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Optimal rate list decoding of folded algebraic-geometric codes

over constant-sized alphabets∗

(Extended abstract)

Venkatesan Guruswami† Chaoping Xing‡

Abstract

We construct a new list-decodable family of asymptoti-
cally good algebraic-geometric (AG) codes over fixed al-
phabets. The function fields underlying these codes are
constructed using class field theory, specifically Drinfeld
modules of rank 1, and designed to have an automor-
phism of large order that is used to “fold” the AG code.
This generalizes earlier work by the first author on folded
AG codes based on cyclotomic function fields. The re-
cent linear-algebraic approach to list decoding can be
applied to our new codes, and crucially, we use the Cheb-
otarev density theorem to establish a polynomial upper
bound on the list-size for list decoding up to an error
fraction approaching 1 − R where R is the rate. The
list decoding can be performed in polynomial time given
polynomial amount of pre-processed information about
the function field.

Our construction yields algebraic codes over constant-
sized alphabets that can be list decoded up to the Single-
ton bound — specifically, for any desired rate R ∈ (0, 1)
and constant ε > 0, we get codes over an alphabet size
(1/ε)O(1/ε2) that can be list decoded up to error fraction
1−R− ε confining close-by messages to a subspace with
NO(1/ε2) elements. Previous results for list decoding up
to error-fraction 1−R− ε over constant-sized alphabets
were either based on concatenation or involved taking
a carefully chosen subcode of algebraic-geometric codes.
In contrast, our result shows that these folded algebraic-
geometric codes themselves have the claimed list decod-
ing property. Further, our methods to get function fields
with the properties needed for constructing and decoding
the code might be of independent algebraic interest.
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1 Introduction

Reed-Solomon (RS) codes are a classical and widely used
family of error-correcting codes. They encode messages,
which are viewed as polynomials f ∈ Fq[X] of degree
< k over a finite field Fq, into codewords consisting of
the evaluations of f at a sequence of n distinct elements
α1, . . . , αn ∈ Fq (this requires a field size q > n). We re-
fer to n as the block lengh of the code. The rate of this
code, equal to the ratio of number of message symbols to
the number of codeword symbols, equals R = k/n. Since
two distinct polynomials of degree < k can agree on at
most k − 1 distinct points, every pair of Reed-Solomon
codewords differ on more than n− k positions. In other
words, the relative distance of this code, or the minimum
fraction of positions two distinct codewords differ on, is
bigger than (1 − R). This means that even if up to a
fraction (1 − R)/2 of the n codeword symbols, are cor-
rupted in an arbitrary manner, the message polynomial
f is still uniquely determined. Moreover, classical algo-
rithms, starting with [16], can recover the message f in
such a situation in polynomial time.

For a fraction of errors exceeding (1 − R)/2, unam-
biguous decoding of the correct message is not always
possible. This holds not just for the Reed-Solomon code
but for every code. However, if we allow the decoder to
output in the worst-case a small list of messages whose
encodings are close to the corrupted codeword, then it
turns out that one can correct a much larger error frac-
tion. This model is called list decoding. Using the prob-
abilistic method, for any ε > 0, one can prove the abun-
dance of codes of rate R which can be list decoded up to
an error fraction (1−R−ε) with a maximum output list
size bounded by a constant depending only on ε. This
error fraction is twice the classicial (1 − R)/2 bound,
and further is optimal as the message has Rn symbols of
information and recovering it up to some small ambigu-
ity is impossible from fewer than a fraction R of correct
codeword symbols.

Recent progress in algebraic coding theory has led
to the construction of explicit codes which can be ef-
ficiently list decoded up to an error fraction approaching
the 1−R information-theoretic limit. The first such con-
struction, due to Guruswami and Rudra [8], was folded
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Reed-Solomon codes. In the m-folded version of this code
(where m is a positive integer), the Reed-Solomon (RS)
encoding (f(1), f(γ), · · · , f(γn−1)) of a low-degree poly-
nomial f ∈ Fq[X] is viewed as a codeword of length
N = n/m over the alphabet Fmq by blocking together
successive sets of m symbols. Here γ is a primitive ele-
ment of the field Fq. The alphabet size of the folded RS
codes is qm > Nm. To list decode these codes up to an
error fraction 1−R−ε, one has to choose m ≈ 1/ε2 which
makes the alphabet size a larger polynomial in the block
length. In comparison, the probabilistic method shows
the existence of such list decodable codes over an al-
phabet size exp(O(1/ε)), which is also the best possible
asymptotic dependence on ε.

It is possible to bring down the alphabet size of folded
RS codes by concatenating them with appropriate op-
timal codes found by a brute-force search, followed by
symbol redistribution using an expander [8]. However,
the resulting codes have a large construction and decod-
ing complexity due to the brute-force decoding of the
inner codes used in concatenation. Furthermore, these
codes lose the nice algebraic nature of folded RS codes
which endows them with other useful features like list
recovery and soft decoding. It is therefore of interest to
find explicitly described algebraic codes over smaller al-
phabets with list decoding properties similar to folded
RS codes.

Algebraic-geometric (AG) codes are a generalization
of Reed-Solomon codes based on algebraic curves which
have n � q Fq-rational points. These enable construc-
tion of RS-like codes with alphabet size smaller than
(and possibly even dependent of) the block length. Thus,
they provide a possible avenue to construct the analog
of folded RS codes over smaller alphabets.

The algebraic crux in list decoding folded RS codes
was the identity f(γX) ≡ f(X)q (mod E(X)) for
E(X) = Xq−1 − γ which is an irreducible polynomial
over Fq. Extending this to other algebraic-geometric
codes requires finding a similar identity in the function
field setting. As noted by the first author [6], this can
be achieved using Frobenius automorphisms σ in cyclic
Galois extensions, and considering the residue of fσ at a
place of high degree in the function field. Using certain
subfields of cyclotomic function fields, Guruswami [6]
was able to extend the folded RS list decoding result of
[8] and obtain folded algebraic-geometric codes of rate R
list decodable up to error fraction 1− R − ε over an al-
phabet size (logN)O(1/ε2). In other words, the alphabet
size was reduced to poly-logarithmic in the block length
N of the code.

1.1 Our result

The main result in this work is a construction of folded
algebraic-geometric codes which brings down the alpha-
bet size to a constant depending only on ε. This is based

on algebraic function fields constructed via class field
theory, utilizing Drinfeld modules of rank 1.

Theorem 1.1 (Main) Let ` be a square prime power
and let q = `2. For every R ∈ (0, 1), there is an infinite
family of Fq-linear algebraic-geometric codes of rate at

least R which has relative distance at least 1−R−2/(
√
`−

1).

For every pair of integers m > s > 1, the m-folded
version of these codes (which is a code over alphabet Fmq )
can be list decoded from an error fraction

τ =
s

s+ 1

(
1− m

m− s+ 1

(
R+

2√
`− 1

))
,

outputting a subspace over Fq with at most O(N (
√
`−1)s)

elements that includes all message functions whose en-
coding is within Hamming distance τN from the input.
(Here N denotes the block length of the code.)

Given a polynomial amount of pre-processed informa-
tion about the code, the algorithm essentially consists of
solving two linear systems over Fq, and thus runs in de-
terministic polynomial time.

Picking suitable parameters in the above theorem,
specifically ` ≈ 1/ε2, s ≈ 1/ε, and m ≈ 1/ε2, leads

to folded AG codes with alphabet size (1/ε)O(1/ε2) of
any desired rate R ∈ (0, 1) that are list decodable up
to error fraction 1− R − ε with a maximum output list
size bounded by NO(1/ε2). In other words, the poly-
logarithmic alphabet size of cyclotomic function fields is
improved to a constant depending only on ε.

We prove the above theorem by employing the re-
cently developed linear-algebraic approach to list decod-
ing, which was first used to an alternate, simpler proof
of the list decodability of folded RS codes up to error
fractions approaching 1−R (see [10]).

One of the simple but key observations that led to
this work is the following. In order to apply the linear
algebraic list decoder for a folded version of AG codes
(such as the cyclotomic function field based codes of
[6]), one can use the Frobenius automorphism based ar-
gument to just combinatorially bound the list size, but
such an automorphism is not needed in the actual de-
coding algorithm. In particular, we don’t need to find
high degree places with a specific Galois group element
as its Frobenius automorphism (this was one of the sev-
eral challenges in the cyclotomic function field based con-
struction [6]), but only need the existence of such places.
This allows us to devise a linear-algebraic list decoder
for folded versions of a family of AG codes, once we are
able to construct function fields with certain stipulated
properties (such as many rational places compared to
the genus, and the existence of an automorphism which
powers the residue of functions modulo some places). We
then construct function fields with these properties over
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a fixed alphabet using class field theory, which is our
main technical contribution.

This gives the first construction of folded AG codes
over constant-sized alphabets list decodable up to the
optimal 1 − R bound, although we are not able to effi-
ciently construct the (natural) representation of the code
that is utilized by our polynomial time decoding algo-
rithm. This representation consists of the evaluations of
regular functions at the rational places used for encod-
ing (by a regular function at a place, we mean a function
having no pole at this place); see Section 4 for a precise
description.

Comparison to our previous works. In our previous
works [11, 12], we considered list decoding of folded AG
codes and a variant where rational points over a subfield
are used for encoding. We were able to show that a sub-
code of these codes can be efficiently list decoded up to
the optimal 1 − R − ε error fraction. The subcode can
be picked in two ways: (i) based on variants of subspace-
evasive sets (subsets of the message space that have small
intersection with low-dimensional subspaces), yielding
randomized constructions with list size a constant, or
(ii) based on subspace designs (which are a collection
of subspaces with small total intersection with any low-
dimensional subspace), yielding constructions with list
size say sub-logarithmic in the block length. (The neces-
sary subspace designs were randomly constructed in [12],
but a recent work [7] gives an explicit construction with
only slightly worse parameters.)

The distinguishing aspect of this work is that we are
able to list decode the folded AG codes themselves, and
no pseudorandomly constructed subcode is needed. This
has certain advantages as we mention now. Our folded
AG codes can also be decoded in the stronger “list recov-
ery” model where for each position the input is a set of
symbols and one needs to list all codewords whose i’th
symbol belongs to the i’th set for ≈ R fraction of the
positions (with R being the code rate).1 List recovery is
an important primitive for decoding concatenated codes
and was also the basis of the application of folded alge-
braic codes to lossless expanders in [9]. It is also possible
that the folded AG codes might be useful to construct
subspace codes using the methods of [7]. Finally, the al-
gebraic techniques we use to construct appropriate func-
tion fields that enable our list decoding result might be
of independent interest.

1.2 Summary of main techniques

Our principal algebraic construction is that of an in-
finite family of function fields over a fixed base field Fq
with many rational places compared to their genus, to-
gether with certain additional properties needed for de-

1See [8, Sec. 5] or [10, Sec. 2.4] for an explanation of how
to extend the algebraic list decoders for folded codes to the list
recovery setting; the details for our codes will be identical.

coding. Our starting point is a family of function fields
E/F` (where ` =

√
q) such as those from the Garcia-

Stichtenoth towers [4, 5] which attain the Drinfeld-
Vlădut bound (the best possible trade-off between num-
ber of rational places and genus). We consider the con-
stant field extension L = Fq ·E, and take its narrow ray
class field of with respect to some high degree place. We
descend to a carefully constructed subfield F of this class
field in which the Fq-rational places in L split completely,
and further the extension F/L has a cyclic Galois group.

A generator σ of this cyclic group Gal(F/L), which is
an automorphism of F of high order, is used to order the
evaluation points in the AG code and then to fold this
code. This last part is similar to the earlier cyclotomic
construction, but there the full extension F/Fq(X) was
cyclic. This was a stringent constraint that in particu-
lar ruled out asymptotically good function fields — in
fact even abelian extensions must have the ratio of the
number of rational places to genus tend to 0 when the
genus grows [2]. In our construction, only the portion
F/L needs to be cyclic, and this is another insight that
we exploit.

Next, using the Chebotarev density theorem, we ar-
gue the existence of many large degree places which are
inert in the extension F/L and have σ as their Frobenius
automorphism. This suffices to argue that the list size
is small using previous algebraic techniques. Essentially
the values of the candidate message functions at the in-
ert places mentioned above can be found by finding the
roots of a univariate polynomial over the residue field,
and these values can be combined via Chinese remain-
dering to identify the message function.

Under the linear-algebraic approach, the above list will
in fact be a subspace. Thus knowing that this subspace
has only polynomially many elements is enough to list all
elements in the subspace in polynomial time by solving
a linear system! To solve the linear system, we make
use of the local power series expansion of a basis of the
Riemann-Roch message space at certain rational places
of F .

To summarize, some of the novel aspects of this work
are:

1. Decoupling the proof of the combinatorial bound on
list size from the algorithmic task of computing the
list. This computational part is tackled by a linear-
algebraic decoding algorithm whose efficiency auto-
matically follows from the list size bound.

2. The use of the Chebotarev density theorem to com-
binatorially bound the list size.

3. The use of class fields based on rank one Drin-
feld modules to construct function fields F/Fq with
many Fq-rational places compared to its genus, and
which have a subfield L such that F/L is a cyclic
Galois extension of sufficiently high degree.

1860 Copyright © 2014.
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Organization. In Section 2, we show a construction of
folded algebraic-geometric codes over arbitrary function
fields with many rational places and an automorphism of
relatively large order. Then we present a linear-algebraic
list decoding of the folded codes. At the end of Section 2,
folded Reed-Solomon and cyclotomic codes are used to
illustrate our general construction. Section 3 is devoted
to discussion of folded algebraic geometric codes based
on the function fields which are cyclic extensions of the
well-known Garcia-Stichtenoth tower. In Section 4, we
discuss the encoding and decoding of our folded codes
through local expansion of the candidate functions at a
point. The main result of this paper is then stated after
discussion of encoding and decoding.

2 Linear-Algebraic List Decoding
of Folded AG Codes

In this section, we first present a construction of folded
algebraic geometric codes over arbitrary function fields
with certain properties and then give a deterministic list
decoding of folded algebraic geometric codes over certain
function fields satisfying some conditions.

2.1 Preliminaries on Function Fields

For convenience of the reader, we start with some
background on global function fields over finite fields.

For a prime power q, let Fq be the finite field of q
elements. An algebraic function field over Fq in one
variable is a field extension F ⊃ Fq such that F is a
finite algebraic extension of Fq(x) for some x ∈ F that
is transcendental over Fq. The field Fq is called the full
constant field of F if the algebraic closure of Fq in F
is Fq itself. Such a function field is also called a global
function field. From now on, we always denote by F/Fq
a function field F with the full constant field Fq.

Let PF denote the set of places of F . The divisor
group, denoted by Div(F ), is the free abelian group gen-
erated by all places in PF . An element G =

∑
P∈PF nPP

of Div(F ) is called a divisor of F , where nP = 0 for al-
most all P ∈ PF . The support, denoted by Supp(G),
of G is the set {P ∈ PF : nP 6= 0}. For a nonzero
function z ∈ F , the principal divisor of z is defined to be
div(z) =

∑
P∈PF νP (z)P , where νP denotes the normal-

ized discrete valuation at P . The zero and pole divisors
of z are defined to be div(z)0 =

∑
νP (z)>0 νP (z)P and

div(z)∞ = −
∑
νP (z)<0 νP (z)P , respectively.

For a divisor G of F , we define the Riemann-Roch
space associated with G by L(G) := {f ∈ F ∗ : div(f) +
G > 0} ∪ {0}. Then L(G) is a finite dimensional space
over Fq and its dimension `(G) is determined by the
Riemann-Roch theorem which gives `(G) = deg(G) +
1− g + `(W −G), where g is the genus of F and W is a
canonical divisor of degree 2g − 2. Therefore, we always

have that `(G) > deg(G) + 1− g and the equality holds
if deg(G) > 2g − 1.

For a place P , let OP denote the integral ring at P ,
i.e., OP := {z ∈ F : νP (x) > 0}. Then the residue ring
OP /P is actually a finite extension of Fq. It is called
the residue field of P and denoted by FP . The degree
of P is defined to be the extension degree [FP : Fq]. For
a function f and a place P ∈ PF with νP (f) > 0, we
denote by f(P ) the residue class of f in the residue class
field FP at P .

For an automorphism φ ∈ Aut(F/Fq) and a place P ,
we denote by Pφ the place {φ(x) : x ∈ P}. For a
function f ∈ F , we denote by fφ the action of φ on
f . If νP (f) > 0 and νPφ(f) > 0, then one has that

νP (fφ
−1

) > 0 and f(Pφ) = fφ
−1

(P ). Furthermore, for
a divisor G =

∑
P∈PF mPP we denote by Gφ the divisor∑

P∈PF mPP
φ.

2.2 Folded Algebraic Geometric Codes

Let F be a a global function field with the full
constant field Fq. Fix an automorphism σ ∈
Aut(F/Fq) such that F has mN distinct ratio-

nal places P1, P
σ
1 , . . . , P

σm−1

1 , P2, P
σ
2 , . . . , Pσ

m−1

2 , . . . ,

PN , P
σ
N , . . . , P

σm−1

N . We also choose a divisor D of de-
gree e such that D is fixed under σ, i.e., Dσ = D; and
Pσ

j

i 6∈ Supp(D) for all 1 6 i 6 N and 0 6 j 6 m− 1.

A folded algebraic geometric code can be defined as
follows.

Definition 1 (Folded AG codes) The folded code
from F with parameters N, l, q, e,m, denoted by
F(N, l, q, e,m), encodes a message function f ∈ L(lD)
to the following element
(1)


f(P1)
f(P σ1 )

...

f(Pσ
m−1

1 )

 ,


f(P2)
f(P σ2 )

...

f(Pσ
m−1

2 )

 , . . . ,


f(PN )
f(P σN )

...

f(P σ
m−1

N )




in
(
Fmq
)N

. Note that the folded code F(N, l, q, e,m) has
the alphabet Fmq and it is Fq-linear. Furthermore, it
is straightforward to verify that F(N, l, q, e,m) has the
following parameters.

Lemma 2.1 If le < mN , then the above code
F(N, l, q, e,m) is an Fq-linear code with alphabet size

qm, rate at least le−g+1
Nm , and minimum distance at least

N − le
m .

1861 Copyright © 2014.
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2.3 List Decoding of Folded Algebraic
Geometric Codes

Suppose a codeword (1) encoded from f ∈ L(lD) was
transmitted and received as

(2) y =


y1,1 y2,1 yN,1

y1,2 y2,2
...

. . .

y1,m · · · yN,m

 ,

where some columns are erroneous. Let s > 1 be an
integer parameter associated with the decoder. Then we
have the following two lemmas (see [11, 12]).

Lemma 2.2 Given a received word as in (2), we can
find a nonzero linear polynomial in F [Y1, Y2, . . . , Ys] of
the form Q(Y1, Y2, . . . , Ys) = A0 + A1Y1 + A2Y2 + · · · +
AsYs satisfying

(3)
Q(yi,j+1, yi,j+2, · · · , yi,j+s) = A0(Pσ

j

i )+

A1(Pσ
j

i )yi,j+1 + · · ·+As(P
σj

i )yi,j+s = 0

for i = 1, 2, . . . , N and j = 0, 1, . . . ,m − s. The
coefficients Ai of Q satisfy Ai ∈ L(κD) for i = 1, 2, . . . , s
and A0 ∈ L((κ+ l)D) for a “degree” parameter κ chosen
as

(4) κ =

⌊
N(m− s+ 1)− el + (s+ 1)(g − 1) + 1

e(s+ 1)

⌋
.

Lemma 2.3 If f is a function in L(lD) whose encoding
(1) agrees with the received word y in at least t columns

with t > (κ+l)e
m−s+1 , then Q(f, fσ

−1

, . . . , fσ
−(s−1)

) is the zero
function, i.e.,

(5) A0 +A1f +A2f
σ−1

+ · · ·+Asf
σ−(s−1)

= 0.

We first look at the fraction of errors that we can
correct from the above list decoding. By taking t =

1 +
⌊

(κ+l)e
m−s+1

⌋
and combining Lemmas 2.3 and 2.2, we

conclude the fraction of errors τ = 1− t/N satisfies

(6) τ ≈
s

s+ 1
− s

s+ 1
× m

m− s+ 1
× k + g

mN
,

where k is the dimension of L(lD) which is at least le−
g + 1.

Next we consider the list size. By Lemma 2.3, we know
that all candidate functions f in our list must satisfy the
equation (5). In other words, we have to study the solu-
tion set of the equation (5). In our previous work [11],
to upper bound the list size, we analyzed the solutions of
the equation (5) by considering local expansions at a cer-
tain point. This local expansion method only guarantees
a structured list of exponential size. Through precoding
by using the structure in the list, we were able to obtain

a Monte Carlo construction of subcodes of these codes
with polynomial time list decoding. In this paper, we
will employ the method used in [8, 6] for list decoding
the Reed-Solomon codes and cyclotomic codes to bound
the list size. The key part of this method is based on the
following result.

Lemma 2.4 Let u > 1 be an integer. If there is a place
P of F with deg(P ) > le such that zσ

−1

(P ) = zq
u

(P )
for all z ∈ OP , then the solution set of the equation (5)
has size at most qu(s−1).

Note that Lemma 2.4 is a special case of Lemma 3.2.

Lemma 2.4 shows that, to get a small list, it is es-
sential to find a place P of large degree such that
zσ
−1

(P ) = zq
u

(P ) for all z ∈ OP and a small u > 1. It
is fortunate that the Chebotarev Density Theorem (see
[3, 14]) guarantees existence of such a place. Instead of
presenting a result on existence of such a place P for arbi-
trary function field, we will show existence of such a place
P for some specific function fields in this and the next
sections. The other crucial point that we should keep in
mind is that we do not have to use Lemma 2.4 for our
decoding as we have an efficient linear-algebraic method
to find the list that does not depend on the knowledge
of P (see Section 4). Lemma 2.4 is only used to upper
bound the list size via the existence of such a place P .

In some scenarios, we may not be able to find a single
such place P . However, if we are allowed to relax the
condition in Lemma 2.4 by using a set of places instead of
just one place, we can also upper bound the list size (see
Lemma 3.2). In the next subsection, we use the example
of Reed-Solomon and cyclotomic codes considered in [8,
6] to illustrate the above theory.

2.4 Folded RS and Cyclotomic Codes

Folded Reed-Solomon codes. Let us revisit the
construction of folded Reed-Solomon codes from [8, 10].
We discuss the construction under the general frame-
work of our folded algebraic geometric codes defined in
Subsection 2.2.

Let F = Fq(x) be the rational function field and let
γ be a primitive element of Fq. Consider the automor-
phism σ ∈ Aut(Fq(x)/Fq) sending x to γ−1x. Let Pi
be the zero of x − γm(i−1) for i = 1, 2, . . . , N , where
N 6 (q − 1)/m. Then Pσ

j

i is the zero of x − γm(i−1)+j

for all 0 6 j 6 m − 1. If we take D to be the pole of
x, then L(kD) = {f(x) ∈ Fq[x] : deg(f(x)) 6 k − 1},
and our folded algebraic geometric code F(N, k, q, 1,m)
defined in (1) coincides with the folded Reed-Solomon
codes defined in [8].

By taking m ≈ 1/ε2 and s ≈ 1/ε, the decoding radius
given by (6) becomes τ ≈ 1−R−ε, where R = k/(mN) is
the rate of the code (note that the genus g is 0 in the case
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of rational function field). However, the code alphabet
size q (before folding) is about N/ε2 in this case.

Let P be the place of F corresponding to xq−1 − γ.
Then we have γx ≡ xq mod P , i.e., xσ

−1

= γx ≡ xq

mod P . Thus, one has zσ
−1

(P ) = zq(P ) for all z ∈ OP .
By applying Lemma 2.4 (note that the condition that
q − 1 = deg(P ) > le = k + 1 is satisfied), we conclude
that the list size for decoding these folded Reed-Solomon
codes is at most qs−1.

Folded cyclotomic codes. Next we consider the cy-
clotomic codes discussed in [6]. We refer to the pa-
per [6] without detailed explanation on cyclotomic func-
tion fields. Let F/Fq(x) be the subfield of a cyclo-
tomic function field constructed in [6], where q = `2

for a prime power `. Then F/Fq(x) is a cyclic ex-
tension of degree n = (`d + 1)/(` + 1) for some pa-
rameter d. Let σ be a generator of the cyclic group
Gal(F/Fq(x)). Then for each α ∈ F`, there are n ra-
tional places of F lying over x − α that can be written
as P, Pσ, . . . , P σ

n−1

. Thus, there are at least `n ratio-
nal places and they can be arranged in the following way:
P1, P

σ
1 , . . . , P

σm−1

1 , . . . , PN , P
σ
N , . . . , P

σm−1

N , where m is a
positive integer less than n and N satisfies N = `bn/mc.
Choose D to be the unique ramified place of F (which
has degree d) to form the Riemann-Roch space L(lD).
Then our folded algebraic geometric code F(N, l, q, d,m)
defined in (1) coincides with the folded cyclotomic codes
defined in [6].

The genus of the cyclotomic field F is g = 1 + (d −
2)(`d + 1)/(2`+ 2)− d/2. By taking m ≈ 1/ε2, s ≈ 1/ε,
d ≈ `ε. Then the decoding radius given by (6) becomes
τ ≈ 1 − R − ε, where R = (ln − g + 1)/N is the rate
of the code. The code alphabet size q (before folding) is
O(logN/ε) in this case. This already improves the code
alphabet size of folded RS codes.

By the Chebotarev Density Theorem (see [3, 14]), we
know that there exists a place P of F such that P

has degree `n and zσ
−1

(P ) = zq
`

(P ) for all z ∈ OP .
By applying Lemma 2.4, we conclude that the list size
for decoding these folded cyclotomic codes is at most
q`(s−1) = O(N1/ε2).

We note that in [6], the place P is identified using the
precise knowledge of the splitting behavior of places in
cyclotomic extensions, and this was needed for the ef-
ficiency of the algorithm. Here, on the other hand, we
only require the existence of such P (which we can guar-
antee by invoking the Chebotarev density theorem) to
bound the list size, and the linear-algebraic algorithm
itself is oblivious of P . As mentioned earlier, the realiza-
tion of this power offered by using a linear interpolation
polynomial (instead of the higher degree interpolation
polynomial Q adopted in [6]) is a simple but key insight
in this work.

3 Folded AG Codes over
Constant-Sized Alphabets

The main disadvantage of the folded Reed-Solomon and
cyclotomic codes is that the code alphabet size has to
grow to∞ as the code lengthN tends to∞. To solve this
problem, one can imagine that function fields with many
rational places should be employed. Lemma 2.4 requires
that there be a place P of large degree in F such that σ−1

maps every z to zq
u

in the residue field FP for a relatively
small u. To achieve this, one can use the the Chebotarev
Density Theorem as in the case of cyclotomic codes. One
condition of applying the Chebotarev Density Theorem
is to construct a function field F/Fq with many rational
places and a cyclic extension F/L such that the extension
degree [F : L] is sufficiently large. However, the current
available function fields such as the Garcia-Stichtenoth
tower [4] do not provide such an example. After careful
analysis, we realize that certain finite cyclic extension of
the Garcia-Stichtenoth tower is exactly what we need.
Such an example can be constructed though class field
theory or Drinfeld module of rank one. We state the
result below and skip the detailed proof, which can be
found in the full version.

Theorem 3.1 Let ` be a square prime power and let q =
`2. Let {E/F`} be the Garcia-Stichtenoth tower given in
[4]. Denote by n := N(E/F`) the number of F`-rational
places of E. Put r = 2dn/(

√
`−1)e+1 and h = 3r. Then

there exists a family {F/Fq} of function fields indexed
by n satisfying that for each F/Fq in this family, F/L
is a cyclic extension of degree e := (`r + 1)/(`+ 1) with
L = Fq · E and a set U of places of F such that

(i) |U | > qr and deg(P ) = eh for all places P in U .

(ii) For every place P in U , we have zσ
−1

(P ) = zq
h

(P )
for all z ∈ OP , where σ is a generator of Gal(F/L).

(iii) Every rational place of E can be regarded as a ratio-
nal place of L and there are e places of F lying over
such a place. Furthermore lim inf N(F/Fq)/g(F ) >
(
√
`− 1)/2 = (q1/4 − 1)/2.

If we choose one place P from the set U in Theorem
3.1 and apply Lemma 2.4, we find that the condition
deg(P ) = eh > le is not satisfied since le can be as large
as N(F/Fq) ≈ ne. The idea is to choose a subset T of
U in Theorem 3.1 and consider the congruence equation
zσ
−1 ≡ zqu mod P for every P ∈ T and z ∈ OP . Finally

applying the Chinese Remainder Theorem gives a upper
bound for list size.

Lemma 3.2 Let T be a set of places of F such that∑
P∈T deg(P ) > le. Let u > 1 be an integer. As-

sume that for every P ∈ T and any z ∈ OP , one has
zσ
−1

(P ) = zq
u

(P ), then the solution set of the equation
(5) has size at most qu(s−1)|T |.
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We are now ready to state our main result on list decod-
ing of folded algebraic geometric codes.

Theorem 3.3 Let ` be a square prime power and let
q = `2. For every R ∈ (0, 1), there is an infinite family
of folded codes given in (1) of rate at least R which has
relative distance at least 1−R− 2/(

√
`− 1).

For every pair of integers m > s > 1, these codes can
be list decoded from an error fraction

τ =
s

s+ 1

(
1− m

m− s+ 1

(
R+

2√
`− 1

))
,

outputting a subspace over Fq with at most O(N (
√
`−1)s)

elements that includes all message functions whose en-
coding is within Hamming distance τN from the input.
(Here N denotes the block length of the code.)

Proof. Let {F/Fq} be a family of function fields given
in Theorem 3.1. Choose a rational place ∞ of E and
regard it as a rational place of L. Define the divisor
D := l

∑
P∞|∞,P∞∈PF P∞. Then it is easy to see that

Dσ = D. For every rational place R of E, there are ex-
actly e rational places of F lying over R and they can be
represented as P, P σ, . . . , Pσ

e−1

. By taking away those
rational places lying over ∞, we have at least e(n − 1)
rational places of F , where n = N(E/F`). Thus, for
an integer m with 1 6 m < e, we can label Nm dis-
tinct places P1, P

σ
1 , . . . , P

σm−1

1 , . . . , PN , P
σ
N , . . . , P

σm−1

N

of F such that none of them lies over ∞, as long as
N 6 (n− 1)b emc = (N(E/F`)− 1)b emc.

Consider the folded algebraic geometric code
F(N, l, q, e,m) defined in Definition 1 with σ being a
generator of Gal(F/L). We choose l to satisfy the
condition le < Nm. Choose a subset T of U with
|T | = d

√
`− 1e. Then we have∑

R∈T
deg(R) > 3re(

√
`− 1) > 6N(E/F`)e

= 6mN(E/F`)
e

m
> Nm > le.

This implies that the condition in Lemma 3.2 is satisfied.
Hence, the code F(N, l, q, e,m) is deterministically list

decodable with list size at most q3r(s−1)d
√
`−1e = O(qsn).

Note that the code length is N which is approximately

en/m = O(n`2n/(
√
`−1)/`m). Thus, the list size is

O(N (
√
`−1)s).

The claimed error fraction follows from (6) and the
fact that g/Nm→ (

√
`− 1)/2. �

4 Encoding and Decoding

We have not considered encoding and decoding of the
folded AG codes constructed in Sections 2 and 3. This
section is devoted to the computational aspects of en-
coding and decoding of our folded codes.

Encoding. Let us consider the folded algebraic geomet-
ric code given in the proof of Theorem 3.3, where the
divisor D is l

∑
P∞|∞,P∞∈PF P∞ and the Riemann-Roch

space is L(lD). To encode, we assume that le > 2g − 1
and there is an algorithm to find a basis {z1, z2, . . . , zk}
of L(lD) with k = le− g + 1.

Furthermore, we assume that, for every point Pσ
j

i and
each function f with ν

Pσ
j

i
(f) > 0, there is an efficient

algorithm to evaluate f at P σ
j

i , i.e., find f(P σ
j

i ). For a
function f and a rational place P with νP(f) > 0, the
algorithm of evaluating f at P consists of (i) finding a
local parameter t at P (recall that a function t is called
a local parameter at P if νP(t) = 1); and (ii) finding the

unique element α ∈ Fq such that νP

(
f−α
t

)
> 0 (note

that this unique element α is equal to f(P)).

Decoding. As we have seen, encoding is easy as long as
we have an efficient algorithm to compute a basis of the
Riemann-Roch space and evaluations at rational places.
We need some further work for decoding.

The idea of decoding is to solve the equation (5)
through local expansions at a point. Let us briefly intro-
duce local expansions first. The reader may refer to [15,
pages 5-6] for the detailed result on local expansions.
Let F/Fq be a function field and let P be a rational
place. For a nonzero function f ∈ F with νP(f) > v,

we have νP

(
f
tv

)
> 0. Put av =

(
f
tv

)
(P), i.e., av is the

value of the function f/tv at P. Note that the func-

tion f/tv−av satisfies νP

(
f
tv − av

)
> 1, hence we know

that νP

(
f−avtv
tv+1

)
> 0. Put av+1 =

(
f−avtv
tv+1

)
(P). Then

νP(f − avtv − av+1t
v+1) > v + 2.

Assume that we have obtained a sequence {ar}mr=v
(m > v) of elements of Fq such that νP(f−

∑k
r=v art

r) >

k+ 1 for all v 6 k 6 m. Put am+1 =
(
f−

∑m
r=v art

r

tm+1

)
(P).

Then νP(f −
∑m+1
r=v art

r) > m + 2. In this way we con-
tinue our construction of the ar. Then we obtain an
infinite sequence {ar}∞r=v of elements of Fq such that
νP(f −

∑m
r=v art

r) > m + 1 for all m > v. We sum-
marize the above construction in the formal expansion
f =

∑∞
r=v art

r, which is called the local expansion of f
at P.

It is clear that local expansions of a function depend
on choice of the local parameters t. Note that if a power
series

∑∞
i=v ait

i satisfies νP(f −
∑m
i=v ait

i) > m + 1 for
all m > v, then it is a local expansion of f . The above
procedure shows that finding a local expansion at a ra-
tional place is very efficient as long as the computation
of evaluations of functions at this place is easy.

The following fact can be easily proved, but it plays
an important role in our decoding.

Lemma 4.1 Let F/Fq be a function field and let σ ∈
Aut(F/Fq) be an automorphism. Let P,Pσ

−1

be two dis-
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tinct rational places. Assume that t is a common local
parameter of P and Pσ, i.e., νP(t) = νPσ (t) = 1 such
that tσ = t. Suppose that f ∈ F has a local expansion∑∞
i=0 ait

i at Pσ for some ai ∈ Fq, then the local expan-

sion of fσ
−1

at P is
∑∞
i=0 ait

i.

Now let F be the function field constructed in Theo-
rem 3.1. Assume that R 6=∞ is a rational place of E and
t ∈ E is a local parameter at R. Then R can be viewed
as an Fq-rational point of L = Fq ·E. Moreover, R splits
completely in F/L. We may assume that all rational

places of F lying over R are P,Pσ, . . . ,Pσ
e−1

, where σ
is a generator of Gal(F/L). It is clear that t is a com-

mon local parameter of P,Pσ, . . . ,Pσ
e−1

. Furthermore,
we have tσ = t since t ∈ E ⊂ L.

To solve for the functions f that satisfy the algebraic
equation (5), let us assume that f =

∑k
i=1 fizi for some

fi ∈ Fq, where k = le− g + 1 is the dimension of L(lD).
Solving for f in (5) is equivalent to finding {fi}ki=1. As-

sume that the local expansion of zi at Pσ
j

is given by∑∞
h=0 αijht

h. Then by Lemma 4.1, zσ
−j

i have the local

expansion
∑∞
h=0 αijht

h at P. Thus, fσ
−j

has the lo-

cal expansion
∑k
i=1

∑∞
h=0 αijht

h at P. Furthermore as-
sume that Ai have local expansions

∑∞
j=0 aijt

j at P for
0 6 i 6 s. Substitute these local expansions in Equation
(5), we obtain an equation

(7)
c0(f1, f2, . . . , fk) + c1(f1, f2, . . . , fk)t
+ · · ·+ ci(f1, f2, . . . , fk)ti + · · · = 0,

where ci(f1, f2, . . . , fk) is a linear combination of
f1, f2, . . . , fk for all i > 0. Thus, each of the coefficients
of the above power series (7) must be zero. This produces
infinitely many linear equations ci(f1, f2, . . . , fk) = 0 for
i > 0 in variables f1, f2, . . . , fk. This system of infinitely
many linear equations is equivalent to the system

(8) ci(f1, f2, . . . , fk) = 0 for i = 0, 1, . . . , le

due to the fact that A0 +A1f+ · · ·+Asf
σ−(s−1) ∈ L(lD)

and the following simple claim which follows because a
function with pole order at most le can be have at most
le zeroes at P.

Lemma 4.2 If x is an element in L(lD) and has a local
expansion

∑∞
i=0 λit

i for some λi ∈ Fq, then x is identical
to 0 if λi = 0 for all i 6 le.

The equation system (8) has le+1 equations and contains
k = le − g + 1 variables. Theorem 3.3 guarantees that

this system has at most O(N (
√
`−1)s) solutions.

Given the discussion of encoding and decoding, we
rewrite Theorem 3.3 as the main result of this paper.

Theorem 4.3 (Main) For any small ε > 0 and a real
0 < R < 1, one can construct a folded algebraic geomet-
ric code over alphabet size (1/ε)O(1/ε2) with rate R and

decoding radius τ = 1 − R − ε such that the length of
the code tends to ∞ and is independent of ε. Moreover,
the code is deterministically list decodable with a list size
O(N1/ε2).

Given a polynomial amount of pre-processed informa-
tion about the code, the algorithm essentially consists of
solving two linear systems over Fq, and thus runs in de-
terministic polynomial time.

Proof. In Theorem 3.3, choose s ≈ 1/ε and m ≈ 1/ε2

and q ≈ 1/ε4, the error fraction τ given in Theorem
3.3 is 1 − R − ε. The alphabet size of the folded
code is qm, which is (1/ε)O(1/ε2) and the list size is

O(N (
√
`−1)s) = O(N1/ε2). �
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