unnecessary

information.

Filter 1 (F1). Some attributes of the view are not informative for clone detec-

tions. Instead, they introduce noise into the birthmarks and decrease our detection

accuracy. There are also attributes with string type values that can be easily ma-

nipulated and costly to compare. We analyze these attributes as follows:
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• The “index” attribute simply represents the position of the node in the view

hierarchy. The positions can be easily switched within or even out of the view

group. By doing so, it would result in a different index value being assigned

to the node.

• The “text” attribute represents the text that is displayed on screen. Chang-

ing the strings.xml file that can be found in the resource folder allows easy

manipulation of such text. For example, the plagiarists can change the text

from ‘username’ to ‘login id’ or from ‘email’ to ‘E-mail’.

• The value of the “resource-id” attribute may be empty when no resource is

required for that particular view. There are two ways to access a resource,

in code or in XML [57]. In any case, it can be easily modified at all places

where the resource-id is expected.

• The “package” attributes represent the package name of the app. It is com-

mon for plagiarists to modify the package name to avoid detections. Another

reason to modify the package name could be that some Android markets do

not allow two apps with the same package name to be hosted at the same

time on their market.

• The “content-desc” attribute is similar to the text attribute. Modifying the

strings.xml can also easily change it.

• The “bounds” attribute represents the position and the area of the rectan-

gular space controlled by the views and view groups. This can also be easily

manipulated by modifying the layout of the corresponding XML found in the

layout folder.

In summary, to reduce the amount of computations, F1 excludes the following

attributes from the birthmark: “package”, “index”, “bounds”, “text”, “resource-

id” and “content-desc”. The rest of the attributes represent either the state or the

functionality of the view and will be addressed in the following.

Filter 2 (F2). Firstly, attributes that represent the state of the views are as fol-

lows: “checked”, “focused” and “selected”. Secondly, examples of attributes that

represent the functionality are as follows: “clickable”, “checkable”, and “scrol-

lable”. The nature of certain view class is such that the value of certain attributes
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in the particular class will never change. For instance, a node with Button class

will never have the value of the password attribute equals to true. Such attributes

do not provide any useful information for the app clone detection. Therefore, to

further reduce the amount of computations, F2 excludes these attributes that do

not provide any information gain for the generation of our birthmarks.

Consequently, the software birthmark for an app is the count vectorization of the

remaining view and attribute pairs. In other words, elements in the software birth-

mark vector are for example, counts of clickable Button, counts of password type

TextView, etc.

3.3.3 Similarity between Applications

From the previous process, we have a set of unordered birthmarks generated from

multiple sets of unordered activities. In this process, we evaluate the similarities

between apps based on those birthmarks. As mentioned above, the number of apps

to be analyzed is large. Consequently, the intuitive pairwise comparison of all apps

across the numerous app markets is almost impractical. To design an effective and

efficient alternative, we are faced with two main challenges:

Challenge 1 (C1). Due to the large number of apps across multiple Android

markets, we need a scalable and accurate method to compare the apps similarity.

We overcome C1 by using the LSH algorithm. LSH is a primitive algorithm fre-

quently employed in high dimension data processing for solving approximate or

exact near neighbor problems. In our approach, we cast the similarity comparison

of one vector to another as a near neighbor problem. For this purpose, we use

the E2LSH [58] tool. The E2LSH tool’s algorithm is based on the LSH algorithm

presented by Datar et al. [59]. The tool solves the following problem:

Given a set of points P ⊂ Rd and a radius ρ > 0, for a query point q, find all points

p ∈ P with a probability of at least 1− δ such that ‖q − p‖2 ≥ ρ, where ‖q − p‖2 is

the Euclidean distance between point q and point p.

We use the E2LSH tool to determine the near neighbor activities within a certain

radius for each activity. The radius is calculated based on the Euclidean distance

between the two vectors. Instead of using theoretical formulas the E2LSH tool
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empirically estimates and optimizes parameters based on P . This is because theo-

retical formulas focus on worst-case point sets, thus less suitable for real datasets.

It was mentioned in the E2LSH user manual that since the parameters are esti-

mated, it might not be optimal in all cases. However, in our case we found that the

estimated parameters provide the best result. Therefore, we keep the estimated

parameters. Note that by varying the radius we can vary the trade-off between

the false positive and false negative rates of our approach. Radius is a threshold

that is set based on the desired acceptance of the difference between the UIs of

the activities. However, it should also be balanced against the number of false

positives. Based on the typical distance of corresponding activity from clones, we

found radius, ρ = 6.5 to be a reliable value in the detection of app clones.

Challenge 2 (C2). Since the sets of activities are unordered and we do not

know which activity from app A should be compared with which activity of app

B. Furthermore, each activity from one app should only be compared to one other

activity from the other app. To ensure that the similarities between the apps are

found, we must compare the activities in a way that results in the highest similarity

scores. For two apps that are similar (as in app clones), their true similarity index

can only be found if the activities are correctly compared with the corresponding

activities in the other app. A wrong match in the comparison of activities will

result in low similarity, despite the fact that the apps are similar. On the other

hand, if the apps are independently developed, their highest similarity score will

still be low. Note that after matching of near neighbor (solution to C1), C2 is yet to

be resolved in some cases. For example, app A has two activities, A1 and A2. App

B is a clone of app A, with 2 activities as well, where B1 is similar to A1 and B2

is similar to A2. If A1 is similar to A2, then the near neighbor of A1 will possibly

include B1 and B2. This is known as assignment problem, a fundamental problem

in the field of optimization or operation research in mathematics. Notably, this is

not a balanced assignment problem. Firstly, when the pair of apps has a different

number of activities the problem becomes unbalanced. Secondly, not all activities

from one app will be in the near neighbor of another app. In this case, there will

be invalid assignments.

To overcome C2, we employ the Hungarian algorithm [60] that is frequently used

to solve assignment problems such as finding the optimal minimum match. In

our case, we employ the Hungarian algorithm to identify the optimal pairs of
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most similar screens between 2 apps such that the overall Euclidean distance is

minimized. The Hungarian algorithm is based on the following principle: if a

constant is added to or subtracted from every element on any row or column of

the cost matrix for a given assignment problem, then the optimal solution for the

resulting cost matrix will have the same optimal solution as the original cost matrix.

To employ the Hungarian algorithm for each pair of apps with the assignment

problem, we first construct the cost matrix for the app pairs, where the cost is

Euclidean distance for each activities pair between the apps. Secondly, when the

total number of activities for the apps in the app pair differs, we pad the matrix

dummy rows and/or columns with zero values to make the cost matrix a square

matrix. Lastly, if there exist invalid assignments, such as when the pair of activities

between the apps are not near neighbors, we assign these pairs with a large positive

cost value.

Finally, after overcoming C1 and C2, we compute the similarity index (SI) between

each pair of potential clones. The SI is computed based on the ratio between

the number of similar activities matched and the maximum number of activities

between the pair:

SI =
sA ∩ sB

max (sA, sB)
(3.1)

In summary, to compute similarities, we first use E2LSH to find the near neighbors

within a fixed radius for all activities. Then we apply the Hungarian algorithm to

find the pairs of activities within the nearest neighbor that will result in the highest

similarity score. Lastly, we compute similarity index based on Equation (3.1).

3.3.4 Clone Clustering

By clustering the apps into groups of clone sets we can determine how the clones

are distributed across the Android markets. Furthermore, the clone sets can be

used for further analysis of the relationships between the clones and to understand

the behavior of the plagiarists. If the SI between two apps are above or equal to

the pre-defined threshold (i.e., SI ≥ σ) then they will be considered as clones. The

clone set clustering is based on the following algorithm: The output is a clustering

S for the apps, in which all apps in a cluster are with similarity index SI greater
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than or equal to σ. Each clone set will contain at least two apps. σ can be set

based on the desired number of false positive versus false negative ratio. Generally,

as the value of σ increases, it would decrease the number of apps in a set and

increase the probability of incurring false negatives. On the other hand, as the

value of σ decreases, the number of apps in the set and the probability of incurring

false positives would increase. We empirically found that the similarity threshold,

σ = 0.76 is a reliable value in Android app clone detection. Figure 3.3 shows

a distribution of the number of false positives and false negatives with different

thresholds.
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Figure 3.3: Number of false positive and false negative with various similarity
indexes

3.4 Evaluation

We implemented a prototype of our approach in Java programming language and

shell script. The experiments are conducted on Linux with 3.2GHz Intel Xeon CPU

and 8 GB of RAM.

3.4.1 Dataset

In Google Play, nearly 85% of the apps are free apps (requires no cost to download)

[61]. Similar trend is observed in the third-party markets, where the proportion of

free apps is significantly larger compared to the paid apps. Therefore, we limit our
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Table 3.1: Number of apps from each market

Market Number of apps from each market
Google Play 105

Anruan 100
Appsapk 167
Pandaapp 149

dataset to only free apps. The dataset was collected from Google Play and three

other different third-party Android markets namely, Anruan [62], Appsapk [63] and

Pandaapp [64]. The apps in different markets are usually categorized differently

and we believe that from the perspective of the plagiarists, popular apps have

more repackaging values. Therefore, from each market we downloaded their top

free popular apps. The number of apps from each market is presented in Table 3.1.

To evaluate the accuracy of our model, we would need a set of benchmark apps

that are labeled accordingly. Therefore, we manually checked the set of real world

apps, and labeled them as clones or unique, accordingly. With a dataset of 521

apps we have 135,460 pairs of apps. Manually comparing the 135,460 pairs of

apps pairwise in terms of similarity in UI and functionality is a tedious and time

consuming process. Therefore, we follow a two-phase process in which we first

perform a coarse gain analysis to group apps with similar main functionality into

the same category before performing fine grain analysis to identify clones within

the same category. More specifically, the steps we took to label the apps are as

follows:

• Categorization. To minimize the pairs of comparisons, we first group the

apps into categories based on their main functionality. We manually installed

and launched each app to briefly grasp an idea of the apps main functionality.

Next, we categorize each app to a category based on what we observed. To

reduce the number of apps in each category, the categories we chose are more

specific. For example, for an app that has calculator as main functionality,

instead of a general category such as education we assign it under the category

named calculator.

• Clones within category. In this step, from the apps within the same

category we look for clones from two aspects: 1) We manually navigated

through the apps to check for similarities in the functionalities among apps.
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2) Using apktool, we disassembled the apk to check for the similarities in

their bytecode and resources. Apktool is able to decode the apps resources

back to nearly its original form. If the apps are similar in both aspects, we

include them in the same clone set. At the end of this process, we found 14

sets of clones with 33 apps in total.

3.4.2 False Positive

To measure the false positive rate (FPR), we execute our prototype implementation

on the same dataset which we manually validated for clones. Any apps that were

detected as clone by our approach, but not labeled as the clone is considered to

be false positive. With radius ρ = 6.5 and threshold σ = 0.76, we found 15 sets

of clones with 35 apps in total. Out of these 15 sets of clones, a clone set of 2

apps is found to be false positive, the remaining 14 sets were correctly detected.

Therefore, with radius ρ = 6.5 and threshold σ = 0.76, our false positive rate, FPR

= 0.4%.

We further examine the two false positive apps and found that both apps consist

of only two activities each and each activity only has a single view element. The

number of clone apps found from each market is shown in Table 3.2. Figure 3.4

shows the distribution of the similarity index among the apps pairs.
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Figure 3.4: Histogram of detected application pairs similarity index
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Table 3.2: Number of apps detected as clone

Android App Markets App counts % relative to market (%)
Google Play 8 7.6

Anruan 8 8
Appsapk 7 4.8
Pandaapp 12 7.1

3.4.3 False Negative

Any apps that are labeled as clones from our manual inspection, but not detected

by our approach are considered to be false negatives. As aforementioned, our ap-

proach detected all the clone sets that were manually validated. Since our approach

detected all app clones, our approach does not have any false negative. Therefore,

with radius ρ = 6.5 and threshold σ = 0.76, our false negative rate, FNR = 0.0%.

3.4.4 Efficiency

We evaluate the efficiency of our approach from two aspects. The first aspect

concerns the efficiency of our approach to perform feature extraction, which is

the time needed to obtain the UI hierarchy dumps from apks. The second aspect

concerns the efficiency of our algorithm, which is the time needed to detect clone

sets given the XML of UI hierarchy dumps.

The amount of time necessary for the extraction of the XML is proportional to the

number of activities in the app. For the dataset of 521 apps there are a total of

approximately 16,000 activities. Figure 3.5 presents the relationship between the

number of activities and the time taken to obtain the XML from a single Android

emulator. In Figure 3.5, we can see that the time needed increase linearly with

increasing number of activities. On average it takes less than 2 seconds per activity

to dump its UI hierarchy. Figure 3.6 presents a histogram of the number of activity

components within the apps in logarithmic scale. For better presentation we split

the activity counts into bins of 50. In Figure 3.6, it is clear that a majority of the

apps contain less than 50 activities.

After applying the filter F1, we are left with 10 attributes from each node in

the XML for birthmark generation. After applying the Filter F2, the number of

elements in the birthmark vectors is reduced by nearly 40%. For the dataset of
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521 apps, the time from birthmarks generation to clone sets output takes about 55

seconds.

3.4.5 Comparison with Existing Approach

In this section, we evaluate our prototype implementation on a dataset of clone

samples provided by a research group [19]. The dataset includes 259 apps which

are divided into 99 clone sets as detected by their algorithm, with each clone set

consisting of two or more apps. Based on this dataset, we evaluate the ability of

our approach in detecting different types of clones. In addition, we also measured

the false negative rate of our approach on this dataset.

One of their clone sets contains three service apps. These non-typical apps are not

within our scope because unlike typical Android apps, these apps execute services
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in the background and do not require UI for user interactions. With radius ρ = 6.5

and threshold σ = 0.76, we detected 96 clone sets and some of which are not

identical to clone sets they have detected. We manually investigated all cases

where our clone sets do not coincide with their clone sets.

Firstly, apps in two of their clone sets were divided into four different clone sets by

our approach. When we check the apps in these four clone sets, we found that the

apps within each clone set were indeed more similar. There were some similarities

between these apps, but we do not perceive them as clones as their functionalities

are different. Secondly, we found three sets of clones that were falsely included

in their clone sets. The apps in each of these three sets were signed by the same

developer key but with different functionalities. We believe that for these apps,

the high similarity scores resulting from code base detection are due to developers

reusing most of their codes in their other apps. Lastly, another mismatch we have

is because both apps in the set consist of only a few activities and some activities

are not similar. The differences in activities between these two apps are due to

different third party libraries. The SI between these two apps is 66.6%. This shows

that our approach is able to detect their similar activities. For this dataset, with

radius ρ = 6.5 and threshold σ = 0.76, our false negative rate, FNR = 0.8%.

3.5 Discussion

3.5.1 Accuracy and Efficiency

In Section 2.5, we have discussed three categories of repackaging attacks: lazy

attack, amateur attack and malware attack. From the above experiments, we

further analyze the types of clones detected and evaluate the ability of our approach

to detect each category of the repacking attack. Of all the clone sets we detected,

we found 14 clone sets with at least a pair of apps belonging to amateur attacks.

For example, we found clones with different social media functions which partially

affects the functionalities and UIs of the app. In addition, we also found some apps

that are translated and signed with a different developer key. Further investigation

is required to determine whether it is an actual clone case or a legal translation.

All other apps in the remaining clone sets belong to lazy attacks.
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To determine whether the apps are malware, we upload them to VirusTotal [65] for

scanning. VirusTotal is a free online service that allows user to upload a suspicious

file for analyzing to identify malware. About 67% of the clones detected from

both experiments are reported as malware by at least one of the scanners from

VirusTotal. Most of the malware are adware, Trojan horses and there are also a

number of spyware. Note that malware attack can, at the same time, be classified

as lazy attack or amateur attack. In other words, a lazy attack or an amateur

attack with malicious payload attached will also be classified as a malware attack.

In our detected clone sets, most of the malware attacks are primarily classified as

lazy attacks.

In the following, we discuss the effectiveness of our approach to detect the attack

in each of the repacking categories:

Lazy attack. In lazy attack the plagiarist makes only simple changes to the apps.

Such an attack has little or no impact on the views in the activities. Therefore,

our approach can effectively detect lazy attacks.

Amateur attack. An amateur attack requires more effort and knowledge from the

plagiarist. They employ automatic code obfuscation and also make small changes

to the functionality of the app. Code obfuscation will not affect the UIs of the

activities. The small changes in the functionality of the app may or may not affect

the UIs in some of the activities. Our approach detects similar activities and not

identical activities. In other words, it can tolerate a certain degree of changes in

the view hierarchy. Moreover, the small changes in the functionality may affect

only some activities but not all activities. If there are many activities that are not

affected by the changes, it will not affect our overall detection.

Malware. The clone with malicious payload attached often masquerade as the

original app by keeping the functionality and user interface similar to the original

app to leverage on its popularity. Since our approach focuses on detecting similar

UI, we can effectively detect this type of attack. Furthermore, the additional

malicious payload usually does not include an additional activity that has views

visible to the user. Thus, it will not affect our detection.

In summary, our approach is effective in detecting lazy, amateur and malware at-

tacks. However, our approach may not be able to detect certain amateur attacks,
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depending on the extent of the changes to the apps. Nevertheless, it is not com-

mon for the plagiarist to bother understanding its bytecodes to make extensive

modifications to the app. We note that there is no general solution for detecting

similar app with extensive changes. In addition, our approach certainly raises the

bar for the plagiarist to repackage apps without being detected when uploaded.

To avoid detection by our approach by modifying the UIs without proper planning

will affect the user experience and in turn affect the popularity of their repackaged

apps. Proper modification of the UI requires the plagiarists to put in extra effort

to redesign the UI carefully.

The performance bottleneck of our approach is the speed of the emulator that limits

the efficiency of dumping the UI hierarchies from apks. However, this process can

be parallelized for better efficiency. For example, we can use multiple computers

with each computer running multiple emulators.

3.5.2 Limitations and Future Work

Firstly, given that our approach is based on runtime UI information, it is obvious

that our approach is unable to detect clones in service apps since they just provide

services in the background and usually do not contain UIs that are necessary for

user interaction.

Secondly, based on the results obtained from the evaluation on both the datasets,

we observed that apps with a small number of activities or with low view counts in

the activities may increase the false positive rate. However, we noted that this is a

common limitation for most birthmark or finger print clone detection approaches.

Thirdly, our approach may also be limited by apps with multiple data dependent

activities. For example, apps that require login credential is one of them, this

category of apps usually restricts their entry point to the main activity with login

UI. Any attempt to enter into the app from other activity will fail or be redirected

to the main login activity. The information that can be obtained from these apps

is limited, thus affecting the accuracy of our approach.

Lastly, our evaluation is based only on free apps and the result may be different

for paid apps, which requires the users to pay certain fees before the download is

available to them. Cloning may be more prevail in paid apps, since users would be
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more likely to choose the similar but free apps. Conversely, the plagiarists may be

less willing to purchase the app to repackage it.

For future work, we would like to conduct more in-depth studies on how different

types of repackaging attacks can affect the UIs. We would also like to explore

additional alternatives to extract more relevant information from the apks, such

as those data dependent activities. These would help us to design better software

birthmarks that may further improve our accuracy and efficiency. Due to the

complex nature Android apps, code or resource analysis alone is insufficient for

clone detection. We believe that a hybrid approach with both static and dynamic

analysis, which integrates both code and UI information for app clone detection,

would be a very promising and interesting research direction.

3.6 Related Work

A number of previous studies have already been conducted on Android clone de-

tection. Most of the existing approaches only focus on code-based similarities.

Zhou et al. [30] proposed an app similarity measure system, DroidMOSS, to detect

repackaged apps in third-party Android markets. DroidMOSS first compute the

fuzzy hashes for each method within the app to generate a fingerprint for the app.

They then compute a similarity score based on the edit distance between the 2

fingerprints.

DNADroid [51] first detect potential similar apps based on their meta information

that is used to describe the app. In the second stage, DNADroid creates the

program dependency graph (PDG) as a fingerprint for each app that is to be

compared. Lastly, they apply a filter to prune unlikely clones, before comparing

the rest of the PDG pairs that passed the filter using a subgraph isomorphism.

Hanna et al. [53] proposed Juxtapp, a tool to detect code reuse among Android

apps. Juxtapp uses k-grams of the opcode sequences and apply the feature hashing

to extract the feature of the apps. Juxtapp can identify vulnerable code reuse,

instance of known malware and pirated copies of the original apps.

Androguard [66] provides a similarity measure tool that supports several standard

similarity metrics. The similarity is computed by comparing similar methods in the
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dex code of the apps. Rather than detecting cross-market app clones, Androguard

is meant for finding the difference between 2 apps on a small set of data.

Zhou et al. [42] focused on the problem of detecting piggybacked’ apps, which

are clones with additional malicious payload attached. They first perform module-

decoupling technique to split the code into primary and non-primary modules.

They then extract a semantic feature fingerprint for each primary module and use

a linearithmic search algorithm to detect similar apps.

Chen et al. [19] extracted the methods from the apps and construct a 3D-control

flow graph (3D-CFG) to get the centroid. They then leverage the centroid to

measure method level-similarity across multiple markets. Lastly, the method-level

similarity result is used to group similar apps together.

Wang et al. [39] proposed a two-phase approach to perform Android app clone de-

tection, where the first coarse-grained detection phase compares light-weight static

features to identify potential clones and the second fine-grained phase compares

more detailed features for those apps identified in phase one. They also proposed a

clustering-based approach to first filter out the third-party libraries from the apps,

to improve the detection accuracy and efficiency.

Linares-Vasquez et al. [38] proposed CLANdroid which leverages on advanced in-

formation retrieval techniques with five semantic anchors such as APIs, sensors,

permissions, intents and identifiers to detect similar apps. They have also per-

formed a study on the impact of third-party libraries and their results suggest that

excluding third-party libraries has significant effect on the detection accuracy.

Glanz et al. [67] detect repackaged apps via a two step approach which first identify

and remove third-party libraries code in the apps, then fuzzy hash the abstract of

the remaining app code.

All these approaches focus on static code-based detections that are vulnerable to

advance obfuscation techniques. On the other hand, there are a few existing work

that detect Android app clones without relying on code similarities.

Differing from code similarity based approaches, FSquaDRA [68] detects Android

app clones based on the comparison of the resource files that are necessary for

creating the apk . They leverage on the hashes that were computed and stored in
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the package during the process of app signing. This approach is resilient to code

obfuscation, but some small changes in the resources will affect the similarity.

Viewdroid [34] proposed a user interface based approach to detect app repackaging.

Similarly, MassVet [26] performs UI analysis to identify apps with similar view

structure then further analyze them to identify malicious payload. Our approach

is similar to both Viewdroid and MassVet in the sense that both our approaches

leverage on UI information. However, they construct view graph based on static

analysis of the control flow relationship between the views within the app. Our

approach differs from them in that our birthmark information is collected from

runtime and we generate vectors from this information.

3.7 Conclusion

In this chapter, we presented a novel approach to detect Android app clones based

on birthmarks generated from runtime UI information. Our approach uses locality

sensitive hashing to find a near neighbor for similar birthmarks and apply the

Hungarian algorithm to find the optimal activities pairs with the overall highest

similarity. The result shows that our approach can effectively detect different types

of repackaging attacks such as lazy, amateur and malware attacks with low false

positive (FPR=0.4%) and false negative (FNR=0.8%) rates. Many of our detected

apps (67%) belong to malware attacks, this call for a more rigorous vetting across

all Android markets. This work helps the reader to understand the UI of Android

apps and how this information can be applied to clone detection. We believe that

our study supports a new research direction or can be used to complement existing

code-based approaches in mobile app clone detection.
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LibSift: Automated Detection of

Third-Party Libraries in Android

Applications

4.1 Introduction

The flexibility of Android OS allows the developers to easily incorporate TPLs into

their apps to ease the development process. Consequently, a particular character-

istic of Android apps is that they typically compose of several TPLs. The usage of

TPLs escalates the problem of Android security further, as the use of TPLs typi-

cally causes the app to include a significant amount of code that is irrelevant and

may hinder the process of many program analysis tasks. Wang et al. [39] reported

that TPLs generally contribute to more than 60% of the app’s code.

There are generally three prominent areas of program analysis tasks that are af-

fected by TPLs. Firstly, in app clone detection the similarities of the code between

the apps need to be measured. Since TPLs can be easily manipulated, not con-

sidering all the TPLs for the analysis may greatly affect the results. A recent

study [38] has shown that the computation of code clone similarities in Android

app is significantly affected by the consideration of including or excluding TPLs.

Secondly, static taint analysis is a time consuming and computational intensive

process. However, a significant portion of the resources are spent on analysing

irrelevant code when the TPLs dominates the app. Researchers have reported that

43
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they have encountered these problems. For instance, DroidSafe [40] reported that

while using FlowDroid [69], a state-of-the-art static taint analysis tool, the analysis

of some apps took more than two hours and AsDroid [41] reported that FlowDroid

ran out of memory on some apps. Since TPLs are typically used as it is without

any modification, the TPLs can be separately analysed and have the results be

reused in the analysis of the apps that use them [70]. Lastly, in malware detection,

the presence of TPLs may dilute the features used in the detection, thus reducing

the contrast between benign and malicious samples and affecting the results of

the detection. For example, advertisement libraries are excluded from analysis in

MUDFLOW [71] as advertisement libraries are frequently used in Android apps

and their dataflows become common and dilute the training data. Furthermore,

DroidAPIMiner [72] reported that filtering out TPLs increases the difference of

API usage between malware and benign apps.

Apart from hindering many program analysis tasks, the usage of TPLs is also

associated with more privacy risks and security threats [35, 73]. For example,

popular TPLs may be masqueraded by malicious libraries to mislead users into

thinking that it is a legitimate TPL. Furthermore, some TPLs, even the popular

ones, are known to be aggressively collecting the users’ private data. By identifying

the TPLs in the apps, we can effectively address these library-centric threats.

Grace et al. [74] reported that most of the existing advertisement libraries collect

private data and some run code fetched from the Internet. In another recent study,

the authors have demonstrated that TPLs are likely a significant medium for the

propagation of malicious code [75].

Consequently, several existing literatures have made effort to identify and exclude

TPLs from various Android app analytic tasks [19, 30, 51, 72]. One of the most

commonly used technique for detecting TPLs in Android apps is to match the

names of the packages in the app to the TPLs package name listed in the whitelist.

However, due to the widespread interest and the dynamic nature of Android ecosys-

tem, it is difficult to build a comprehensive whitelist of TPLs as there are too many

of them. Furthermore, it is common for Android apps to employ obfuscation tech-

niques that may, for instance, rename the packages, classes and methods. For

example, a non-obfuscated app with a package com.library.example, after obfusca-

tion, the package may become com.a.a. Thus, this common obfuscation technique

will cause the whitelist approach to fail in detecting the obfuscated TPL.
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Despite the importance of identifying TPLs in Android apps, there are only a

few existing studies focusing on it. LibRadar [2] uses as feature the frequency

of different Android APIs in each pacakge, and performs feature hashing on a

large number of apps. Following that, strict comparison is enforced to perform

clustering and identify TPLs that are frequently used. Li et al. [3] put together

a large whitelist of popular TPLs by refining a list of package names that have

frequent appearance in a large number of apps.

In this chapter, we propose LibSift, an approach to identify TPLs in Android

apps based on the package dependency graph (PkDG) of the app. We evaluate the

effectiveness and efficiency of LibSift on a real-world dataset of 300 Android apps.

We further compare LibSift with two state-of-the-art TPLs detection approaches,

LibRadar [2] and the whitelist from Li et al. [3].

Our proposed approach is inspired by PiggyApp [42] that is the most related study

to our work, but it addressed a different problem. In PiggyApp, its goal was to

identify piggybacked apps1 that share the same primary module. Their main focus

was on identifying the primary modules and pay no attention to the other modules.

On the other hand, our approach focuses on the non-primary modules for detecting

TPLs in Android apps. The intuition behind our technique is that typically the

code of every Android app can be divided into primary module and non-primary

modules (if any) by using module decoupling technique. The primary module

defines the app’s core functionalities and the non-primary modules are contributed

by TPLs. The intuition comes from the programming paradigm that the code

within each module, primary or non-primary, is tightly coupled, whereas, the code

between modules is loosely coupled or even standalone. Furthermore, dependency

graph techniques have been proven to be resilient to multiple types of common

obfuscation techniques, such as renaming, statement manipulation and program

transformation [51]. Another advantage of our approach is that, on the contrary

to the state-of-the-art TPLs detection approaches, our approach does not assume

that all TPLs will be used by many apps. Thus, we are able to detect even the

non-popular TPLs that do not appear in many apps. In fact, in our evaluation, we

show that LibSift can effectively detect the less popular TPLs missed by both of

the state-of-the-art approaches. In addition, for our approach, it is straightforward

to update the list of TPLs when new library versions or new TPLs are detected.

1Piggybacked apps refers to a type of repackaged app which involves the injection of rider
code into the original app.
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Contributions. Our main contributions in this chapter are as follows:

• We propose a novel approach to automatically detect all TPLs used in An-

droid apps based on package dependency graph and without first having to

study a large number of apps.

• We implement a prototype of our approach, LibSift, and conduct extensive

experiments to evaluate the effectiveness and efficiency of our approach to

detect TPLs in Android apps.

• We compare our approach with two state-of-the-art approaches, LibRadar

[2] and whitelist from Li et al. [3], and show that our approach can detect

libraries that are not detected by them.

4.2 Proposed Third-party Library Detection

4.2.1 Overview

In the software context, the programming paradigm is such that a library is gen-

erally coded in a modular fashion, such that the code within the library is tightly

coupled and highly cohesive. Coupling refers to the interdependencies between

modules, while cohesion describes the degree of relationship between the functions

that are within a single module. Low cohesion implies that a given module performs

tasks which are not very related to each other and hence can create problems as the

module becomes large. TPLs written for Android apps follow the same principle.

Android apps are generally written in Java programming language and thus posses

Java’s property of organizing code into packages. As a result, Android apps can be

decoupled into individual modules, where the code within each module is tightly

interwoven and the code between each module is independent or loosely coupled.

Based on the above-mentioned observation, we propose to detect all TPLs used in

a given Android app by making use of the natural partitioning of the Android apps

and perform module decoupling at the package level.

In our approach, we use a module decoupling technique similar to the technique

that was introduced in PiggyApp [42]. PiggyApp performs module decoupling to

identify the primary module of the apps and uses it to detect Piggybacked apps.
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Despite addressing different issues, since our technique is similar in nature, it is

notable to highlight the differences between our techniques. Firstly, package ho-

mogeneity2 is considered as a dependency relationship with high importance in

PiggyApp. Whereas in LibSift, we do not consider package homogeneity as a de-

pendency, instead we view them as a criteria to merge the packages into a module.

Secondly, we perform module decoupling using different algorithms. PiggyApp per-

forms agglomerative clustering to cluster the packages with dependencies weight

greater than a pre-defined threshold, starting from the most tightly coupled pair

and stop when there are no clusters with dependencies weight greater than thresh-

old left. However, LibSift checks for package homogeneity before merging the

packages and if more than one sibling package belong to a module, all sibling

packages sharing the same parent will be assign to the same module. Finally, the

method we use to identify the primary module also differs. In PiggyApp, the pri-

mary module is identified as the module that provides the main activity or the

module that handles the most activities of the app. However, LibSift identifies

the primary module based on the app’s package name or as the module that have

dependencies with most number of other modules.

Figure 4.1 shows the overall architecture of our approach to detect TPLs in Android

apps. LibSift consists of four main processes, disassembling, constructing PkDG,

module decoupling, and identifying primary module. The disassembly process is

necessary to reveal the information required for the next process. The construction

of the PkDG involves the analysis of the bytecode information to extract dependen-

cies between different packages. For module decoupling, we cluster the packages of

the given app into separate modules based on its PkDG. Lastly, if the app contains

more than one module, we identify the primary module from the set of modules.

APK
Disassemble

Smali

Construct 
Package 

Dependency 
Graph

PkDG Module 
Decoupling

Modules Identify 
Primary 
Module

TPLs

Static 
Analysis

Package
Dependencies

Package Hierarchy

Figure 4.1: Overview of LibSift

2We consider two packages as homogeneous if they form a parent-child or sibling relationship
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4.2.2 Disassemble

The Android OS uses apk for distribution and installation of apps. When the

app developer compiles and builds the app, all the app code are compiled into a

single dex file, thus, losing the clear separation between the TPLs and the core app

code. Following that, the dex file along with the necessary resources are packaged

into an apk . Fortunately, the package hierarchical information of the app’s code

is preserved during the compilation process and we can use it along with package

dependency information for TPL detection.

In order to do so, given an apk , we first disassemble it using apktool [47] to reverse

engineer the classes.dex file to smali files, which also reveals the package hierarchy

information within the app. During the disassembly process, the bytecode in the

dex file is converted into smali [33] intermediate representation in the form of

multiple smali files which is analogous to the class files of the Java programming

language. Furthermore, these smali files will be placed in their respective folder

based on their package hierarchy. As such, we can now analyze the smali files and

extract the package dependencies information.

4.2.3 Package Dependency Graph

The PkDG shows the degree of dependencies (undirected) between the packages

of an app. Note that we do not consider control dependencies when building the

PkDG, instead we focus on dependency relationships, such as class inheritance,

method calls, and member field references. Leveraging on both package hierarchy

information and dependency relationships, we construct a PkDG = (N,E,W ).

Where N is a set of nodes and each node n ∈ N represents a package in the

app (note that we only consider packages with smali files directly under them).

E ⊆ (N × N) is a set of edges and each edge e(n1, n2) ∈ E, where n1, n2 ∈ N ,

connecting any two nodes represents that there is a dependency between these two

nodes. Lastly, W is a set of labels representing the weights of the edges and each

weight w ∈ W is the degree to which the nodes connected by the edge e(n1, n2)

are dependent on each other. As different relationships represent a different degree

of dependencies, we should assign them with different weights. Except for package

homogeneity, we use the weight assignments suggested in PiggyApp, which are 10

for class inheritance, 2 for method calls, and lastly, 1 for member field references.
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An example of the PkDG for a Korean language learning app is as shown in Fig-

ure 4.2. In this particular app, there are 15 sub-packages that contain smali files

directly under them. Some of the sub-packages that do not have dependencies with

any other sub-package are depicted as nodes without edge.

com.facebook.android

com.bravolang.korean

com.bravolang.korean.util

com.android.vending.billing

android.support.v4.view

android.support.v4.app
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android.support.v4.util

android.support.v4.os
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android.support.v4.accessibilityservice
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Figure 4.2: Package dependency graph example

4.2.4 Module Decoupling

We perform module decoupling based on package level semantic information. Each

module consists of at least one package and every package in a particular module

has a parent-to-child or sibling relationship to at least one other package in said

module. However, we argue that sharing the same parent in the package hierarchy

does not necessarily means that they are related. For example, the following two

popular libraries, com.google.ads and com.google.analytics, they share the same

parent com.google and may be both considered as libraries from Google, but in

actual fact, they are two separate libraries that can function independent of each

other. Hence, they should be reported as separated libraries.

Given the above observations, we analyze the PkDG to cluster the packages into

modules based on the following conditions: 1) Package homogeneity 2) Total weight

between the two packages is greater than the pre-defined threshold and 3) If package

p1 and package p2 are sibling nodes from the same module then all the other sibling

nodes of p1 and p2 are from the same module. As mentioned above, simply sharing

the same parent module does not means that they are related. However, if there

are high dependency between some sibling nodes, then it is likely that all other

sibling nodes belongs to the same module. Our module decoupling algorithm is

presented in Algorithm 1.
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Algorithm 1: Module Decoupling Algorithm

Input: PkDG - Package Dependency graph of the app
threshold - Pre-defined threshold

Output: M - Set of Modules of the app
1 foreach edge e in PkDG do
2 if weight w > threshold then
3 (n1, n2) ← get nodes(edge)
4 if package homogeneity(n1, n2) == TRUE then
5 M ← merge(n1, n2)

6 foreach node in the PkDG do
7 if sibling nodes in a module then
8 M ← merge(node, M)

9 return M

The PkDG of the same app in Figure 4.2 after the module decoupling process is

shown in Figure 4.3. As evident in Figure 4.3, the 15 sub-packages of the app are

successfully merged into 5 modules. The sibling nodes such as android.support.v4.view

and android.support.v4.widget are merged into the parent node android.support.v4.

Furthermore, since android.support.v4 is already declared as a module, all child

nodes under android.support.v4 in the package hierarchy are merged into this mod-

ule. As the packages can only be merged when package homogeneity is true, the

TPLs com.facebook.android and android.support.v4 are not merged with the pri-

mary module com.bravolang.korean.

com.facebook.android

com.bravolang.korean com.android.vending.billing

android.support.v4

android.annotation

43

917

13

Figure 4.3: Package dependency graph after module decoupling
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4.2.5 Identify Primary Module

The primary module provides the primary function of the app and the core app

code resides in this module. For certain Android app security analysis, especially

Android app clone detections, it is important to identify the primary module for

similarity analysis as the other modules are TPLs that can be easily replaced with

other TPLs of similar functions.

We observe that frequently, the primary module can be simply inferred from the

app’s package name or is a subset of the app’s package name. Note that app’s

package name refers to the unique package name declared in the AndroidMan-

ifest.xml that uniquely identifies the app on the device and not to be confused

with package name which refers to the name of the packages in the app. Using

the same Korean language learning app as an example, its app’s package name is

com.bravolang.korean, and the core app code written by the developer is all en-

closed within the com.bravolang.korean sub-package, therefore the primary module

can be correctly identified as com.bravolang.korean. This common practice is due

to the fact that Android app development following the Java programming lan-

guage package naming convention, that suggest that developers use their reversed

Internet domain name to begin their package name to avoid conflict with other

apps. Moreover, using each period in the package name as a path separator, all

the code by the same developer would be placed together in the path hierarchy.

However, in some cases, we are unable to infer the primary module just from the

app’s package name. One of the main causes for this is the use of obfuscation which

renamed the packages. In these cases, we identify the primary module base on the

reasoning that the primary module contains the core code of the apps that is in

charge of communicating with the TPLs to access their resources. Furthermore,

TPLs are designed to work independently and are not dependent on other TPLs

to function, this means that non-primary module should not have dependencies

on other non-primary modules. Therefore, the primary module can be identified

based on the highest number of other modules it has dependencies on. Based on

the PkDG, for each module, we can identify its dependencies on other modules and

compute the total number of other modules it has dependencies on.

In summary, to identify the primary module, we first use the app’s package name

and match it with the modules that we have identified. If a match is found, the
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matching module will be the primary module. However, when we fail to identify the

primary module through matching the package name, we will identify the module

that communicates with the most number of other modules as the primary module.

The algorithm we use to identify the primary module is shown in Algorithm 2.

Algorithm 2: Identify Primary Module

Input: M - Set of Modules of the app app package name - unique package
name of the app

Output: primary module
1 foreach module m in M do
2 if match pacakgeName(module, app package name) == TRUE then
3 return module

4 return highest dependent count(M)

4.3 Evaluation

We have implemented a prototype of LibSift in Python code to perform prepa-

rations, module decoupling and identification of primary module for the detection

of TPLs in Android apps. In the preparation step, we first disassemble the apk of

the given app, using apktool [47]. Our python script then automatically extract

the packages from the app. Following that, we parse the smali code to identify

the dependencies between the packages and build a weighted PkDG. Finally, we

cluster the packages into modules based on Algorithm 1 and identify a primary

module using Algorithm 2. We evaluate the accuracy and efficiency of LibSift on

a set of real-world Android apps consisting of 300 real-world apps collected from

the top popular apps from different categories in Google Play store. In addition,

we also compare LibSift with two state-of-the-art TPLs detection approaches. All

evaluation experiments are performed on a Linux machine with 2.6 GHz Intel core

CPU and 32 GB of RAM.

4.3.1 Module Decoupling and Validation

Based on our experiments, we empirically determined that a cut-off threshold =

15 is a suitable value to accurately decouple the modules in Android apps. A high

threshold is more likely to fail to identify and group related packages belonging to
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Table 4.1: Module decoupling results summary

Description Number of modules
Total number of modules 5,460
Number of obfuscated modules 802
Minimum number of modules in an app 1
Maximum number of modules in an app 76
Average number of modules in an app 18.2
Standard deviation of modules in an app 13.77

the same module that do not have high dependencies. On the other hand, a low

threshold is more prone to falsely group unrelated packages with low dependencies

into the same module.

A summary of our module decoupling results with a predefined threshold of 15 on

a 300 apps dataset is presented in Table 4.1. The total number of modules detected

by LibSift in all 300 apps is 5,460. The breakdown of the numbers of obfuscated

and non-obfuscated modules detected by LibSift are 802 and 4,658 respectively.

The minimum, maximum and average number of modules per app, detected by

LibSift are 1, 76 and 18.2, respectively. The standard deviation for the number

of modules per app is 13.77. This shows that most Android apps do indeed use

multiple TPLs.

To evaluate the module decoupling accuracy of LibSift, we manually analyse

the 300 apps and verify that the modules are correctly decoupled. The results

show that our approach correctly decoupled 296 apps. Therefore, the accuracy of

LibSift is 98.67%. In the rare occasions where the apps are incorrectly decoupled,

we found out that it is due to the packages in the primary module not having any

dependencies on each other. This causes the primary module to be separated into

multiple modules and thus, falsely identified as TPLs, when they should be part

of the primary module.

4.3.2 Primary Module

To evaluate the accuracy of LibSift in identifying the primary module, we manu-

ally verify the primary module of the 296 apps that are decoupled correctly. Note

that if there are more than one potential primary module, LibSift reports all of

them. However, in such cases, since LibSift is unable to pin point the primary
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Table 4.2: Primary module identification summary

Description Number of apps
Identified from app’s package name 273
Unable to to identify from app’s package name 23
Based on dependencies with number of other modules
Only 1 module with highest count 16
Primary module identified correctly 10
More than 1 module with highest count 7
One of the module with highest count is primary 3

module, despite having the correct primary module among the list of potential pri-

mary modules, we consider it as LibSift fails to identify the primary module for

those apps with multiple potential primary modules reported. A summary of the

the primary module identification statistics is presented in Table 4.2. The results

show that 283 apps have their primary modules identified correctly. Therefore,

the accuracy of LibSift’s primary module identification is 95.61%. The reason

LibSift fails to identify the primary module is two-fold. Firstly, the name of the

packages for the primary module could be obfuscated or different from the package

name and therefore, cannot be identified by simply matching them. Secondly, in

some rare cases, the TPL represents the core of the app and is used to provide

communications between different TPLs.

Out of the 296 apps that are decoupled correctly, the primary module of 23 apps

cannot be identified from its package name. Therefore, LibSift attempts to iden-

tify the potential primary module by looking for the module that has dependencies

with the most number of other modules. For 16 apps out of the 23 apps, there is

only 1 module in each app that has dependencies with most other modules. Among

these 16 apps, 10 of them have their primary module identified correctly. Whereas

for the other 7 apps out of the 23 apps, more than one potential primary modules

are identified in each app as there are multiple candidates with dependencies on an

equal number of modules. Out of these 7 apps, 3 of them contain the true primary

modules.

4.3.3 Performance

After dissembling the apks, the total time taken for LibSift to detect TPLs in all

300 apps is less than 27 minutes. Figure 4.4 shows the breakdown of time taken to
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detect TPLs in each app, sorted in ascending order. Only 1 app took more than

1 minute to process and about 90% of the apps took around 10 seconds or less.

Notably, these are achieved without prior studies of a large number of apps. To

further improve the efficiency of LibSift, since LibSift does not require to cluster

a large number of apps, it can be easily parallelized by distributing the workload

to multiple machines.
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Figure 4.4: Time taken by LibSift to process each app

4.3.4 LibSift vs. LibRadar and Whitelist

In this section, we compare our approach with two state-of-the-art approaches.

One of them is LibRadar [2], a TPLs detection tool for Android apps which is

based on API features of packages in the apps. It uses a clustering based approach

to cluster the hashes of the packages in a large dataset of apps. The packages that

are clustered into large clusters, greater than a pre-defined threshold, are identified

as TPLs. Another approach is by far the largest set of TPLs whitelist collected by

Li et al. [3]. The list of TPLs is harvested from a large dataset of Android apps by

extracting the names of the packages and clustering them based on the frequency

of occurrence and followed by a series of refinements.

We perform TPLs detection with LibSift, LibRadar, and whitelist from Li et al.

[3] on the same set of 300 real-world Android apps and the results are presented

in Figure 4.5. The Y-axis represents the total number of libraries detected by each

approach for the corresponding apps along the X-axis. As shown in the Figure 4.5,

LibSift is capable of detecting more TPLs in most cases. For the 300 apps, the
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average numbers of TPLs detected by LibSift, LibRadar and whitelist from Li et

al. are 17.17, 7.68 and 7.93, respectively.

In general, the TPLs not detected by LibRadar are the less popular ones. In

addition, we also observed that in some apps the popular TPLs are detected by

LibRadar, but the same TPLs are not detected in some other apps. Upon further

investigation, we found out that it is due to different versions of the TPLs using

slightly different APIs. As mentioned in their paper, LibRadar [2] enforces strict

comparison, such that, two packages can only be cluster together when they share

the exact same features (APIs). This results in the detection of multiple versions of

the same TPL. However, in the case where the particular version of the TPL is not

used frequent enough, possibly due to reason such as short update intervals, despite

being a popular TPLs, this version of the TPL will not be detected. On the other

hand, the TPLs not detected by using the whitelist from Li et al. are generally

the less popular TPLs and those that have their package names obfuscated. Fur-

thermore, Li et al. [3] stated in their paper that they do not list libraries starting

with the name ”android.support”. It is worth noting that when using the whitelist,

unlike semantic based approach, all versions of the popular TPLs will always be

detected as long as the package name remains the same and non-obfuscated.
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Figure 4.5: Number of TPLs detected by LibSift, LibRadar [2] and Whitelist
[3] for 300 apps

With the apks disassembled, the total time taken for each approach, LibSift, Li-

bRadar and whitelist to detect TPLs from the 300 apps are 1,617, 1,875, and 76

seconds, respectively. Unsurprisingly, the usage of whitelist is significantly faster

as compared to other approaches. However, as mentioned above, the whitelist

approach is vulnerable to package renaming obfuscation technique, which is com-

monly used in the Android apps. Furthermore, despite their attempt to overcome
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the incompleteness of whitelist by studying a large number of apps, many of the

less popular libraries are still not listed. Since the study is based on a large number

of apps, it may be expensive to keep the whitelist up to date. Similarly, LibRadar

requires a time-consuming pre-processing step of extracting unique features from a

large number of apps and clustering them, which can be expensive to update their

database. This can be a problem because the Android ecosystem is fast paced and

dynamic, new libraries will be emerging at a fast pace. For LibSift, the total time

taken to TPLs in all 300 apps is slightly shorter than LibRadar (after the database

is established). Currently, LibRadar is able to provide the users with more details,

such as meaningful package name for those obfuscated TPLs. However, there are

no obvious challenges that prevent LibSift from including these features in the

future and it is part of our plans for future work.

4.4 Threats to Validity

As there are currently no conventions to determine whether a part of a software

program is actually a TPL, the validity of our assumption that each module is

a TPL could be threatened. This can happen when a library contains separated

modules that are independent of each other. However, we believe that the negative

consequences of missing a library are much greater than splitting up a library. Note

that this is also an issue for both the state-of-the-art approaches. Furthermore, it

is possible that our reported module contains more than one library that have high

dependencies on each other. However, TPLs are designed to work individually and

this situation should rarely occur. In addition, our approach checks for package

homogeneity before merging the packages into module, thus reducing the possibility

this error.

Our analysis is limited to free Android apps and could threaten the validity of the

generalization of our findings. For instance, it is very likely that commercial apps

have more obfuscated modules to protect their interests. Furthermore, the size

of our dataset is a very small amount compared to the millions of apps available

across the Android markets. However, to mitigate the threat, we use real-world

dataset which covers the top popular apps from different categories.
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4.5 Related Work

In this section, we discuss the related work in the existing literature and we divide

this section into three parts. We first discuss the related work that involves the

detection of TPLs in Android apps to achieve their goals. Secondly, we discuss the

work that employs module decoupling technique. Lastly, we discuss the related

work that aims to identify TPLs in Android apps.

Several Android app analytic tasks require the identification and removal of TPLs

in the apps as they may affect the accuracy and efficiency of the analysis. They

typically do so via whitelist matching or code based analysis. For example, Chen

et al. [19] use a whitelist to remove apps that use same framework or common

libraries from their app clone detection. Aafer et al. [72] use a whitelist to re-

move any APIs exclusively invoked by TPLs and improve the accuracy of their

Android malware detection. DroidMOSS [30] reduces false positives in their app

clone detection by removing features from advertisement libraries using a whitelist.

Instead of whitelist, Wukong [39] uses the frequency of different Android APIs calls

in each sub-package as a feature and performs strict comparison to cluster identical

package for identifying and filtering TPLs, before detecting Android app clones.

DNADroid [51] identifies TPLs by comparing the SHA-1 hashes of known libraries

and excluding them from their Android app clone detection. Andarwin [76] uses

program dependency graph and clustering techniques to eliminate TPLs and detect

semantically similar Android apps. Glanz [67] first identify and remove library code

in apps based on the analysis of abstracted code representation. They then perform

fuzzy hash on the remaining app code to detect repackaged apps. Chen et al. [75]

first cluster similar packages from a large dataset of apps to identify libraries, then

analyze them to find potentially harmful libraries. We believe that the results of

these studies can be further improved by using our approach to identify TPLs.

The following studies employ module decoupling technique on Android apps to ad-

dress different challenges and prove that module decoupling technique works well

on Android apps. PiggyApp [42] aims to detect piggybacked apps (legitimate apps

with malicious code attached), by first separating the app code into primary and

non-primary modules and comparing apps with similar primary modules to identify

repacked app with rider code. Addetect [77] decouples Android app into individual

modules, they then extract features from these modules and use machine learning
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technique to identify advertisement libraries. Droidlegacy [78] partitions Android

apps into loosely coupled modules and comparing the signature of each module

to known malware families to identify piggybacked malicious apps. These studies

perform module decoupling at different granularity levels. In the module decou-

pling performed by PiggyApp, each node in the graph represents a Java package

that includes all the Java class files declared within it. However, AdDetect only

considers the packages that represent the root of the package subtrees. Whereas in

DroidLegacy, each node in the graph presents a Java class. In LibSift we perform

module decoupling at the same granularity level as PiggyApp.

The following studies focus on detecting TPLs in Android apps. Li et al. [79]

first build instances of potential libraries based on the apps’ organizations and

primary relations information. They then generate obfuscation resilient features

from each instance and cluster instances with equivalent features as TPLs based

on a predefined threshold of occurrence frequency. Backes et al. [37] generates

TPL profiles based on class hierarchy information from a comprehensive library

database and the profiles are used to match exact copy of the same library version.

Li et al. [3] identify TPLs in Android apps from a large dataset of 1.5 million

apps. Their approach is based on the appearance frequency of the package name

in the large dataset and subsequent refinements to refine the list. LibRadar [2]

extends Wukong’s [39] clustering-based technique by performing feature hashing

on the features to effectively detect TPLs used in Android apps. The techniques

that are based on the assumption that TPLs are used in a large number of apps

may not be able to identify less popular or new TPLs.

4.6 Conclusion and Future Work

In this chapter, we have presented our approach to detect third-party libraries in

Android apps. Our approach is based on the observation that libraries in software

program are highly cohesive but loosely coupled. Therefore, for a given Android

app, we perform module decoupling based on its PkDG and identify its primary

and non-primary modules. We have implemented a prototype of LibSift and

evaluated it on a set of real-world Android apps. Our result shows that LibSift

is able to effectively identify TPLs in Android apps. We have also compared our

approach with two other state-of-the-art approaches, LibRadar [2] and whitelist
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from Li et al. [3]. The results show that our approach can detect libraries not

detected by them.

Despite the good results, LibSift can still be improved in multiple ways. For

our future work, we plan to extend our current work by improving on the current

algorithm and providing additional useful features. For example, it may be useful to

recognize and identify the obfuscated TPLs. Furthermore, additional information

such as the type of library and the maliciousness of the library are also important

for certain program analysis tasks. All these can be achieved by performing static

analysis on the code of each of the modules identified by LibSift.
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Machine Learning Based Android

Malware Detection in Face of

Concept Drift: Empirical Study

and Recommendations

5.1 Introduction

Recent research has established that with the raise in popularity of Android apps,

Android malware are also growing rapidly and at the same time evolving with

more sophisticated attacks [11–14] and evasion techniques [15, 16]. Symantec [80]

revealed that variants per Android malware family has increased by more than a

quarter in year 2016.

Machine Learning based malware detection. Over the last decade, Android

malware detection and analysis has evolved as one of the most challenging prob-

lems in cybersecurity. Researchers from both academia and industry have invested

significant effort into designing accurate and scalable approaches to address the

same [50, 71, 81–83]. One of the most prominent classes of Android malware de-

tection approach is the machine learning (ML) based approach. Typically such

an approach could be perceived as a three step process: (1) a sufficiently large

dataset of malicious and benign apps is collected, (2) semantic/syntactic features

61
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that characterize malice behaviors are extracted from these apps through stat-

ic/dynamic analysis, and (3) an off-the-shelf ML classifier (e.g., Support Vector

Machine (SVM), Random Forest (RF), etc.) is then trained/evaluated on this

dataset. These approaches have focused on distinguishing between malware and

benign apps. In other words, they model malware detection as a binary classifi-

cation problem, whereby there are only two class labels, malware or not malware

(i.e., benign). Despite the importance of such work which contributes as a step

towards addressing the complications associated with malware, it is not enough to

simply detect and remove the identified malware.

After malware has been detected, having information on the malware type or the

family to which the malware sample belongs is beneficial to the malware forensic

analysts. The reasons are two folds: (1) having knowledge on the malware family

can help the analyst in assessing and mitigating the damage done by the malware

(e.g, identifying residual malicious components or determining if any data has been

leaked). (2) Albeit manual analysis being obligatory in providing in depth infor-

mation for the malware behavior, it is impractical to manually analyze all available

malware samples. Given the knowledge on the malware families, only a few sam-

ples in each semantically similar malware cluster need to be analyzed. To this end,

existing studies [11, 20, 78, 84, 85] have proposed to automatically classify malware

into families based on ML techniques. In this scenario, the problem is typically

model as multiclass classification problem, where the class labels correspond to the

malware families.

Batch learning models. The aforementioned process through which the detec-

tion models (including the malware family classification models) are built is often

referred to as batch learning i.e., the model is trained with a batch of labeled mali-

cious and benign samples, or in the case of malware family classification it is trained

with a batch of malicious samples labeled with their respective family. An over-

whelming majority of the existing Android malware detection approaches follow

this learning process. To throw light on such representative studies, we refer the

reader to the following: static analysis based approaches: [43, 71, 82, 86], dynamic

analysis based approaches: [81, 87], hybrid analysis based approaches: [83].

Limitations of batch learning. Recent studies such as [88] categorically es-

tablish that the two challenges described below make batch learning particularly

unsuitable for real-world malware detection.
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(1) Malware evolution & concept drift. In batch learning, an important

underlying assumption is that the probability distribution of the extracted features

in the data source are stationary (i.e., does not change over time). However, on

the contrary, this is not the case for malware as they constantly evolve due to

several reasons, such as to evade detection, exploiting newly found vulnerabilities

or newly introduced Android features, etc. As a result of this evolution, new

malware features emerge, gain prominence and fade off, over time. The change in

the distribution of the malware features over time caused by evolution, is known as

’concept drift” in the ML literature [89, 90]. Formally, it is defined as any change

in the conditional probability distribution P (C|X) over time. Concept drift makes

the collection of malware identified today unrepresentative of the ones generated in

the future. Hence, in the face of concept drift, the batch learning models trained on

a dataset at a particular point in time are rendered gradually obsolete over time.

(2) Scalability. One way to prevent the batch learning models from becoming

obsolete is to retrain them periodically with fresh up-to-date datasets. However, as

mentioned earlier, the volume of malware data grows at an alarming rate. Hence,

retraining the models with such huge volume of samples would pose severe scala-

bility issues.

Having explained the peculiar concerns of malware evolution and its consequent

challenges, in this work, we intend to systematically evaluate, in the face of concept

drift, whether the state-of-the-art Android malware detection approaches perform

as well as they claimed. When they fail to do so, we propose modifications which

enable them to function both accurately and efficiently in the real-world malware

detection setting with significant concept drift. More specifically, we reimplemented

and make publicly available two static analysis based approaches which produce

excellent results in terms of both accuracy and scalability in the batch learning

setting, namely, Drebin [43] and Allix et al. [86]. We observed that in face of

concept drift, the limitations of these batch learning models are that they are

unable to handle streaming features, samples and classes that reflects the real

world settings. To this end, we suggest and evaluate on three technique agnostic

modifications namely, feature hashing, online learning and progressive learning to

address the limitations. By performing a series of experiments with both of the

approaches on large real-world dataset, we hope to gain insights for successful

designing of ML based malware detection approach. The dataset consist of more
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than 80,000 apps, inclusive of both dated and modern samples that spans from

year 2009 to 2016.

Contributions. We make the following contributions in this chapter:

• We use two state-of-the-art existing malware detection approaches with or-

thogonal choice in feature sets to demonstrate the limitations of existing

batch learning ML based malware detection and malware familial classifica-

tion approaches in the face of concept drift.

• We suggest technique agnostic modifications to existing batch learning ML

based malware detection and malware familial classification approaches and

demonstrate using two such state-of-the-art that the suggested modifications

significantly improve their effectiveness and efficiency.

• We reimplemented Drebin [43] and Allix’s approach [86] and make them

publicly available.

5.2 Preliminaries

ML techniques has been widely adopted to address security threats in software

due to their capability to learn accurate detection model automatically and thus

avoiding the need for the laborious task of crafting detection patterns manually.

ML is a promising technique that has been proven to be capable of providing

solutions to multiple challenges. Thanks to the various ML tools and libraries that

are easily accessible online, it is quite straight-forward to apply ML techniques on

most problems. Despite so, the ML algorithms are difficult to fully understand and

as a result, they are often used as black-box. This leads to the situation where

the results obtained from ML based techniques are often accepted without much

scrutinizing. However, recent studies [86, 91] have begin to question whether these

experiments that are conducted in a ”in the lab” scenario are valid in the real-world

scenario.

To further understand the state of issue, in the following subsections, we first dis-

cuss on the working mechanism of ML based Android malware detection approaches

in general. Then in greater details, we introduce two state-of-the-art approaches
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that we will be using to demonstrate the limitation of current approaches and

evaluate our recommended solutions. Lastly, we discuss on app evolution and the

challenges that they may impose on ML based malware detection approaches.

5.2.1 ML Based Malware Detection Approaches

The success of ML based approaches is dependent on a number of key factors.

Indeed, one of the well known working principle of ML algorithm is ”garbage

in, garbage out”, nevertheless, given high quality input, superior results can be

achieved. In particular, to achieve high malware detection accuracy, the ML al-

gorithm should be fed with high quality ground truth data and relevant features

that capture the characteristics of malware. More details on both the key factors

affecting the performance of the ML approach are elaborated below.

Reliable ground truth. In the case of malware detection the ML algorithms learn

what is malware based on the given labeled samples. Therefore, the availability

of reliable ground truth dataset for both benign and malware is important for

training the classifier. Existing research [86] has demonstrated that the models

which had achieved more than 90% in terms of F-measure when trained on are

reliable ground truth, had their F-measure diminished to nearly 0% when trained on

unreliable benign apps. However, it is challenging to assemble a sufficient number

of reliable ground truth data as large amount of manual effort is required to verify

the claim. As a result, existing literature typically either use malware collections

that are shared by other research groups, or establish the ground truth for their

apps based on the votes of multiple anti-virus scanners hosted on VirusTotal [65].

This may lead to the situation where malware samples in the evaluation dataset

is significantly older than the benign samples. When this happens, the results

obtained may represent the ability of the approach to distinguish between samples

from different age instead of between malicious and benign [91]. Thus, when the

model is put to practice in the real-world, it performance will degrade.

Furthermore, the ML based malware detection approaches in literature often follow

the batch learning model which assumes that the underlying probability distribu-

tion of the extracted features does not change over time. As such, they typically

train and evaluate the model on a random train and test dataset split without con-

sidering the temporal order of the training and testing samples. Nevertheless, given
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the vibrant ecosystem of Android, thousands of new apps are being uploaded daily,

either to the official market Google Play or to the numerous third-party markets.

Hence, in reality the malware detection are often required to be deployed at the

front line to perform prediction on the apps as soon as they surfaced, before they

reach a large number of users, so as to minimize the damage. This implies that

in reality the detection models will first be trained on historically anterior apps

and the prediction will be performed on historically posterior apps. Consequently,

malware detection without considering temporal order yields biased results that

are artificially improved and may not be a true indicator of their performance in

reality [92].

Representative feature set. Given the labeled samples, the ML algorithms

typically learn to distinguish between different classes based on the observed char-

acteristics (features) of the samples in the respective class. Several feature sets

have been proposed in the existing malware detection work and they reportedly

achieve considerable results [43, 71, 86].

More importantly, features that are not present in the training set cannot be un-

derstood by the typical batch learning ML algorithm. For example, to perform

Android malware detection, network address may be extracted from the apks and

use as one of the features. However, as aforementioned, in the real-world scenario

the batch learning model are trained on samples that are historically anterior and

perform prediction on the historically posterior apps that stream in. The apps

that stream in may contain some previously unseen features (e.g., new network

address) and not being able to handle as such new information cause the detection

performance of model to degrade over time.

5.2.2 State-of-the-art Approaches

To demonstrate the limitations of batch learning malware detection approaches in

face of concept drift and subsequently show the advantages of our proposed modi-

fications, two state-of-the-art approaches namely, Drebin [43] and Allix’s approach

[86] are selected from the existing literature. The reasons for choosing these two

approaches are three folds. Firstly, they are both state-of-the-art approaches that

have reported remarkable results from their experimentation. Secondly, it is due to
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simplicity. The techniques used in both of these approaches are straightforward fea-

ture extraction and applying of ML algorithm. Last but not least, the architecture

of both the approaches provide the ease of demonstrating our proposed modifica-

tions. At this juncture, we would like to clarify that the goal of this study is not to

critique against their work, but to show that malware evolution can significantly

impair even state-of-the-art approaches such as these two. For completeness, the

key characteristics of both approaches are highlighted below.

Drebin. Drebin is peculiar in the sense that instead of handpicking features

that are perceived to work well, it went for broad static analysis to gather as

many features from an app’s code and manifest as possible. The static features

extracted by Drebin can classified into 8 semantic groups which include, hardware

components, requested permissions, app components, filtered intents, restricted

API calls, used permissions, suspicious API calls and network addresses.

However, these sets of features as it is, cannot be directly understood by the chosen

ML algorithm. As such, before the features are input to the ML algorithm, they

should first be transformed such that each app is represented in the form of a feature

vector. The transformation technique used in Drebin is to map the features into

a vector space, where each dimension is either 0 or 1. When an app contains the

feature, the respective dimension is set to 1 and 0 otherwise. The joint set of all 8

feature sets reportedly contains about 545K unique features based on their dataset

of over 129K apps.

More specifically, Drebin was experimented on the a dataset which contains 123,453

benign and 5,560 malware samples, where the malware samples are verified by at

least two anti virus scanner on VirusTotal [65] and due to their ambiguity adware

are removed from the dataset. The ML algorithm employed in Drebin is linear

SVM, it is chosen by the authors of Drebin due to its efficiency and explainability.

Drebin is evaluated via hold-out validation with random 66% and 33% training and

testing split, the results averaged over 10 runs. Their evaluation strategy ensures

that the prediction results are only based on unknown malware samples (i.e, not

in training set). However, it does not address the concern of historical coherence

in the training and testing samples.

Allix’s approach (CSBD). The feature set used in Allix’s approach [86] is string

representations of all the basic blocks found in the control flow graph (CFG) of the



Chapter 5. Empirical Study and Suggestions 68

app which is built by performing static analysis on the app’s bytecode. Each string

representation is basically an abstraction of the app’s code that retains structural

information of the code, but discards low-level details such as variable names or

register numbers. For convenience and readability we will refer to Allix’s approach

as CFG-Signature Based Detection (CSBD) in the rest of the article.

Similar to Drebin, the features are mapped into a vector space, where each di-

mension is either 0 or 1. When an app contains the basic block, the respective

dimension is set to 1 and 0 otherwise. They reportedly extracted over 2.5M unique

features (i.e., basic blocks) based on their dataset of over 50K apps. Due to the

exceedingly large number of features, feature selection is performed to improve the

computation efficiency of the downstream task and only top N features with high-

est Information Gain (IG) is retained. It is demonstrated that the median value

of F-measure stabilizes when the number of features is above 1K and the best

accuracy obtained is when N = 5K which is the maximum N they have evaluated.

To evaluate their approach against existing approaches, the authors experimented

with four different ML algorithm namely, RandomForest, J48, JRip and LibSVM,

with RandomForest achieving the best accuracy. The models are tested with the

typical 10-Fold cross validation technique. Moreover, they also conducted in the

wild experiment without 10-Fold cross validation but instead uses a training and

testing dataset ratio that is closer to the real-world setting. However, the temporal

property of the samples are not considered in both cases.

5.2.3 App Evolution

From the above, we can see that the results obtained by batch ML based ap-

proaches, such as Drebin and CSBD, are only valid with the assumption that the

probability distribution of the extracted features remains stationary. However, in

reality, this assumption does not hold, as apps evolve over time due to several rea-

sons [16]. Firstly, apps may evolve due to natural influences such as adding new

features, improving performance and bug fixes. In the case of malware, it would

be enhancing malicious capabilities or new form of attacks (zero-day malware).

Secondly, the evolution may happen due to the apps adapting to environmen-

tal changes such as changes in Android framework (i.e., new version of Android

release) and changes in the libraries used by the app. Lastly, evolution due to
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obfuscation (aka polymorphic evolution [93]) may occur in benign apps to protect

the developers’ intellectual property and occur in malicious app as a mean to evade

detection.

These evolutions are all applicable to both malicious and benign app, with natural

and polymorphic evolution being likely more prominent in malware due to their

attempts to evade detection. Reinforcing the facts, recent studies [11–14] have

noted that malware have evolved from performing simple phone cloning, sending of

premium-rated SMS to more complex and disruptive malware such as ransomware,

botnets and cryptolocker. In addition, [16] has reported that there is an increase in

the usage of dynamically loaded code, Java reflection and native code for Android

malware. As a results, a significant number of threats in more recent malware

samples are not captured in the dated malware samples [4]. In the following exper-

iments, we demonstrate that even state-of-the-art approaches degrade significantly

in the face of such phenomenon.

5.3 Empirical Study Design

The goal of this study is to investigate the implications of concept drift on ML based

malware detection approaches and the possible solutions to address them. Our pro-

posed modifications are technique agnostic, however, for demonstration purposes

we perform systematic evaluation on two chosen state-of-the-art approaches Drebin

and CSBD. We design this study as a large scale empirical study which contains a

series of experiments whereby each of them is targeted at addressing the research

questions that we will introduce in the following. The results of this study provide

insights to help build more successful ML malware detection approach. To this

end, we reimplemented Drebin and CSBD in approximately 1,400 and 900 lines of

python code, respectively and make them publicly available. Moreover, we show

through experiment below, that both our implementations are in line with the

original work, in terms of both accuracy and efficiency.
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5.3.1 Baseline

To ensure that the inferences drawn from the following experiments are indeed

due to the influence of concept drift, we should have a baseline for comparison.

That is to say, we need to demonstrate that the approach can work well when

concept drift is not present (i.e., batch training and testing without considering

historical coherency). Then subsequently, using the same approach, examine how

the performance of the approach degrades in presence of concept drift.

In light of the above, we reimplemented two state-of-the-art approaches, namely,

Drebin and CSBD and show that they can achieve good accuracy in absence of

concept drift. Reimplementing the approaches allows us to fully understand the

implementation and provides the ease of incorporating our proposed modifications

to justify the viability of our suggestions. Furthermore, by achieving similar good

results as report in their original work, in turn prove that our reimplementation of

Drebin and CSBD is faithful to the original work.

5.3.2 Challenges and Recommendations

(C1) Streaming features. As aforementioned, the underlying characteristic dis-

tribution captured by some features may change over time due to evolution of the

apps. For example, before the commencing of actual training, Drebin and CSBD

first map the extracted feature to a fixed N -dimensional binary vector space, where

N equals to the number of unique features observed at the time of mapping. When

a sample with concept drift (i.e., new feature) arrives, the models are unable to

administer the unseen features that are not part of the unique features they are

trained on. In order to address this challenge, one can set a sufficiently large vector

space dimension to cater for the unknown number of unseen features. However,

in practice, it is difficult to identify a good dimension for the catering, since the

rate at which the number of new features grows vary from feature set to feature

set. Another intuitive solution is to append the unseen features to the vector space

and retrain the model. However, given the large volume of Android apps, frequent

retraining of the model can be very costly.

(R1) Feature hashing. Feature hashing aka hashing trick [94] is a popular

technique to address such problem. To this end, we intend to study the effect
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of feature hashing on batch ML based approaches, by replacing the vectorization

technique of such approaches with feature hashing technique, whereby a hashing

function is applied to the features and these hash values are used as indices in

the sparse matrix of a predefined dimension δ. Due to the large volume and the

streaming nature of Android apps, feature hashing provides several advantages

which make it well suited for malware detection problem. Firstly, it provides

memory efficiency, as it allows transforming of features to a vector space of a

predefined dimension, without the need to store the one-to-one feature to indices

mapping for the whole dataset which may not fit into memory. This in turn

enables the model to handle streaming data. Lastly, by limiting the dimension of

the feature vector, it can help to improve the efficiency of the model in learning or

prediction.

(C2) Streaming samples. We have mentioned in the above that in the real world

use case, the training samples of a malware detection model should be historically

anterior to the apps that are to be predicted (test samples). Despite so, the training

and testing regiment of batch learning approaches in existing work have training

and testing apps that appear in a similar time frame, or even having some training

apps that are historically posterior to the testing apps [92]. Consequently, the

results obtained from such experiments may not be representative of the real-world

scenario.

(R2.1) Retraining. Over time, as the drift become more significant, the typical

batch learning models that are trained with only historically anterior apps will

have greater difficulty in detecting the historically posterior malware samples that

have evolved over time. To overcome the challenge, existing studies [95, 96] have

suggested to retrain their models periodically. There are two general approaches

to retrain the model [97]. The first approach is to simply retrain the model at fixed

intervals. This approach does not require any technical analysis (i.e., concept drift

tracking) to be performed beforehand. However, in the case of Android malware

detection, retraining the model frequently is a costly operation due to the large

volume of Android apps, and it may not be worth the effort as the enrichment

to the classifier may not be significant. On the other hand, infrequent retraining

will increase the period of time where the model is less trustworthy. Therefore,

the second approach tries to identify changes in the population distribution by

monitoring indicators such as parameters or performance of the classifier, and
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properties of the features [98]. The model will then be updated when significant

changes are observed in the indicators.

(R2.2) Online learning. Recent work [99] have demonstrated that online train-

ing can significantly improve malware detection performance in terms of both scal-

ability and efficiency. Typically, an online training model continuously adapt to

each labeled sample it received and make prediction of a new sample based on

the updated model. This provides several advantages over the typical batch learn-

ing model. The batch learning models generally optimize their parameters by

taking multiple passes over the training samples which also lead to high memory

consumption during the training. However, unlike the batch learning models the

online learning models take exactly one pass over the training samples, thus leading

to high efficiency and low memory requirement. Furthermore, the learning mecha-

nisms of online training models allow for natural adaption of the drift in malware,

which makes it well-suited for malware detection.

In light of the above, we intend to study the extent to which online learning model

can enhance the capabilities of batch ML based approaches in adapting to concept

drift and maintain high detection accuracy over time. To this end, we replace their

detection model with online learning model.

(C3) Streaming classes. As mentioned in Section 5.1, simply detecting mali-

cious apps is not sufficient, upon successfully detecting a malware, it is important

to identify the malware type/family of the detected malware sample for further

analysis. In order to cope with the rate at which malware variants are created, it

is clear that the process to categorize the malware into groups which correspond to

their families needs to be automated. Similar to ML based malware detection ap-

proaches, existing approaches which attempt to classify malware samples into their

families typically do not consider historical coherency. Moreover, they require a

priori information on the number of classes and assume that it will remain as such.

Thus, limiting their ability to handle real-time streaming samples, where over time

the model may encounter entirely new malware families that are not observed in

the training dataset (i.e, a new class).

(R3.1) Retraining. Similar to the binary classification problem above, the chal-

lenges of streaming classes may be addressed by retraining the model. This is
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because retraining of the model allows it to be updated with knowledge on samples

belonging to the new classes in the updated training set used to retrain the model.

(R3.2) Progressive learning. Note that despite being able to effectively handle

streaming samples, the online learning algorithms, such as the Passive Aggressive

algorithm, are unable to handle streaming classes. A learning paradigm known as

progressive learning [100] is proposed in the literature to address this challenge.

Progressive learning is basically an upgraded online learning method that is not

only able to handle streaming samples (concept drift), but also streaming classes.

As and when a sample belonging to a yet unseen class arrive at the model, the

neural network model increase in size and its interconnections and weights are

redesigned to adapt to the new information. The additional classes are learnt in

conjunction with the existing knowledge like they existed at the beginning.

We propose to extend the capabilities of Drebin and CSBD in adapting to streaming

classes by replacing their batch learner classifier with progressive learner classifier.

5.3.3 Research Questions

In light of the above, we introduce the research questions that we have formulated

to study the challenges and viability of our proposed modification for ML based

malware detection approaches in face of concept drift.

RQ1. Reproducibility

RQ1.1. How accurate are Drebin and CSBD when performing malware de-

tection on dataset with timeline similar to the ones used in the original work

and not considering historical coherence?

RQ1.2. How efficient are Drebin and CSBD when performing malware de-

tection on dataset with timeline similar to the ones used in the original work

and not considering historical coherence?

RQ2. Streaming Features

RQ2.1. How does feature hashing affects the accuracy of Drebin and CSBD?



Chapter 5. Empirical Study and Suggestions 74

RQ2.2. How does feature hashing affects the efficiency of Drebin and CSBD?

RQ3. Streaming Samples

RQ3.1. How does considering history coherency affects the malware detec-

tion performance of Drebin and CSBD?

RQ3.2. How does retraining at different intervals influence the performance

of Drebin and CSBD?

RQ3.3. How does replacing their batch learning model with online learning

model influence the performance of Drebin and CSBD?

RQ4. Streaming Classes

RQ4.1. How does considering history coherency affects the performance of

Drebin and CSBD on malware familial classification?

RQ4.2 How does retraining influence the performance of Drebin and CSBD

on malware familial classification?

RQ4.3 How does replacing their batch learning model with progressive learn-

ing model influence the performance of Drebin and CSBD?

5.3.4 Dataset

To facilitate the study, it is necessary to have a set of malicious and benign apps

from various timeline. Therefore, we collected from multiple sources, over 80K real-

world benign and malicious Android apps that span over a timeline of seven years.

A summary of the dataset used in our experiment is presented in Table 5.1. More

specifically, 51,991 benign apps are collected from various Android app markets

(i.e.,Google Play [101], Anzhi [102], AppChina [103], SlideMe [104], HiApk [105],

FDroid [106] and Angeeks [107]). We verify the apps using VirusTotal [65], an

online malware detection service hosting various (up to 60) anti-virus scanners, the
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Table 5.1: Dataset from different timeline

Category Source # of samples Time of compilation

Malware
Drebin 5,560 2009 - 2012
AMD 24,650 2009 - 2016

Benign

Google Play 46,800

2009 - 2016

Anzhi 2,957
AppChina 1,845
SlideMe 289
HiApk 65
FDroid 29
Angeeks 6

benign set only contains apps that are not flagged by any of the anti-viruses as

malicious. Their date of creation span from year 2009 to year 2016.

Furthermore, malware datasets from two different sources are used in our exper-

iments. The first malware dataset is Drebin dataset, that consist of the 5,560

Drebin malware, including malware samples from 179 malware families, that spans

from year 2009 to 2012. The second malware dataset is AMD dataset, a malware

collection from [4] which consist of 24,650 apps, spanning from year 2010 to 2016.

It includes malware samples from a total of 71 malware families. In addition, a

malware can achieve its malicious objective through different means and behav-

ior. Based on this, malware samples can be categorized into semantically different

groups known as varieties. The AMD malware collection can be divided into 135

varieties.

Since both the chosen state-of-the-art approaches, Drebin and CSBD, evaluated

their approach on malware genome [50] dataset which is dated from August 2010 to

October 2011, for simplicity, we consider all malware samples before 2012 as dated

malware and malware samples from year 2012 and beyond as modern malware.

5.3.5 Feature Construction

The raw features extracted from the apps cannot be directly understood by the ML

algorithm and thus required to be transform to feature vectors. Therefore, we map

the extracted feature sets to a N -dimensional binary vector space, according to the

original work of Drebin and CSBD. For all apps in our dataset, the total number of

unique features extracted for Drebin and CSBD is approximately 564K and 10.43M
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respectively. Due to the exceedingly large number of features extracted by CSBD, the

authors noted the need to reduce the number of features to improve computation

efficiency for the downstream tasks. They performed feature evaluation based on

the IG measure and retain only the best N features. Moreover, they conducted a

study on how would the number of features (in the range of 50, 250, 500, 1K, 1.5K,

5K) impact the accuracies of the models and concluded that the F-measure improve

with the number of features and since the best detection accuracy is reported when

the number of features is 5K, we use the same in all our experiments for CSBD.

5.3.6 Evaluation Metric

For binary classification experiments, standard measures such as precision, recall,

F-measure and Cumulative Error Rate (CER) are used to determine the detection

accuracy of the model. These measures are in the range between 0 to 1, where

higher values of precision, recall, F-measure and lower values of CER indicate

better detection accuracy. Whereas, for multiclass classification, macro and micro

average of these measures are used. On the other hand, for clustering experiments,

Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) are used

to determine the quality of clusters. ARI is in the range between -1.0 to 1.0 while

NMI is between 0.0 to 1.0 and in both cases higher values indicate better clustering

quality. Efficiency of the model is evaluated based on the time taken (in seconds)

for training and testing.

5.3.7 Experimental Setup

All the experiments are conducted on a server with 20 cores of Intel(R) Xeon(R)

CPU E5-2640 v4 @ 2.40GHz and 128 GB ram running Ubuntu 16.04.

5.4 Results and Discussions

We have introduced our research questions in Section 5.3.3, in this section, we

present and discuss on the results of the sets of experiments targeted at addressing

these research questions.
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Table 5.2: Accuracy of Drebin vs CSBD on dated malware samples - averaged
(±std) over 5 runs

Approach Precision(%) Recall(%) F-measure(%)
Drebin 97.52 (±0.41) 98.32 (±0.31) 97.92 (±0.22)
CSBD 94.61 (±0.55) 96.85 (±0.30) 95.71 (±0.27)

5.4.1 RQ1. Reproducibility Analysis

In this RQ we aim to establish a basis to evaluate the implications of concept

drift and subsequently the viability of our proposed modifications, such as feature

hashing, online learning and progressive learning. As such, with our implementa-

tion of state-of-the-art approaches, we aim to reproduce the performance in terms

of accuracy and efficiency achieved in the original work. By verifying through

this experiment that we can achieve results similar to the original work, it also

demonstrates that our implementation is in line with the original work.

Experiment design. Since both Drebin and CSBD have evaluated their ap-

proaches on malware samples up to year 2011, in this experiment, we perform

malware detection for Drebin and CSBD on a set of 4,944 malware samples and

an equal number of benign samples that are developed before year 2012. Similar

to the original work, the training and testing processes are conducted in a batch

fashion. 70% of the samples in this set are chosen at random and used for train-

ing the classifiers, while the remaining 30% are used for testing. The classifiers

hyper-parameters are tuned based on the training set with 5-fold cross-validation,

whereas the test set is only used for determining the prediction accuracy. This

process is repeated 5 times and the average results are reported.

Their efficiencies are evaluated based on the training and testing duration, where

training duration includes the time taken for feature transform and feature selection

(only performed for CSBD), since they are necessary process for training the models.

The number of features extracted are also reported alongside the training and

testing duration, as it strongly influence the efficiency of both processes.

Results and discussions. From Table 5.2, we can observe that our implemen-

tations of both Drebin and CSBD can reproduce the high accuracy as reported in

their original work. Note that direct comparison of the readings with the original

work is not meaningful as different datasets are used in the experiments. However,
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Table 5.3: Efficiency of Drebin vs CSBD on dated samples

Approach # of feat.
# of feat.

after
selection

Training
duration
(seconds)

Testing
duration
(seconds)

Drebin ∼50K NA 1.84 0.1767
CSBD ∼1.37M 5,000 612.58 10.26

based on these results, we can conclude that the results of Drebin and CSBD are

reproducible albeit under different settings.

Although not the focus of this paper, it is interesting to note that from Table 5.2

that the number of features extracted by CSBD is significantly larger than Drebin, as

this difference may affect how our recommended solutions affect the approach. The

difference in the number of unique features observed in this experiment compared

to the original work is due to a different and lesser amount of apps used in this

experiment. Furthermore, Drebin clearly outperforms CSBD in terms of training

efficiency. In addition to the large difference in the number of features, the fact

that Drebin’s linear model (Linear SVM) can be trained in a shorter amount of

time than quasi-linear models (Random Forest), would also have contributed to

the difference in the training and testing time.

5.4.2 RQ2. Streaming Features

In the real-world malware detection scenario, the malware detection models are

first trained on samples that are historically anterior to the test samples that

stream in. Furthermore, the streaming samples may contain an unknown amount

of previously unseen features due to malware evolution. Feature hashing is a well

known technique typically used to handle such situation. In this RQ, we investigate

the advantages and disadvantages of applying feature hashing to batch learning

approaches for Android malware detection.

Experiment design. In order to illustrate the impact of feature hashing to a

greater extend, we use the whole dataset of over 80K apps in this experiment.

Similar to RQ1, the experiments are performed with 70% training and 30% testing

split, and 5-fold cross-validation is used to tune the hyper-parameters. With the

results averaged over 5 runs.
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Table 5.4: Accuracy of Drebin vs CSBD with and without feature hashing

Approach
Feature
hashing

Precision(%) Recall(%) F-measure(%)

Drebin
No 97.53 98.24 97.88
Yes 97.83 97.80 97.81

CSBD
No 96.80 98.07 97.43
Yes 96.20 98.45 97.32

Table 5.5: Efficiency of Drebin vs CSBD with and without feature hashing

Approach
Feature
hashing

# of
features

# of feat.
after

selection

Training
duration
(seconds)

Testing
duration
(seconds)

Drebin
No 425,269 NA 22.25 1.23
Yes 50,000 NA 18.36 0.93

CSBD
No 8,164,447 5,000 9,211.91 196.13
Yes 50,000 NA 12,688.82 171.18

To investigate the effects of feature hashing, we conduct two sets of experiments.

We first perform the experiment with the default Drebin and CSBD models to

establish the basis for evaluating the models with feature hashing. On top of

that, we perform another experiment with the same setup, but this time round

the binary vectorization for the default models are replaced with feature hashing.

We arbitrarily chose δ = 50K. Note that for CSBD with feature hashing, feature

selection is not performed.

Results and discussions. From Table 5.4, it is clear that the effect of feature

hashing on the accuracies of both the approaches are negligible. More specifically,

when Drebin with approximately 425k features is compressed to just 50K features

through feature hashing, the difference in F-measure is 0.07%. In the case of

CSBD, 5K top features selected from 8.164M features compare to compressing to

50K features from the same through feature hashing, the difference in F-measure is

0.11%. This shows that despite the possibility of hash collisions, where two different

features are assigned to the same index, it have little impact on the accuracy of

the models. Reinforcing this fact, despite the significantly higher risk of collision,

the decrease in F-measure is just 0.04%. This is likely because the feature domain

is very sparse and relatively few of them tend to be informative or are rare words,

overall any hash collisions will mostly impact less informative features and not

affect the decision of the models considerably.
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From Table 5.5, we can observe that feature hashing offers slight improvement in

terms of time efficiencies. For Drebin the training and testing time is reduced

by 17% and 24%, respectively. On the other hand, the training time for CSBD

increased by 0.38% while testing time is reduced by 13%. A deeper look into the

training time of the CSBD models, reveals that the the increase in training time for

the CSBD with feature hashing is mainly contributed by the RF algorithm, due to

larger number of features (i.e., 5K top features to 50K features).

5.4.3 RQ3. Streaming Samples

In this experiment, we attempt to investigate the effects of concept drift on different

batch ML based malware detection techniques, when the apps historically posterior

to the training apps stream in, which mimics the real-world setting. In addition,

we further investigate the adaptiveness of both the models, in terms of accuracy

and efficiency, to some of the possible solutions to address concept drift.

Experiment design. In light of the above, for each of the two state-of-the-art

appraoches we train one vanilla and three variants which sum up to eight models

in total. These models are evaluated on streaming samples that are historically

posterior to the training samples. These streaming samples are temporally sorted

according to their timeline starting from year 2012 and ending with 2016.

To study the effect of concept drift on the vanilla models of Drebin and CSBD, they

are only trained once on samples with timeline before year 2012, and tested on all

streaming samples without retraining.

The next two pairs of variants aim to study the adaptiveness of approaches to

the periodical model retraining solution. These two pairs of variants differ in the

interval between retraining of the models, such as annually and semi-annually.

Similar to the above, these variants are first trained on dated samples (before year

2012) then start to predict the samples that streams in. However, after the models

have predicted all samples within the respective interval, the predicted samples

are added to the training set and used to retrain the models, before moving on

to predict the next set of streaming samples in the next interval. The process is

repeated until all samples (up to first half of year 2016) have been predicted.
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Table 5.6: Drebin streaming samples efficiency

Year
(FH/SH)

# of
samples

Drebin Once Drebin Annual Drebin Semi Annual Drebin Online
# of
feat.

Train
time

Test
time

# of
feat.

Train
time

Test
time

# of
feat.

Train
time

Test
time

# of
feat.

Train
time

Test
time

2012(FH) 9,888 67,760 1.20 1.17 77,950 0.97 1.24 78,027 0.91 1.22 50,000 0.0212 1.55
2012(SH) 16,114 67,760 - 1.43 77,950 - 1.55 120,881 1.44 1.50 50,000 0.0276 1.91
2013(FH) 23,750 67,760 - 0.93 170,529 2.65 1.00 172,240 2.17 0.98 50,000 0.0198 1.21
2013(SH) 28,552 67,760 - 1.77 170,529 - 1.89 202,002 2.76 1.84 50,000 0.0501 2.32
2014(FH) 37,726 67,760 - 1.44 266,828 4.70 1.55 263,782 3.89 1.52 50,000 0.0433 1.89
2014(SH) 45,190 67,760 - 1.33 266,828 - 1.42 316,352 5.08 1.37 50,000 0.0289 1.73
2015(FH) 52,078 67,760 - 0.22 357,832 7.44 0.72 355,100 6.30 0.24 50,000 0.0036 0.29
2015(SH) 53,248 67,760 - 0.47 357,832 - 0.49 360,109 6.36 0.49 50,000 0.0058 0.60
2016(FH) 55,656 67,760 - 0.41 371,694 8.31 0.44 375,660 6.67 0.43 50,000 0.0026 0.53

Table 5.7: CSBD streaming samples efficiency

Year
(FH/SH)

# of
samples

CSBD Once CSBD Annual CSBD Semi Annual CSBD Online
# of
feat.

Train
time

Test
time

# of
feat.

Train
time

Test
time

# of
feat.

Train
time

Test
time

# of
feat.

Train
time

Test
time

2012(FH) 9,888 1.7M 94.71 1,915.05 1.9M 143.00 1,893.47 2.0M 85.73 1,823.61 50,000 0.0173 103.33
2012(SH) 16,114 1.7M - 2,199.26 1.9M - 2,314.09 2.9M 133.81 3,876.09 50,000 0.0217 164.28
2013(FH) 23,750 1.7M - 1,389.79 4.0M 216.85 2,201.34 3.9M 438.05 2,579.78 50,000 0.0243 111.38
2013(SH) 28,552 1.7M - 2,640.11 4.0M - 4,262.28 4.4M 277.72 5,449.65 50,000 0.0583 198.50
2014(FH) 37,726 1.7M - 2,368.71 5.4M 396.56 5,862.88 5.5M 467.53 5,027.30 50,000 0.0420 171.68
2014(SH) 45,190 1.7M - 2,105.73 5.4M - 5,679.18 6.2M 363.85 6,211.98 50,000 0.0272 116.26
2015(FH) 52,078 1.7M - 364.21 6.8M 469.74 841.17 6.7M 464.62 823.01 50,000 0.0030 14.99
2015(SH) 53,248 1.7M - 750.23 6.8M - 1,711.23 6.8M 444.31 1,654.20 50,000 0.0053 31.85
2016(FH) 55,656 1.7M - 689.79 7.0M 499.43 1,666.96 7.1M 453.79 2,103.68 50,000 0.0048 31.63

Lastly, to study the adaptiveness to online learning model, we replace Drebin and

CSBD batch learner classification model with an online Passive-Aggressive (PA)

classifier. Recall that the original vectorization technique is not viable in this

scenario, hence we use feature hashing for both the online models. Similar to the

above, we first train the online models on dated samples, then keep testing and

updating the model from the samples that stream-in thereafter.

(a) Drebin batch learning vs on-
line learning CER

(b) CSBD batch learning vs online
learning CER

Figure 5.1: Cumulative error rates for (a) Drebin and and (b) CSBD on modern
malware without retraining, with annual and semi-annual retraining and online
training
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Results and discussions. Figure Figure 5.1 shows the cumulative error rates

(CER) of Drebin and CSBD with different training models (i.e., without retraining,

with annual and semi-annual retraining and online training). Furthermore, the

number of features, training duration and testing duration of both the approaches

are as presented in Table 5.6 and Table 5.7, respectively. The followings inferences

are drawn from the results.

From Figure 5.1, it is clear that for both approaches when their models are only

trained once with samples from before year 2012, their detection accuracies degrade

rapidly over time. This shows that randomly splitting the training and testing

set without considering historical coherence, which allows malware samples in the

training set to be historically posterior to the samples in the test set, leads to

biased results. The results are unsurprising since the models are unable to handle

the rapidly increasing unseen unique features that they encountered when evolved

samples streams in. For instance, in Table 5.6 and Table 5.7 we can see that

the number of unique features the models will encounter in year 2016 compared to

year 2012 are more than 4 folds larger. We believe that, given the exceedingly large

volume of apps in the real-world, the increase in the number of uniques features

will be more excessive.

Similarly, we also observed that for both Drebin and CSBD the CER curves of the

variants with retraining is significantly less steep as compared to the ones without

retraining. Moreover, we can see that the improvement is more significant when the

models are retrained more frequently. These imply that retraining of the detection

model can indeed help to mitigate the effects of malware evolution and that higher

retraining frequency is necessary to achieve desirable accuracies.

Furthermore, still referencing from Figure 5.1, we can clearly see that both online

variants perform significantly better than their batch counterpart with and with-

out retraining. This is mainly because their online variants can instantaneously

adapt to the drift and increase their capabilities to accurately predict the following

samples.

In terms of overall training efficiency, it is evident from Table 5.6 and Table 5.7

that retraining of the batch models is an incrementally costly operation, not only

due to the increasing number of samples added to the training set, but also the

increasing feature space dimension. Given the same number of apps streaming
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in, retraining the models semi-annually in comparison to annually increase the

total training duration by approximately 83% and 118%, for Drebin and CSBD,

respectively. Note that, since we only have samples for the first half of the year,

to provide a fair comparison between annual and semi-annual retraining we do not

consider the training duration for year 2016 in the previous statement. Despite

updating themselves after every sample, the online models took significantly lesser

training time compare to their annual retraining counterpart. This is because,

the batch learner algorithms require to be retrain on the whole dataset to learn

new features, while online learning models only make a small change to the weight

matrix to avoid wrong prediction in the future. In addition, since feature hashing

technique is applied to the online learning variants, the vectorization of the sample

features are already performed beforehand for the prediction and can be reused in

the updating process. This is a big advantage for approaches such as CSBD which

have large volume of features and require much longer time to process them.

In terms of overall testing efficiency, the effect differs from one approach to another.

For instance, there is no obvious difference in testing duration among the batch

learner variants of Drebin, while its online variant took slightly longer. On the

other hand, for CSBD, the testing duration for its batch learner variants increases

with the frequency of retraining, due to the nature of the RF algorithm, while its

online variant took significantly less testing duration.

To summarize, the limitations of batch learning models in face of concept drift

is evident. Solution wise, frequent retraining of the batch learning models can

improve the detection accuracy moderately, but it is very resource intensive. Lastly,

online learning provides highly effective alternative to retraining, and at a much

lower operational cost.

5.4.4 RQ4. Streaming Classes

In this experiment, we investigate the viability of state-of-the-art approaches to

perform malware familial classification in a setting which mimics the real-world sce-

nario where malware samples historically posterior to the training samples stream

in to the model for prediction. This setting give raise to the possibility of encoun-

tering samples belonging to new classes of malware families that are not observed
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in the training set. We further study the adaptiveness of the approaches to some

of the possible solutions to address this challenge.

Experiment design. In this experiment on malware familial classification, we use

the AMD dataset from [4], as it contains malware samples from over 70 malware

families which exist between different periods, spanning across a total of 6 years.

To investigate the viability of Drebin and CSBD in addressing the malware familial

classification problem, we replace the binary classification model of Drebin and

CSBD with their multiclass classification counterpart, namely, multiclass SVM and

multiclass RF, respectively. The models are trained only once on malware samples

with timestamp before year 2012. Following that, the models are tested on the

remaining malware samples without retraining.

To study how retraining at different interval would affect Drebin and CSBD in

performing malware familial classification, we train two more variants for each of

the approaches. The models are first trained on malware samples with timestamp

before year 2012 and begin predicting on the temporally ordered malware samples

that streams in thereafter. When the models have predicted all samples within

the respective interval, the predicted malware samples are added to the training

set and used to retrain the models, before moving on to predict the next set of

streaming malware samples in the next interval. The process is repeated until all

malware samples in the dataset have been predicted.

Lastly, to study the adaptiveness of Drebin and CSBD to progressive learning model,

we train another variant of both approaches. In this pair of variants, we replace

their default classifier with a progressive learner classifier [100]. Following that,

the models are trained on malware samples with timestamp before year 2012. The

models then keep on predicting the samples and updating itself on the remaining

temporally ordered malware samples that stream in thereafter.

Results and discussions. Figure 5.3 shows the average macro and micro F1

score of Drebin and CSBD with different variants of training models (i.e., without

retraining, with annual and semi-annual retraining and progressive learning). Fur-

thermore, the training duration and testing duration of Drebin and CSBD are as

presented in Table 5.8 and Table 5.9, respectively. The following inferences are

drawn from the results.
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Figure 5.2: Bar chart indicating the time period where malware samples from
each family exist within

Table 5.8: Drebin streaming classes efficiency

Year
(FH/SH)

# of
samples

Drebin
Once

Drebin
Annual

Drebin
Semi Annual

Drebin
Progressive

Train
time

Test
time

Train
time

Test
time

Train
time

Test
time

Train
time

Test
time

2012(FH) 2,097 0.58 0.43 0.55 0.41 0.76 0.58 30.71 2.04
2012(SH) 3,686 - 0.75 - 0.69 1.46 1.08 51.04 3.36
2013(FH) 6,328 - 0.73 1.78 0.67 2.60 1.10 46.31 3.06
2013(SH) 8,729 - 1.48 - 1.34 3.59 2.12 89.19 6.08
2014(FH) 13,316 - 1.27 4.61 1.19 6.45 1.80 75.12 5.00
2014(SH) 17,048 - 1.15 - 1.07 7.17 1.52 71.33 4.77
2015(FH) 20,492 - 0.20 7.85 0.18 10.55 0.21 12.14 0.81
2015(SH) 21,077 - 0.40 - 0.39 12.44 0.49 25.08 2.53
2016(FH) 22,281 - 0.36 9.86 0.53 10.56 0.44 20.80 1.69
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(a) Drebin batch learning vs pro-
gressive learning average macro F1
score

(b) CSBD batch learning vs pro-
gressive learning average macro F1
score

(c) Drebin batch learning vs pro-
gressive learning average micro F1
score

(d) CSBD batch learning vs pro-
gressive learning average micro F1
score

Figure 5.3: Average macro F1 score for (a) Drebin, (b) CSBD and Average
micro F1 score (c) Drebin and (d) CSBD

Table 5.9: CSBD streaming classes efficiency

Year
(FH/SH)

# of
samples

CSBD
Once

CSBD
Annual

CSBD
Semi Annual

CSBD
Progressive

Train
time

Test
time

Train
time

Test
time

Train
time

Test
time

Train
time

Test
time

2012(FH) 2,097 3.80 230.26 6.94 228.26 3.62 216.23 36.06 10.92
2012(SH) 3,686 - 392.23 - 386.50 8.23 412.37 64.28 22.79
2013(FH) 6,328 - 377.10 15.61 451.43 15.65 436.67 64.86 38.26
2013(SH) 8,729 - 714.16 - 866.76 24.74 854.77 108.53 63.92
2014(FH) 13,316 - 585.20 42.22 841.98 41.86 838.53 93.20 83.12
2014(SH) 17,048 - 553.32 - 786.73 62.40 852.94 103.59 120.85
2015(FH) 20,492 - 87.59 93.12 138.60 80.22 140.27 13.35 87.79
2015(SH) 21,077 - 177.99 - 305.62 69.87 285.88 28.10 91.95
2016(FH) 22,281 - 267.22 84.67 266.59 76.51 262.81 30.53 104.97



Chapter 5. Empirical Study and Suggestions 87

From Figure 5.3, it is clear for both Drebin and CSBD that when their models are

only trained once on malware samples before year 2012, their detection accuracy

degrades rapidly over time. This outcome is expected as Figure 5.2 shows that

more than half of the malware families in this dataset start to stream in after

2012. Since the models based on the typical multiclass classification algorithms

are unable to classify the samples belonging to new classes of malware families

that they encounter, they are likely to achieve sub-optimal results. We further

observed that in terms of retraining, the detection performance is better when the

models are retrained more frequently. This is inline with the observation in the

above experiment on streaming samples. As illustrated in Figure 5.2 some new

malware families may happen to surface in the first half of year while others in

the second half. The semi-annually retrained variants have the advantage over

the annually retrained variants when malware samples from new class of malware

families surfaced in the first half of the year. Therefore, retraining indeed allow

the models to adapt to the new malware family classes encountered by the models

over time and the best case scenario is to retrain or update the model as and when

a sample from new malware family has surfaced (i.e, progressive learning).

Again from Figure 5.3, we can clearly see that both progressive learning variants

significantly out perform their batch learning counterpart with and without re-

training. This is due to the capability of the progressive learner to instantaneously

update itself to cater to the malware samples that belong new malware family

class(es). Whereas for the retrain variants the detection performance is dependent

on when the samples belonging to new class of malware family occur and when the

retraining will be performed. For example, the retrain models will perform poorly

if large volume of samples belonging to new class(es) are encountered right after

retraining, then the models will not be able to classify them appropriately at least

until the next retraining interval. In addition, the consistent F1 scores, together

with the fact that several malware families exist for an extended period of time

as depicted in Figure 5.2, demonstrate that learning additional classes does not

impair the progressive learner’s ability to identify the previously learnt classes.

In terms of efficiency, it is evident from Table 5.8 and Table 5.9 that retraining of the

batch models is an incrementally costly operation, not only due to the increasing

number of samples added to the training set, but also the increasing complexity

due to more number of classes. We also notice that when the number of training
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samples is small, the training duration of the progressive learning variants is longer

compared to other variants. However, over time as the number of samples increases

the training duration of the retraining variants increases continuously. On the other

hand, the training duration of the progressive learning variants does not increase

over time, but instead varies with the number of samples in the given interval.

Testing duration wise, the progressive learning model is slightly slower than SVM

but much faster than RF.

Based on the findings above, we conclude that the inability to handle new classes

severely limits the competency of the batch learning models in providing real-world

malware familial classification solution. Retraining can improve the accuracy of the

batch learning models, but the compounding resource requirement is a great cause

for concern. Progressive learning provides a high effective and efficient alternative

to retraining of the batch learning models.

5.5 Threats to Validity

As any empirical study, our evaluation is subject to multiple threats to validity.

In this section we discuss the main threats to validity that can affect the study we

have performed.

In terms of threats to external validity, the dataset of over 80K apps used in

our study is modest in comparison to the millions of apps available. Therefore,

our findings may not hold for other dataset. However, to mitigate this risk, our

dataset are collected from multiple sources and across different categories.

One major threat to internal validity concerns the correctness of our implementa-

tion of ML based Android malware detection approaches we used as example in

our study. To mitigate this threat, we have shown through experiment that our

implementation can produce results close the original work and, in addition, we

make our implementation publicly available.

Lastly, with regards to threats to construct validity, standard evaluation metrics

such as precision, recall, F-measure and CER were used for binary malware detec-

tion experiments. Furthermore, macro and micro averaging were used for multiclass
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malware familial classification. As such, we believe that the threats to construct

validity is minimum.

5.6 Related Work

Empirical studies like the one presented in this work, are essential to ensure that

research community are following proper research direction. Roy et el. [91] identify

several common challenges, such as proper evaluation and design decision, faced by

ML approaches for Android malware detection. From there they study the impact

of these challenges through experiments by varying the corresponding parameters.

Allix et al. [108] investigate whether ”in the lab” Android malware detection

validation translates to reliable indications of malware detector’s performance in

real-world setting, where the number of benign apps greatly overshadow the number

of malware and the difficulty of establishing a high quality ground truth is high.

Our work is different from them with a focus on the effects of concept drift and

extensively study both the impact and possible solutions.

The topic on Android malware evolution are discussed in some of the existing

literature. Zhou et al. [50] examines a dataset of 1,260 malware samples belonging

to 49 different families to systematically characterize malware infection behavior

and study their evolution. They further study the effectiveness of commercial

anti-virus software in detecting these malware. Lindorfer et al. [109] present a

hybrid Android malware analysis sandbox, namely ANDRUBIS, that generates

detailed analysis reports based on both static and dynamic analysis. Based on the

analysis results of ANDRUBIS on a dataset of over 1M Android apps where 40%

of them are malware, the authors discuss trends in malware behavior observed.

Tam et al. [16] present a comprehensive survey on Android malware analysis and

detection. They also discuss their effectiveness in face of malware evolution. Our

work differs from them by presenting empirical study on challenges and solutions

of ML based malware detection approaches in face of concept drift induced by

malware evolution.
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5.7 Conclusion

We have presented in this chapter, a series of experiments based on two state-of-

the-art Android malware detection techniques and demonstrated that their high

efficacies do not persist in the real world scenario where history coherency is taken

into consideration and thus challenges of concept drift became evident. Beyond

that, we have suggested modifications to the approaches on areas where the they

did not perform well and showed that the suggestions can significantly improve

the performance of the approaches. Finally, we make our implementation of the

two state-of-the-art approaches namely, Drebin and CSBD, publicly available for

the research community to advance towards designing successful Android malware

detection approach.



Chapter 6

apk2vec: Semi-supervised

Multi-view Representation

Learning for Profiling Android

Applications

6.1 Introduction

As can be observed from the previous chapters, we perform feature engineering

each time before we proceed with each of the program analytic tasks. However, the

astronomical volume of functionality rich apps, has raised several challenging issues

to be addressed through different program analytic tasks. A few significant ones

are as follows: (i) app markets are facing difficulties in organizing large volumes

of diverse apps to allow convenient and systematic browsing by the users, (ii) due

to the rapid growth rate in app volumes, it is becoming increasingly tough for

markets to recommend up-to-date and meaningful apps that matches users’ search

queries, and (iii) with a significant number of plagiarists and malware authors

hidden among app developers, these markets have been plagued with app clones

and malicious apps. One could observe that a systematic and deep understanding

of apps’ behaviors is essential to solve the aforementioned issues. Building a holistic

and high-quality behavior profiles of apps could help in addressing these issues and

avoid performing feature engineering for each individual task.

91
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Past studies [18–26, 99] have demonstrated that in comparison to traditional feature

representations of programs (e.g., counts of system-calls, APIs used etc.), graph

representations (e.g., CFGs, call graphs, etc.) are ideally suited for app profiling,

as the latter retain program semantics well, even when the apps are obfuscated.

Reinforcing this fact, many recent works achieved excellent results using graph

representations along with Machine Learning (ML) techniques on a plethora of

program analytics tasks such as malware detection [18, 20, 21, 26, 99], familial

classification [25], clone detection [19, 110], library detection [75] etc. In effect,

these works cast their respective program analytics task as a graph analytics task

and apply existing graph mining techniques [21] to solve them.

Typically, the aforementioned ML techniques work on vectorial representations

(aka embeddings) of the graphs. Hence, arguably, one of the most important

factors that determines the efficacy of these downstream analytics tasks is the

quality of such embeddings.

Besides the choice of graph representations, another pivotal factor that influences

the aforementioned tasks are the features that could be extracted from them. In

the case of app analytics, the most prominent features in recent literature in-

clude API/system-call sequences observed [99], permissions [43] and information

source/sinks used [111], etc. Evidently, each of these feature sets provides a differ-

ent semantic perspective (interchangeably referred as view) of the apps’ behavior

with different inherent strengths and limitations. As revealed by existing works

[18, 43], capturing multiple semantic views with different modalities would help to

improve the accuracy of downstream tasks, significantly. Furthermore, any form

of labeling information (e.g., malware family label, app category label, etc.) could

be of significant help in building semantically richer and more comprehensive rep-

resentations.

Towards catering the above-mentioned applications, in this work, we propose a

Representation Learning (RL) technique to build data-driven, compact and versa-

tile behavior profiles of apps. Based on the above observations, challenges C4.1-

C4.4 have to be addressed to obtain such a profile.

Our approach. Driven by these motivations, we develop a static analysis based

RL framework named apk2vec which incorporates semi-supervised and multi-

view learning paradigm to build high-quality data-driven profiles of Android apps.
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apk2vec has two main phases: (1) a static analysis phase in which a given apk file

is disassembled and analyzed to extract three different dependency graphs (DGs),

each representing a distinct semantic view and, (2) an embedding phase in which a

neural network integrates the information from these three DGs and label informa-

tion (if available) to learn one succinct embedding for the apk. To this end, apk2vec

combined and extends several state-of-the-art RL ideas such as multimodal (aka

multi-view) RL, semi-supervised neural embedding and feature hashing.

More specifically, apk2vec addresses the above-mentioned challenges based on its

following characteristics:

• Data-driven embedding: Instead of the traditional graph kernel methods,

apk2vec is build upon a varaint of the skipgram neural network [112, 113] that

automatically learns features from large corpus of graph data to produce high

quality dense embeddings. This in effect addresses challenge C4.1.

• Semi-supervised task-agnostic embedding: apk2vec’s neural network fa-

cilitates the use of apks’ class labels (can be single or multiple labels per sample)

where available to build better app profiles. However, unlike fully supervised

embeddings, these embeddings are still task-agnostics and hence can be used for

a variety of downstream tasks. This helps addressing challenge C4.2.

• Hash embedding: Recently, Svenstrup et al [114] proposed a scalable fea-

ture hashing based word embedding model which required much lesser number

of trainable parameters than conventional RL models. Besides improving the

memory efficiency, hash embedding technique also facilitates learning embed-

dings when instances stream over time. Inspired by this idea, in apk2vec, we

develop an efficient hash embedding model for graph/subgraph embedding, thus

addressing challenge C4.3.

• Multi-view embedding: apk2vec’s neural network facilitates multimodal RL

through a novel learning strategy (Section 6.4.3). This helps to integrate three

different DGs that are obtained from a given apk file from different views in a

systematic and non-linear manner to produce one common embedding. Thus

addressing challenge C4.4.

Experiments. To evaluate our approach, we perform a series of experiments on

various app analytics tasks (including supervised, semi-supervised and unsuper-

vised learning tasks), using a dataset of more than 42,000 real-world Android apps.
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The results show that our semi-supervised multimodal embeddings can achieve sig-

nificant improvements in terms of accuracies over unsupervised/unimodal RL ap-

proaches and graph kernel methods while maintaining comparable efficiency. The

improvements in prediction accuracies range from 1.74% to 5.93%.

In summary, we make the following contributions:

• We propose apk2vec, a static analysis based data-driven semi-supervised multi-

view graph embedding framework, to build task-agnostic profiles for Android

apps (Section 6.4). To the best of our knowledge, this is the first app profiling

framework that has three aforementioned unique characteristics.

• We propose a novel variant of the skipgram model by introducing a view-specific

negative sampling which facilitates integrating information from different views

in a non-linear manner to obtain multi-view embeddings.

• We extend the feature hashing based word embedding model to learn multi-

view graph/subgraph embeddings. Hash embeddings improve apk2vec’s overall

efficiency and support online RL.

• We make an efficient implementation of apk2vec and the profiles of all the

apps used in this work publicly available at https://sites.google.com/view/

apk2vec/home.

6.2 Problem Statement

Given a set of apks A = {a1, a2, ...}, a set of corresponding labels L = {l1, l2, ...}
(some of which may be empty i.e., ∀li ∈ L, |li| ≥ 0) for each app in A and a pos-

itive integer δ (i.e., embedding size), we intend to learn δ-dimensional distributed

representations for every apk ai ∈ A. The matrix representations of all apks is

denoted as ΦA ∈ R|A|×δ.

More specifically, ai ∈ A can be represented as ai = (Gv
i ) where v ∈ {A,P, S}

and GA
i , G

P
i , G

S
i denote its API Dependency Graph (ADG), Permission Depen-

dency Graph (PmDG), and information Source & sink Dependency Graph (SDG),

respectively (refer to Section 6.4.2 for details on constructing these DGs). Further-

more, a DG can be represented as Gv
i = (N v

i , E
v
i , λ

v), where N v
i is the set of nodes

https://sites.google.com/view/apk2vec/home
https://sites.google.com/view/apk2vec/home
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and Ev
i ⊆ N v

i × N v
i is the set of edges in Gv

i . A labeling function λv : N v
i → Lv

assigns a label to every node in N v
i from alphabet set Lv.

Given Gv = (N v, Ev, λv) and sgv = (N v
sg, E

v
sg, λ

v
sg). sgv is a subgraph of G iff

there exists an injective mapping µ : N v
sg → N v such that (n1, n2) ∈ Ev

sg iff

(µ(n1), µ(n2)) ∈ Ev. In this work, by subgraph, we strictly refer to a specific class

of subgraphs, namely, rooted subgraphs. In a given graph Gv, a rooted subgraph

of degree d around node n ∈ N v encompasses all the nodes (and corresponding

edges) that are reachable in d hops from n.

6.3 Background & Related Work

Our goal is to build a succinct and versatile behavior profiles of apk files in a

scalable manner. To this end, we develop a novel apk embedding framework which

integrates several RL ideas such as document, graph and feature hashing embedding

models. We review the related background from these areas in the following.

6.3.1 Skipgram Word and Document Embedding Model

The state-of-the-art word embedding model, word2vec [112], produces word em-

beddings that are capable of encoding the syntactic and semantic regularities. To

embed words, word2vec uses a simple feed-forward neural network architecture

called skipgram. It exploits the notion of context such that, given a sequence of

words {w1, w2, ..., wt, ..., wT}, the target word wt whose representation has to be

learnt and the length of the context window c, the objective of skipgram model is

to maximize the following log-likelihood:

|T |∑
t=1

log Pr(wt−c, ..., wt+c|wt) ≈
|T |∑
t=1

log
∏

−c≤j≤c,j 6=0

Pr(wt+j |wt) (6.1)

where wt−c, ..., wt+c are the context words and T is the vocabulary of all the words.

Here, the context and target words are assumed to be independent. Furthermore,

the term Pr(wt+j|wt) is defined as: e( ~wt·
~w′t+j)∑

w∈T

e( ~wt·~w)
where ~w and ~w′ are the input and

output embeddings of word w, respectively. In the cases where the vocabulary T is
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very large, the posterior probability in eq.(1) could be learnt in an efficient manner

using the so-called negative sampling technique.

Negative sampling. In each iteration, instead of considering all words in T a

small subset of words that do not appear in the target word’s context are selected

at random to updates their embeddings. Training this way ensures the following:

if a word wt appears in the context of another word wc, then the embedding of

wt is closer to that of wc compared to any other randomly chosen word from T .

Once skipgram training converges, semantically similar words are mapped to closer

positions in the embedding space which is evident that the learnt embeddings is

capable of encoding the word semantics.

Le and Mikolov’s doc2vec [115] extends the skipgram model in a straight for-

ward manner to learn representations of arbitrary length word sequences which

include sentences, paragraphs and whole documents. Given a set of documents

D = {d1, d2, ...} and a set of words c(di) = {w1, w2, ...} sampled from document

di ∈ D, doc2vec skipgram learns a δ dimensional embeddings of the document di

and each word wj ∈ c(di). The model works by considering a word wj ∈ c(di) to

be occurring in the context of document di and tries to maximize the following log

likelihood:

|c(di)|∑
j=1

log Pr (wj |di) (6.2)

where the probability Pr(wj|di) is defined as:

e(~d· ~wj)∑
w∈T e

(~d·~w)
(6.3)

Here, T is the vocabulary of all the words across all documents in D. Understand-

ably, as a straightforward extension of the word2vec skipgram model, doc2vec

could also be trained efficiently with the negative sampling technique.

Model parameters. From the explanations above, it is evident that total number

of trainable parameters of the word and the document embedding skipgram models

would be 2|T |δ and δ(|D|+ |T |), respectively.
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6.3.2 Hash Embedding Model

Though skipgram emerged as a hugely successful embedding model, it faces scal-

ability issues when the vocabulary T is very large. Also, its architecture does

not support embedding of new words (aka new tokens) which emerge in an online

setting. To address these issues, Svenstrup et al [114] proposed a feature hashing

based word embedding model. This model involves the following steps:

(1) A token to id mapping function, F : T → {1, ..., K} and k hash functions of

the form Hi : {1, ..., K} → {1, ..., B}, i ∈ [1, k] are defined (B is the number of

hash buckets and B << K).

(2) The following arrays are initialized: ΦB×δ: a pool of B component vectors which

are intended to be shared by all words in T , and pK×k: contains the importance

of each component vector for each word.

(3) Given a word w ∈ T , hash functions H1, ...Hk are used to choose k component

vectors from the shared pool Φ.

(4) The component vectors from step (3) are combined as a weighted sum to obtain

the hash embedding of the word w: ~w =
∑i=k

w,i=1 p
i
wHi(w).

(5) With hash embeddings of target and context words thus obtained, skipgram

model could be used to train for eq. (1). However, unlike regular skipgram which

considers Φ alone as a set of trainable parameters, one could train p as well.

Thus the model reduces the number of trainable parameters from 2Kδ to 2(Bδ +

Kk), which helps reducing the pretraining time and memory requirements. The

effect of collisions from K to B could be minimized by having more than one hash

function and this helps in maintaining accuracies on-par with word2vec. Besides,

when new words arrive over time, a function like MD5 or SHA1 could be used in

place of F to hash them to a fixed set of integers in range [1, K].

6.3.3 Graph Embedding Models

Analogous to the word2vec model, graph2vec [113] considers simple node labeled

graphs such as CFGs of arbitrary size as documents and the rooted subgraphs

around every node in those graph as words that compose the document. The

intuition is that different subgraphs compose graphs in a similar way that different

words compose documents. In this way, graph2vec could be perceived as an RL
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variant of Weisfeiler-Lehman kernel (WLK) which counts the number of common

rooted subgraphs across a pair of graphs to estimate their similarity.

Given a dataset of graphs G = {G1, G2, ...}, graph2vec extends the skipgram

model explained in Section 6.3.1 to learn embeddings of each graph. Let Gi ∈ G
be denoted as (Ni, Ei, λ) and the set of all rooted subgraphs around every node

n ∈ Ni (up to a certain degree D) be denoted as c(Gi). graph2vec aims to learn

a δ dimensional embeddings of the graph Gi and each subgraph sgj sampled from

c(Gi) i.e., ~Gi, ~sgj ∈ Rδ, respectively by maximizing the following log likelihood:∑|c(Gi)|
j=1 log Pr (sgj|Gi), where the probability Pr (sgj|Gi) is defined as: e(

~G· ~sgj)∑
w∈T e

(~G· ~sg) .

Here, T is the vocabulary of all the subgraphs across all graphs in G. The number

of trainable parameters of this model will be δ(|G|+ |T |).

Similar to graph2vec, many recent approaches such as sub2vec [116], GE-FSG [117]

and Anonymous Walk Embeddings (AWE) [118] have adopted skipgram architec-

ture to learn unsupervised graph embeddings. The fundamental difference among

them is the type of graph substructure that they consider as a graph’s context. For

instance, sub2vec considers nodes, GE-FSG considers frequent subgraphs (FSGs)

and AWE considers walks that exist in graphs as their contexts, respectively.

6.3.4 Semi-supervised Embedding Model

Recently, Pan et al [119] extended the skipgram model to learn embedding of

nodes in Heterogeneous Information Networks (HINs) with semi-supervision. More

specifically, their variant of skipgram model facilitates the use of class labels for a

subset of samples while learning embeddings. For instance, when li, the class label

of a document di is available, the doc2vec model could maximize the following log

likelihood:

β

|c(di)|∑
j=1

log Pr (wj|di) + (1− β)

|c(di)|∑
j=1

log Pr (wj|li) (6.4)

to include the supervision signal available from li along with the contents of the

document made available through c(di). Here, β is the weight that balances the

importance of the two components in document embedding. Pan et al. empirically

prove that embeddings with this form of semi-supervision significantly improves

the accuracy of downstream tasks.
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In summary, all above-mentioned embedding models provide different advantages

for RL. Drawing from the strengths of each model, we propose a novel data-driven

graph embedding framework for app behaviour profiling. Our framework possess

three critical factors which provide the ability for building holistic app behavior

profiles, namely: (i) multi-view RL, (ii) semi-supervised RL, and (iii) feature hash-

ing based RL. We discuss in principle and demonstrate through experiments that

our framework possess all these strengths and can cater to various downstream

tasks.

6.4 Methodology

In this section, we explain the apk2vec app profiling framework. We first present

an overview of the framework which encompasses two phases, subsequently, we

discuss the details of each component in the following subsections.

6.4.1 Framework Overview

As depicted in Figure 6.1, the workflow of apk2vec can be divided into two main

phases, namely, the static analysis phase and the embedding phase. The static

analysis phase encompasses of static program analysis procedures which extracts

DGs for apk files. The subsequent embedding phase encompasses RL techniques

that transform these DGs into apk profiles.

APK Semi-supervised
Multi-view
Skipgram

ICFG

Static 
Analysis

API 
Dependency 

Analysis

Permission 
Dependency 

Analysis

Source-sink 
Dependency 

Analysis

ADG

PmDG

SDG

APK Profile

Subgraph
Extraction

Static Analysis 
Phase

Embedding 
Phase

Figure 6.1: apk2vec: Framework overview
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Figure 6.2: Semi-supervised multi-view skpigram

Static analysis phase. In this phase, we begin by disassembling the apks for a

given dataset and perform static analysis to construct their interprocedural CFG

(ICFG). We then perform further analysis to abstract each of the ICFGs into

three semantically different DGs, namely, ADG, PmDG and SGD. Each of them

represents a unique semantic view of the app’s behaviors with distinct modalities.

Detailed procedure of constructing these DGs is presented in Section 6.4.2.

Embedding phase. After constructing the DGs for all the apks in the dataset,

we extract the rooted subgraphs around every node in the DGs to facilitate the

learning of apk embeddings. Upon completion of the rooted subgraphs extraction,

we train the semi-supervised multi-view skpigram neural network with them. The

detailed procedures in this phase are discussed in Section 6.4.3.

6.4.2 Static Analysis Phase

ICFG construction. For a given apk , we first perform static control-flow analysis

to builds its ICFG. The ICFG is chosen over other form of program representation

graphs (e.g., DFGs, call graphs) due to its fine-grained representation of control
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flow sequence, which allows us to capture finer semantic details of the apk which

is necessary to build a comprehensive apk profile. Formally, ICFG = (N,E) for

an apk a is a directed graph where each node bb ∈ N denotes a basic block1 of a

method m in a, and each edge e(bb1, bb2) ∈ E denotes either an intra-procedural

control-flow or a calling relationship from bb1 to bb2 and E ⊆ N ×N .

Abstraction into multiple views. To encode the apk with richer semantics from

different modalities, we abstract it with three Android platform specific analysis,

namely API sequences, Android permissions, and information sources & sinks to

construct the three DGs, respectively. The abstraction process is described below.

To obtain the ADG from a given ICFG, we remove all nodes that do not access

security sensitive Android APIs. This will leave us with a subset of sensitive nodes

from the perspective of API usages, say NA ⊆ N . Subsequently, we add an edge

between a pair of nodes n1, n2 ∈ NA iff there exist a path between them in ICFG.

This yields the ADG, GA which could be formally represented as a three tuple

GA = (NA, EA, λA), where λA : NA → LA is a labeling function that assigns a

security sensitive API as a node label to every node in NA from a set of alphabets

LA. We refer to existing work [99] for the list of security sensitive APIs. Similarly,

we use works such as PScout [120] and SUSI [111] which maps APIs to Android

permissions and information source/sinks to obtain set of node labels LP and LS ,

respectively. Subsequently, adopting the process mentioned above using them we

abstract the ICFG into PmDG and SDG using LP and LS , respectively.

6.4.3 Embedding Phase

In the embedding phase, the objective is to train the skipgram model with the DGs

and class labels that belongs to a set of apks and obtain the behavior profile for each

of the apk. To this end, we develop a novel variant of the skipgram model which

facilitates incorporating the three following learning paradigms: semi-supervised

RL, multi-view RL and feature hashing.

Network architecture. Figure 6.2 depicts the architecture of the neural network

used in apk2vec’s RL process. The network consists of two shared input layers

and three shared output layers (one for each view). The goal of the first input

1 A basic block is a sequence of instructions in a method with only one entry point and one
exit point which represents the largest piece of the program that is always executed altogether.
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layer (ΦA) is to perform multi-view RL. More precisely, given an apk id ai in the

first layer, the network intends to predict the API, permission and source-sink

subgraphs that appear in ai’s context, in each of the output layers. Whereas the

function of the second input layer (ΦL) is to facilitate semi-supervised RL. More

specifically, given ai’s class label as input in the second layer, the network intends

to predict subgraphs of all three views that occur in ai’s context in each of the

output layers. Thus, the network forces API, permission and source-sink subgraphs

that frequently co-occur with same class labels to have similar embeddings. For

instance, given a malware family label f, subgraphs that characterize f’s behaviors

would end up having similar embeddings. This in turn would influence apks that

belong to f to have similar embeddings.

Hash embeddings. Considering the real-world scenario where Android apps

are constantly evolving (i.e., APIs/permissions being added or deprecated) and

new apps emerge rapidly over time, clearly the vocabulary of subgraphs (across

all DGs) would grow as well. Regular skipgram models could not handle such

dynamic vocabulary and as mentioned in Section 6.3.2, hash embeddings could

be used effectively to address this. Note that in our framework, the vocabulary of

subgraphs is only present in the output layer. Hence, in apk2vec, hash embeddings

are used only in the three output layers (φA, φP and φS) and the two input layers

(ΦA and ΦL) uses regular embeddings.

The process through with our skipgram model is trained is explained through

Algorithm 3.

6.4.4 Algorithm: apk2vec

The algorithm takes the set of apks along with their corresponding DGs (A), set

of their labels (L), maximum degree of rooted subgraphs to be considered (D),

embedding size (δ), number of epochs (E), number of hash buckets per view (Bv),

number of hash functions (k) and learning rate (α) as inputs and outputs the apk

embeddings (ΦA). The major steps of the algorithm are as follows:

1. We begin by randomly initializing the parameters of the model i.e., ΦA: apk

embeddings, ΦL: label embeddings, φv: embeddings of each hash bucket for

each of the three views, and pv: importance parameters for each of the views
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Algorithm 3: apk2vec (A,L, D, δ, E , Bv, k, α)
Input: A = {a1, a2, ...}: set of apks such that ai = {Gvi } for v ∈ {A,P,S}

L = {l1, l2, ...} : Set of labels for each apk in A. Note that there may be zero or more labels for an
apk. Hence ∀li ∈ L, |li| ≥ 0. Let the total number of unique labels across li ∈ L be denoted as L.
D : Maximum degree of rooted subgraphs to be considered for learning embeddings. This will
produce a vocabulary of subgraphs in each view, T v = {sgv1 , sgv2 , ...} from all the graphs Gvi . Let
|T v | be denoted as Kv .
δ : Number of dimensions (embedding size)
E : Number of epochs
Bv : Number of hash buckets for view v
k: Number of hash functions (maintained same across all views)
α : Learning rate

Output: Matrix of vector representations of apks ΦA ∈ R|A|×δ
1 Initialization: Sample ΦA from R|A|×δ, ΦL from R|L|×δ, φv from RBv×k, and pv from RKv×k

for e = {1, 2, ..., E} do
2 for ai ∈ Shuffle(A) do
3 for Gvi ∈ ai do
4 sgc := GetSubgraphs(Gvi , D)

5 J(ΦA, φv , pv) := − log
∏

sg∈sgc

e(Φ
A(ai)·HashEmb(sg,φv,pv,v))∑

sg′∈T v

e(Φ
A(ai)·HashEmb(sg′,φv,pv,v))

6 ΦA := ΦA − α ∂J
∂ΦA ; φv := φv − α ∂J

∂φv ; pv := pv − α ∂J
∂pv

7 for l ∈ li do

8 J(ΦL, φv , pv) := − log
∏

sg∈sgc

e(Φ
L(l)·HashEmb(sg,φv,pv,v))∑

sg′∈T v

e(Φ
L(l)·HashEmb(sg′,φv,pv,v))

9 ΦL := ΦL − α ∂J
∂ΦL ; φv := φv − α ∂J

∂φv ; pv := pv − α ∂J
∂pv

10 return ΦA

(line 1). It is noted that except the apk embeddings, all other parameters are

discarded when training culminates.

2. For each epoch, we consider each apk ai as the target whose embedding has to

be updated. To this end, each of its DG Gv
i is taken and all the rooted subgraphs

upto degree D around every node are extracted from the same (line 4). The

subgraph extraction process is explained in detail in Section 6.4.5.

3. The set of all such subgraphs sgc, is perceived as the context of ai. Once

sgc is obtained, we get their hash embeddings and compute the negative log

likelihood of them being similar to the target apk ai’s embedding (line 5). The

hash embedding computation process is explained in detail in Section 6.4.6.

4. With the loss value thus computed, the parameters that influence the loss are

updated (line 6). We propose a novel view-specific negative sampling strategy

to train the skipgram and the same is explained in Section 6.4.7.

5. Subsequently, for each of ai’s class labels i.e., l ∈ li, we compute the negative

log likelihood of their similarity to the context subgraphs in sgc and update
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the parameters that influence the same (lines 7-9). This step amounts to semi-

supervised RL as li could be empty for some apks.

6. The above mentioned process is repeated for E epochs and the apk embeddings

(along with other parameters) are refined.

Finally, when training culminates, apk embeddings in ΦA are returned (line 10).

6.4.5 Extracting Context Subgraphs

For a given apk ai, extracting rooted subgraphs around each node in each Gv
i and

considering them as its context is a fundamental task in our approach. To extract

these subgraphs, we follow the well-known Weisfeiler-Lehman relabeling process

[121] which lays the basis for WLK [121, 122]. The subgraph extraction process is

presented formally in Algorithm 4. The algorithm takes the graph G from which

the subgraphs have to be extracted and maximum degree to be considered around

root node D as inputs and returns the set of all rooted subgraphs in G, S. It

begins by initializing S to an empty set (line 2). Then, we intend to extract rooted

subgraph of degree d around each node n in the graph. When d = 0, no subgraph

needs to be extracted and hence the label of node n is returned (line 6). For cases

where d > 0, we get all the (breadth-first) neighbours of n in Nn (line 8). Then for

each neighbouring node, n′, we get its degree d−1 subgraph and save the same in a

multiset M
(d)
n (line 9). Subsequently, we get the degree d− 1 subgraph around the

root node n and concatenate the same with sorted list M
(d)
n to obtain the subgraph

of degree d around node n, which is denoted as sg
(d)
n (line 10). sg

(d)
n is then added

to the set of all subgraphs (line 11). When all the nodes are processed, rooted

subgraphs of degrees [0, D] are collected in S which is returned finally (line 12).

6.4.6 Obtaining hash embeddings

Once we have extracted context subgraphs, we proceed with obtaining their hash

embeddings and training the same along the target apk’s embedding. Given a

subgraph, the process of extracting its hash embedding involves a four step process

which is formally presented in Algorithm 5. Following is the explanation of this

algorithm:
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Algorithm 4: GetSubgraphs (G,D)
1 begin
2 S := {} //Initialize with an empty set
3 for n ∈ N do
4 for d ∈ {0, 1, ..., D} do
5 if d = 0 then

6 sg
(d)
n := λ(n) //node label

7 else
8 Nn := {n′ | (n, n′) ∈ E}//neighboring nodes

9 M
(d)
n := {{GetWLSubgraph(n′, G, d− 1) | n′ ∈ Nn}} //multiset of rooted subgraphs
around neighboring nodes

10 sg
(d)
n := GetWLSubgraph(n,G, d− 1)⊕ sort(M(d)

n )

11 S := S ∪ sg(d)
n

12 return S //set of all rooted subgraphs in G

Algorithm 5: HashEmb (sg, φ, p, v)
1 begin
2 sgid := Fv(sg) //Token to id mapping function

3 components := (φ(H1(sgid)), ..., φ(Hk(sgid))T //shape of components: k × δ
4 weights := (pv1(sgid), pv2(sgid), ..., pvk(sgid))T //shape of weights: k × 1

5 ~sg := weightsT · components //1× k · k × δ
6 return ~sg

1. Given a subgraph sg, we begin by mapping to an integer sgid, using a function

Fv (line 2). When T v, the vocabulary of all the subgraphs in view v could be

obtained ahead of training, a regular dictionary aka token-to-id function which

maps each subgraph to a unique number in the range [1, Kv] (where Kv = |T v|)
could be used as Fv. In the online learning setting, such a dictionary could not

be obtained. Hence, analogous to feature hashing [123], one could use a regular

hash function such as MD5 or SHA1 to hash the subgraph to an integer in the

predetermined range [1, Kv] (here, an arbitrarily large value of Kv is chosen to

avoid collisions).

2. sgid is then hashed using each of the k hash functions. Each functionHi, i ∈ [1, k]

maps it to one of the Bv available hash buckets which in turn maps to one of

the Bv component embeddings in φv. Thus we obtain k component embeddings

for the given subgraph and save them in components (line 3). In other words,

components contains k δ-dimensional embeddings.

3. Similarly, using sgid, we then lookup the importance parameter for each hash

function, pvi (sgid), i ∈ [1, k] and save them in weights (line 4). In other words,

weights contains k importance values.
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4. Finally, the hash embedding of the subgraph is obtained by multiplying k δ-

dimensional component vectors with k corresponding importance values (line

5).

Once the hash embeddings of the context subgraphs are obtained using the above

mentioned process, one could train them along with the target apk’s embedding

using a learning algorithm such as Stochastic Gradient Decent (SGD).

6.4.7 View-specific Negative Sampling

Similar to other skipgram based embedding models such as graph2vec [113], we

could efficiently minimize the negative log likelihood in lines 5 and 8 of Algorithm 3.

That is, given an apk a and a subgraph sgv which is contained in view v, the regular

negative sampling intends to maximize the similarity between their embeddings.

Besides, it chooses η subgraphs as negative samples i.e., that do not occur in the

context of a and minimizes the similarity of a and these negative samples. This

could be formally presented as follows,

Pr(sgv|a) = σ(~aT · ~sgv)
η∏
j=1

Esgj∼Prn(T )σ(−~aT · ~sgj) (6.5)

where, T =
⋃
v T v is union of vocabularies across all views and E is expectation of

choosing a subgraph sgj from the smoothed distribution of subgraphs Prn across

all the three views.

In other words, eq. (3) moves ~a closer to ~sgv as it occurs in a’s context and also

moves ~a farther away from ~sgj (which may not belong to view v) as it does not

occur in a’s context.

However, in our multi-view embedding scenario, the distribution of subgraphs is not

similar across all views. For instance, in our experiments reported in Section 6.5,

the API view produces millions of subgraphs, where as the permission and source-

sink view produce only thousands. Hence, eq. (3) which ignores the view-specific

probability of subgraph occurrences is not suitable in this scenario. Therefore,

we propose a novel view-specific negative sampling strategy as described by the
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equation below:

Pr(sgv|a) = σ(~aT · ~sgv)
η∏
j=1

Esgvj∼Prn(T v)σ(−~aT · ~sgvj ) (6.6)

In simpler terms, eq. (4) moves ~a closer to ~sgv as it occurs in a’s context and also

moves ~a farther away from ~sgvj (which also belongs to view v) as it does not occur

its a’s context.

6.4.8 Model Dynamics

The trainable parameters of our model are ΦA,ΦL, φv, and pv. Recall, ΦA and ΦL

are regular embeddings as they are in the input layers and φvs are hash embeddings.

Also, the total number of tokens in the input and output layers would be |A|+ |L|
and

∑
vK

v, respectively. Hashing (which is applicable only to φv) reduces the

number of parameters in the output layer from
∑

vK
v to Kvk+kBv where Bv <<

Kv (typically, we set k = [2, 4] and Kv > Bv · 100).

From the explanations above, it is evident that the computational overhead of

using hash embeddings instead of standard embeddings is mainly contributed by

the embedding lookup step. More precisely, a multiplication of a 1 × k matrix

(obtained from pv) with a k× δ matrix (obtained from φv) is required instead of a

regular matrix lookup to get 1× δ subgraph embedding. When using small values

of k, the computational overhead is therefore negligible. In our experiments, hash

embeddings are marginally slower to train than standard embeddings on datasets

with small vocabularies.

6.5 Evaluation

We evaluate the efficacy of apk2vec’s embeddings with several tasks involving

various learning paradigms that include supervised learning (batch and online),

unsupervised learning and link prediction. The evaluation is carried out on five

different datasets involving a total of 42,542 Android apps. In this section, we

first present the experimental design aspects, such as research questions addressed,
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datasets and tasks chosen pertaining to the evaluation. Subsequently, the results

and relevant discussions are presented.

Research questions. Through our evaluations, we intend to address the following

questions:

• How accurate do apk2vec’s embeddings perform on various app analytics tasks

and how do they compare to state-of-the-art approaches?

• Do multi-view profiles offer better accuracies than single-view profiles?

• Does semi-supervised RL help improving the accuracy of app profiles?

• How does apk2vec’s hyperparameters affect its accuracy and efficiency?

Evaluation setup. All the experiments were conducted on a server with 40 CPU

cores (Intel Xeon(R) E5-2640 2.40GHz), 6 NVIDIA Tesla V100 GPU cards with

256 GB RAM running Ubuntu 16.04.

Comparative analysis. To provide a comprehensive evaluation, we compare

our approach with four baseline approaches, namely, WLK [121], graph2vec [113],

sub2vec[116] and GE-FSG [117]. Refer to Section 6.1 and Section 6.3 for brief expla-

nations on the baselines. The following evaluation-specific details on baselines are

noted: (i) Since all baselines are unimodal they are incapable of leveraging all the

three DGs to yield one unified apk embedding. Hence, to ensure fair comparison,

we merge all three DGs into one graph and feed them to these approaches. (ii)

sub2vec has two variants, namely, sub2vec N (which leverages only neighborhood

information for graph embedding) and sub2vec S (which leverages only structural

information). Both these variants are included in our evaluations, and (iii) For all

baselines except GE-FSG, open-source implementations provided by the authors are

used. For GE-FSG, we reimplemented it by following the process described in their

original work. Our reimplementation could be considered faithful as it reproduces

the results reported in the original work.

Hyperparameter choices. In terms of apk2vec’s hyperparameters, we set the

following values: E = 100, δ = 64, α = 0.1 (with decay) and η = 2. When hash

embedding is used k = 2, Bv = Kv

10
(for all v). To ensure fair comparison, in all

experiments, the hyperparameters of all baseline approaches are maintained same

as those of apk2vec (e.g., the embedding dimensions of all baselines are set to 64,
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Table 6.1: Datasets used for evaluations

Task Data source # of apps
Avg. nodes Avg. edges

ADG PmDG SDG ADG PmDG SDG

Batch malware
detection

Malware: [43, 124] 19,944
783.03 131.73 80.12 2604.28 174.64 94.04

Benignware: [101] 20,000
Online malware

detection
Malware: [43] 5,560

365.18 63.11 37.885 744.99 66.96 34.67
Benignware: [101] 5,000

Malware familial
clustering

Drebin [43] 5,560 229.82 69.96 43.41 464.73 72.34 44.57

Clone detection Clone apps [19] 280 674.71 179.09 94.69 1553.29 182.24 76.64
App

recommendation
Googleplay [101] 2,318 2168.88 242.87 154.14 5137.47 348.67 150.87

etc.). In all experiments, for datasets where class labels are available, 25% of the

labels are used for semi-supervision during embedding (unless otherwise specified).

6.5.1 apk2vec vs. state-of-the-art

In the following subsections we intend to evaluate apk2vec against the baselines

on two classification (i.e., batch and online malware detection), two clustering

(i.e., app clone detection and malware familial clustering) and one link prediction

(i.e., app recommendation) tasks. The evaluations are performed on the datasets

reported in Table 6.1. Notably, the DGs obtained from apks are in general sig-

nificantly larger compared to the graphs in the benchmark datasets (e.g., datasets

used in [117]) and even some large real-world datasets (e.g., used in [122]). Some

of the baselines do not scale well to embed such large graphs and they run into

Out of Memory (OOM) situations.

6.5.1.1 Graph classification

Dataset & experiments. For batch learning based malware detection task,

19,944 malware from two well-known malware datasets [43] and [124] are used. As

for the benign apps, 20,000 apps from Google Play [101] and verified with VirusTo-

tal are used. To perform the malware detection, we first obtain profiles of all these

apps using apk2vec. Subsequently, a SVM classifier is trained with 70% of sam-

ples and is evaluated with the remaining 30% samples (classifier hyperparamters

are tuned using 5-fold cross-validation). This trial is repeated 5 times and the

results are averaged.
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For online malware detection task, 5,560 malware from [43] and 5,000 benign apps

from Google Play are used. In this experiment, the real-world situation where

apps stream in over time is simulated as follows: First, apks are temporally sorted

according to their time of release (see [99] for details). Thereafter, the embeddings

of first 1,000 apks are used to train an online Passive Agressive (PA) classifier.

For the remaining 9,560 apks, their embeddings are obtained from apk2vec in an

online fashion. These embeddings are fed to the trained PA model for evaluation

and classifier update.

Standard metrics such as precision, recall and f-measure are used to evaluate the

efficacy for both batch and online settings.

Results & discussions. The batch and online malware detection results are

presented in Table 6.2. The following inferences are drawn from the tables.

• In batch learning setting, it is evident from the f-measure that apk2vec out-

performs all baselines. More specifically, with just 25% labels it is able to out-

perform the worst and best performing baselines by more than 20% and nearly

2%, respectively. Clearly, this improvement could be attributed to apk2vec’s

multimodal and semi-supervised embedding capabilities.

• apk2vec’s improvements in f-measure are even more prominent in the online

learning setting. More specifically, it outperforms the worst and best performing

baselines by nearly 35% and more than 5%, respectively. Clearly, this improve-

ment could be attributed to apk2vec’s hash embedding capabilities through

which it handles dynamically expanding vocabulary of subgraphs.

• Looking at the performances of baselines, one could see all of them perform

reasonably better in the batch learning setting than the online setting. This is

owing to their inability handle vocabulary expansion which renders their models

obsolete over time. Besides, none of them posses multi-view and semi-supervised

learning potentials which could explain their overall substandard results.

• Due to poor space complexity, GE-FSG [117] is unable to handle the large graphs

used in this experiment and went OOM during the FSG extraction process.

Hence, its results are not reported in the table.
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Table 6.2: Malware detection (graph classification) results

Batch Online
Technique P(%) R(%) F(%) P(%) R(%) F(%)

apk2vec 88.07 90.41 89.22 87.90 89.73 88.81
WLK[121] 88.15 86.38 87.25 84.13 82.32 83.22

graph2vec[113] 76.96 82.48 79.63 82.55 84.21 83.37
sub2vec N[116] 68.31 69.65 68.98 52.20 56.65 54.33
sub2vec S[116] 66.94 68.36 67.64 53.13 54.98 54.04

6.5.1.2 Graph Clustering

Dataset & experiments. In this experiment, we evaluate apk2vec on two differ-

ent graph clustering tasks. Firstly, for the malware familial clustering task, we use

the 5,560 apps, belonging to 179 malware families, from the Drebin [43] collection.

Malware belonging to the same family are semantically similar as they perform

similar attacks. Hence, we obtain the profiles of these apps and cluster them into

179 clusters using k-means algorithm. Profiles of samples belonging to same family

are expected end up in the same cluster.

The next task is clone detection which uses 280 apps from Chen et al.’s [19] work.

The apps in this dataset belong to 100 clone groups, where each group contains at

least two apps that are semantic clones of each other with slight modifications/en-

hancements. Hence, in this task, we obtain the app profiles and cluster them into

100 clusters using k-means algorithm with the expectation that cloned apps end

up in the same cluster.

Adjusted Rand Index (ARI) is used as a metric to determine the clustering accuracy

in both these tasks.

Results & discussions. The clustering results are presented in Table 6.3. The

following inferences are drawn from the table.

• At the outset, it is clear that apk2vec outperforms all the baselines on both

these tasks. For familial clustering and clone detection, the improvements over

the best performing baselines are 0.07 and 0.01 ARI, respectively.

• Interestingly, unlike malware detection not all the baselines offer agreeable per-

formances in these two tasks. For instance, the ARIs of sub2vec and GE-FSG

are too low to be considered as practically viable solutions. Given this con-

text, apk2vec’s performances show that its embeddings generalize well and are

task-agnostic.
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Table 6.3: Malware familial clustering and clone detection (graph clustering)
results

Technique Familial clustering (ARI) Clone detection (ARI)

apk2vec 0.5124 0.8360
WLK[121] 0.3279 0.7766

graph2vec[113] 0.4441 0.8272
sub2vec N[116] 0.0374 0.1801
sub2vec S[116] 0.0945 0.0454
GE-FSG [117] OOM 0.0171

6.5.1.3 Link Prediction

Dataset & experiments. For this task, we constructed an app recommendation

dataset consisting of 2,318 apps downloaded from Google Play. We build a recom-

mendation graph R, with these apps as nodes. An edge is placed between a pair of

apps in R, if Google Play recommends one of them while viewing the other. With

this graph, we follow the procedure mentioned in [125] to cast app recommendation

as a link prediction problem. That is, P , a subset of edges (chosen at random) are

removed from R, while ensuring that this residual graph R′ remains connected.

Now, given a pair of nodes in R′, we predict whether or not an edge exists between

them. Here, endpoints of edges in P are considered as positive samples and pairs

of nodes with no edge between them in R are considered as negative samples. We

perform the experiment for P = {10%, 20%, 30%} of total number of edges in R.

Area under the ROC curve (AUC) is used as a metric to quantify the efficacy of

link prediction.

Results & discussions. The results of the app recommendation task are pre-

sented in Table 6.4 from which the following inferences are drawn.

• For all values of P , apk2vec consistently outperforms all the baselines. Also,

apk2vec’s margin of improvement over baselines is consistent and much higher in

this task than graph classification and clustering tasks. For instance, it improves

best baseline performances by 3 to 4% across all P values.

• It is noted that link prediction task does not involve any semi-supervision and

hence all this improvement could be attributed to apk2vec’s multi-view and

data-driven embedding capabilities.
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Table 6.4: App recommendation (link prediction) results

Technique AUC (P = 10%) AUC (P = 20%) AUC (P = 30%)

apk2vec 0.7187 0.7347 0.7236
WLK[121] 0.6643 0.6865 0.6805

graph2vec[113] 0.6830 0.7043 0.6876
sub2vec N[116] 0.5446 0.5808 0.5403
sub2vec S[116] 0.5206 0.5632 0.5631

Table 6.5: Clone detection results: single- vs. multi-view apk profiles

Technique
Views

APIs(ARI) Perm.(ARI) Src-sink(ARI) concat.(ARI) multi-view(ARI)

apk2vec 0.8208 0.7855 0.7953 0.8325 0.8360
WLK[121] 0.8078 0.7382 0.7479 0.7766 -

In sum, apk2vec consistently offers the best results across all the five tasks reported

above. This illustrates that apk2vec’s embeddings are truly task-agnostic and

capture the app semantics well.

6.5.2 Single- vs. Multi-view Profiles

In this experiment, we intend to evaluate the following: (i) significance of three in-

dividual views used in apk2vec, (ii) significance of concatenating app profiles from

individual views (i.e. linear combination), and (iii) whether non-linear combination

of multiple views is better than (i) and (ii).

Dataset & experiments. To this end, we use the clone detection experiment

reported in Section 6.5.1.2. First, we build the app profiles (i.e., 64-dimensional

embedding) with individual views (i.e., only one output layer is used in skipgram).

Clone detection is then performed with each view’s profile. Also, we concatenate

the profiles from three views to obtain a 192-dimensional embedding and perform

clone detection with the same. Finally, the regular 64-dimensional multi-view

embedding from apk2vec is also used for clone detection. From this experiment

onwards, only WLK is considered for comparative evaluation, as it has the most

consistent performance among the baselines.

Results & discussions. The results of this experiment are reported in Table 6.5.

The following inferences are drawn from the table:

• At the outset, it is evident that individual views are capable of providing rea-

sonable accuracies (i.e., 0.70+ ARI). This reveals that individual views possess

capabilities to retain different, yet useful program semantics.
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Table 6.6: Impact of semi-supervised embedding on malware detection efficacy

apk2vec WLK[121]
Labels(%) P(%) R(%) F(%) P(%) R(%) F(%)

0 92.97 95.43 94.19 95.83 91.04 93.38
10 95.44 97.11 96.27 - - -
20 95.91 96.76 96.33 - - -
30 96.59 97.28 96.93 - - -

• Out of the individual views, as expected, API view get the best accuracy. This

could be attributed to fact that this view extracts much larger number of high-

quality features compared to the other two views. Owing to this well-known

inference, many works in the past (e.g., [20, 24, 25, 43, 99]) have used them for

a variety of tasks (incl. malware and clone detection). Also, source-sink view

extract too few features to perform useful learning. In other words, it ends up

underfitting the task. These observations are inline with the existing work on

multi-view learning such as [18].

• In the case of WLK, API profiles gets a very high accuracy and when they are

concatenated with other views, the accuracy is reduced. We believe this is due to

the inherent linearity in this mode of combination i.e., views do not complement

each other.

• Interestingly, in the case of apk2vec, concatenating profiles from individual views

yields higher accuracy than using just one view. This reveals that using multiple

views is indeed offering richer semantics and helps to improve accuracy. How-

ever, concatenation could only facilitate a linear combination of views and hence

is yielding slightly lesser accuracy than apk2vec’s multi-view profiles. This illus-

trates the need for performing a non-linear combination of the semantic views.

6.5.3 Semi-supervised vs. Unsupervised Profiling

In this experiment, we intend to study the impact of using the (available) class

labels of apps during profiling.

Dataset & experiments. Here, we use the same dataset which was used for on-

line malware detection reported in Section 6.5.1.1. However, in order to study the

impact of varying levels of supervision, we use labels for the following percentages

of samples: 10%, 20%, and 30%. Profiles for apps are built with aforementioned
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levels of supervision and for each setting an SVM classifier is trained and evalu-

ated for malware detection (other settings such as train/test split are similar to

Section 6.5.1.1).

Results & discussions. The results of this experiment are reported in Table 6.6,

from which the following inferences are made:

• One could observe that leveraging semi-supervision during apk2vec’s embedding

is indeed helpful in improving the accuracy of the downstream task. For instance,

by using labels for merely 10% of samples help to improve the accuracy for

malware detection by more than 2%.

• Clearly, using 30% labels yields better results than using just 10% and 20%

labels. This illustrates the fact that the more the supervision is, the better the

accuracy would be.

• In the case of WLK which uses handcrafted features, one could not use labels

or other form of supervision to obtain graph embeddings. Hence, without any

supervision, it performs reasonably well to obtain an f-measure of more than

93%. However, apk2vec with even just 10% supervision is able to outperform

WLK significantly i,e., by nearly 3% f-measure.

6.5.4 Parameter Sensitivity

The apk2vec framework involves a number of hyperparameters such as embedding

dimensions (δ), number of hash buckets (B) and number of hash functions (k).

In this subsection, we examine how the different choices of δ affects apk2vec’s

accuracy and efficiency, as it is the most influential hyperparameter.

Dataset & experiments. Here, the clone detection experiment reported in Sec-

tion 6.5.1.2 is reused. The sensitivity results are fairly consistent on the remaining

tasks reported in Section 6.5.1. Except for the parameter being tested, all other

parameters assume default values. Embeddings’ accuracy and efficiency are deter-

mined by ARI and pretraining durations (averaged over all epochs), respectively.

Results & discussions. These results are reported in Figure 6.3 from which the

following inference are drawn.
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Figure 6.3: Sensitivity w.r.t embedding sizes

• Unsurprisingly, the ARI values increase with δ. This is understandable as larger

embedding sizes offer better room for learning more features. However, the per-

formance tends to saturate once the δ is around 500 or larger. This observation is

consistent with other graph substructure embedding approaches [122, 125, 126].

• Also, the average pretraining time taken per epoch increases with δ. This is

expected, since increasing δ would result in an exponential increase in skipgram

computations. This is reflected in the exponential increase in pretraining time

(especially, when δ > 500). This analysis helps understanding the trade-off

between apk2vec’s accuracy and efficiency for a given dataset and picking the

optimal value for δ.

6.6 Conclusion

In this chapter, we presented apk2vec, semi-supervised multimodal RL technique

to automatically build data-driven behavior profiles of Android apps. Through our

large-scale experiments with more than 42,000 apps, we demonstrate that profiles

generated by apk2vec are task agnostic and outperform existing approaches on

several tasks such as malware detection, familial clustering, clone detection and

app recommendation. Our semi-supervised multimodal embeddings also prove to

provide significant advantages over their unsupervised and unimodal counterparts.

All the code and data used within this work is made available at https://sites.

google.com/view/apk2vec/home.

https://sites.google.com/view/apk2vec/home
https://sites.google.com/view/apk2vec/home
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Conclusion and Future Research

In this chapter, we summarise the research work that we have conducted in the

thesis and discuss our future research directions.

7.1 Summary of completed work

Along with the rising popularity of Android, all of its stakeholders, such as devel-

opers and users, are facing increasing security threats that occur in different forms.

In this thesis, we conducted a series of studies, based on program analysis and

machine learning approaches to address these threats.

First, we observe that app cloning is a critical problem to the Android ecosystem

as it affects multiple stakeholders. However, existing clone detection approaches

lack resilient to obfuscation which are common in Android apps. To address this

research gap, we propose a novel technique to detect app clones based on the

analysis of UI information collected at runtime. Unlike the existing approaches,

our approach is obfuscation resilient since the runtime behaviours are unaffected by

the semantics preserving obfuscations. In addition, our approach leverage on the

multiple entry point characteristic of Android apps and overcome the limitation of

having to execute the entire app for runtime information collection.

Second, we propose a tool, named LibSift, to perform automated TPL detection

as the presence of TPLs introduces privacy risks, security threats and hinders pro-

gram analytics tasks. Existing works typically use a whitelist to match the package

117
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names and exclude the TPLs from their analysis. However, package renaming ob-

fuscation is commonly employed in Android apps. To this end, LibSift detects

TPLs based on package dependencies that are resilient to most common obfusca-

tions. Furthermore, LibSift does not depend on the assumption that the TPLs will

be used in many apps. These allow LibSift to detection TPLs more effectively than

existing approaches.

Third, we observe that the majority of the existing Android malware detection

approaches are build upon ML algorithm. More specifically, they follow a batch

learning model and erroneously assume that the population distribution is station-

ary. To this end, we performed a systematic study on a large dataset of over 80K

apps to examine the limitations of state-of-the-art ML based malware detection

approaches in presence of concept drift. We further propose modifications that

can be applied to such approaches to help them overcome the observed limitations.

Through several large-scale experiments, we demonstrated that our proposed mod-

ifications to the models significantly improve their performance.

Fourth, we observe that extensive feature engineering is required for each of the

program analytic tasks that we have conducted. The set of features thus obtained

are specific to the respective analytics task and may not be transferable to other

tasks. To this end, we propose a static analysis based semi-supervised multi-

view RL framework named apk2vec, to build holistic profiles of Android apps

that are capable of catering to multiple downstream analytics tasks. The results

of our extensive experiment on more than 42K apps demonstrate that our app

profiles could outperform state-of-the-art solutions in four program analytic tasks,

such as, malware detection, familial classification, app clone detection and app

recommendation.

7.2 Future work

In this thesis, we have developed techniques to address different security challenges

in the Android ecosystem and also proposed an approach to build holistic Android

app profile that can catering a range of downstream analytic tasks. However, due

to the magnitude of the challenges,there are still many issues that are not covered

in this thesis. In future, we are going to conduct the following works:
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• Graph attention model for Android malware analysis. In our work on

apk2vec (see Chapter 6), the entire graph representation is used to perform

malware detection. However, in reality, only a small portion of the graph

represents the malicious code fragment. Inspired by the recent success of

RNN with attention on vision and natural language processing tasks, we

envision to employ a RNN model with attention mechanism to build a app

representation for malware analysis. Using attention to focus on the malicious

part of the ICFG allows us to on the informative part of the graph and

improve detection accuracy while also enabling us to identify the portion of

the graph that is malicious.

• Enhance app profile with metadata. Apart from bytecode, there are also

other sources of information that describe the apps’ behaviour. For instance,

the app description on the app market and image in the resource files, both

provide clues on the app’s functionality. To further enhance the capabilities

of our app profiles, we plan to extend apk2vec with CNN for image and RNN

for text processing. Having such app profiles can improve the performance

on the downstream analytic tasks and open up to more potential applications

such as app categorisation.

• Cross-platform mobile app representation learning. In comparison

with other smartphone platforms, the apps from Android platform are pre-

dominately easier to be reverse engineered and analysed. However, libraries

or code fragment typically have counterparts in other platforms. To this

end, we intend to study the association between Android and iOS apps and

use this knowledge for performing cross-platform app representation learn-

ing. This can be achieved by incorporating machine translation and transfer

learning techniques to our app profiling approach.
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