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Production postponement, the strategy to hold reserved production capacity that can be deployed based
on actual demand signals, is often used to mitigate supply-demand mismatch risk. The effectiveness of this
strategy depends crucially on the ease, or flexibility, in deploying the reserved capacity to meet product
demands. Existing literature assumes that the reserved capacity is “fully flexible,” i.e. capable of being
deployed to meet the demand of any item in a multi-product system. Little is known if reserved capacity is
held at many different locations, with each location having only a limited range of flexibility on production
options. This paper examines how effective the production postponement strategy is in this environment.

When the amount of reserved capacity is small (i.e. postponement level near 0%), no amount of flexibility
can reap significant benefits. When the reserved capacity is high (i.e. postponement level near 100%), it is well
known that a sparse structure such as a 2-chain can perform nearly as well as a fully flexible structure. Hence,
process flexibility beyond 2-chain has little impact on the effectiveness of production postponement strategy
in these two extreme environments. Interestingly, in a symmetric system, we prove that the performance
of 2-chain, vis-a-viz the full flexibility structure, has a wider gap when postponement level (i.e. amount of
reserved capacity) is moderate, and thus process flexibility beyond 2-chain matters and affects appreciably
the performance of the production postponement strategy. Fortunately, adding a little more flexibility, say
turning a 2-chain into a 3-chain, the system can perform almost as well as a full flexibility structure for
all postponement levels. This is important as first stage production capacity can be allocated “as if” the
reserve capacity is “fully flexible.” Our analysis hinges on an exact analytical expression for the performance
of d-chain, obtained from solving a related class of random walk problems. To the best of our knowledge,
this is the first paper with analytical results on the performance of d-chain for d > 2.

Key words : process flexibility, production postponement, chaining strategy, multi-item newsvendor,
stochastic programming

1. Introduction

Since the 1980s, we have witnessed the advent of globalization and the tremendous effects it has

on world consumption and production patterns. A quick look at Interbrand’s1 2011 rankings of

the 100 best global brands reveals that these brands already hail from fifteen different countries,

up from thirteen in 2009. According to the report, each of these brands derives at least a third of

its earnings outside its home country. This tells us that the world is increasingly moving towards

a phenomenon of borderless consumption. With the internationalization of market competition,

firms nowadays need to build up the capacity to stay competitive as a world-class company. The

1



Chou, Chua, and Zheng: On the Performance of Sparse Process Structures in Partial Postponement Production Systems

2 Article submitted to Operations Research; manuscript no. OPRE-2011-06-304.R2

most common solution has been to turn to outsourcing and offshoring, essentially tapping into the

production capabilities of factories, big and small, all over the world. For example, many American

and European brands outsource their sourcing function to Hong Kong-based Li & Fung, one of

the world’s leading supply chain companies, which controls a network of over 10,000 production

facilities scattered everywhere in places like China, Brazil, the Czech Republic, Honduras, Mauri-

tius, Mexico, Poland, South Africa, Zimbabwe, and countries in Southeast Asia (Feng 2007). On

this phenomenon of borderless manufacturing, Fung et al. (2007, 2008) believe the trend is “to rip

the roof off the factory. In contrast to Henry Ford’s assembly line, where all the manufacturing

processes were under one roof, the entire world is our factory.” Other than granting firms the abil-

ity to increase capacity through global aggregation, this strategy also allows the firms to control

and reduce operating expenses as well as focus on improving their core businesses, such as product

design and marketing.

Another important trend is the fragmentation of consumer demand. Instead of catering to one

big market with more or less homogeneous demand, companies are beginning to see more niche

markets with diverse tastes as well as the emergence of variety-seeking consumer behavior. As this

trend becomes more prevalent, we see an increasing proliferation of product lines as companies

struggle to stay competitive. In the automobile industry, the number of car models offered in the

United States market has experienced an upward trend since 1984 (Van Biesebroeck 2007). The

same phenomenon can be observed in other industries such as electronics, clothing, food products,

and even services like entertainment/media and education. As a result, demand uncertainty on a

per product basis increases and forecasting becomes more difficult.

Cast in the overall setting of globalization, the increased demand uncertainty confronting man-

ufacturers is further heightened by the complexity of the global production and consumption

network. Facing a growing number of facilities and products, firms now need to contend with not

only uncertainty, but multiple sources of uncertainty. The challenges here are two-fold; namely,

forecasting and production planning. Forecasting becomes more difficult due to disaggregation

and accounting for correlations while production planning in a multi-plant, multi-product system

entails both network design and production allocation.

To deal with multiple sources of demand uncertainty, the literature suggests two approaches

that come hand in hand; namely, (1) process flexibility and (2) production postponement. “Process

flexibility” refers to “a firm’s ability to provide varying goods or services, using different facilities

or resources”. The more products each plant is capable of producing, the more flexible is the

production system. On the other hand, we interpret “production postponement” as “the proportion

of a firm’s capacity that can be used to satisfy demand immediately”. Since the firm can convert
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this postponed capacity into fulfilled demand quickly, the allocation of this capacity can therefore

be chosen on a make-to-order basis (after receiving demand information). However, the remaining

proportion that cannot be used for immediate fulfillment of demand must be deployed in a make-

to-stock fashion (prior to receiving demand information). The more capacity falls under make-to-

order, the more production postponement the firm is said to possess. Process flexibility generates

value through risk pooling (Eppen 1979), whereas production postponement creates value from the

option not to produce and when coupled with the former, the option of what to produce. When

there is no postponement, the benefits from risk pooling are lost. On the other hand, when there

is no flexibility, postponement only eliminates the cost of overage and nothing else. Hence, it is

important to carefully choose the mix of process flexibility and production postponement.

To illustrate, consider a firm that owns a network of several plants whose capacities can be used

to meet the (expected) demands for a range of products (i.e. a balanced system). The firm must

choose at what levels to deploy the twin approaches of flexibility and postponement. Clearly, with

sufficiently long delivery leadtime, the firm can opt for the first-best solution – full flexibility

and full postponement strategy. However, this strategy is costly because full flexibility requires

all plants to be capable of producing all products (i.e., effectively pooling the plants’ capacity

together) while full postponement is possible only if the delivery leadtime is long - the firm can

obtain complete demand information prior to any production activity. In this way, the firm can

essentially use a central plant to produce all products (or a network of plants, all of which can

produce all products). When production leadtime is moderately long, firms can opt instead to

produce a portion of the demand by forecast first, before reverting to make-to-order mode to

fully utilize the production capacity during the leadtime window. We call this Option A – full

flexibility and partial postponement. On the other hand, firms like Li and Fung can contract a

network of small manufacturers, each specializing in only a limited number of products. These small

manufacturers are typically on standby and can respond to production requests very quickly after

receiving firm orders. Unlike a centralized facility, these plants have only limited range of production

flexibility. We can think of this as Option B – partial flexibility and full postponement.

In practice, however, firms often adopt a hybrid of the above - a portion of the capacity from

the contractors are used as reactive capacity, but due to short delivery leadtime, a chunk of the

contractors’ capacity are used in a make-to-stock fashion to produce the products in advance. We

call this Option C – partial flexibility and partial postponement.

Jordan and Graves (1995) show that Option B, configured the right way using a “chaining”

strategy, can already accrue most (almost 95%) of the benefits of the first-best solution at a small

fraction of the cost. They model the problem as a two-stage stochastic program where the strategic
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decision of process flexibility design is carried out in the first stage while the production allocation

is chosen in the second stage after demand is realized2. This chaining concept has been extended

in various other directions (Graves and Tomlin 2003, Gurumurthi and Benjaafar 2004, Hopp et

al. 2004, Bish et al. 2005, Iravani et al. 2005, Muriel et al. 2006, Deng and Shen 2013). Likewise,

efforts were also expended to strengthen its analytical aspect (Akşin and Karaesmen 2007, Chou

et al. 2010a, 2010b, 2011, Bassamboo et al. 2010, 2012, Simchi-Levi and Wei 2012). For a review of

process flexibility and discussion on how the concept has been deployed in several manufacturing

and service systems, please refer to Chou et al. (2008). However, to our best knowledge, none of

these papers consider the impact of partial production postponement.

The analytical papers in the literature focus mainly on the 2-chain, where each plant can produce

exactly two products and each product can be produced by two plants. These papers find that the

2-chain performs extremely well. For example, Chou et al. (2010b) use a random walk approach

to characterize the asymptotic performance of the 2-chain while Simchi-Levi and Wei (2012) use

a supermodularity property to characterize the performance of the 2-chain in finite systems. As

will be unveiled in this paper, there are situations where higher chains (e.g. 3-chain) are necessary

to offset performance losses due to partial postponement. To the best of our knowledge, there

are no existing results on the d-chain for d > 2. Moreover, the supermodulariy technique used in

Simchi-Levi and Wei (2012) no longer works for d-chains when d > 2. We generalize the random

walk argument used in Chou et al. (2010b) to higher chains and to arbitrary levels of production

postponement. More importantly, this new approach allows us to examine the performance of

systems such as Option A and Option C.

In Option A or Option C, we need to address the issue of first-stage production allocation

- what is the best way to utilize production capacity in the first stage when the second-stage

production capacity is limited by partial flexibility? While a number of papers discuss or study

the postponement decision (Signorelli and Heskett 1984, Lee et al. 1993, Lee and Tang 1997,

Swaminathan and Lee 2003), most of them consider postponement in terms of deferring certain

steps in the manufacturing process to a point when demand information becomes available. Our

interest, however, is in production postponement, which we have defined as the proportion of

capacity that can be allocated after demand information is known. Van Mieghem and Dada (1999)

examine the trade-off between production postponement and price postponement, but they do not

consider the issue of process flexibility.

The work that most closely relates to ours is that of Fisher and Raman (1996), who demonstrate

that Option A– where a single production facility acts equivalently as a fully flexible production

network – can lead to significant savings. For Sport Obermeyer, a major fashion skiwear company,
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they report that after observing only 20% of initial demand, the company can increase its profits by

as much as 60%. While much of this increase is probably attributed to margin arithmetic (Cachon

and Terwiesch 2009) because net profit is relatively low to begin with, the study nonetheless

demonstrates the substantial impact of production postponement – a small portion of reactive

capacity (fully flexible) can have tremendous value in matching production capacity with demand

in the supply chain. However, their model assumes full flexibility in the second stage and hence

is not able to handle systems with partial flexibility, that is the more general Option C. In this

paper, we essentially combine the key insights in these areas to arrive at the following observation

- that a small amount of flexibility (3-chain, instead of 2-chain) and a small amount of reserved

capacity, can add tremendous value in matching supply and demand. Furthermore, we quantify the

performance gap of a 3-chain vis-a-viz the first-best solution under different postponement levels.

The rest of the paper is organized as follows. In Section 2, we introduce the basic production

allocation model and define the performance measures. Section 3 presents our analysis of the first-

stage make-to-stock production decision, given that the second stage make-to-order production

network has limited range of production flexibility. This resulted in a complex two stage stochastic

programming model. We derived structural results for the optimal production plan in the first stage,

when the production system is symmetric but not necessarily balanced. In Section 4, we analyze the

overall performance of different productions systems with partial postponement strategy. We show

analytically in Section 5 that the 3-chain can recover most of the flexibility loss caused by partial

postponement. In Section 5.1, we present the random walk approach for asymptotic performance

of long chains with degree greater than two and any arbitrary level of postponement. In Section

6, we examine the postponement and flexibility trade-off under asymmetric systems where plant

capacities and product demand distributions are no longer identical. Finally, Section 7 concludes

the paper.

2. The Model

In this section, we generalize the process flexibility model under full postponement to the case

where the postponement level can range anywhere between the extremes of make-to-stock and

make-to-order. To this end, we develop a model to capture partial levels of both process flexibility

and production postponement. The setting is as follows. We consider a system with n plants and n

products. As in the literature, we let A(n) and B(n) represent the set of product nodes and the set

of plant nodes, respectively. The product demands are D1,D2, . . . ,Dn which are independent and

identically distributed continuous random variables with density function φ that is symmetrical

about the mean µ and distribution function Φ. This family of distributions includes the uniform
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and normal distributions. The plants, on the other hand, have fixed capacities of C units each.

This setting is known as the symmetric but unbalanced case. In some instances, we shall consider

the balanced and symmetric case where C = µ for ease of exposition.

Early on, the firm carries out two strategic decisions; namely, the level of flexibility and the level

of postponement. For flexibility, the firm chooses a flexibility configuration G(n)⊂A(n)×B(n). Due

to their well-established efficiency, we focus on a class of symmetric flexibility structures known as

d-chains. Doing so reduces the decision to a scalar d, denoting the common node degree. Although

there exist many structures with all nodes having degree d, d-chains are the ones that form the

longest possible chain.

Definition 1. For d= 1,2, . . . , n, the d-chain is

Cd(n)
∆
=

{n−d+1⋃
i=1

{(i, i), (i, i+ 1), . . . , (i, i+ d− 1)}
}

⋃ { n⋃
i=n−d+2

{(i, i), (i, i+ 1), . . . , (i, n), (i,1), (i,2), . . . , (i, i−n+ d− 1)}
}

The extremes of d= 1 and d= n correspond to no flexibility (also known as the dedicated system)

and full flexibility, respectively. All other values of d in between account for varying levels of partial

flexibility, thus generalizing the 2-chain (or chaining) defined earlier. Whenever the context allows,

we also return to the following previous notations in the literature.

D(n) = C1(n), C(n) = C2(n), F(n) = Cn(n)

For production postponement, we model a two-stage production process and define α as the

proportion of capacity postponed to the second stage while 1− α is for first-stage consumption.

When α= 0, we have a make-to-stock setting and all production must be decided in the first stage.

When α= 1, our model reduces to the make-to-order, full-postponement setting in the literature.

We allow the firm to choose its desired postponement level α over the range [0,1].

Once a combination of G(n) (equivalently, d) and α is chosen, we have to look beyond just

minimizing lost sales because overage cost is no longer zero in this general case. The performance

measure to use is expected mismatch cost which can be determined by solving the following two-

stage problem. In the first stage, (1 − α)C units are made available at each plant to produce

whatever allowed combination of products 1,2, . . . , n to stock, i.e. without information on actual

final demand. In the second stage, the remaining αC units in each plant become available to meet

whatever actual demand the firm cannot fill from first-stage stock. Our problem here is essentially

a multi-item newsvendor model with second-stage supply and partial capacity sharing, whereby

the expected mismatch cost is minimized. For ease of analysis, we let the unit overage cost and
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unit underage cost for all products be identical, denoted by co and cu, respectively. Further denote

by G∗G(n)(α) the optimal expected mismatch cost. The production allocation decisions are xij and

yij, which denote the amounts of product i produced by plant j in the first and second stages,

respectively.

(P1) : G∗G(n)(α,C) = minx GG(n)(x, α,C)

s.t.
n∑
i=1

xij ≤ (1−α)C ∀j = 1,2, . . . n

xij ≥ 0 ∀i, j = 1,2, . . . n

xij = 0 ∀(i, j) /∈ G(n)

where

GG(n)(x, α,C) = cog1(x) + cug2(x)− cuE[hG(n)(x, α,D,C)]

g1(x) =
n∑
i=1

E

[( n∑
j=1

xij −Di

)+]

g2(x) =
n∑
i=1

E

[(
Di−

n∑
j=1

xij

)+]
and

hG(n)(x, α,D,C) = maxy

n∑
i=1

n∑
j=1

yij

s.t.
n∑
j=1

yij ≤
(
Di−

n∑
j=1

xij

)+

∀i= 1,2, . . . n

n∑
i=1

yij ≤ αC ∀j = 1,2, . . . n

yij ≥ 0 ∀i, j = 1,2, . . . n

yij = 0 ∀(i, j) /∈ G(n)

Before proceeding further, we summarize the sequence of events.

1. The firm decides flexibility structure G(n) (equivalently, the value of d for d-chaining) and

the level of postponement α.

2. The first-stage production decisions xij are made.

3. Product demands Di are observed.

4. The second-stage production decisions yij are made.

5. Mismatch costs are incurred.

Because our interest is to compare the performance of any flexibility-postponement combination

vis-à-vis the first-best solution, we introduce the following quantities which will help us understand

the effects of having only partial flexibility, partial postponement, or both.
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Definition 2. Given any combination of G(n) and α, and capacity C, the optimality loss relative

to the first-best solution is the difference in optimal expected mismatch costs.

LT (G(n), α,C)
∆
=G∗G(n)(α,C)−G∗F(n)(1,C)

Furthermore, this quantity is made up of two components. The postponement loss is the loss due

to partial postponement

LP (α,C)
∆
=G∗F(n)(α,C)−G∗F(n)(1,C)

while the flexibility loss is the loss due to partial flexibility

LF (G(n), α,C)
∆
=G∗G(n)(α,C)−G∗F(n)(α,C)

such that LT (G(n), α,C) =LP (α,C) +LF (G(n), α,C).

For the class of flexibility structures in Definition 1, we can also gauge the percentage of flexibility

loss as system size grows very large. To do so, we define the following performance measure.

Definition 3. The asymptotic chaining efficiency (ACE) of the d-chain at postponement level α

and capacity C is the expected improvement (over dedicated structure) ratio of the d-chain relative

to full flexibility both at postponement level α as system size approaches infinity.

ACE(d,α,C)
∆
= lim

n→∞

G∗D(n)(α,C)−G∗Cd(n)(α,C)

G∗D(n)(α,C)−G∗F(n)(α,C)

3. Make-to-Stock: The First-Stage Decision

To gain insights that can be useful for the general case where plant capacities and demand dis-

tributions are not identical, we first focus on the symmetric but unbalanced case. Interestingly, in

this setting, we can characterize the first-stage decision analytically under certain conditions - we

show that the first-stage production decision does not depend on the process flexibility structure.

This allows us to simplify the entire optimization problem.

To this end, we define Problem 2 by relaxing first-stage production to be fully flexible while still

holding second-stage production to G(n)-flexibility. Notice that under full flexibility, there will be

multiple optimal solutions in the first stage. Hence, the n2-dimensional decision vector x in (P1)

can be reduced to the n-dimensional decision vector z by letting zi =
∑n

j=1 xij,∀i= 1,2, . . . , n.

(P2) : G
∗
G(n)(α,C) = minx GG(n)(x, α,C)

s.t.
n∑
i=1

xij ≤ (1−α)C ∀j = 1,2, . . . n
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xij ≥ 0 ∀i, j = 1,2, . . . n

= minz GG(n)(z, α,C)

s.t.
n∑
i=1

zi ≤ (1−α)nC

zi ≥ 0 ∀i= 1,2, . . . n

where

GG(n)(z, α,C) = cog1(z) + cug2(z)− cuE[hG(n)(z, α,D,C)]

g1(z) =
n∑
i=1

E[(zi−Di)
+]

g2(z) =
n∑
i=1

E[(Di− zi)+]

and

hG(n)(z, α,D,C) = maxy

n∑
i=1

n∑
j=1

yij

s.t.
n∑
j=1

yij ≤ (Di− zi)+ ∀i= 1,2, . . . n

n∑
i=1

yij ≤ αC ∀j = 1,2, . . . n

yij ≥ 0 ∀i, j = 1,2, . . . n

yij = 0 ∀(i, j) /∈ G(n)

To characterize the first-stage decision, we present the following results.

Lemma 1. Suppose f :Rn→R and dom f =Rn+. Define g :Rn→R by g(x) = f(x+), where x+

is the component-wise positive part of x. If f is convex in x and nondecreasing in each argument

xi over [0,∞), then g is convex in x.

Proof. This lemma is a special case of the vector composition result in Section 3.2.4 of Boyd and

Vandenberghe (2009, p86). �

This allows us to show that the function hG(n)(z, α,D,C) is convex in z, leading to our first

result.

Proposition 1. GG(n)(z, α,C) is convex in z for any structure G(n).

Next, we present a short lemma to help us prove our first main result.

Lemma 2. Suppose f :R→R is an increasing convex function while g, ĝ :R→R are decreasing

convex functions such that ĝ′(x)≤ g′(x)≤ 0. If x∗ minimizes f(x) + g(x) and x̂∗ minimizes f(x) +

ĝ(x), then x∗ ≤ x̂∗.
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Proof. It follows from optimality that f ′(x∗) = −g′(x∗) and f ′(x̂∗) = −ĝ′(x̂∗). Since f is convex

while −g,−ĝ are concave, f ′ is nondecreasing and −g′,−ĝ′ are nonincreasing. Because −ĝ′(x) ≥

−g′(x), x∗ ≤ x̂∗. �

We are now ready to present our first main result. Let Φ̂n denote the n-fold convolution of Φ,

and v∗ the unique solution to the following equation:[
coΦ(v) + cuΦ̂n(nv+αnC)

]
= cu (1)

Proposition 2. x∗ii = x∗jj,∀i 6= j and x∗ij = 0,∀i 6= j is a solution to both (P1) and (P2), when G(n)

is symmetric. Furthermore, if (1−α)C ≤ v∗, then x∗ii = (1−α)C.

Proof. From Proposition 1, the function GG(n)(z, α,C) is convex. Let z(k) denote the vector

obtained by shifting the vector z by k positions in the clockwise direction. Since the flexible struc-

ture is symmetric, and D’s are i.i.d., GG(n)(z, α,C) =GG(n)(z
(k), α,C) for all k. Furthermore,

GG(n)

(
1

n

n−1∑
k=0

z(k), α,C

)
≤ 1

n

n−1∑
k=0

GG(n)(z
(k), α,C) =GG(n)(z, α,C)

Observe that the components of vector 1
n

∑n−1

k=0 z
(k) are all equal to 1

n

∑n

i=1 zi. Hence, the objective

function is minimized at z∗i = z0,∀i = 1,2, . . . , n. Note that only the dedicated arcs need to be

utilized for this case. It follows that the solution obtained is also optimal for (P1). Hence, the

flexibility structure does not affect the first stage production, as long as the structure is symmetric.

We want to find z0 that minimizes

GG(n)(z01, α,C) = cog1(z01) + cuh1(z01, α,C)

≥ cog1(z01) + cuh2(z01, α,C)

≥ cog1(z01) + cuh3(z01, α,C)

where

h1(z01, α,C) = E

[ n∑
i=1

(Di− z0)+−hG(n)(z01, α,D,C)

]
h2(z01, α,C) = E

[ n∑
i=1

(Di− z0)+−hF(n)(z01, α,D,C)

]
= E

[ n∑
i=1

(Di− z0)+−min

( n∑
i=1

(Di− z0)+, αnC

)]
= E

[
max

(
0,

n∑
i=1

(Di− z0)+−αnC
)]

h3(z01, α,C) = E

[
max

(
0,

n∑
i=1

(Di− z0)−αnC
)]
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Let

Ĝ(z0, α,C) = cog1(z01) + cuh3(z01, α,C)

= co

n∑
i=1

∫ z0

0

(z0− ξi)dΦ(ξi) + cu

∫ ∞
nz0+αnC

(ξ−nz0−αnC)dΦ̂n(ξ)

where ξ =
∑n

i=1 ξi and Φ̂n is the n-fold convolution of Φ.

Next, we define the following unconstrained minimizers.

z∗0
∆
= arg min

z0

{GG(n)(z01, α,C)}

ẑ∗0
∆
= arg min

z0

{ĜG(n)(z01, α,C)}

To find ẑ∗0 , we take the following first-order condition.

∂Ĝ(z0, α,C)

∂z0

= conΦ(z0)− cun[1− Φ̂n(nz0 +αnC)]

0 = n

[
coΦ(ẑo)− cu + cuΦ̂n(nẑo +αnC)

]
It follows that ẑ∗0 = v∗. Note further that ∂h1

∂z0
≤ ∂h2

∂z0
≤ ∂h3

∂z0
≤ 0. By Lemma 2, z∗0 ≥ ẑ∗0 . Because

GG(n)(z01, α,C) is convex and (1−α)C ≤ v∗ ≤ z∗0, we have

z∗0 = arg min
z0≤(1−α)C

{GG(n)(z01, α,C)}= (1−α)C

Hence, the optimal solution to (P2) is z∗i = z∗0 = (1− α)C, ∀i = 1,2, . . . , n. This is equivalent to

x∗ii = (1−α)C, ∀i= 1,2, . . . , n and x∗ij = 0, ∀i 6= j. Since this solution is feasible for (P1), it is also

optimal for (P1). �

Remark 1. If (1−α)C > v∗, then the following results remain true: z∗i = z0,∀i= 1,2, . . . , n; v∗ ≤

z∗0. However, we may encounter one of two cases: (1− α)C ≤ z∗0 and (1− α)C > z∗0. In the first

case, the optimal primary production remains at z∗0 = (1− α)C. In the second case, the optimal

primary production is less definitive at z∗0 ∈ [v∗, (1−α)C). Here, we again have xij = 0,∀i 6= j, and

the optimal solution also optimal for (P1).

Remark 2. It is also interesting to note that our problem extends the single-item newsvendor in

two directions. In (1), setting α= 0 and n= 1 will result in the classical single-item newsvendor

critical fractile formula. If α> 0, then we have some second-stage backup supply (albeit limited).

If we also set n > 1, then we have multiple items with i.i.d. demands and fully flexible second-

stage supply. Our problem of interest is more complicated because we only have partially flexible

second-stage supply.
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Proposition 2 tells us that for the symmetric but unbalanced case, the optimal first-stage pro-

duction is to exhaust all first-stage capacity for primary production regardless of the flexibility

structure. In other words, whatever the flexibility structure, it must act like a dedicated structure

in the first stage. This result is important in two ways. First, it confirms our intuition that flexible

capacity is useless if there is no postponement. Second, it allows us to solve the first-stage problem,

which in turn simplifies our succeeding analysis of the effect of partial postponement.

For the general asymmetric case where plant capacities and product demands are not necessarily

identical, the first-stage production decision becomes unwieldy. How to allocate the first-stage

capacity among the different products becomes a very difficult and complicated problem. As a

result, we may have to settle for heuristic approaches such as the “Mean Rule” and the “Variance

Rule”. Essentially, the Mean Rule suggests that total first-stage capacity be allocated among the

products proportionally according to the mean values of their demands. On the other hand, the

Variance Rule follows the principle that products with higher coefficient of variation should utilize

less of the (speculative) first-stage capacity. These are more sophisticated policies and we shall

relegate their discussion to a latter part in Section 6. We notice that these rules are often employed

in production systems that have second-stage full flexibility structure. We address the performance

of these production rules when each plant has only limited range of production flexibility in the

rest of this paper.

4. Effect of Partial Postponement

In this section, we use results from the previous section to examine systems with partial postpone-

ment. We first study Option A (with full flexibility), followed by Option C (with partial flexibility).

4.1. Full Flexibility

We examine how full flexibility with partial postponement performs relative to the first-best solu-

tion. Since we have full flexibility in both systems, it boils down to solving G∗F(n)(α,C) for different

postponement levels α∈ [0,1].

Using Proposition 2, we can obtain a closed-form expression for the optimal expected mismatch

cost. For C not too large, i.e., C ≤ v∗

1−α ,∀α∈ [0,1] where v∗ is obtained from equation (1),

G∗F(n)(α,C) = co

n∑
i=1

E

[(
(1−α)C −Di

)+]
+ cuE

[
max

(
0,

n∑
i=1

(
Di− (1−α)C

)+

−αnC
)]

There is no flexibility loss (i.e., LF (F(n), α,C) = 0) because we have a fully flexible system.

Hence, we focus on postponement loss LP (α,C)
∆
=G∗F(n)(α,C)−G∗F(n)(1,C). Since G∗F(n)(α,C)∼

O(n) for α<< 1, whereas G∗F(n)(1,C)∼O(
√
n)≈G∗C(n)(1,C), we conclude that full flexibility with



Chou, Chua, and Zheng: On the Performance of Sparse Process Structures in Partial Postponement Production Systems

Article submitted to Operations Research; manuscript no. OPRE-2011-06-304.R2 13

low postponement (i.e., partial postponement with small α) could not attain the same order of

performance as full postponement with partial flexibility. This leads us to the following insight: If

we are to gainfully employ full flexibility with partial postponement, we must be able

to postpone a substantial amount of the capacity (say α≥ 0.5).

4.2. Partial Flexibility

Next, what happens when we have partial levels of both flexibility and postponement? In particu-

lar, how much is the flexibility loss under partial postponement? Under full postponement, it has

already been established that flexibility loss (equivalently, optimality loss) of the 2-chain is negligi-

ble. Likewise, Proposition 2 tells us that under no postponement, any form of flexibility brings no

additional benefits. Hence, full flexibility is not any better than the 2-chain in the same way that

the 2-chain is not any better than the dedicated structure. This implies that the flexibility loss of

the 2-chain under no postponement is zero. The next question becomes whether we can also say

that the flexibility loss of the 2-chain is negligible under partial postponement.

To answer this question, we characterize the flexibility loss LF (C2(n), α,C) of the 2-chain as

postponement level α changes from 0 to 1. Specifically, for C ≤ v∗

1−α ,∀α∈ [0,1] ,

LF (C2(n), α,C)
∆
= G∗C2(n)(α,C)−G∗F(n)(α,C)

= cuE[hF(n)((1−α)C1, α,D,C)]− cuE[hC2(n)((1−α)C1, α,D,C)]

where hG(n)(·) is as defined in (P2). Moreover, the second equation is due to Proposition 2, which

allows cog1(x∗)+cug2(x∗) to cancel out. The next result shows that the flexibility loss of the 2-chain

is largest at some postponement level strictly between zero postponement and full postponement.

Proposition 3. If (1−α)C ≤ v∗,∀α∈ [0,1], then ∃α∈ (0,1) such that LF (C2(n), α,C) is largest.

Proof. Please refer to Appendix A.

Proposition 3 suggests that for capacity not too large and for certain levels of partial postpone-

ment, the performance gap between full flexibility and the 2-chain may be much more sizable than

it is under the full postponement case or the no postponement case. In order to see how large this

gap can grow, we use the Sample Average Approximation (SAA) method for stochastic program-

ming. We sample a large number K of demand scenarios, with which we reformulate (P1) into the

following large linear program. For purpose of illustration, we consider the symmetric case where

demand and capacity are balanced (i.e., C = µ).

(P3) : G∗G(n)(α) = 1
K

minx

n∑
i=1

K∑
k=1

(c0v
k
i + cuw

k
i )− cu

n∑
i=1

n∑
j=1

K∑
k=1

ykij
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s.t. vki ≥
n∑
j=1

xij −Dk
i ∀i= 1,2, . . . n,∀k= 1,2, . . .K

wki ≥Dk
i −

n∑
j=1

xij ∀i= 1,2, . . . n,∀k= 1,2, . . .K

n∑
i=1

xij ≤ (1−α)µ ∀j = 1,2, . . . n

n∑
j=1

ykij ≤wki ∀i= 1,2, . . . n,∀k= 1,2, . . .K

n∑
i=1

ykij ≤ αµ ∀j = 1,2, . . . n,∀k= 1,2, . . .K

xij ≥ 0 ∀i, j = 1,2, . . . n

xij = 0 ∀(i, j) /∈ G(n)

ykij ≥ 0 ∀i, j = 1,2, . . . n,∀k= 1,2, . . .K

ykij = 0 ∀(i, j) /∈ G(n),∀k= 1,2, . . .K

vki ,w
k
i ≥ 0 ∀i= 1,2, . . . n,∀k= 1,2, . . .K

Dk is the kth demand scenario, while vki and wki are auxiliary variables introduced to linearize the

formulation. We can also interpret vki and wki as the overage and underage quantities, respectively.

As in Jordan and Graves (1995), we simulate a 10-plant, 10-product system whereby each product

has demand that follows a normal distribution with mean 100 units and standard deviation 30 units.

We assume each plant has a capacity of 100 units, and for this illustration, co = cu = 1. For each

postponement level α∈ {0.00,0.05, . . . ,0.95,1.00} and each degree of flexibility d∈ {1,2, . . . ,9,10},

we solve (P3) over a fixed set of K = 1000 demand scenarios. Figure 1 plots the expected mismatch

cost against the postponement level for different levels of flexibility. As expected, the gaps between

the 2-chain line and the full flexibility line are negligible and zero at α= 1 and α= 0, respectively.

However, for α∈ [0.1,0.7], the gap becomes quite sizable, especially between 0.2 and 0.5 where the

gap ranges from 23% to 33%.

These findings, together with Proposition 3, lead us to the following insight: the 2-chain which

is known to be extremely effective is no longer as effective under partial postponement.

To gain further insights, we take the following example. Consider a 4 × 4 system with identical

product demands following a two-point distribution with values 1 and 3, with equal probabilities

of 0.5. The plant capacities are all 2 units each. We further suppose that co = cu = 1 and α= 0.5.

Numerical tests show that for all 16 possible demand scenarios, the 3-chain performs as well as

full flexibility. The 2-chain is also as good as full flexibility when total demand is strictly lower

or strictly greater than total capacity. However, when total demand equals total capacity and
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Figure 1 Expected Mismatch Cost vs. Postponement Level

two consecutive products have high demand while the other two have low demand, the 3-chain

outperforms the 2-chain. An example is when demands for products 1 and 2 are 3 units each, while

demands for products 3 and 4 are 1 unit each. More interestingly, this observation does not hold

for α= 1, wherein 2-chain is as good as full flexibility.

Looking at Figure 1, one may wonder why the gap between 2-chain mismatch cost and full

flexibility mismatch cost is largest at intermediate levels of postponement. Intuitively, we can

think of two forces that affect the size of this gap. The first force is caused by the unbalanced

nature of the second-stage allocation problem. That is, the more unequal the expected remaining

demand is to the remaining capacity, the larger the mismatch cost gap. It is easy to see that

the second-stage problem becomes more unbalanced as α decreases because of demand truncation

at 0. The second force is caused by the relative magnitude of the second-stage cost viz-a-viz the

first-stage cost. Clearly, the smaller the α, the smaller the effect of the second-stage decision on

the total mismatch cost. The trade-off between these two forces explains why the gap is largest at

intermediate postponement levels.

That said, if one wants to approximate the benefits of full flexibility and full postponement using

only partial levels of both these dimensions, care has to be taken in choosing the proper levels of

flexibility and postponement that can give the desired result. In the event of partial postponement,

more flexibility (a third or fourth layer of flexible links) is necessary to make up for not only the

postponement loss, but more importantly, the increased flexibility loss. We explore in the next

section just how much additional flexibility is necessary.
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5. Value of the 3-Chain

In this section, we demonstrate that the 3-chain can recover most of the flexibility loss in the 2-

chain created by partial postponement. Table 1 shows a partial listing of the cost results generated

in Figure 1. As expected, the flexibility loss is smallest at the two extremes of α = 0 and α = 1.

For α ∈ [0.1,0.5], the gap between 2-chain and full flexibility increases to over 30% and beyond.

However, by employing the 3-chain, the flexibility loss can be reduced to below 8.2% for all values

of α.

Table 1 Expected Cost and Flexibility Loss for 2-Chain and 3-Chain with Partial Postponement

Postponement Expected Cost Flexibility Loss (%age Full Flex)

Level α 2-Chain 3-Chain Full Flex 2-Chain 3-Chain

0.00 4812.90 4812.90 4812.90 0.00 (0.0%) 0.00 (0.0%)

0.10 3505.60 3303.30 3131.90 373.70 (11.9%) 171.40 (5.5%)

0.20 2557.40 2245.40 2075.20 482.20 (23.2%) 170.20 (8.2%)

0.30 1906.40 1562.20 1450.10 456.30 (31.5%) 112.10 (7.7%)

0.40 1481.20 1167.80 1108.80 372.40 (33.6%) 59.00 (5.3%)

0.50 1214.60 959.63 935.77 278.83 (29.8%) 23.86 (2.5%)

0.60 1050.90 860.31 854.37 196.53 (23.0%) 5.94 (0.7%)

0.70 949.47 818.51 817.51 131.96 (16.1%) 1.00 (0.1%)

0.80 889.27 804.55 804.55 84.72 (10.5%) 0.00 (0.0%)

0.90 850.25 799.14 799.14 51.11 (6.4%) 0.00 (0.0%)

1.00 827.05 797.84 797.84 29.21 (3.7%) 0.00 (0.0%)

Remark 3. Even though the focus of this paper is on flexibility loss and how it is affected by

changes in postponement level, our study also provides interesting insights that can guide com-

panies in building their postponement capabilities. To be more specific, Table 1 can also be used

to obtain the postponement loss percentages at various postponement levels. For example, when

α = 0.4, the postponement loss percentage is (1,108.80− 797.84)/797.84 = 39.0%. By observing

the postponement loss percentages at various postponement levels, we can see that the lower the

postponement level, the higher both the postponement loss and the marginal postponement loss

(i.e., the additional postponement loss the system would incur with every unit of postponement

level reduced). We also observe that this marginal postponement loss can be quite substantial

when the postponement level is low. In other words, when the postponement level is low, adding a

little postponement capability into the system can greatly improve the system efficiency, and the
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benefit of further increasing the postponement level can be quite marginal once the postponement

level reaches a certain degree. While it is often hard to achieve full postponement in practice, this

observation provides useful insights for companies by pointing out the importance and sufficiency

of partial postponement. Interestingly, we also find that unlike postponement loss percentage which

decreases with postponement level, flexibility loss percentage is largest at intermediate postpone-

ment levels.

While system size n= 10 is used in Jordan and Graves’ (1995) initial example on the effectiveness

of 2-chain, Chou et al.’s (2010b) asymptotic analysis shows that as n increases to say 100, the

2-chain still performs very well. We examine next if the 3-chain can still recover the flexibility

loss of the 2-chain when n grows very large. To this end, we perform asymptotic analysis similar

to Chou et al.’s (2010b) analysis of the 2-chain under full postponement. Unlike their paper, our

method works for any d-chain, d≥ 2, under any postponement level α.

5.1. Asymptotic Performance of the 3-Chain

To study the phenomenon of increasing system size, we extend the method of asymptotic analysis

introduced in Chou et al. (2010b). In Definition 3, we propose that the relative flexibility loss

of every d-chain with postponement level α and capacity C can be measured by its asymptotic

chaining efficiency (ACE). While the next result also holds for the unbalanced case, we shall

consider the balanced case where C = µ for ease of exposition. This allows us to remove C from

the function arguments and notations, and simplify ACE as follows.

ACE(d,α)
∆
= lim

n→∞

G∗D(n)(α)−G∗Cd(n)(α)

G∗D(n)(α)−G∗F(n)(α)
= lim

n→∞

ĥCd(n)(α)− ĥD(n)(α)

ĥF(n)(α)− ĥD(n)(α)

where ĥG(n)(α) = E[hG(n)((1−α)µ1, α,D, µ)] and hG(n)(·) is the maximum flow problem defined in

(P2). When d= 2 and α= 1, the system boils down to 2-chain with full postponement, precisely

the system studied by Chou et al. (2010b). In what follows, we develop a generalized method to

analyze ACE(d,α) for 2≤ d≤ n and α∈ [0,1] with the following new features.

• The entire analysis involves a different structure called a “d-path”.

• The resulting random walk has a different random step size Xi
∆
= D̃i− C̃.

• The resulting random walk has a different upper absorbing boundary at (d− 1)C̃.

• The transformed random walk is an alternating regenerative process whose odd cycles are not

identical to its even cycles.

We are now ready to present our method. First, we note that our problem of interest is an

expected maximum flow problem whose demands and capacities we denote by D̃i = (Di−(1−α)µ)+

and C̃ = αµ. This is an unbalanced problem because E[D̃i] ≥ C̃ for α ∈ [0,1]. For the dedicated
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and the fully flexible systems, it is easy to see that ĥD(n)(α) = E[
∑n

i=1 min(C̃, D̃i)] and ĥF(n)(α) =

E[min(nC̃,
∑n

i=1 D̃i)]. It follows that

ACE(d,α) = lim
n→∞

ĥCd(n)(α)−nC̃ +nE[(C̃ − D̃i)
+]

nE[(C̃ − D̃i)+]−O(
√
n)

=
E[(C̃ − D̃i)

+]− C̃ + limn→∞
1
n
ĥCd(n)(α)

E[(C̃ − D̃i)+]
(2)

Hence, our problem reduces to finding limn→∞
1
n
ĥCd(n)(α). Unlike Chou et al. (2010b), we delete

from the d-chain the links connecting the first d− 1 facility nodes with product nodes numbered

higher than the facility node. Note that facilities d, d+ 1, and so on can still produce the same d

products as before in the d-chain. The result is the following “d-path”.

Pd(n) = Cd(n)\{(i, j) : j = 1, . . . , d− 1; i= n− d+ 1 + j, . . . , n}

Figure 2 shows some d-paths and their corresponding d-chains. Moreover, it is easy to see that

0≤ ĥCd(n)(α)− ĥPd(n)(α)≤ d(d− 1)

2
· C̃

Figure 2 Examples of d-paths and d-chains

Hence, we have the following lemma, which allows us to focus on Pd(n).

Lemma 3. For finite d,

lim
n→∞

ĥPd(n)(α)

n
= lim

n→∞

ĥCd(n)(α)

n

We let the arc linking demand node i to supply node i denote the “primary” arc, and the arcs

linking demand node i to supply node j 6= i the “secondary” arcs. As can be seen in Figure 2,

every plant i in Pd(n) can only serve products i, i− 1, . . . ,max(1, i− d+ 1). This implies that the

maximum flow on Pd(n) can be determined in a greedy fashion. First, satisfy demand D̃1 of product
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1 using the primary capacity in supply node 1, then if necessary, use supply node 2, and so on, in

that order up to a maximum total capacity of dC̃ units. Next, move on to the next product, and

based on the capacity left over from the previous product, add C̃ units more from a new supply

node, and consume again according to lowest supply node number. The amount of maximum flow

obtained in this greedy fashion is a random variable, depending on the values of D̃i.

To present this greedy approach formally and to facilitate our analysis, we need to keep track of

Ti, which denotes the amount of leftover capacity for product i+1 prior to adding C̃ units from the

new supply node. At the beginning, T0 = (d−1)C̃. As we move to the next product, Ti is updated as

follows: Ti := min[(d−1)C̃, (Ti−1 + C̃− D̃i)
+]. Alternatively, we can keep track of Si = (d−1)C̃−Ti

which begins at S0 = 0 and updates accordingly: Si := min[(Si−1 + D̃i− C̃)+, (d−1)C̃]. Next, we let

TF denote total maximum flow. Similarly, let TE =
∑n

i=1 D̃i − TF denote the difference between

total demand and total flow, i.e., total excess or unmet demand. This implies that

hG(n)((1−α)µ1, α,D, µ) = TF =
n∑
i=1

D̃i−TE. (3)

We account for TF by keeping track of TE as we assign capacity to demand. Consider step i of

the greedy approach, wherein Si−1 is known before D̃i is observed. The greedy allocation implies

TE := TE + [(Si−1 + D̃i− C̃)+− (d− 1)C̃]+. We summarize the greedy approach as follows.

Algorithm 1. (Greedy Approach)

1. Set i := 1, S0 := 0, T0 := (d− 1)C̃, and TE := 0.

2. Observe D̃i.

If D̃i > C̃, then Si := min[Si−1 +D̃i− C̃, (d−1)C̃], and TE := TE+max[Si−1 +D̃i− C̃−(d−1)C̃,0].

If D̃i < C̃, then Si := max[Si−1 + D̃i− C̃,0], and TE := TE.

3. If i= n−1, then STOP. TE := TE+max(Sn−1 +D̃n−(d−1)C̃,0). Return TE as the minimum

excess. Otherwise, i := i+ 1 and go to Step 2.

Observe that {Si : i= 0,1,2, . . .} behaves like a generalized random walk, with random step size

Xi
∆
= D̃i−C̃ and boundaries 0 and (d−1)C̃. The value TE grows in Step 2 only when D̃i−Ti−1 > C̃;

that is, when Si = min[Si−1 +D̃i−C̃, (d−1)C̃] = (d−1)C̃. We call this quantity (Xi−Ti−1) the level

of overshoot at the upper boundary. Conversely, when D̃i < C̃, it is possible that Si−1 +D̃i− C̃ < 0.

We call this amount (−Si−1 −Xi) the level of overshoot at the lower boundary. Note that this

overshoot at the lower boundary does not add to TE in the greedy algorithm.

The random walk starts at S0 = 0, the lower boundary. It gets trapped at the lower boundary

whenever Xi ≤ 0, and escapes only when Xi > 0. An interesting phenomenon happens when the

random walk hits the upper boundary - it gets trapped at the upper boundary whenever Xi ≥ 0,

and escapes only when Xi < 0, the exact opposite.
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Now, observe that {Ti : i= 0,1,2, . . .} also behaves like a similar random walk. In fact, it is the

reflection of {Si : i= 0,1,2, . . .} across the horizontal axis at d−1
2
C̃. That is, its random step size is

X ′i
∆
=−Xi = C̃ − D̃i, and TE grows whenever there is an overshoot in the lower boundary and not

when the overshoot is at the upper boundary. Unlike {Si : i= 0,1,2, . . .}, {Ti : i= 0,1,2, . . .} begins

at its upper boundary T0 = (d− 1)C̃. It gets trapped in the upper boundary whenever X ′i ≥ 0, and

escapes only when X ′i < 0. When it hits the lower boundary, it gets trapper there whenever X ′i ≤ 0,

and escapes only when X ′i > 0.

To stay consistent with the literature (Chou et al. 2010b), we define a new random walk {Wi, i=

0,1,2, . . .} that alternates between {Si, i = 0,1,2, . . .} and {Ti, i = 0,1,2, . . .}. This new random

walk begins at W0 = S0 = 0 and upon hitting its upper boundary, switches to {Ti, i= 0,1,2, . . .}. At

this point, Wi = Ti = 0 and upon hitting its upper boundary, switches back to {Si, i= 0,1,2, . . .}.

To model the switching times, we define the following stopping times.

τ(j)
∆
=

 inf{n : S
n+

∑j−1
k=0

τ(k)
= (d− 1)C̃}, if j is odd

inf{n : T
n+

∑j−1
k=0

τ(k)
= (d− 1)C̃}, if j is even

where τ(0) = 0. That is,

Wi =

Si, if τ(j− 1)< i≤ τ(j) and j is odd

Ti, if τ(j− 1)< i≤ τ(j) and j is even
∀i= 0,1,2, . . .

Interestingly, {Wi, i = 0,1,2, . . .} turns out to be an alternating regenerative process. Because

all alternating cycles are probabilistically identical, it suffices to examine just one pair of odd and

even cycles with the following characteristics.

• Cycle Duration τ (resp, τ̂): the length of any odd (resp, even) regenerative cycle.

τ
∆
= inf

{
n : Sn = (d− 1)C̃, n≥ 1, S0 = 0

}
, τ̂

∆
= inf

{
n : Tτ(1)+n = (d− 1)C̃, n≥ 1, Tτ(1) = 0

}
.

• Cycle Overshot ψ (resp, ψ̂): the amount of overshoots at both the lower and upper boundaries

in any odd (resp, even) cycle.

ψ
∆
=

τ∑
i=1

(
(Si−Si−1−Xi)χ(Xi < 0) + (Si−1 +Xi−Si)χ(Xi > 0)

)
,

ψ̂
∆
=

τ(1)+τ̂∑
i=τ(1)+1

(
(Ti−Ti−1−X ′i)χ(X ′i < 0) + (Ti−1 +X ′i −Ti)χ(X ′i > 0)

)
.

where χ(·) denote the indicator function.
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Note that ψ can be decomposed into two components; namely, upper and lower overshoots, such

that ψ=ψL +ψU (resp, ψ̂= ψ̂L + ψ̂U), where

ψL
∆
=

τ∑
i=1

(
(Si−Si−1−Xi)χ(Xi < 0)

)
, ψ̂L

∆
=

τ(1)+τ̂∑
i=τ(1)+1

(
(Ti−Ti−1−X ′i)χ(X ′i < 0)

)
and

ψU
∆
=

τ∑
i=1

(
(Si−1 +Xi−Si)χ(Xi > 0)

)
, ψ̂U

∆
=

τ(1)+τ̂∑
i=τ(1)+1

(
(Ti−1 +X ′i −Ti)χ(X ′i > 0)

)
.

Consider an alternating renewal process {N(t) : t≥ 0}, having inter-arrival times τ(j) such that

τ(j)∼ τ if j is odd and τ(j)∼ τ̂ if j is even. The reward Rj obtained at the jth renewal is ψU if j

is odd, and is ψ̂L if j is even. Note that from (3),

n∑
i=1

D̃i−
N(n)+1∑
j=1

Rj ≤ hG(n)((1−α)µ1, α,D, µ)≤
n∑
i=1

D̃i−
N(n)∑
j=1

Rj. (4)

Because Wi toggles alternately between Si and Ti and by the renewal reward theorem,

lim
n→∞

E[
∑N(n)

j=1 Rj]

n
=

E[ψU ] + E[ψ̂L]

E[τ ] + E[τ̂ ]
.

Hence, taking expectation and limit in (4), we obtain

lim
n:=∞

ĥPd(n)(α)

n
= E[D̃i]−

E[ψU ] + E[ψ̂L]

E[τ ] + E[τ̂ ]
.

Substituting into (2), we arrive at the following result.

Proposition 4. For a d-chain with postponement level α, such that 2≤ d≤ n and α ∈ [0,1], its

asymptotic chaining efficiency can be computed as follows.

ACE(d,α) =
1

E[(C̃ − D̃i)+]
·
(

E[(D̃i− C̃)+]− E[ψU ] + E[ψ̂L]

E[τ ] + E[τ̂ ]

)

The next step is to find a method that can efficiently calculate the values for E[τ ],E[τ̂ ],E[ψU ],

and E[ψ̂L]. This can be easily done by solving a set of linear systems of equations. We refer the

readers to Appendix B for details.

As mentioned earlier, the supermodularity property used in Simchi-Levi and Wei (2012) to

characterize the performance of 2-chain no longer holds for 3-chain. Hence, to our best knowledge,

this is the first analytical result that characterizes the performance of d-chains for

d ≥ 3. With this result, we can now examine how ACE(d,α) behaves as d and α change. To

illustrate, we suppose that demand for each product follows a normal distribution with mean
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Figure 3 Asymptotic Chaining Efficiency vs Level of Production Postponement

100 units and standard deviation 30 units3, while capacity for each plant is 100 units. Figure 3

summarizes the asymptotic chaining efficiency for various levels of production postponement (α=

0.1,0.2, . . . ,0.9,1.0) and partial flexibility (2-chain, 3-chain, 4-chain, 5-chain, and full flexibility).

Under full postponement, we already expect the 2-chain to perform quite well providing 72% of

the benefits of full flexibility even for large production systems. However, under 50% postponement,

this number drops to only 58%. This confirms our earlier result that the 2-chain may not be

sufficient under partial postponement. Fortunately, adding a third layer of flexible links can restore

the performance back to 75%. Adding a fourth layer can bring some benefits (ACE up from 75%

to 82%) but significantly less than the gain from 2-chain to 3-chain (from 58% to 75%). We

also see that further improvements from the fifth layer (from 82% to 85%) and higher chains are

negligible. Such investments are no longer worthwhile, more so in the common scenario where

cost of additional flexibility increases in the amount of flexibility already installed. For various

other scenarios (normal distribution with other coefficients of variation, and also other demand

distributions, say uniform, etc.), we find similar results. That is, the 2-chain incurs substantial

flexibility loss in the case of partial postponement, but the 3-chain recovers most of

this flexibility loss. Lastly, it is important to note that the asymptotic analysis in this section

shows that the value of the 3-chain established here is not a mere artifact of the system size.
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6. The Asymmetric Case

This section’s primary objective is to investigate whether the results obtained thus far carry over

to the asymmetric case, where product demands are no longer identically distributed and plant

capacities are no longer equal. We consider balanced networks where the number of products equals

the number of plants. Moreover, each plant is primarily assigned to produce one product and has

capacity equal to that product’s mean demand. To achieve some capacity sharing, the 2-chain has

been gainfully employed in previous works involving similar settings but with full postponement (see

Simchi-Levi 2010, and Simchi-Levi and Wei 2012). Our paper examines the performance of 2-chain

and 3-chain under the asymmetric case but with partial postponement. In addition, our second

objective is to obtain additional insights that may arise due to system asymmetry. In particular,

how does heterogeneity in demand uncertainty affect the flexibility and production decisions?

To this end, we use the Sport Obermeyer example in Hammond and Raman (1996) as an illus-

tration. Table 2 shows ten styles of women’s parkas and their respective demand forecasts. For each

style i, the demand is assumed to be normally distributed with mean µi given in the third column

and standard deviation σi given in the fourth column. Negative values are truncated at zero.

We consider a production network of 10 facilities, each one primarily assigned to manufacture

one style. Also, each facility has enough capacity to meet the expected demand of its primary

product, i.e., Ci = µi. For example, facility 1 mainly produces the Gail style and has a capacity of

1,017 units. Each facility’s capacity is further divided into two parts; namely first-stage capacity

employed before actual demand is known, and second-stage capacity to be employed after actual

demand is known. As in earlier sections, this capacity split is determined by the postponement

level α. Although facilities have their primary style assignments, it would serve the firm well if

they can also produce other styles. While full flexibility whereby all facilities can make all styles is

most desirable, the firm may only afford a limited amount of process flexibility. Hence, we analyze

the performance of 2-chain and 3-chain against full flexibility under varying postponement levels.

Note that SAA method can be used to solve the 2-stage stochastic programming problem, but

it can be time-consuming and generates first-stage allocations that are highly variable because the

method is sample-based. In practice, heuristic rules are commonly used to determine this first-stage

production decision. We consider two heuristic rules which we call (1) the Mean Rule, and (2) the

Variance Rule. To explain how they work, we denote the first-stage allocation for style i given

postponement level α by Xi(α) =
∑n

j=1 xij(α). Clearly, total first-stage allocation should satisfy∑n

i=1Xi(α) = (1− α)
∑n

i=1 µi. The Mean Rule says that the way to allocate the total first-stage

capacity of (1−α)
∑n

i=1 µi among the n different styles is proportional to the mean values of their

demands. That is, we produce Xi(α) = (1− α)µi of style i. This is equivalent to the allocation
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obtained in Proposition 2. This allocation says that even if we have full flexibility, we only use

first-stage capacity for primary production. However, this rule ignores the different variability in

demand forecast. The Variance Rule tries to exploit this additional information. It follows the

common belief in the accurate response literature (Fisher and Raman 1996) that some styles with

high coefficient of variation ought never to be made to stock using speculative (first-stage) capacity.

This allocation rule is specified by the following formula.

Xi(α) = (µi− γ(α)σi)
+
,∀i= 1, . . . , n,

where

γ(α) =

∑
j∈N αµj −

∑
j∈S µj∑

j∈N\S σj

and

N := {1,2, . . . , n} and S :=

{
i

∣∣∣∣∣µi <
∑

j∈N αµj∑
j∈N σj

σj, i= 1, . . . , n

}
.

This rule is similar to Theorem 2 in Fisher and Raman (1996) with a modification which requires

first-stage allocation Xi(α) to be non-negative. For our 10-style example in Sport Obermeyer, the

first-stage allocation values for various α levels are given in columns 6 to 15 in Table 2. Indeed,

the numbers show that as first-stage capacity becomes less (α increases), styles with the highest

CVs will be the first ones to receive zero first-stage allocation. For example, the Stephanie style is

the first to get zero allocation at α= 0.6, followed by the Teri style at α= 0.7, and so on.

Table 2 Sport Obermeyer: Product Demand Information and First-Stage Allocation Using Variance Rule

First-stage production using Variance Rule
Style Mean SD CV α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7 α=0.8 α=0.9 α=1

1 Gail 1017 194 19.08% 934.69 852.38 770.06 687.75 605.44 512.90 416.63 230.00 7.25 0.00
2 Isis 1042 323 31.00% 904.95 767.91 630.86 493.82 356.77 202.69 42.41 0.00 0.00 0.00
3 Entice 1358 248 18.26% 1252.78 1147.55 1042.33 937.10 831.88 713.58 590.52 351.93 67.19 0.00
4 Assault 2525 340 13.47% 2380.74 2236.48 2092.22 1947.97 1803.71 1641.52 1472.80 1145.72 755.34 0.00
5 Teri 1100 381 34.64% 938.35 776.69 615.04 453.38 291.73 109.98 0.00 0.00 0.00 0.00
6 Electra 2150 404 18.79% 1978.59 1807.17 1635.76 1464.35 1292.94 1100.22 899.74 511.09 47.23 0.00
7 Stephanie 1113 524 47.08% 890.67 668.34 446.02 223.69 1.36 0.00 0.00 0.00 0.00 0.00
8 Seduced 4017 556 13.84% 3781.10 3545.19 3309.29 3073.38 2837.48 2572.25 2296.35 1761.47 1123.09 0.00
9 Anita 3296 1047 31.77% 2851.77 2407.54 1963.31 1519.08 1074.85 575.40 55.85 0.00 0.00 0.00
10 Daphne 2383 697 29.25% 2087.27 1791.54 1495.81 1200.08 904.35 571.86 226.00 0.00 0.00 0.00

For the first part of our numerical study, we apply the Sample Average Approximation (SAA)

method used in Section 4.2. We generate K = 1,000 demand scenarios4 denoted by Dk =

(Dk
1 ,D

k
2 , . . . ,D

k
10) for k = 1,2, . . . ,K such that Dk

i is a random draw from N(µi, σi) with negative

values truncated at zero. We then replace µ in the third constraint of the linear program (P3) with

µi, set co = cu = 1, n= 10,K = 1,000, and solve the linear program to obtain the expected mismatch

costs for Cd(n), for d= 1,2,3 and 10. The results are shown in Figure 4(a). We observe that similar

to the symmetric case, there is substantial flexibility loss between the 2-chain and full flexibility
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particularly at intermediate postponement levels. Moreover, the 3-chain once again recovers most

of this flexibility loss. This implies that our 3-chain theory carries over to the asymmetric case.
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(a) Same Flex. Structures in Both Stages − SAA
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(b) Full Flex. in First Stage − Mean Rule
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(c) Full Flex. in First Stage − Variance Rule
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(d) Full Flex. in First Stage − SAA
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Figure 4 Expected Mismatch Cost vs Postponement Level for Asymmetric Case

For the second part of our numerical study, we relax the assumption that the flexibility structure

must be the same in both stages. Specifically, we now consider full flexibility in the first stage

regardless of the second-stage structure. This is typically the case for fashion manufacturers like

Sport Obermeyer whose first-stage production is carried out in one or two big manufacturing

facilities that can produce all styles. However, the second-stage production is usually outsourced

to smaller manufacturers, each of which specializes in a limited range of styles. That said, we can

again use the SAA method and (P3), but we must remove the constraint xij = 0,∀(i, j) /∈ G(n).

The results, shown in Figure 4(d), once again corroborate our 3-chain theory.
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The Variance Rule used in the literature often assumed that the reserved (second-stage) capacity

is fully flexible. As we shall soon see, when there is limited or no flexibility in the second stage,

the Variance Rule may no longer perform well. To continue our numerical study, we use the

sampled demand scenarios Dk to obtain the expected mismatch cost values for various second-

stage flexibility structures and postponement levels using the two heuristic rules. The results are

shown in Figure 4(b) and Figure 4(c). We make two observations here. First, the 3-chain theory

is repeatedly supported. Second and more interestingly, the Variance Rule performs poorly when

second stage capacity is dedicated. This is because the Variance Rule creates unfair first-stage

allocation, leading to imbalance in the second stage which the absence of flexibility cannot handle.

Note that under the symmetric setting, the Mean Rule and the Variance Rule are equivalent. But

clearly for the asymmetric case, the two rules prescribe very different first-stage allocations. Hence,

we compare the Mean Rule and the Variance Rule viz-a-viz the SAA method and the first-best

solution (full flexibility in both stages but under same postponement level) as shown in Figure 5.

Interestingly, the Variance Rule does not always help close the gap between the Mean Rule and the

SAA method. In fact, the Variance Rule even worsens the performance for the dedicated structure

and brings little benefit for the 2-chain. This poor performance will be further magnified when

we restore the assumption that flexibility structure in both stages must be the same, because the

Mean Rule requires no flexibility in the first stage while the Variance Rule requires full flexibility.

Meanwhile, for 3-chain and full flexibility, the Variance Rule performs extremely well as it almost

if not completely closes the gap between the Mean Rule and the SAA method. That this is the case

for full flexibility is not surprising because the Variance Rule is optimal when there is full flexibility

in both stages (see Theorem 2 in Fisher and Raman 1996). What is more interesting is that the

3-chain can already capture most of this optimal performance, which the 2-chain cannot. This

provides us another useful insight: that the benefit of variance information is largest when

the structure is fully flexible and most of this benefit can be achieved by employing

the 3-chain.

Finally, we discuss how expected mismatch cost is influenced by the interaction of all three

dimensions: (1) flexibility, (2) postponement, and (3) variance information. To this end, we illustrate

using Figure 6, together with parts of Figure 5. In Figure 5(a), if there is no flexibility at all

(dedicated system), then even full postponement with the use of Variance Rule performs very poorly

(expected cost close to 2,000). In Figure 5(d) and Figure 6, if there is close to no postponement

(α= 0.1), then even full flexibility with the use of Variance Rule also performs very poorly (expected

cost exceeding 2,000). In Figure 6, if variance information is not used (Mean Rule is used), then

limited flexibility (2-chain) with sufficient postponement (α= 0.5) can provide reasonable but not
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(a) Dedicated Structure
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(b) 2−Chain
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(c) 3−Chain
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Figure 5 Value of Variance Information for Various Flexibility and Postponement Levels

near-optimal performance (expected cost close to 1,000). Moreover, 3-chain with Variance Rule

outperforms full flexibility with Mean Rule for α > 0.3, but the same cannot be said for 2-chain

with Variance Rule compared to 3-chain with Mean Rule. Hence, all three dimensions are critical

and must be properly planned to achieve low expected mismatch cost without overinvesting.

7. Conclusion

In this paper, we study both process flexibility and production postponement, and their effective-

ness in mitigating the uncertainty and complexity prevalent in global production and consumption

networks. Because the first-best solution of full flexibility and full postponement is very expensive,

one approximate solution suggested in the literature is full postponement with partial flexibility.

The performance of this solution is almost as good as the first-best solution but incurs only a small
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Figure 6 Expected Mismatch Cost as Function of Postponement, Flexibility, and Variance Information
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fraction of the cost. In this study, we examine if other solutions can do the same. In particular, we

consider the effect of partial postponement on the benefits and design of process flexibility.

To this end, we develop a multi-item newsvendor model with second-stage supply and partial

capacity sharing in order to minimize the expected mismatch cost. Subsequently, we define opti-

mality loss of any solution as the gap between that solution and the first-best solution. This loss

is further broken down into postponement loss and flexibility loss which are defined as the losses

due to partial postponement and partial flexibility, respectively. Our first result shows that full

flexibility with low partial postponement (α<< 1) could not attain the same order of performance

as full postponement with partial flexibility. However, if a substantial amount (say α ≥ 0.5) of

capacity can be postponed, then full flexibility with partial postponement can also approximate

the first-best solution, albeit at a much higher installation cost.

Having established that the flexibility losses of partial flexibility (2-chain) at full postponement

and no postponement are both negligible or zero, we discover that these results no longer hold

when postponement is partial. For example, in a 10× 10 system, we report that for postponement

levels between 10% and 50%, the flexibility loss is quite sizable, ranging from 20% to 30%. In these

scenarios, we find that the 3-chain not only recovers most of the flexibility loss, but sometimes,

even parts of the postponement loss. In the 10× 10 example, the 3-chain with 50% postponement
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already restores the flexibility loss to the same level as 2-chain with full postponement. Furthermore,

we extend the random walk approach in Chou et al. (2010b) to obtain the asymptotic chaining

efficiency of any d-chain at arbitrary postponement levels. Using this method, we demonstrate that

the value of the 3-chain we established for small systems is valid even for extremely large systems.

Moreover, further flexibility upgrades (e.g. fourth or fifth chain) can no longer produce as much

benefit and usually incurs even higher flexibility installation costs.

In conclusion, all our results strongly suggest that the 3-chain brings substantial value in the

face of partial postponement. As is well known in the community, the 2-chain in flexible production

systems proves effective because it takes care of baseline uncertainty in the product demand. We

have, in this paper, extended that theory by providing evidence of the value of the 3-chain, that

it can be used to compensate for the flexibility loss brought about by lost postponement. Finally,

that chains higher than the 3-chain are unnecessary also supports the belief that even for large

systems with partial postponement, one still only needs a sparse structure (3-chain) to achieve

most of the benefits of the first-best solution.

Endnotes
1. www.interbrand.com
2. It is important to note that while the expected shortfall minimization (equivalently, expected flow max-

imization) in the second stage of this model may appear to be a single period decision, the model can in fact
be used for the expected performance over multiple independent periods.
3. Note that Corollary 1 in Chou et al. (2010b) still holds for the d-chain where d> 2 and any postponement

level α∈ (0,1), implying the invariance of ACE(d,α) over the scale of demand. Hence, the results presented
here is valid for any demand distribution that is normal with coefficient of variation equal to 0.30.
4. Based on our numerical tests, we obtain similar patterns for number of demand scenarios larger than

1,000.
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Appendix

A. Proof of Proposition 3

Define ĥG(n)(α,C) = E[h̃G(n)(α,D,C)] and

h̃G(n)(α,D,C) = maxy

n∑
i=1

n∑
j=1

yij

s.t.

n∑
j=1

yij ≤ (Di− (1−α)C)+ ∀i= 1,2, . . . n

n∑
i=1

yij ≤ αC ∀j = 1,2, . . . n

yij ≥ 0 ∀i, j = 1,2, . . . n

yij = 0 ∀(i, j) /∈ G(n)

so that LF (C2(n), α,C) = cu[ĥF(n)(α,C)− ĥC2(n)(α,C)].
We want to show that

∂

∂α
LF (C2(n),1−,C) = cu

[
∂

∂α
ĥF(n)(1

−,C)− ∂

∂α
ĥC2(n)(1

−,C)

]
< 0

To this end, we obtain

∂

∂α
ĥG(n)(1

−,C) = lim
δ→0+

E[h̃G(n)(1,D,C)− h̃G(n)(1− δ,D,C)]

δ

= lim
δ→0+

E[h̃G(n)(1,D,C)− h̃G(n)(1− δ,D,C)|Di ≥ δC,∀i]
δ

·P{Di ≥ δC,∀i}

+ lim
δ→0+

E[h̃G(n)(1,D,C)− h̃G(n)(1− δ,D,C)|∃i :Di < δC]

δ
· (1−P{Di ≥ δC,∀i})

= lim
δ→0+

E[h̃G(n)(1,D,C)− h̃G(n)(1− δ,D,C)|Di ≥ δC,∀i]
δ

· lim
δ→0+

P{Di ≥ δC,∀i}

+ lim
δ→0+

E[h̃G(n)(1,D,C)− h̃G(n)(1− δ,D,C)|∃i :Di < δC]

δ
· lim
δ→0+

(1−P{Di ≥ δC,∀i})

= lim
δ→0+

E[h̃G(n)(1,D,C)− h̃G(n)(1− δ,D,C)|Di ≥ δC,∀i]
δ

The last equation is due to demand non-negativity, hence limδ→0+ P{Di ≥ δC,∀i}= 1. It follows that for
full flexibility, we have

∂

∂α
ĥF(n)(1

−,C) = lim
δ→0+

E[h̃F(n)(1,D,C)− h̃F(n)(1− δ,D,C)|Di ≥ δC,∀i]
δ

= lim
δ→0+

E[min(
∑n

i=1Di, nC)−min(
∑n

i=1(Di− δC), n(1− δ)C)|Di ≥ δC,∀i]
δ

= lim
δ→0+

E[min(
∑n

i=1Di, nC)−min(
∑n

i=1Di, nC) +nδC|Di ≥ δC,∀i]
δ

= nC

For the 2-chain, we let d be a given demand realization such that di ≥ δC,∀i, and yij(α,d,C) and
y∗ij(α,d,C) be a feasible solution and an optimal solution, respectively, for h̃C(n)(α,d,C). Since yii(1,d,C) =

y∗ii(1−δ,d,C)+δC,∀i and yij(1,d,C) = y∗ij(1−δ,d,C),∀i 6= j is a feasible solution to h̃C(n)(1,d,C), it follows

that h̃C(n)(1,d,C)− h̃C(n)(1− δ,d,C)≥ nδC.
To rule out E[h̃C(n)(1,D,C)− h̃C(n)(1− δ,D,C)|Di ≥ δC,∀i] = nδC, it can be verified that there exists a

demand realization d≥ δC1 such that dk +dk+1 +dk+2 +dk+3 ≤ 4C but dk +dk+1 > 3C− δC for some k. In
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this case, an increase in α from 1− δ to 1 will result in an increase in h̃C(n)(.) that is strictly greater than
nδC, i.e.,

h̃C(n)(1,d,C)− h̃C(n)(1− δ,d,C)>nδC.

It follows that

∂

∂α
ĥC(n)(1

−,C) = lim
δ→0+

E[h̃C(n)(1,D,C)− h̃C(n)(1− δ,D,C)|Di ≥ δC,∀i]
δ

> lim
δ→0+

nδC

δ
= nC

We have shown ∂
∂α
LF (C2(n),1−,C) < 0. Since LF (C2(n),1,C) > 0 = LF (C2(n),0,C), it suffices to check if

LF (C2(n), α,C)>LF (C2(n),1,C) for some α∈ (0,1). Because ∂
∂α
LF (C2(n),1−,C)< 0, the result follows. �

B. Linear Systems for Calculating ACE(d,α)

In this section, we present a method that can efficiently calculate the values for E[τ ],E[τ̂ ],E[ψU ], and E[ψ̂L].
To this end, we assume that for each i, the support of D̃i lies in { j

N
· (1 + α)µ|j = 0,1,2, . . . ,N} where

N ≥ 1 denotes the level of discretization on the demand distribution. Moreover, we let pj = P(D̃i = j

N
· (1 +

α)µ),∀j = 0,1,2, . . . ,N − 1, pN = P(D̃i ≥ (1 +α)µ), and pj = 0,∀j =N + 1,N + 2, . . .. On the other hand, to
represent capacity by the same discretization level, we rewrite capacity as C̃ = αµ= b αN

1+α
c. That is, there are

C̃ = b αN
1+α
c units of capacity in each plant just as there are N + 1 possible demand states for each product.

Next, we define τx (resp, τ̂x) as the stopping time if the random walk {Ŝi, i= 0,1,2, . . .} is currently in an
odd (resp, even) cycle at a state x. We also define ψx (resp, ψ̂x) as the overshoot at the upper (resp, lower)
boundary if the random walk is currently in an odd (resp, even) cycle at a state x. The value of the state
x can range from 0 to (d− 1)C̃ − 1. Hence, we further define the following (d− 1)C̃ × 1 vectors v, v̂,w, ŵ
to collect the expected values E[τx],E[τ̂x],E[ψx],E[ψ̂x], respectively, for all x. That is, vx+1 = E[τx],v̂x+1 =
E[τ̂x],wx+1 = E[ψx], and ŵx+1 = E[ψ̂x], for x= 0,1, . . . , (d− 1)C̃− 1. Most importantly, for each of these four
vectors, we can condition on the next move of the random walk starting at state x and obtain a system
of linear equations. Solving these systems gives us the values of the four vectors. Hence, we arrive at the
following result.

Proposition 5. For a d-chain with postponement level α, such that 2≤ d≤ n and α ∈ [0,1], the values of
E[τ ],E[τ̂ ],E[ψU ], and E[ψ̂L] can be obtained by solving the following systems of linear equations

v−Mv = 1,w−Mw = r, v̂− M̂v̂ = 1, ŵ− M̂ŵ = r̂

where M,M̂ are (d− 1)C̃ × (d− 1)C̃ matrices, v,w, v̂, ŵ,r, r̂ are (d− 1)C̃ × 1 vectors, and

Mk,l =


pC̃+l−k ∀k= max(C̃ −N + l,1), . . . ,min(C̃ + l, (d− 1)C̃),∀l= 2, . . . , (d− 1)C̃∑C̃+1−k

j=0 pj ∀k= 1,2, . . . , C̃ + 1, l= 1

0 otherwise

(5)

M̂k,l =


pC̃+k−l ∀k= max(−C̃ + l,1), . . . ,min(N − C̃ + l, (d− 1)C̃),∀l= 2, . . . , (d− 1)C̃∑N

j=C̃−1+k pj ∀k= 1,2, . . . ,N − C̃ + 1, l= 1

0 otherwise

(6)

rk =

{∑N

j=dC̃+2−k(j− dC̃ − 1 + k)pj ∀k= max(dC̃ + 2−N,1), . . . , (d− 1)C̃

0 otherwise
(7)

r̂k =

{∑N

j=C̃+k(j− C̃ + 1− k)pj ∀k= 1, . . . ,min(N − C̃, (d− 1)C̃)

0 otherwise
(8)

and assigning E[τ ] = v1,E[τ̂ ] = v̂1,E[ψU ] =w1, and E[ψ̂L] = ŵ1.


