
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Bitwise partial‑sum : a new tool for integral
analysis against ARX designs

Sasaki, Yu; Wang, Lei

2015

Sasaki, Y., & Wang, L. (2015). Bitwise partial‑sum : a new tool for integral analysis against
ARX designs. IEICE transactions on fundamentals of electronics, communications and
computer sciences, E98.A(1), 49‑60.

https://hdl.handle.net/10356/107090

https://doi.org/10.1587/transfun.E98.A.49

© 2015 The Institute of Electronics, Information and Communication Engineers.This paper
was published in IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences and is made available as an electronic reprint (preprint) with
permission of The Institute of Electronics, Information and Communication Engineers. The
paper can be found at the following official DOI:
[http://dx.doi.org/10.1587/transfun.E98.A.49]. One print or electronic copy may be made
for personal use only. Systematic or multiple reproduction, distribution to multiple
locations via electronic or other means, duplication of any material in this paper for a fee or
for commercial purposes, or modification of the content of the paper is prohibited and is
subject to penalties under law.

Downloaded on 04 Apr 2024 22:53:20 SGT

IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.1 JANUARY 2015
49

PAPER Special Section on Cryptography and Information Security

Bitwise Partial-Sum: A New Tool for Integral Analysis against ARX
Designs∗

Yu SASAKI†a), Member and Lei WANG††b), Nonmember

SUMMARY In this paper, we present a new cryptanalytic tool that can
reduce the complexity of integral analysis against Addition-Rotation-XOR
(ARX) based designs. Our technique is based on the partial-sum technique
proposed by Ferguson et al. at FSE 2000, which guesses subkeys byte to
byte in turn, and the data to be analyzed is compressed for each key guess.
In this paper, the technique is extended to ARX based designs. Subkeys are
guessed bit by bit, and the data is compressed with respect to the value of
the guessed bit position and carry values to the next bit position. We call the
technique bitwise partial-sum. We demonstrate this technique by applying
it to reduced-round versions of HIGHT, which is one of the ISO standard
64-bit block ciphers. Another contribution of this paper is an independent
improvement specific to HIGHT. By exploiting linear computations inside
the round function, the number of guessed bits during the key recovery
phase can be greatly reduced. Together with the bitwise partial-sum, the
integral analysis on HIGHT is extended from previous 22 rounds to 26
rounds, while full HIGHT consists of 32 rounds.
key words: integral analysis, partial-sum, bitwise partial-sum, ARX,
HIGHT

1. Introduction

A block cipher E takes a key and an input x, and returns
an output y. For each key, block cipher must be an efficient
permutation, and has an efficient inversion E−1. The block
cipher is a central primitive in modern cryptography, and is
widely utilized in data encryption and data authentication.
Therefore, cryptanalysts are devoted to evaluate the security
of block ciphers. So far many cryptanalysis techniques have
been devised. Among these techniques, one is named as
integral analysis.

Integral analysis was firstly proposed by Daemen et al.
to evaluate the security of Square cipher [4], and was later
unified as integral analysis by Knudsen and Wagner [9]. It
consists of two phases; an integral distinguisher construc-
tion and a key recovery. Let N be a block size of the target
block cipher. In the first phase, the attacker aims to find a
set of 2t plaintexts for some t < N such that the correspond-
ing internal state value after a few encryption rounds have
a certain property for any key e.g. the XOR sum of all in-

Manuscript received March 25, 2014.
Manuscript revised July 31, 2014.
†The author is with NTT Secure Platform Laboratories, NTT

Corporation, Musashino-shi, 180-8585 Japan.
††The author is with the Nanyang Technological University,

Singapore.
∗A preliminary version was presented in ICISC 2013. This is

the full version. In particular, more detailed explanation of our
attack on 26-round HIGHT is added.

a) E-mail: sasaki.yu@lab.ntt.co.jp
b) E-mail: wang.lei@ntu.edu.sg

DOI: 10.1587/transfun.E98.A.49

Fig. 1 Illustrations of integral distinguisher and key recovery.
2t internal state values after a few rounds has a balanced property, denoted
by B, for n bits of the state.

ternal state values in the set is 0 with a probability 1 for a
fraction of bits of the state. This property is often called bal-
anced. The concept of the integral distinguisher is depicted
in Fig. 1. For the second phase, the attacker appends a few
rounds to the end of the distinguisher, and aims to recover
a part of subkeys in these rounds. The attacker obtains the
corresponding ciphertexts of the set of chosen plaintexts by
accessing the encryption oracle. Then, he guesses a part of
subkeys and performs the partial decryption up to the output
state of the integral distinguisher. The concept of the key re-
covery part is also depicted in Fig. 1. If the guess is correct,
the XOR sum of the results always becomes 0. Otherwise,
the XOR sum of the results becomes random. Hence, the
key space can be reduced.

Cryptanalysts are continuously developing new tech-
niques to enhance the integral analysis. Several results have
been published on improving the integral distinguisher con-
struction. Examples are multi-set analysis by Biryukov and
Shamir [2], subword multi-set by Nakahara Jr. et al. [14],
and bit-pattern based analysis by Z’aba et al. [21]. The anal-
ysis exploiting the property of the ARX based structure can
be seen in saturation attack by Lucks [13] and tuple analysis
by Aumasson et al. [1]. At the same time, techniques for the
key recovery phase have been also getting improved, which
is the main motivation of this paper. In order to make our
contribution clear, we briefly illustrate two previous tech-
niques of improving the key recovery phase below, which
are related to this paper.

Ferguson et al. proposed a technique called partial-sum
[5]. It reduces the complexity of the partial decryption up to
the balanced state by guessing each subkey byte one after
another. We use a toy example to show its procedure and
significance. Suppose that t = 24 in Fig. 1, i.e. the attacker
obtains 224 ciphertexts ci where i = 1, 2, . . . , 224. Also sup-

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

50
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.1 JANUARY 2015

Fig. 2 Partial decryption of the toy example.

pose that the partial decryption up to the output state of the
integral distinguisher is written as S −1(S −1(ci

0⊕k0)⊕S −1(ci
1⊕

k1)⊕S −1(ci
2⊕k2)

)
, where (ci

0, c
i
1, c

i
2) are 3 bytes (=24 bits) of

the ciphertext ci, k0, k1, k2 are 3 bytes of subkeys, and S (·) is
a byte-wise S-box application. The key recovery part with
this example is depicted in Fig. 2. In order to recover those
subkeys, the attacker exhaustively guesses 224 possibilities
of (k0, k1, k2) and computes the XOR sum of the partial de-
cryption for 224 ciphertexts c1, c2, . . . , c224

, i.e., the attacker
computes the following equation:

224⊕

i=1

S −1(S −1(ci
0 ⊕ k0) ⊕ S −1(ci

1 ⊕ k1) ⊕ S −1(ci
2 ⊕ k2)

)
.

With a straightforward method, it takes 224+24 = 248 com-
putations. With the partial-sum technique, the attacker can
compute it only with 240 computations. In details, each
key byte is guessed in turn and the data to be analyzed
is compressed for each key guess (before the rest of the
key bytes are guessed). In the above example, at first k0

and k1 are guessed and the sum of the first two terms, i.e.,⊕224

i=1 S −1(ci
0⊕k0)⊕S −1(ci

1⊕k1) are computed. Let c′ be this
value. The computation of c′ takes 216+24 = 240 computa-
tions. Then, 224 data for 2-byte tuple (c′, c2) are generated.
This causes many overlaps of the data; roughly 28 overlaps
for each value of (c′, c2). Hence, the attacker only picks val-
ues that appear odd times. This reduces the data size into
216. Finally, the entire sum is computed by guessing k2,
which takes 216 · 28 · 216 = 240 computations. This is faster
than the straightforward method.

Sasaki and Wang introduced meet-in-the-middle tech-
nique for the key recovery phase of the integral analysis
against block-ciphers with Feistel network [17]. It exploits
the property that the balanced state is represented by an
XOR of two variables. Then, the XOR sum of each vari-
able are computed independently, and the attacker checks
the match of their values like a meet-in-the-middle attack. It
separates the partial decryption into two independent parts,
and thus the complexity can be reduced.

Our contributions

In this paper, we extend the partial-sum technique to ARX
designs, beyond the mere application to byte-oriented ci-
phers. We also use a toy example to illustrate our new

Fig. 3 Partial decryption of the toy example with addition and XOR.

tool. Suppose that inside the partial decryption in Fig. 2,
non-linearity is introduced by the modular addition instead
of the S-box application. More precisely, suppose that the
partial decryption is written as (ci

0⊕k0)� (ci
1⊕k1)� (ci

2⊕k2),
where the symbols “⊕” and “�” represent the bitwise XOR
and the addition on modulo 28, respectively. The key recov-
ery part with this example is depicted in Fig. 3. The attacker
aims to compute the XOR-sum for the exhaustive guess of
(k0, k1, k2), i.e.,

224⊕

i=1

[(ci
0 ⊕ k0) � (ci

1 ⊕ k1) � (ci
2 ⊕ k2)]

This paper is motivated by the following question:

What is the best strategy to compute
⊕224

i=1[(ci
0 ⊕

k0) � (ci
1 ⊕ k1) � (ci

2 ⊕ k2)]?

The partial-sum technique [5] can be applied to compute
this equation, i.e., two keys are guessed and the data is com-
pressed. However, we observe that the computation can be
much faster by guessing key values bit-by-bit and compress-
ing the data for each guess. For example, let us consider the
computation of the first two terms; c′ = (c0 ⊕ k0)� (c1 ⊕ k1).
We guess two key bits, which are the LSB of k0 and the
LSB of k1. Then, we can compute the LSB of c′ and the
carry bit to the second LSB. After this computation, 2-bit
information, which are the LSB of c0 and the LSB of c1 are
discarded. At this stage, we newly obtain 2-bit information
and discard 2-bit information. Hence, no advantage is gen-
erated. We then guess two key bits, which are the second
LSB of k0 and the second LSB of k1. Then, we can com-
pute the second LSB of c′ and the carry bit to the third LSB.
After this computation, 3-bit information, which are the sec-
ond LSB of c0 and c1 and the carry value to the second LSB
are discarded. In this time, we newly obtain 2-bit informa-
tion, but discarded 3-bit information. Hence, the data to be
analyzed is compressed by 1 bit. With this approach, the
complexity for the above equation is minimized. We call
the technique bitwise partial-sum.

The bitwise partial-sum leads to more advantages. We
focus on the computation for the MSB. As shown above, the
bitwise partial-sum computes the carry value to the MSB
when we analyze the second MSB. Therefore, the analysis
on the MSB is completely linear because we do not need to
compute the carry value from the MSB. Therefore, in the

SASAKI and WANG: BITWISE PARTIAL-SUM: A NEW TOOL FOR INTEGRAL ANALYSIS AGAINST ARX DESIGNS
51

Table 1 Comparison of attack results on HIGHT.

Model Approach #Rounds Data Time Memory (bytes) Reference

single-key Integral 18 262 236 220 [20]
Integral 22 262 2118.71 264 [22]
Integral 22 262 2102.35 264 [17]
Integral 22 262.15 267.28 256 This paper
Integral 26 258.58 2123.07 2115.58 This paper

Imp. Diff. 18 246.8 2109.2 N/A [7]
Imp. Diff. 25 260 2126.78 N/A [12]
Imp. Diff. 26 261 2119.53 2109 [16]
Imp. Diff. 26 261.6 2114.35 287.6 [3]
Imp. Diff. 27 258 2126.6 2120 [3]
Zero-Corr. 26 262.79 2119.1 243 [19] †
Zero-Corr. 27 262.79 2120.78 243 [19] ‡

related-key Rectangle 26 251.2 2120.41 N/A [12]
Imp. Diff. 28 260 2125.54 N/A [12]
Imp. Diff. 31 264 2127.28 2117 [16]

Differential 32 257.84 2125.83 N/A [10]

†: Attacked rounds are from round 4 to round 29.
‡: Attacked rounds are from round 4 to round 30.

above equation, 3 bits for the MSBs of c0, c1, c2 can be com-
pressed into 1 bit of c0⊕c1⊕c2 with respect to the MSB at the
very beginning stage of the analysis. Moreover, for 3 bits of
the MSBs of k0, k1, k2, guessing only 1-bit information for
their XOR relation is enough.

We stress that the bitwise partial-sum technique is dif-
ferent from the known techniques. The main goal of the bit-
pattern based analysis [21], saturation attack [13] and tuple
analysis [1] is extending an integral distinguisher by intro-
ducing new properties other than active, balanced, and con-
stant, whereas the goal of the bitwise partial-sum is reducing
the complexity of the key recovery phase by processing the
partial decryption, and tracing the carry effect in bitwise. In
fact, we use the same integral distinguisher as the previous
work, but improve the complexity.

In this paper, we demonstrate the bitwise partial-sum
technique for HIGHT [7], which was standardized by ISO as
a 64-bit block-cipher [8]. As an independent improvement,
we show an observation specific to HIGHT, which exploits
linearity inside the round function. This reduces a num-
ber of guessed subkey bits during the key recovery phase.
We present our attacks on HIGHT by combining these two
techniques. Then, we successfully improve the previous 22-
round attack on HIGHT, and moreover the number of at-
tacked rounds is extended to 26 rounds. Although the best
single-key attack on HIGHT breaks 27 rounds with an im-
possible differential attack [3], this is a significant improve-
ment regarding the integral analysis including several new
observations. The attack results are summarized in Table 1.

Paper outline

The paper is organized as follows. In Sect. 2, we introduce
the previous techniques for integral analysis. In Sect. 3, we
describe our main idea called bitwise partial-sum. In Sect. 4,
we show another optimization specific for HIGHT, and ap-
ply it to 22- and 26-round HIGHT together with the bitwise

partial-sum. Finally, we conclude the paper in Sect. 5.

2. Related Work

2.1 Integral Analysis and Improved Techniques

A brief description of integral attack has already been given
in Sect. 1. To discuss integral distinguishers, we use the fol-
lowing notations to describe the property of each byte.

“A (Active)” : all values appear exactly the same number
in the set of texts.

“B (Balanced)” : the XOR of all texts in the set is 0.
“C (Constant)” : the value is fixed to a constant for all

texts in the set.

2.1.1 Partial-Sum

The partial-sum technique was introduced by Ferguson et
al. [5] in order to improve the complexity of the key recov-
ery phase in the integral attack. The original attack target
was AES. In the key recovery phase of the integral analysis
on AES, the partial decryption involves 5 key bytes and 4
ciphertext bytes. Suppose that the number of data to be an-
alyzed is 232 and the byte position b of the n-th ciphertext is
denoted by cb,n. Then, the equation is described as follows.

232⊕

n=1

[
S 4

(
S 0(c0,n ⊕ k0) ⊕ S 1(c1,n ⊕ k1)

⊕S 2(c2,n ⊕ k2) ⊕ S 3(c3,n ⊕ k3) ⊕ k4

)]
. (1)

With a straightforward method, the analysis exhaustively
guesses 40-bit key values and performs the partial decryp-
tion for all 232 texts. Therefore, it takes 232+40 = 272 par-
tial decryptions. The partial-sum technique can perform this
computation only with 248 partial decryptions.

The analysis starts from 232 texts (c0,n, c1,n, c2,n, c3,n).
First, two key bytes k0 and k1 are guessed, and S 0(c0,n ⊕
k0) ⊕ S 1(c1,n ⊕ k1) is computed for each guess. Let xi,n be⊕i

p=0(S p(cp,n ⊕ kp)). Then, S 0(c0,n ⊕ k0)⊕ S 1(c1,n ⊕ k1) can
be represented by x1,n, and Eq. (1) becomes

232⊕

n=1

[
S 4

(
x1,n ⊕ S 2(c2,n ⊕ k2) ⊕ S 3(c3,n ⊕ k3) ⊕ k4

)]
.

The original set includes 232 texts, but now only 3-byte in-
formation (x1, c2, c3) is included. Hence, by counting how
many times each of 3-byte values (x1, c2, c3) appears and by
only picking the values that appear odd times, the size of the
data set is compressed into 3 bytes. For the second step, a
single key byte k2 is guessed, and the size of the data set be-
comes 2 bytes (x2, c3). For the third step, a single key byte k3

is guessed, and the size of the data set becomes 1 byte (x3).
Finally, a single byte k4 is guessed and Eq. (1) is computed
for each guess.

The complexity for the guess of k0, k1 is 216×232 = 248,

52
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.1 JANUARY 2015

Fig. 4 Meet-in-the-middle techniques in [17].

for the guess of k2 is 216×28×224 = 248, for the guess of k3 is
224×28×216 = 248, for the guess of k4 is 232×28×28 = 248.
In the end, the complexity is preserved to be 248 until the
last computation.

2.1.2 Meet-in-the-Middle Matching for the Key Recovery

Sasaki and Wang introduced meet-in-the-middle technique
for the key recovery phase of the integral analysis against
block-ciphers with Feistel network [17], which can also be
seen in the analysis of TWINE [18].

Suppose that the input value to round i in a Feis-
tel cipher is XL

i ‖XR
i , and the output value XL

i+1‖XR
i+1 where

XL
i+1 = XR

i and XR
i+1 = XL

i ⊕ F(Ki, XR
i), which is shown in

Fig. 4. Also suppose that the balanced property is preserved
in a variable XL

i i.e.,
⊕

XL
i = 0. Due to the linear relation

XL
i = Zi ⊕ XR

i+1, where Zi is the output of the round func-
tion for round i, the equation

⊕
XL

i = 0 can be written as⊕
Zi =

⊕
XR

i+1. Therefore, the sum of each term can be
computed independently, and the key values that result in
the balanced state can be identified with the same manner as
the meet-in-the-middle attack.

3. Bitwise Partial-Sum

In this section, we describe our new technique called bitwise
partial-sum, which improves the complexity of the partial-
sum technique for ARX designs. Suppose that an n-bit vari-
able Z is computed with n-bit variables X, Y and n-bit un-
known keys K,K′†. Also suppose that 22n pairs of (X, Y) is
given to the attacker and the goal of the attacker is comput-
ing Z for the exhaustive guess of K and K′. As computations
of Z, we consider the following four operations, which are
also depicted in Fig. 5.

Z = (X ⊕ K) � Y, Z = (X � K) ⊕ Y,

Z = (X ⊕ K) � (Y ⊕ K′), Z = (X � K) ⊕ (Y � K′),

We describe X in bitwise with Xn−1‖Xn−2‖ · · · ‖X1‖X0. The
similar notations are used for Y, Z,K, and K′. We denote the
carry value to bit position i by pi.

To compute Z in each of the above operations, in the
previous work, the key values K (and K′) are exhaustively
guessed, and for each guess, the equation is computed for all
22n pairs of (X, Y). Therefore, the complexity is 22n ·2n = 23n

†For HIGHT, the value of n is 8. Here, we describe the analysis
in a general form.

Fig. 5 Models of the analytic target.

Fig. 6 Overview of the bitwise partial-sum for case 1. Each cell rep-
resents each bit. Crossed cells represent the discarded bits. Circles cells
represent the newly obtained bits.

for the single-key cases, and 22n · 22n = 24n for the two-key
cases. The bitwise partial-sum can reduce the complexity of
these computations to n · 22n+1 for the single-key cases and
23n+2 for the two-key cases by guessing keys bit by bit and
computing Z bit by bit.

Single-key cases

We start with explaining the complexity to compute Z =
(X ⊕ K) � Y and Z = (X � K) ⊕ Y . The procedure and the
complexity for two cases are almost the same. Hence, we
only explain the case for Z = (X ⊕ K) � Y in details. The
overview is shown in Fig. 6. The analysis starts from 22n

texts of (X, Y). The procedure is divided into three parts;
LSB, middle bits, and MSB.

LSB: Guess the 1-bit value K0. For each of 22n texts, com-
pute (X0 ⊕ K0) � Y0 to obtain 2-bit information Z0

and p1. After that 2-bit information X0 and Y0 is no
longer used, and thus we can remove those 2-bit infor-
mation for the further procedure. Hence, 22n texts of
(Xn−1‖ · · · ‖X0, Yn−1‖ · · · ‖Y0) are updated to 22n texts of
(Xn−1‖ · · · ‖X1, Yn−1‖ · · · ‖Y1, p1, Z0).

Middle bits (bit position i for i = 1, 2, . . . , n − 2): Guess
the 1-bit value Ki. For each text, compute
(Xi ⊕ Ki) � Yi � pi to obtain 2-bit information
Zi and pi+1 and then discard 3-bit information
Xi, Yi, pi. Hence, 22n−(i−1) texts of (Xn−1‖ · · · ‖Xi,
Yn−1‖ · · · ‖Yi, pi, Zi−1‖ · · · ‖Z0) are updated to 22n−i texts
of (Xn−1‖ · · · ‖Xi+1, Yn−1‖ · · · ‖Yi+1, pi+1, Zi‖ · · · ‖Z0).
Count how many times each tuple of (Xn−1‖ · · · ‖Xi+1,
Yn−1‖ · · · ‖Yi+1, pi+1, Zi‖ · · · ‖Z0) appears, and only pick
the ones that appear odd times. The size of the texts
will be reduced from 22n−(i−1) to 22n−i.

MSB: Guess the 1-bit value Kn−1. For each text, com-
pute (Xn−1 ⊕ Kn−1 ⊕ Yn−1 ⊕ pn−1) to obtain 1-bit

SASAKI and WANG: BITWISE PARTIAL-SUM: A NEW TOOL FOR INTEGRAL ANALYSIS AGAINST ARX DESIGNS
53

information Zn−1 and then discard 3-bit information
Xn−1, Yn−1, pn−1. Hence, 2n+2 texts of (Xn−1, Yn−1, pn−1,
Zn−2‖ · · · ‖Z0) are updated to 2n texts of (Zn−1‖ · · · ‖Z0).
Count how many times each tuple of (Zn−1‖ · · · ‖Z0) ap-
pears, and only pick the ones that appear odd times.
The size of the texts will be reduced from 2n+2 to 2n.

The complexity for the LSB (bit position 0) is 2 · 22n XOR
operations and 2 · 22n addition operations, then 22n texts will
remain. The complexity for bit position 1 is 22 · 22n XOR
operations and 22 · 22n addition operations, then 22n−1 texts
will remain. The complexity for bit position 2 is 23 · 22n−1

XOR operations and 23 ·22n−1 addition operations, then 22n−2

texts will remain. The complexity for bit position i where
i = 3, 4, . . . , n − 2 is 2i+1 · 22n−(i−1) XOR operations and
2i+1 · 22n−(i−1) addition operations, then 22n−i texts will re-
main. The complexity for the MSB is 2n · 2n+2 XOR opera-
tions, and 2n texts will remain. Because the complexity for
each bit is about 22n+2 XOR operations and addition oper-
ations, the total complexity is about n · 22n+2 XOR opera-
tions and addition operation. This is faster than the previous
analysis which requires 23n XOR and addition operations.
For example, for n = 8, the previous analysis requires 224

operations while the bitwise partial-sum requires 221 oper-
ations. The advantage of the bitwise partial-sum becomes
much bigger for a bigger n. For example, Three-fish block-
cipher adopts a 64-bit ARX design. For n = 64, the previous
analysis requires 2192 while the bitwise partial-sum only re-
quires 2136 operations.

Optimization of the single-key case

The complexity can be further improved. We observe
that the computation of the MSB is linear, and thus the
MSBs of two variables Xn−1 and Yn−1 are only used in
the linear computation. Hence, at the very beginning of
the procedure, we can compute Xn−1 ⊕ Yn−1, and 22n texts
of (X, Y) can be compressed into 22n−1 texts of (Xn−1 ⊕
Yn−1, Xn−2‖ · · · ‖X0, Yn−2‖ · · · ‖Y0) by counting how many
times each tuple appears and only picking the ones that ap-
pear odd times. This halves the complexity, and thus the
total complexity is about n · 22n+1 XOR and addition opera-
tions.

Two-key cases

We explain the two-key cases, i.e., the complexity to com-
pute Z = (X ⊕ K) � (Y ⊕ K′) and Z = (X � K) ⊕ (Y � K′).
The basic procedure for the two-key cases are the same as
the one for the single-key case. First, we explain the case
for Z = (X ⊕ K) � (Y ⊕ K′).

LSB: Guess the 2-bit values K0 and K′0. For each 22n texts,
compute 2-bit information Z0 and p1 and then discard
2-bit information X0 and Y0. The text size after the
analysis is 22n.

Middle bits (bit position i for i = 1, 2, . . . , n − 2): Guess
the 2-bit values Ki and K′i. For each texts, compute

2-bit information Zi and pi+1 and then discard 3-bit in-
formation Xi, Yi, pi. Count how many times each tuple
of (Xn−1‖ · · · ‖Xi+1, Yn−1‖ · · · ‖Yi+1, pi+1, Zi‖ · · · ‖Z0) ap-
pears, and only pick the ones that appear odd times.
The size of the texts will be reduced from 22n−(i−1) to
22n−i.

MSB: Guess the 2-bit values Kn−1 and K′n−1. For each
texts, compute 1-bit information Zn−1 and then discard
3-bit information Xn−1, Yn−1, pn−1. Count how many
times each tuple of (Zn−1‖ · · · ‖Z0) appears, and only
pick the ones that appear odd times. The size of the
texts will be reduced from 2n+2 to 2n.

The complexity for the LSB (bit position 0) is (2)2 ·22n oper-
ations, and 22n texts will remain. The complexity for bit po-
sition 1 is (22)2 · 22n operations, and 22n−1 texts will remain.
The complexity for bit position 2 is (23)2 · 22n−1 operations,
and 22n−2 texts will remain. The complexity for bit position
i where i = 3, 4, . . . , n − 2 is (2i+1)2 · 22n−(i−1) operations,
and 22n−i texts will remain. The complexity for the MSB is
(2n)2 · 2n+2 operations, and 2n texts will remain. Therefore,
the total complexity is about

(2)2 · 22n + [(22)2 · 22n + (23)2 · 22n−1 + · · ·
+ (2n−1)2 · 2n+3] + (2n)2 · 2n+2.

The first term is smaller than 22n+3, thus the equation is
smaller than

22n+3 + 22n+4 + 22n+5 + · · · + 22n+(n+1) + 22n+(n+2)

= 22n+3(1 + 21 + 22 + · · · + 2n−1)

< 23n+3.

This is faster than the previous analysis which requires 24n

XOR and addition operations.

Optimization of the two-key case

Regarding the MSBs of two variables Xn−1 and Yn−1, the
same technique as the one for the single-key case can be
exploited, namely, take the XOR of Xn−1 and Yn−1 and com-
press the data by 1 bit at the very beginning of the analysis.
This reduces the total complexity by 1 bit, and thus the total
complexity becomes about 23n+2 XOR and addition opera-
tions.

Moreover, the MSBs of two keys Kn−1 and K′n−1 are
only used in the linear operation. Therefore, instead of
guessing these two key bits, guessing 1-bit relation of these
bits, i.e., Kn−1 ⊕ K′n−1, is enough. This reduces the total
complexity by 1 bit, and thus the total complexity becomes
about 23n+1 XOR and addition operations.

Evaluation for Z = (X � K) ⊕ (Y � K′)

The complexity for Z = (X � K) ⊕ (Y � K′) is a little bit
worse than the complexity for Z = (X ⊕ K) � (Y ⊕ K′).
This is because the equation (X � K) ⊕ (Y � K′) contains

54
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.1 JANUARY 2015

Table 2 Summary of the complexity of the bitwise partial-sum.

Target equation Previous partial-sum bitwise partial-sum

Z = (X ⊕ K) � Y 23n n · 22n+1

Z = (X � K) ⊕ Y 23n n · 22n+1

Z = (X ⊕ K) � (Y ⊕ K′) 24n 23n+1

Z = (X � K) ⊕ (Y � K′) 24n 23n+2

The unit of the complexity is a single computation of n-bit XOR or n-bit
modular addition.

two additions, and thus we need to store 2-bit carry values
in the analysis of each bit. Compared to the case of Z =
(X⊕K)�(Y⊕K′), the size of texts to be analyzed is doubled.
This increases the final complexity after the optimization is
applied from 23n+1 to 23n+2 XOR and addition operations.

Summary of the bitwise partial-sum

The comparison of the complexities to compute each of 4
equations with the previous method (bytewise partial-sum)
and ours is given in Table 2. It indicates that the advantage
of the bitwise partial-sum increases as n increases. In the
next section, we apply the bitwise partial-sum to HIGHT,
where the size of n is 8. The impact is relatively small
because the advantage is at most a factor of 27. Some
ARX-based block-ciphers adopt a bigger n, e.g., XTEA [15]
adopts n = 32 and Threefish [6] adopts n = 64. In such
cases, the impact becomes much bigger.

4. Improved Integral Analysis on HIGHT

In this section, we improve the integral analysis on HIGHT
by using the bitwise partial-sum technique. The section
starts from introducing HIGHT specification (Sect. 4.1) and
the previous integral analysis on 22 rounds (Sect. 4.2). Next,
we propose a new observation specific to the HIGHT round
function (Sect. 4.3). Then, by combining all techniques, we
improve the complexity of the 22-round attack (Sect. 4.4).
Finally, we extend the number of attacked rounds as much
as possible (Sect. 4.5).

4.1 Specification of HIGHT

HIGHT is a light-weight block-cipher proposed at CHES
2006 by Hong et al. [7]. The block size is 64 bits and the
key size is 128 bits. It adopts the type-2 generalized Feis-
tel structure with 8 branches and 32 rounds, and the round
function consists of the ARX structure.

The plaintext is loaded into an internal state
X0,7‖X0,6‖ · · · ‖X0,0 where the size of each Xi, j is 8 bits. At
first, X0,7‖X0,6‖ · · · ‖X0,0 is updated by the pre-whitening op-
eration. We omit its details because the pre-whitening does
not impact to our attack. Then, the state Xi,7‖Xi,6‖ · · · ‖Xi,0 is
updated by the following operation. For i = 0, 1, . . . , 31

Xi+1,0 = Xi,7 ⊕ (F0(Xi,6) � S K4i+3), Xi+1,1 = Xi,0,

Xi+1,2 = Xi,1 �
(
F1(Xi,0) ⊕ S K4i), Xi+1,3 = Xi,2,

Xi+1,4 = Xi,3 ⊕ (F0(Xi,2) � S K4i+1), Xi+1,5 = Xi,4,

Fig. 7 Round function.

Xi+1,6 = Xi,5 �
(
F1(Xi,4) ⊕ S K4i+2), Xi+1,7 = Xi,6,

where F0(x) = (x ≪ 1) ⊕ (x ≪ 2) ⊕ (x ≪ 7), F1(x) =
(x ≪ 3) ⊕ (x ≪ 4) ⊕ (x ≪ 6), and “≪ s” denotes the
s-bit left rotation. The swap of the byte positions is not ex-
ecuted in the last round. The round function is depicted in
Fig. 7. We denote the internal state between F and the key
addition by Yi,1, Yi,3, Yi,5, Yi,7 and the internal state right af-
ter the key addition by Zi,1, Zi,3, Zi,5, Zi,7. Finally, the post-
whitening operation is performed as follows.

X32,0 ← X32,0 �WK4, X32,2 ← X32,2 ⊕WK5,

X32,4 ← X32,4 �WK6, X32,6 ← X32,6 ⊕WK7.

X32,7‖X32,6‖ · · · ‖X32,0 are output as the ciphertext. Note that
a figure of the round function in the CHES 2006 version [7]
shows an incorrect specification, which the order of subkeys
in round i is different from the above description. Moreover,
the previous integral analysis on HIGHT [17], [22] attacked
the incorrect round function though they can be converted
to the correct one as well. In 2009, the designers showed
a figure of the round function with the correct subkey order
[11]. Our analysis is targeting the correct one, hence the
subkey order is different from the previous work [17], [22].

Subkeys and whitening keys consist of a part of the
master key K and a constant value. The master key K is
represented as K15‖K14‖ · · · ‖K0, where the size of each Ki is
8 bits. The post-whitening keys WKi where i = 4, 5, 6, 7 are
Ki−4. 128 subkeys are generated by the following algorithm
with 128 constant values denoted by δi.

1. for i = 1 to 7
2. for j = 1 to 7
3. S K16·i+ j = Kj−1mod8 � δ16·i+ j.
4. for j = 1 to 7
5. S K16·i+ j+8 = K(j−1mod8)+8 � δ16·i+ j+8.

We denote the k-th bit of a byte Xi, j by Xk
i, j.

4.2 Previous Integral Analysis on 22-Round HIGHT

Zhang et al. presented a 17-round integral distinguisher
on HIGHT [22]. For a set of 256 plaintexts with the
form of (A, A, A, A, A, A, A,C), the state after 17 rounds,
(X17,7‖X17,6‖ · · · ‖X17,0), has the form of (?, ?, ?, ?, B0, ?, ?, ?),
where B0 stands for the balanced state with respect to the 0-
th bit. By appending 5 rounds after this distinguisher, Zhang
et al. showed a 22-round key recovery attack with a com-
plexity of 262 chosen plaintexts, 2118.71 22-round HIGHT
computations and a memory to store 264 bytes.

The key recovery phase in [22] was later improved

SASAKI and WANG: BITWISE PARTIAL-SUM: A NEW TOOL FOR INTEGRAL ANALYSIS AGAINST ARX DESIGNS
55

Fig. 8 Key recovery phase for 22-round HIGHT.

by Sasaki and Wang [17]. They applied the meet-in-the-
middle technique to reduce the complexity. The condition
for
⊕

X0
17,3 = 0 is written as

⊕
X0

18,4 =
⊕

Z0
17,3. (2)

Their key recovery phase is illustrated in Fig. 8. The charac-
ters with round parenthesis describe the partial decryption
for Z0

17,3 that involves 73 bits of subkeys and 40 bits of ci-
phertexts. The characters with square parenthesis describe
the partial decryption for X0

18,4 that involves 34 bits of sub-
keys and 25 bits of ciphertexts. The characters with angle
parenthesis describe the overlapped part. If the key schedule
is considered, the numbers of subkey bits to compute Z0

17,3

and X0
18,4 are 64 and 26 respectively. The dominant com-

plexity is the computations for
⊕

Z0
17,3 (with round paren-

thesis) that requires 240+64 = 2104 partial decryptions to an-
alyze a single set.

To reduce the key space into 1, the attack is iterated
65 times. With some optimization, they perform this part
with about 2106 partial decryptions. The final complexity
was evaluated by considering the ratio of F0/F1 functions
to be computed, which is 2106 × 7/88 ≈ 2102.35 22-round
HIGHT encryptions.

4.3 Exploiting Linearly for Optimizing Matching Position

Recall Eq. (2), which is the application of the meet-in-the-
middle technique by [17]. It is based on the fact that the
balanced bit X0

17,3 can be written as a linear combination of
two variables X0

18,4 and Z0
17,3. We show that we can extend

this concept by exploiting the linear computations inside the
round function. As is explained in [17], the complexity for
computing

⊕
Z0

17,3 is always much bigger than the one for⊕
X0

18,4. Therefore, we aim to reduce the number of sub-
keys involved in the computation of

⊕
Z0

17,3.
We observe that Z0

17,3 is computed by S K0
69 �Y0

17,3. Be-
cause we only focus on the LSB, this computation is linear,
i.e., Z0

17,3 = S K0
69 ⊕ Y0

17,3. Therefore, S K0
69 can be moved

Fig. 9 Improved key recovery phase with exploiting more linearity.

to the computation of
⊕

X0
18,4, namely

⊕
(X0

18,4 ⊕ S K0
69) =⊕

Y0
17,3. This contributes to reduce the complexity of the

dominant part by 1 bit. Furthermore, by utilizing the linear-
ity of the F0 operation, i.e., Y0

17,3 = X1
18,3 ⊕ X6

18,3 ⊕ X7
18,3 we

can move more subkey bits from the dominant part. The
transformation of the equation

⊕
(X0

18,4 ⊕ S K0
69) =

⊕
Y0

17,3
is as follows.
⊕

(X0
18,4 ⊕ S K0

69) =
⊕

(X1
18,3 ⊕ X6

18,3 ⊕ X7
18,3),

⊕
(X0

18,4 ⊕ S K0
69) =

⊕
(X1

19,4 ⊕ X6
19,4 ⊕ X7

19,4

⊕ Z1
18,3 ⊕ Z6

18,3 ⊕ Z7
18,3),⊕

(X0
18,4 ⊕ S K0

69 ⊕ X1
19,4 ⊕ X6

19,4 ⊕ X7
19,4)

=
⊕

(Z1
18,3 ⊕ Z6

18,3 ⊕ Z7
18,3). (3)

Finally, we use Eq. (3) for the match to identify the right
key candidates. The entire structure is shown in Fig. 9. This
reduces the number of subkey bits in the dominant part by
17 bits and the number of ciphertexts by 8 bits, thus the com-
plexity of the attack can be reduced roughly by a factor of
225.

4.4 Improved Integral Analysis on 22-Round HIGHT

We explain the details of the computation of
⊕

(Z1
18,3 ⊕

Z6
18,3 ⊕ Z7

18,3), which is shown in Fig. 10. With the previous
method in [17], the complexity is 232 · 256 = 288 partial de-
cryptions, while our method, using the bit-wise partial-sum,
computes it only with 264.60 round function computations.

We first compute C′2 ← F0(C2) and WK′5 ← F0(WK5)
so that the F0 function can be excluded from the analysis.
Hence, we aim to recover the value of WK′5 instead of WK5.

Then, the partial decryption up to X21,3 is written as

X21,3 ←
(
C3 ⊕ (S K85 � (C′2 ⊕WK′5)

))
.

The equation is not exactly the same as 4 equations analyzed
in Sect. 3, but the similar procedure can be applied. Namely,
for each key guess, the result is computed from the LSB

56
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.1 JANUARY 2015

Fig. 10 Computation of
⊕

(Z1
18,3 ⊕ Z6

18,3 ⊕ Z7
18,3) in 22-round attack.

to MSB bit by bit and the data is compressed for each bit.
Moreover, we use the linear relations in the MSB, thus the
data can be compressed with respect to the value of C7

3 ⊕C′72
before the analysis starts and 1-bit guess of S K7

85 ⊕WK′75 is
enough for these two MSBs.

After we obtain the value of X21,3 and then the corre-
sponding Y20,3, another pattern of the bitwise partial-sum ap-
pears for X20,3 = (C4 �WK6)⊕ (Y20,3 � S K81). However, the
analysis is not simple in this time because C4 is also used to
compute X21,5 and thus we cannot eliminate the value of C4

after X20,3 is computed. Such a structure makes the attack
complicated. In the following, we give the detailed attack
procedure to compute

⊕
(Z1

18,3 ⊕ Z6
18,3 ⊕ Z7

18,3).

1. Do a precomputation to make 2 look-up tables which
return F0(x) and F1(x) for a given x.

2. Query 256 plaintexts of the form (A, A, A, A, A, A, A,C)
to obtain the corresponding ciphertexts. Count how
many times each 4-byte tuple (C2,C3,C4,C5) appears
and pick the ones that appear odd times. As a result, the
number of texts to be analyzed is at most 24∗8 = 232.

3. Convert (C2,C3,C4,C5) into (C′2,C3,C4,C5) with the
look-up table.

4. Compress the data with respect to t1 = C′72 ⊕ C7
3 and

obtain 231 data of (C′0−6
2 ,C0−6

3 , t1,C4,C5). For each 15-
bit guess of (S K0−6

85 ,WK′0−6
5 , (S K7

85⊕WK′75)), compute
X21,3 with the bitwise partial-sum technique. The data
is compressed to 224 texts of the form (X21,3,C4,C5).
This is converted into (Y20,3,C4,C5) with the look-up
table.

5. For each 8-bit guess of WK6, update 224 data
(Y20,3,C4,C5) into (Y20,3, X21,4,C5). Then, compute the
corresponding Y21,5 and add the value to the data to be
analyzed. Hereafter, we regard X21,4 and Y21,5 are inde-
pendent. Thus the data size increases to 232.

6. Compress the data with respect to t2 = C7
5 ⊕ Y7

21,5

and t3 = X7
21,4 ⊕ Y7

20,3, and obtain 230 data of
(C0−6

5 , Y
0−6
21,5, t2, X

0−6
21,4, Y

0−6
20,3, t3).

7. For each 8-bit guess of S K81, compute X20,3 with the
bitwise partial-sum technique and compress the data to

223 data of the form (C0−6
5 , Y

0−6
21,5, t2, X20,3). Then, con-

vert the set into (C0−6
5 , Y

0−6
21,5, t2, Y19,3) with the look-up

table.
8. Compress the data with respect to t4 = t2 ⊕ Y7

19,3 and
obtain 222 data of the form (C0−6

5 , Y
0−6
21,5, Y

0−6
19,3, t4).

9. For each 16-bit guess of (S K84, S K77), compute X19,3

with the bitwise partial-sum technique without using
the optimization of guessing S K7

84 ⊕ S K7
77, and com-

press the data to 28 data of the form X19,3. Then, con-
vert the set into Y18,3 with the look-up table.

10. For 8-bit guess of S K73, compute
⊕

(Z1
18,3 ⊕ Z6

18,3 ⊕
Z7

18,3) in bit-by-bit. Store the result in a table T .

We evaluate the complexity of each step.

• Step 1 requires 28 F0 and F1 computations, which are
negligible.

• Step 2 requires 256 memory access to deal with the
ciphertexts. The memory requirement is 232 · 4 =
234 bytes.

• Step 3 requires 232 table look-ups.
• In Step 4, because 2 subkeys and 1 modular addition

are involved, the complexity of the bitwise partial-sum
is 232+n+1, where n = 8. Hence, the complexity is 241

round functions. The data is compressed to 224 and
then 224 table look-ups are performed.

• Step 5 requires 215+8+24 modular additions and table
look-ups, which is less than 247 round functions. The
data size increases to 232.

• Step 6 requires 215+8+32 2-bit XOR operation and ta-
ble look-ups, which is less than 215+8+32+1 = 256 round
functions. The data is compressed to 230.

• In Step 7, the bitwise partial-sum for 1 subkey is ap-
plied. Here, the complexity should be analyzed care-
fully. Because the data compression in the MSB has al-
ready finished in Step 6, the optimization of the single-
key case discussed in Sect. 3 cannot be applied further.
This makes the complexity of Step 7 8·215+8+30+2 = 258

round functions. The data is compressed to 223.
• Step 8 requires 215+8+8+23 1-bit XOR computations,

which is less than 254 round functions. The data is com-
pressed to 222.

• In Step 9, the bitwise partial-sum for 2 subkeys is ap-
plied. Here, two optimizations discussed in Sect. 3 can-
not be applied:
1) We guess MSBs of S K84 and S K77 separately, rather
than guessing XOR of them. This is because S K84 is
the subkey bytes guessed in both of the left-hand side
and the right-hand side of Eq. (3), and we later compare
all bits of S K84 to find the valid matches between two
sides of Eq. (3).
2) Similarly to Step 7, the data has already been com-
pressed with respect to the MSB.
Thus, the optimization for 2 bits cannot be applied. As
a result, the complexity of Step 9 is 215+8+8+22+(n+4) =

265 round functions for n = 8. The data is compressed
to 28.

SASAKI and WANG: BITWISE PARTIAL-SUM: A NEW TOOL FOR INTEGRAL ANALYSIS AGAINST ARX DESIGNS
57

Fig. 11 Computation of left-hand side of Eq. (3) in 22-round attack.

• In Step 10, because 1 subkey and 1 modular addition
are involved, the complexity is 28+15+8+8+16+8+1 = 264

round functions.

The complexities for steps 1 to 4 are negligible but for 256

memory access in Step 2. The complexity for the remaining
part is 247 + 256 + 258 + 254 + 265 + 264 ≈ 265.59 round func-
tions. After the analysis, we obtain 255 values in T . Note
that besides the 1-bit value of

⊕
(Z1

18,3 ⊕ Z6
18,3 ⊕ Z7

18,3), we
also store 16-bit values of WK6, S K84, which are later used
for the match. Hence, the memory requirement to construct
T is 255 ∗ 16 bits, which is 256 bytes.

4.4.1 Left-Hand Side of Eq. (3)

We also evaluate the complexity to compute the left-hand
side of Eq. (3). The entire computation structure is shown in
Fig. 11.

This computation only involves 25 bits of the ciphertext
and 35 bits of subkeys. Therefore the complexity is at most
225+35 = 260 partial decryptions even with the naive method.
Because it is obvious that this part can be much lower com-
plexity than the computation of

⊕
(Z1

18,3 ⊕ Z6
18,3 ⊕ Z7

18,3),
we omit the detailed explanation. However, to demonstrate
the impact of the bitwise partial-sum, we show several ap-
proaches to optimize the computation.

• Both of C7
6 and WK7

7 linearly impact to the final sum
exactly twice. Hence, their impacts are canceled. This
reduces the data to be analyzed by 1 bit, and the number
of key guesses by 1 bit.

• S K0
87, S K0

76, S K0
69, and S K7

80 linearly impact to the final
sum. Hence, 1-bit guess for their XOR value is enough.
This reduces the number of key guesses by 3 bits.

In the end, the left-hand side of Eq. (3) is computed with a
negligible cost compared to the other part.

4.4.2 Remaining Part

At the very beginning, the partial decryption for the last 5
rounds in Fig. 9 involved 75 subkey bits. We then reduced

the number of guessed subkey bits by 1 bit for the left-hand
side of Eq. (3) and 3 bits for the right-hand side of Eq. (3) by
guessing linear combination of several subkey bits. Hence,
the subkey space to be guessed is 71(= 75 − 1 − 4) bits.

The computation of the right-hand side of Eq. (3) in-
volves 55 subkey bits and the computation of the left-hand
side of Eq. (3) involves 32 subkey bits. We can check the
match of 1 bit of the state with Eq. (3). Moreover, WK6 and
S K84 are guessed in both sides of Eq. (3) independently, and
thus we can check the match of those 16 bits. In the end, we
check the match of 17(= 1 + 16) bits. After the match, we
have 55+32−17 = 70 bits of the candidates for the guessed
71-bit subkey space. In other words, the original 71-bit sub-
key space is reduced by 1 bit with a single set of 256 plain-
texts. Therefore, by iterating the analysis 71 times, the right
key for these 71 subkey bits is obtained. After 71 subkey
bits are recovered, the remaining key bits can be recovered
by the exhaustive search with a cost about 2128−71 = 257.

To sum up, the data complexity is 71∗256 ≈ 262.15 cho-
sen plaintexts. The computational complexity is 71∗265.59 ≈
271.74 round functions, 262.15 memory access to deal with the
ciphertexts, and 257 22-round HIGHT computations for the
exhaustive search of remaining subkey space, which is about
(271.74/22 + 257) ≈ 267.28 22-round HIGHT computations.
The memory requirement of the attack is 256 bytes.

Note that a tradeoff is available between data and time
complexities. With N sets of 256 plaintexts, 71-bit subkey
space is reduced to 271−N bits. Then, the cost of the exhaus-
tive search becomes 271−N+57 = 2128−N . Hence, the attack
is faster than the brute force attack on 128 bits even with a
single set of 256 plaintexts.

4.5 New Integral Analysis on 26-Round HIGHT

In [22], Zhang et al. presented another 17-round inte-
gral distinguisher. For a set of 256 plaintexts with the
form of (A, A, A,C, A, A, A, A), the state after 17 rounds,
(X17,7‖ · · · ‖X17,0), has the form of (B0, ?, ?, ?, ?, ?, ?, ?). Dif-
ferent from the previous 22-round attack [17], we use this
distinguisher. This is because subkey relations in this dis-
tinguisher are more advantageous than the other one when 9
rounds are appended to the distinguisher. In fact, we could
not attack 26 rounds with the other distinguisher.

With the same transformation as for obtaining Eq. (3),⊕
X0

17,7 = 0 can be transformed as

⊕
(X0

18,0 ⊕ S K0
71 ⊕ X1

19,0 ⊕ X6
19,0 ⊕ X7

19,0)

=
⊕

(Z1
18,7 ⊕ Z6

18,7 ⊕ Z7
18,7). (4)

The computation for the right-hand side of Eq. (4) requires
much more complexity than the left-hand side. The par-
tial decryption for obtaining

⊕
(Z1

18,7 ⊕ Z6
18,7 ⊕ Z7

18,7) is
shown in Fig. 12. The computation involves 96-bit keys
K0, . . . ,K3,K5, . . . ,K8,K10,K11,K14,K15 and all ciphertext
bytes are related.

We first describe a relatively simple procedure with the

58
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.1 JANUARY 2015

Fig. 12 Partial decryption for
⊕

(Z1
18,7⊕Z6

18,7⊕Z7
18,7) in 26-round attack.

bytewise partial-sum. Then, we apply the bitwise partial-
sum technique to the dominant part.

1. The analysis stars from at most 264 ciphertexts of
(C0, . . . ,C7).

2. Guess (K1,K3), and compress the data into 256 texts of
(Y24,7,C5, . . . ,C0).

3. Guess (K0,K5,K6), and compress the data into 248 texts
of (Y23,7,C5, . . . ,C2, X25,1).

4. Guess (K2,K7,K10), and compress the data into 240

texts of (Y22,7,C5, X25,4, X25,3, X24,1).
5. Guess (K14,K15), and compress the data into 232 texts

of (Z20,7, X24,4, X24,3, X23,1).
6. Guess (K8,K11), and compress the data into 224 texts of

(Z20,7, X22,2, X22,1).
7. Further compress the data into 216 texts of (Y19,7, X21,1).
8. Further compress the data into 28 texts of (Y18,7).
9. Finally compute

⊕
(Z1

18,7 ⊕ Z6
18,7 ⊕ Z7

18,7), and store the
result in a table T .

The complexity for each step is as follows.

1. The complexity for Step 1 is 264 memory access.
2. The complexity for Step 2 is less than 216 · 264 = 280

round functions.
3. The complexity for Step 3 is less than 216 ·224 ·256 = 296

round functions.
4. The complexity for Step 4 is less than 240 · 224 · 248 =

2112 round functions.
5. The complexity for Step 5 is less than 264 · 216 · 240 =

2120 round functions.
6. The complexity for Step 6 is less than 280 · 216 · 232 =

2128 round functions.
7. The complexity for Step 7 is less than 296 ·20 ·224 = 2120

round functions.
8. The complexity for Step 8 is less than 296 ·20 ·216 = 2112

round functions.
9. The complexity for Step 9 is less than 296 ·20 ·28 = 2104

round functions.

The entire complexity is the sum of the complexity for each

Fig. 13 Computation Structure of Left-hand side of Eq. (4).

step. The dominant part is Step 6, which requires about 2128

round function computations with the bytewise partial-sum.
We explain that the bitwise partial-sum can be applied to
Step 6 to reduce the complexity.

Step 6 starts from 232 texts of (Z20,7, X24,4, X24,3, X23,1),
and the goal is obtaining 224 texts of (Z20,7, X22,2, X22,1) with
guessing two subkeys (K8,K11). At first, we update 232

texts into (Z20,7, X24,4, X24,3, Y22,1), and we guess 1-byte key
K8 and update 232 texts into (Z20,7, X22,2, X24,3, Y22,1). Up
to here, the complexity for the guess of K8 is less than
280 · 28 · 232 = 2120 round functions. We then apply
the bitwise partial-sum to guess K11. First of all, by ex-
ploiting the MSB, 232 texts is compressed into 231 texts of
(Z20,7, X22,2, X0−6

24,3, Y
0−6
22,1, t

7), where t7 is X7
24,3 ⊕ Y7

22,1. Then,
compute X22,1 bit-by-bit from the LSB to MSB to obtain 224

texts of (Z20,7, X22,2, X22,1). This is a single-key case with 1
modular addition. The complexity is about n · (288+32+1) =
2124 round functions, where n = 8.

Finally, for a single set of chosen plaintexts, the sum
of the complexity for all steps is 264 memory access and
280+296+2112+2120+(2120+2124)+2120+2112+2104 ≈ 2124.25

round functions, which is 2124.25/26 ≈ 2119.55 26-round
HIGHT computations. The data complexity is 256 chosen
plaintexts. For each 296 guess, we store guessed 12 bytes
and 1-bit information for the match of the sum. Hence, the
memory requirement is about 12 · 296 ≈ 299.58 bytes.

The computation for the left-hand side of Eq. (4)
is depicted in Fig. 13, which involves 89-bit keys
K0, . . . ,K4,K6,K7,K8,K0

9 ,K11,K12,K15 and 57 bits of ci-
phertext are related. The complexity is significantly smaller
than the right-hand side of Eq. 4. For each 289 guess, we
obtain the guessed 89 key bits and 1-bit information for the
match of the sum.

4.5.1 Remaining Part

The partial decryption for the last 9 rounds involves 113 sub-

SASAKI and WANG: BITWISE PARTIAL-SUM: A NEW TOOL FOR INTEGRAL ANALYSIS AGAINST ARX DESIGNS
59

key bits, which are all bits but for 7 bits of K9 and 8 bits of
K13. The computation of the right-hand side of Eq. (4) in-
volves 96 subkey bits and the computation of the left-hand
side of Eq. (4) involves 89 subkey bits. Both sides include
72 subkey bits in common.

With one plaintext set, the right-hand side of Eq. (4)
provides 296 candidates and the left-hand side of Eq. (4)
provides 289 candidates. Hence, we check the match of
2185 pairs. We can check the match of 72 subkey bits and
1 bit of the state with Eq. (4), in total 73 bits. As a result,
2185−73 = 2112 subkey candidates are obtained for the 113-
bit subkey space. In other words, the 113-bit subkey space
is reduced by 1 bit with a single set of 256 plaintexts. Note
that we need to store the suggested 2112 subkey candidates,
which is 12 ∗ 2112 = 2115.58 bytes. This is the bottle-neck of
the memory complexity.

Suppose that we use N sets of 256 plaintexts. Then,
113-bit subkey space is reduced to 2113−N bits with a time
complexity of N · 2119.55 26-round HIGHT computations.
We perform the exhaustive search for the remaining subkey
space, which is 2113−N bits plus uninvolved 15 bits. Hence,
the cost of the exhaustive search is 2113−N+15 = 2128−N 26-
round HIGHT computations. To balance the time complex-
ity of two parts, we obtain the following equation:

N · 2119.55 = 2128−N ,
⇒ N + log2N = 8.45.

N = 6 makes the above equation most balanced. As a re-
sult, the data complexity is 6 ∗ 256 ≈ 258.58 chosen plain-
texts. The time complexity for analyzing 113 subkey bits is
N · 2119.55 ≈ 2122.13 26-round HIGHT computations. The
time complexity for the exhaustive search is 2128−N = 2122

26-round HIGHT computations. In total, the final time com-
plexity is 2122.13 + 2122 ≈ 2123.07 26-round HIGHT computa-
tions. The memory complexity is 2115.58 bytes for storing the
2112 suggested subkey candidates after analyzing the first set
of 256 plaintexts.

5. Concluding Remarks

In this paper, we presented the bitwise partial-sum tech-
nique that can reduce the complexity of the integral anal-
ysis against ARX based designs. The technique computes
equations bit-by-bit from the LSB to the MSB and keeps
the data size as small as possible by compressing the data
with respect to the value of the guessed bit position and the
carry value to the next bit position. We applied this tech-
nique to the integral analysis on HIGHT. We also proposed
an improvement specific to HIGHT, which exploits the lin-
earity of the computations inside the round function. Due to
these effort, we could improve the complexity of the previ-
ous 22-round attack, and moreover, the number of attacked
rounds were extended up to 26 steps. Although our attack
only can work for a smaller number of rounds compared
to impossible differential attack, we believe that several new
observations together with a significant improvement for the

integral analysis lead to a deeper understanding.

Acknowledgments

The authors would like to thank one of the anonymous re-
viewers of IEICE Trans. for carefully checking technical de-
tails and pointing out mistakes about the complexity evalu-
ation. Lei Wang is supported by the Singapore National Re-
search Foundation Fellowship 2012 (NRF-NRFF2012-06).

References

[1] J.-P. Aumasson, G. Leurent, W. Meier, F. Mendel, N. Mouha, R.C.-
W. Phan, Y. Sasaki, and P. Susil, “Tuple cryptanalysis of ARX with
application to BLAKE and Skein,” ECRYPT II Hash Workshop,
2011.

[2] A. Biryukov and A. Shamir, “Structural cryptanalysis of SASAS,”
Birgit Pfitzmann, editor, Advances in Cryptology — Eurocrypt
2001, Lect. Notes Comput. Sci., vol.2045, pp.394–405, Springer-
Verlag, Berlin, Heidelberg, New York, 2001.

[3] J. Chen, M. Wang, and B. Preneel, “Impossible differential crypt-
analysis of the lightweight block ciphers TEA, XTEA and HIGHT,”
A. Mitrokotsa and S. Vaudenay, ed., Africacrypt 2012, Lect. Notes
Comput. Sci., vol.7374, pp.117–137, Springer-Verlag, Berlin, Hei-
delberg, New York, 2012.

[4] J. Daemen, L.R. Knudsen, and V. Rijmen, “The block cipher
Square,” E. Biham, ed., Fast Software Encryption 1997, Lect. Notes
Comput. Sci., vol.1267, pp.149–165, Springer-Verlag, Berlin, Hei-
delberg, New York, 1997.

[5] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner,
and D. Whiting, “Improved cryptanalysis of Rijndael,” B. Schneier,
ed., FSE 2000, Lect. Notes Comput. Sci., vol.1978, pp.213–230,
Springer-Verlag, Berlin, Heidelberg, New York, 2000.

[6] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T.
Kohno, J. Callas, and J. Walker, “The Skein hash function family,”
Submission to NIST hash function competition (Round 2), Version
1.2 — 15 Sept. 2009. Available online: http://www.skein-hash.info

[7] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D.
Chang, J. Lee, K. Jeong, H. Kim, J. Kim, and S. Chee, “HIGHT: A
new block cipher suitable for low-resource device,” L. Goubin and
M. Matsui, ed., CHES 2006, Lect. Notes Comput. Sci., vol.4249,
pp.46–59, Springer-Verlag, Berlin, Heidelberg, New York, 2006.

[8] ISO/IEC 18033-3:2010, Information technology — Security tech-
niques — Encryption Algorithms — Part 3: Block ciphers, 2010.

[9] L.R. Knudsen and D. Wagner, “Integral cryptanalysis,” J. Daemen
and V. Rijmen, ed., FSE 2002, Lect. Notes Comput. Sci., vol.2365,
pp.112–127, Springer-Verlag, Berlin, Heidelberg, New York, 2002.

[10] B. Koo, D. Hong, and D. Kwon, “Related-key attack on the full
HIGHT,” K.H. Rhee and D. Nyang, ed., ICISC 2010, Lect. Notes
Comput. Sci., vol.6829, pp.49–67, Springer-Verlag, Berlin, Heidel-
berg, New York, 2011.

[11] Korea Internet and Security Agency, HIGHT Algorithm Specifica-
tion, 2009.

[12] J. Lu, Cryptanalysis of block ciphers, PhD thesis, Royal Holloway,
University of London, England, July 2008.

[13] S. Lucks, “The saturation attack — A bait for Twofish,” M. Matsui,
ed., Fast Software Encryption 8th International Workshop, FSE
2001, Lect. Notes Comput. Sci., vol.2355, pp.1–15, Springer-Verlag,
Berlin, Heidelberg, New York, 2001.

[14] J. Nakahara, Jr., D.S. de Freitas, and R.C.-W. Phan, “New multiset
attacks on rijndael with large blocks,” E. Dawson and S. Vaudenay,
ed., Mycrypt 2005, Lect. Notes Comput. Sci., vol.3715, pp.277–295,
Springer-Verlag, Berlin, Heidelberg, New York, 2005.

[15] R.M. Needham and D.J. Wheeler, “TEA extensions,” Technical re-
port, Computer Laboratory, University of Cambridge, Oct. 1997.

60
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.1 JANUARY 2015

[16] O. Özen, K. Varici, C. Tezcan, and Ç. Kocair, “Lightweight block
ciphers revisited: Cryptanalysis of reduced round PRESENT and
HIGHT,” C. Boyd and J.M. González Nieto, ed., ACISP 2009, Lect.
Notes Comput. Sci., vol.5594, pp.90–107, Springer-Verlag, Berlin,
Heidelberg, New York, 2009.

[17] Y. Sasaki and L. Wang, “Meet-in-the-middle technique for integral
attacks against feistel ciphers,” L.R. Knudsen and H. Wu, ed., Se-
lected Areas in Cryptography SAC 2012, Lect. Notes Comput. Sci.,
vol.7707, pp.234–251, Springer-Verlag, Berlin, Heidelberg, New
York, 2012.

[18] T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi, “TWINE:
A lightweight block cipher for multiple platforms,” L.R. Knudsen
and H. Wu, ed., Selected Areas in Cryptography SAC 2012, Lect.
Notes Comput. Sci., vol.7707, pp.339–354, Springer-Verlag, Berlin,
Heidelberg, New York, 2012.

[19] L. Wen, M. Wang, A. Bogdanov, and H. Chen, “Multidimen-
sional zero-correlation attacks on lightweight block cipher HIGHT:
Improved cryptanalysis of an ISO standard,” Inf. Process. Lett.,
vol.114, no.6, pp.322–330, June 2014. Available online 21 Jan.
2014.

[20] W. Wu and L. Zhang, “LBlock: A lightweight block cipher,” J.
Lopez and G. Tsudik, ed., ACNS 2011, Lect. Notes Comput. Sci.,
vol.6715, pp.327–344, Springer-Verlag, Berlin, Heidelberg, New
York, 2011.

[21] M.R. Z’aba, H. Raddum, M. Henricksen, and E. Dawson, “Bit-
pattern based integral attack,” K. Nyberg, ed., FSE 2008, Lect. Notes
Comput. Sci., vol.5086, pp.363–381, Springer-Verlag, Berlin, Hei-
delberg, New York, 2008.

[22] P. Zhang, B. Sun, and C. Li, “Saturation attack on the block cipher
HIGHT,” J.A. Garay, A. Miyaji, and A. Otsuka, ed., CANS, Lect.
Notes Comput. Sci., vol.5888, pp.76–86, Springer-Verlag, Berlin,
Heidelberg, New York, 2009.

Yu Sasaki received the B.E., M.E.
and Ph.D. from The University of Electro-
Communications in 2005, 2007, and 2010.
Since 2007, he has been a researcher at NTT Se-
cure Platform Laboratories. His current research
interests are in cryptography. He was awarded a
paper prize from SCIS 2007 and IEICE Trans. in
2009. He also received a best paper award from
IWSEC 2009, SECRYPT 2012, and IWSEC
2012.

Lei Wang received the M.E. and Ph.D. from
The University of Electro-Communications in
2009, and 2011. His current research interests
are in cryptography. He was awarded a pa-
per prize from SCIS 2008 and IEICE Trans. in
2009. He also received a best paper award from
IWSEC 2009 and IWSEC 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

