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Discovery of Protein Complexes with Core-Attachment

Structures from Tandem Affinity Purification (TAP) Data

MIN WU,1 XIAO-LI LI,2 CHEE-KEONG KWOH,1 SEE-KIONG NG,2 and LIMSOON WONG3

ABSTRACT

Many cellular functions involve protein complexes that are formed by multiple interacting
proteins. Tandem Affinity Purification (TAP) is a popular experimental method for de-
tecting such multi-protein interactions. However, current computational methods that
predict protein complexes from TAP data require converting the co-complex relationships
in TAP data into binary interactions. The resulting pairwise protein-protein interaction
(PPI) network is then mined for densely connected regions that are identified as putative
protein complexes. Converting the TAP data into PPI data not only introduces errors but
also loses useful information about the underlying multi-protein relationships that can be
exploited to detect the internal organization (i.e., core-attachment structures) of protein
complexes. In this article, we propose a method called CACHET that detects protein
complexes with Core-AttaCHment structures directly from bipartitETAP data. CACHET
models the TAP data as a bipartite graph in which the two vertex sets are the baits and the
preys, respectively. The edges between the two vertex sets represent bait-prey relation-
ships. CACHET first focuses on detecting high-quality protein-complex cores from the
bipartite graph. To minimize the effects of false positive interactions, the bait-prey rela-
tionships are indexed with reliability scores. Only non-redundant, reliable bicliques
computed from the TAP bipartite graph are regarded as protein-complex cores. CACHET
constructs protein complexes by including attachment proteins into the cores. We applied
CACHET on large-scale TAP datasets and found that CACHET outperformed existing
methods in terms of prediction accuracy (i.e., F-measure and functional homogeneity of
predicted complexes). In addition, the protein complexes predicted by CACHET are
equipped with core-attachment structures that provide useful biological insights into the
inherent functional organization of protein complexes. Our supplementary material can be
found at http://www1.i2r.a-star.edu.sg/*xlli/CACHET/CACHET.htm; binary executables
can also be found there. Supplementary Material is also available at www.liebertonline
.com/cmb.
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1. INTRODUCTION

Protein complexes are molecular aggregations formed by simultaneous interactions among

multiple proteins. Many important biological functions—such as DNA transcription, mRNA translation,

signal transduction, and cell cycle—involve the formation of protein complexes. The RNA polymerase II

complex and the nuclear pore complex are two such examples: the RNA polymerase II complex is needed for

transcribing genetic information into messages for ribosomes to produce proteins (Cramer et al., 2000), while

the nuclear pore complex is responsible for the protected exchange of components between the nucleus and

cytoplasm, and for preventing the transport of material not destined to cross the nuclear membrane (Fah-

renkrog and Aebi, 2003).

However, experimentally determined protein complex data are still largely obtained through small-scale

experimental techniques, which are time-consuming and tedious. On the other hand, numerous high-

throughput methods (e.g., yeast-two-hybrid and protein chips) for detecting binary protein-protein inter-

actions (PPI) en masse have recently become available. By making use of the high-throughput PPI

detection methods, a graphical map of an entire organism’s interactome can be constructed from the PPI

data by considering the individual proteins as the nodes, and a physical interaction between a pair of

proteins as a link between the two corresponding nodes. It has been observed that protein complexes

generally correspond to dense subgraphs or cliques in the PPI networks (Spirin and Mirny, 2003; Tong

et al., 2002), as proteins in the same complex tend to be highly interactive with one another. This has given

rise to many computational methods to detect protein complexes from the pairwise PPI data—for example,

MCODE (Bader and Hogue, 2003), MCL (Pereira-Leal et al., 2004), DPCLus (Altaf-Ul-Amin et al., 2006),

DECAFF (Li et al., 2007b), COACH (Wu et al., 2009), and CMC (Liu et al., 2009), just to name a few. A

comprehensive survey of such methods can be found in Li et al. (2010).

As mentioned, protein complexes are formed by simultaneous interactions between multiple proteins.

The above methods are based on experimental data that describe pairwise interactions between two pro-

teins. For detecting multi-protein interactions, an increasingly popular experimental method is Tandem

Affinity Purification (TAP). TAP exploits immobilized ‘‘bait’’ protiens to capture ‘‘prey’’ proteins that that

interact with them, with the preys themselves in turn serving as baits for other preys, thereby capturing

multi-protein interactions. Recently, several computational methods have been developed to analyze TAP

data for protien complexes. However, they typically convert the co-complex relationships in TAP data into

binary interactions. The resulting pairwise PPI network is then mined for densely connected regions that are

identified as putative protein complexes. In coverting the TAP data into PPI data, the bait-prey relationships

and even the prey-prey relationships are regarded as candidate PPIs which can be scored by various

reliability measurements (Collins et al., 2007; Gavin et al., 2006; Zhang et al., 2008). The candidate

interactions with scores above a pre-determined threshold are the predicted as true PPIs.

Clearly, the value of this threshold directly impact the quality of the resulting PPI network. Most of the

proposed methods determine this threshold based on reference protein-complex data. For example, in

Zhang et al. (2008) and Pu et al. (2007), the reference protein-complex PPI map is constructed by treating

the connections between all proteins within the same complexes as known positive interactions and the

connections between proteins from different complexes as negative interactions.1 Obviously, it is not

reasonable to assume that all protein pairs within a complex are positive interactions. In a recent study,

Friedel et al. (2008) presented an unsupervised strategy for converting TAP data into PPI data. First,

preliminary PPI networks are constructed by sampling the original TAP data. Preliminary complexes are

then predicted from these preliminary networks using Markov clustering algorithm (Pereira-Leal et al.,

2004). The final PPI network, called the bootstrap network in the paper, is then constructed linking two

proteins to form a PPI if they occur together in at least one preliminary complex. Clearly, current methods

for converting the multi-protein TAP data into binary PPI data for protein complex detection are fairly

awkward. The additional step of converting the TAP data into PPI data not only introduces errors but also

loses useful information about the underlying multi-protein co-complex relationships (Puig et al., 2001)

that can be useful for protein complex identification (Geva and Sharan, 2011; Scholtens et al., 2005). Direct

detection of protein complexes from the TAP data is therefore much desired.

1An additional restriction—cellular localization—was used for defining negative interactions in Pu et al. (2007).
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Furthermore, protein complexes have been found to contain core-attachment structures in which the

cores are the functional ‘‘hearts’’ of the protein complexes, and the attachment proteins assist the core

proteins to perform subordinate functions (Dezso et al., 2003; Gavin et al., 2006). While there are also

several recent studies detecting core-attachment structures from PPI networks (Leung et al., 2009; Srihari

et al., 2010; Wu et al., 2009), we believe that the co-complex information in the TAP data could be

exploited to better detect the core-attachment structures in the protein complexes.

In this article, we introduce a novel method called CACHET to detect protein complexes with Core-

AttaCHment structures directly from bipartitE TAP data. Instead of transforming the TAP data into a

pairwise PPI network, we model the TAP data as a bipartite graph. The two vertex sets of the bipartite

graph consist of the bait and prey proteins respectively, and the edges represent the bait-prey interactions.

To detect the core-attachment structures in the protein complexes, our proposed method will focus first on

the detection of high quality protein complex cores and then predicting the protein complexes by as-

sembling attachments into the complex cores. To ensure the quality of the protein complex cores extracted

from the TAP data, we compute the complete set of maximal bicliques from the bipartite graph and then

extract those non-redundant reliable bicliques.

We performed extensive evaluation experiments on large-scale TAP data (Gavin et al., 2006; Krogan

et al., 2006) and found that CACHET outperformed current methods in detecting protein complexes from

these TAP data. In addition, we also evaluated the identified protein complexes and protein-complex cores

using Gene Ontology (GO) functional information. The higher functional similarity found in the predicted

complex cores is indicative of the biological significance of the protein complexes’ structures detected by

CACHET.

A newly proposed method called CODEC (Geva and Sharan, 2011) also detects protein complexes

directly from TAP data as bipartite graphs. Our CACHET method works differently from CODEC in the

following aspects. Firstly, CODEC detects dense bipartite subgraphs as protein complexes by iteratively

adding proteins into seed subgraphs. Our CACHET selects protein-complex cores from bicliques and

then simultaneously assembles all the attachments into cores to form the complexes. If we regard our

cores as seed graphs, our approach for adding proteins into seed graphs to form protein complex is much

more efficient than CODEC in terms of computation. Secondly, CACHET and CODEC address the issue

of false positives in TAP data differently. CODEC approximates the reliability of bait-prey links mainly

by the degree of the vertices. In contrast, CACHET exploits three state-of-the-art reliability measure-

ments, such as Socio-Affinity (SA) (Gavin et al., 2006), Purification Enrichment (PE) (Collins et al.,

2007), and Dice Coefficient (DC) (Zhang et al., 2008), which are demonstrated to assess the reliability of

bait-prey relationships more accurately. As a result, our CACHET can detect protein complexes more

efficiently, as well as with more biological significance (i.e., higher accuracy and homogeneity), than

CODEC.

2. PRELIMINARIES

As mentioned earlier, we represent TAP data as a bipartite graph G¼ (U, V, E), where U is the set of

vertices for the baits, V the set of vertices for the preys captured by the baits in U, and E the bait-prey

relationships. In addition, every edge (u, v) 2 E is associated with a reliability score that estimates the

likelihood of the bait u 2 U interacting with the prey v 2 V .

Next, let us introduce some relevant concepts for a bipartite graph G. From G¼ (U, V, E), a biclique

G0 ¼ (U0, V0, E0) is a bipartite graph such that for any two vertices u 2 U0 and v 2 V 0, there is an edge

(u, v) 2 E0, where U0, V0, and E0 are subsets of U, V, and E respectively. A biclique G1¼ (U1, V1, E1) is a

maximal biclique if there is no other biclique G2¼ (U2, V2, E2) such that U1�U2, V 1�V2 and E1�E2.

We define the reliability of a bipartite graph G¼ (U, V, E), R(G), as the average reliability scores of all

the edges in E,

R(G)¼
P

u 6¼v, (u, v)2E w(u, v)P
(u, v)2E d(u, v)

, (1)

where w(u, v) is the edge weight (reliability score) of the edge (u, v), and d(u, v) is 0 if the vertices u and v

are identical and 1 otherwise. The latter is because a bait together with a specific antibody tends to tag the
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bait itself as a prey in pull-down experiments; we do not want to consider edges in the form of (v, v) for

calculating the reliability score in Equation (1) (Geva and Sharan, 2011).

Similarly, we can also define a reliability score for each vertex l in G called ratioG(l) as follows:

ratioG(l)¼
P

u 6¼l, (u, l)2E w(u, l)P
(u, l)2E d(u, l)

: (2)

We only use l’s direct neighbors to compute its ratio score in Equation (2).

The Neighborhood affinity score (Bader and Hogue, 2003) is adopted to measure the similarity between

two vertex sets. Given two bipartite graphs—G1¼ (U1, V1, E1) and G2¼ (U2, V2, E2)—we define their

neighborhood affinity score, NA(G1, G2) as follows:

NA(G1, G2)¼ j(U1 [ V1) \ (U2 [ V2)j2

jU1 [ V1j · jU2 [ V2j
: (3)

Figure 1 provides an example TAP bipartite graph. The baits v1 and v2 together with the preys v1, v4, and v5

form a biclique G0, with the reliability score R(G0)¼ 0:7þ 0:6þ 0:65þ 0:9
4

¼ 0:71. The protein v1 as a bait has a

ratio(v1)¼ 0:6þ 0:65
2
¼ 0:625, while it as a prey has a reliability score of 0.7. The reliability of this sample

bipartite graph is 0.6 according to the Equation (1).

3. METHODS

Let us introduce our proposed algorithm CACHET to detect protein complexes and their core-attachment

structures from TAP data. The key of our method is the detection of high-quality protein-complex cores.

First, we compute the maximal bicliques in the TAP bipartite graph, since proteins within protein-complex

cores are known to be highly interactive (Gavin et al., 2006). Next, we detect reliable protein-complex

cores from the computed bicliques. Given the presence of false positive bait-prey interactions, we perform a

filtering process to extract reliable bicliques (see Section 3.1). Since these reliable bicliques may have big

overlaps with each other (i.e., they share many common proteins), we eliminate redundancy among these

potential cores by computing a maximal independent set of them (see Section 3.2). The reliable and

independent/non-redundant bicliques are predicted as the protein-complex cores. Finally, attachment

proteins are included into the cores to form protein complexes with core-attachment substructures.

3.1. Mining reliable bicliques

We apply the FP-MBC algorithm (Li et al., 2007a) to compute the complete set of maximal bicliques

from the bipartite TAP graph. We require that a detected maximal biclique should have at least Min_Bait

baits and Min_Prey preys. In this study, both Min_Bait and Min_Prey are set as 2. We consider a biclique

G0 to be reliable if its reliability score is greater than or equal to a threshold r, that is, R(G0)� r. Reliable

bicliques are likely to be protein-complex cores since most of their bait-prey interactions can be regarded to

be true with respect to an appropriate threshold r.

Algorithm 1 shows the detailed steps for extracting reliable bicliques from the bipartite TAP graph

GTAP¼ (UT, VT, ET). First, we compute the reliability scores for all the bait-prey edges in GTAP. We exploit

multiple state-of-the-art reliability measurements such as Socio-Affinity (SA) (Gavin et al., 2006), Pur-

ification Enrichment (PE) (Collins et al., 2007), and Dice Coefficient (DC)(Zhang et al., 2008) for accurate

edge-weighting. We preserve a biclique if it is already reliable (Lines 3–4). If a biclique is of low

FIG. 1. An example of a TAP

bipartite graph.
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reliability, we iteratively delete a vertex with the minimum ratio score (Lines 7–8) to increase its reliability

and obtain a reliable bilcique if possible (Lines 10–11). The vertex removal process is guaranteed to

increase or at least maintain the overall reliability of the biclique in each iteration (for a theoretical proof,

see the appendix in our supplementary material at http://www1.i2r.a¼ star.edu.sg/*xlli/CACHET/

CACHET.htm; the binary executables can also be found there). Supplementary Material is also available at

www.liebertonline.com/cmb. During this process, we also require that the vertices to be removed are

selected from an available node set to guarantee that all the detected reliable bicliques satisfy the

size constraint (i.e., they should have at least Min_Bait baits and Min_Prey preys). For example, if a

biclique G0 ¼ (U0, V0, E0) has a bait set with the minimum size (i.e., jU0j ¼Min_Bait) and the prey set is still

large enough (i.e., jV0j>Min_Prey), we should select a vertex from the prey set and then remove it. The

available node set in G0, denoted as A(G0), is defined in Equation (4):

A(G0)¼
U0 [ V 0, ifjU0j4Min Bait, jV 0j4Min Prey;
V 0, ifjU0j ¼Min Bait, jV 0j4Min Prey;
U0, ifjU0j4Min Bait, jV 0j ¼Min Prey;
/, Otherwise:

8><
>: (4)

Note that our iterative removal process (Lines 6–9) will stop with the biclique in question being either

preserved or discarded. If a biclique is reliable after the removal of some vertices, it will be preserved in

Line 11 and the iteration stops. Otherwise, it will be discarded if it has reached the minimum size (i.e.,

A(G0)¼f), and yet it is still not reliable.

Algorithm 1 Mining reliable bicliques

Input: The set of bicliques from the FP-MBC algorithm,

r is the threshold for reliability score for reliable bicliques.

Output: The set of reliable bicliques, S.

1: Collect the reliability scores for all the bait-prey edges in GTAP

2: for each biclique G0 ¼ (U0, V0, E0) do
3: if R(G0)� r

4: insert G0 into S

5: else

6: while R(G0)< r and A(G0)=f do

7: v¼ arg min
w2A(G0)

ratioG0(w)

8: G0 ¼G0 � {v} //update G0 by deleting v and its corresponding edges

9: end while
10: if R(G0)� r

11: insert G0 into S

12: end for

3.2. Mining maximal independent bicliques

The detected reliable bicliques may overlap with each other. As such, we need to select a maximal subset

of independent/non-redundant bicliques as our protein-complex cores. To do so, we construct a redundancy

graph, denoted as RG¼ (VRG, ERG, W), where the super vertex set VRG¼fGijGi 2 Sg consists of the

reliable bicliques in S generated by Algorithm 1. While the bicliques are graphs themselves, we regard

them as super vertices in our redundancy graph. The super edge set ERG¼f(Gi, Gj)kGi, Gj 2
VRG, NA(Gi, Gj) � 0:2g links two super vertices if these two reliable bicliques are deemed to be similar or

redundant. In this work, two reliable bicliques are considered to be similar when their NA score (see

Equation (3)) is at least 0.2, a value that was also used in many previous studies (Altaf-Ul-Amin et al.,

2006; Bader and Hogue, 2003; Li et al., 2007b; Wu et al., 2009) to evaluate whether a predicted complex

matches a benchmark complex.

The vertex weighting function W computes the significance of reliable bicliques as follows. First,

we count the frequency of each vertex/protein in all the reliable bicliques to indicate their respective
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importance, given that proteins that appear in multiple modules are likely to be more biologically important

(Navlakha and Kingsford, 2010) than those that do not. Equation (5) below computes w(u) as the im-

portance score of the vertex/protein u, where the frequency of u, freq(u), is the number of reliable bicliques

involving u:

w(u)¼ freq(u)

max
v

freq(v)
(5)

We refine the reliability score for bicliques in Equation (1) by considering the importance of vertices to

evaluate the significance of reliable bicliques:

W(G0)¼
P

u2U0 , v2V 0 , u6¼v w(u, v) · (w(u)þw(v))

2 ·
P

u2U0, v2V 0 d(u, v)
, (6)

where G0 ¼ (U0, V0, E0) is a reliable biclique, the edge weight w(u, v) is the edge reliability (Collins et al.,

2007; Gavin et al., 2006; Zhang et al., 2008), and the vertex weight w(u) is the vertex u’s importance as

computed in Equation (5).

Given a redundancy graph RG¼ (VRG, ERG, W), our aim is to mine for an independent set (IS) in RG in

which no two reliable bicliques are similar. This is a maximum independent set (MIS) problem. To

conserve the more significant bicliques, we maximize the weight sum of the super vertices in the resulting

independent set. Our MIS problem can thus be modeled as a maximum weighted independent set (MWIS)

problem, as defined in Equation (7):

SC¼ arg max
IS

X
Gi2IS

W(Gi), 8Gj, Gk 2 IS, (Gj, Gk) 62 ERG: (7)

Here, IS is an independent set of RG and the resulting set SC—the maximum weighted independent set—

contains reliable and independent bicliques which form the set of our predicted protein-complex cores.

Given a super vertex v2VRG, NRG(v) is the set of v’s neighbors in RG and its degree in RG, denoted as

dRG(v), is the cardinality of NRG(v), i.e., jNRG(v)j. The weighted degree of v is defined as

wdRG(v)¼
P

u2NRG(v) W(u). As we know, maximum independent set (MIS) and maximum weighted inde-

pendent set (MWIS) are well-known NP-Complete problems (Garey and Johnson, 1979). Nonetheless,

many approximation algorithms have been proposed for efficiently computing them. We introduce three

heuristics in Algorithm 2 for mining the MWIS.

Algorithm 2 Maximum weighted independent set

Input: A weighted graph RG¼ (VRG, ERG, W).

Output: SC, a maximum weighted independent set in RG.

1: SC¼f, i¼ 0, Ti¼RG

2: while V (Ti)=f do

3: select a vertex vi based on one of the following criteria

4: H1: vi¼ arg max
u2V(Ti)

W(u)

dTi
(u)þ 1

5: H2: vi¼ arg max
u2V(Ti)

W(u)

wdTi
(u)

6: H3: vi¼ arg max
u2V(Ti)

W(u)

7: SC¼ SC [ fvig, Tiþ 1¼ Ti� (NTi
(vi) [ fvig), i¼ iþ 1

//remove vi, its neighbors and the corresponding edges from Ti.

8: end while

The first heuristic (H1 in Line 4) (Sakai et al., 2003) greedily selects the super vertex with the maximum
W(u)

dTi
(u)þ 1

value in the evolving graph Ti. The selected vertex generally has a relatively large weight and a low

degree. In other words, it keeps those significant and less-connected bicliques. The second heuristic (H2 in

Line 5) (Kako et al., 2005) does the same thing except that it uses the weighted degree in the denominator.
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The third heuristic (H3 in Line 6) selects the super vertex with the maximum significance score. The

performance (e.g., approximation ratio) of H1 and H2 have been well studied. For example, in a redundancy

graph RG¼ (VRG, ERG, W), H1 has been shown to output an independent set with weight sum of at leastP
v2VRG

W(v)=(dRG(v)þ 1) (Sakai et al., 2003). In terms of computation, H3 is clearly the most efficient to

compute since H1 and H2 need to update the degree and weighted degree for super vertices in each iteration,

while there is no need for H3 to do so.

3.3. Detecting protein-complex attachments

Given that we have detected independent reliable bicliques as protein-complex cores, let us now identify

the attachment proteins. For a protein-complex core Gc¼ (Uc, Vc, Ec) detected from the bipartite TAP

graph GTAP¼ (UT, VT, ET), we detect its bait-attachments and prey-attachments as follows. Given a prey

protein p 62 Vc (the prey set), we construct a temporary graph TG¼ (Uc, {p}, Etg), where

Etg¼f(u, p)ju 2 Uc, (u, p) 2 ETg. The prey p is then a bait-attachment of Gc if it satisfies the following two

constraints. First, it should interact with more than half of proteins in Uc (i.e., jEtgj> 0.5 * jUcj). As we

know, Gc is a biclique and every prey in Vc interacts with all the baits in Uc. We relax the connectivity

constraint for selecting bait-attachments here because the attachments are generally less interactive than the

proteins in the cores (Gavin et al., 2006). Second, the edges between p and p’s neighbors in Uc should have

an average reliability score larger than the threshold r (i.e., the reliability of TG, R(TG)� r). The prey-

attachments are detected in the same way.

The resulting protein complexes are then formed by combining the protein-complex cores and their bait-

attachments and prey-attachments (Supplementary Material Figure 1 depicts how our CACHET works on

an example TAP graph).

4. EXPERIMENTAL RESULTS

Before we present our experimental results, let us introduce the evaluation metrics and the datasets used

in our experiments.

4.1. Evaluation metrics and experimental data

Given a predicted complex p¼ (Vp, Ep) (Vp comprises the proteins in the core and attachments of p) and

a real complex b¼ (Vb, Eb), we use their neighborhood affinity score, NA( p, b), to determine how well they

match with each other. We consider them to be matching, if NA( p, b)�o. While o has been typically set

as 0.2 in numerous previous studies (Altaf-Ul-Amin et al., 2006; Bader and Hogue, 2003; Li et al., 2007b;

Wu et al., 2009), some may feel that the value of 0.2 is too low and liberal. Therefore, we also tried

different values of o from 0.2 to 0.5 for a more comprehensive evaluation. Please note that 0.5 is quite a

high and stringent value. For example, given two complexes both with six proteins, they are only con-

sidered to be matched with each other if they share at least five common proteins.

For overall comparison of the methods, we use Precision, Recall, and F-measure to evaluate the per-

formance of various methods (Chua et al., 2008; Wu et al., 2009). Let P and B denote the sets of complexes

predicted by a computational method and those in the benchmark complex set, respectively. Let Ncp be the

number of predicted complexes in P that match at least one benchmark complex, and Ncb be the number of

benchmark complexes in B that match at least one predicted complex. Equations (8) and (9) give the

definitions of Precision, Recall, and F-measure:

Precision¼ Ncp

jPj and Recall¼ Ncb

jBj , ð8Þ

F�measure¼ 2 · Precision · Recall

PrecisionþRecall
: ð9Þ

Note that the matching pairs of complexes may have different NA scores that indicate different degrees of

matching. This issue is not taken into consideration in the above definitions. As such, we have also

conducted a protein-level evaluation (Liu et al., 2009) for the various methods (for details, see Table 3 in

Supplementary Material).
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We also use GO to evaluate the functional homogeneity of predicted protein complexes based on p-

values (Li et al., 2010). The p-value of a predicted complex C with respect to a functional group F is

defined in equation (10):

p� value¼ 1�
Xk� 1

i¼ 0

jFj
i

� �
jVj � jFj
jCj � i

� �

jV j
jCj

� � , (10)

where C contains k proteins in F, and jVj is the total number of proteins in the TAP data. The p-value of a

predicted complex is the smallest p-value over all the possible functional groups. As such, a predicted

complex with a low p-value indicates that it is enriched by proteins from the same function group and it is

thus likely to be a true protein complex. In our experiments, the p-values (with Bonferroni correction) of

identified complexes are calculated using SGD’s GO::TermFinder (Boyle et al., 2004).

We applied CACHET on two public large-scale TAP data, namely, the data of Gavin et al. (2006) and

the data of Krogan et al. (2006). Let us denote Gavin et al.’s data and Krogan et al.’s data as Ggavin¼ (Ug,

Vg, Eg) and Gkrogan¼ (Uk, Vk , Ek), respectively. Ggavin contains 1993 baits, 2670 preys, and 19277 bait-prey

links, whereas Gkrogan contains 1999 baits, 5202 preys, and 47204 bait-prey links. We also generated a

dataset by combining Gavin et al.’s data with Krogan et al.’s data, denoted as Gcombined¼ (Uc, Vc , Ec),

where Uc¼Ug[Uk, Vc¼Vg[Vk and Ec¼Eg[Ek. The combined dataset contains 2850 baits, 5337 preys,

and 63631 bait-prey links. Table 1 shows the relevant statistics about these three datasets. The benchmark

protein complexes were downloaded from Wodaklab (Pu et al., 2009). The catalogue is called CYC2008,

and it contains 408 manually curated protein complexes. (GO was downloaded from http://geneontology

.org.)

4.2. Evaluation of predicted protein complexes

We focus on presenting our results on Gavin et al.’s data in this subsection. Similar results were obtained

on Krogan et al.’s data, and they can be found in Section 3 in Supplementary Material. We will show the

results of CACHET on the combined data in Section 4.6.

First, we computed the results using the three different MWIS heuristics with the parameter r set as 0.7

(see Algorithm 1 for r; we have also performed the sensitivity study of r in Section 4.4). The second column

of Table 2 shows the number of protein complexes predicted by different MWIS heuristics. H1 and H2

predicted nearly the same number of protein complexes and achieved similar Precision. Compared with H1

and H2, H3 obtained fewer protein complexes, but achieved a higher Precision with similar Recall and

higher F-measure. Given that time complexity is a practical constraint that we have considered, we only

report the results using H3 in our CACHET hereafter, as CACHET with H3 detects protein complexes most

efficiently.

We compared our CACHET with the existing state-of-the-art methods, namely, MCODE (Bader and

Hogue, 2003), MCL (Friedel et al., 2008; Krogan et al., 2006; Pereira-Leal et al., 2004), DC-CM (Zhang

et al., 2008), COACH (Wu et al., 2009), and CODEC (Geva and Sharan, 2011) (CODEC has two different

weighting schemes, denoted as CODECw0 and CODECw1. For details, in terms of F-measure and p-values,

see Geva and Sharan (2011).

As we need to transform the TAP data to PPI networks to run the traditional algorithms (MCODE, MCL,

and COACH) in these networks, the method that we have used to convert TAP data to PPI networks (Zhang

et al., 2008) can be found in Section 2 of Supplementary Material. Note that applying different reliability

schemes will result in different PPI networks during the conversion process. That is, these three methods

Table 1. Details of TAP Datasets

Details Gavin et al.’s data Krogan et al.’s data Combined data

No. of baits 1993 1999 2850

No. of preys 2670 5202 5337

No. of links 19277 47204 63631
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(MCODE, MCL, and COACH) may obtain different results using different reliability schemes (see Table 2

in Supplementary Material, which shows the PPI networks converted from TAP data and indicates that

applying different reliability schemes on the same data will result in different PPI networks).

Figure 2 shows the F-measure of various methods using three different reliability schemes on the data of

Gavin et al. Our CACHET with SA scores achieved the highest overall F-measure. CACHET also achieved

the highest F-measure when using SA and DC scores when compared to the other methods using the same

scoring schemes. When using PE scores, CACHET did not perform as well as MCL, which has a F-measure

of 48.6% and is the best performer of existing methods over all scoring schemes. Our CACHET with SA

scores is still 4.8% higher than MCL with PE scores.

As SA scores are most widely used, Table 3 shows the details of the comparison among various methods

using SA scores (some methods are independent of reliability measurements, such as DC-CM, CODEC,

and the original results ‘‘Gavin’’ and ‘‘Gavin-Core’’ from Gavin et al. [2006]). The F-measure of our

CACHET is 53.4%, which is 7.9%, 8.3%, and 11.4% higher than that of MCL, COACH, and CODEC w1,

respectively, the top three performers of the existing methods. Furthermore, CACHET is shown to perform

better than CODEC in terms of all three measures, although CODEC also models TAP data as a bipartite

graph as we do. In addition, we also show the running time of our CACHET on Gavin et al.’s data in Section

6 of Supplementary Material, which indicates that CACHET is computationally more efficient than CODEC.

Finally, Figure 3 shows the F-measures of various methods when o is varied from 0.2 to 0.5. CACHET

consistently outperformed existing methods. This implies that the superiority of our CACHET is inde-

pendent of the values of o.

We also investigate the proportion of protein complexes detected by the various methods that have

statistically significant functional homogeneity. A protein complex has statistically significant functional

homogeneity if its p-value is less than 10�a the larger the a, the more likely that the complexes are genuine.

Figure 4 shows the proportion of significant complexes under different values of a; In this figure,2 CA-

CHET and CODEC (with both weighting schemes) are shown to achieve the highest proportion of sig-

nificant complexes when a¼ 2. As the value of a increases, the superiority of our CACHET becomes

obvious. For example, CACHET has 77.0% significant complexes, 10.7% higher than the second best (i.e.,

CODECw1 with 66.3%) when a was set as 4. Furthermore, CACHET has 46.8% significant complexes,

13.0% higher than the second best (i.e., COACH with 33.8%) when a was set as 10. This shows that

complexes predicted by CACHET are enriched by proteins with the same functions and are thus more

likely to be true complexes.

4.3. Evaluation of predicted protein-complex cores

Proteins within the complex cores have been found to have higher functional similarities and are more

co-localized than the attachment proteins (Dezso et al., 2003; Gavin et al., 2006). For evaluation, we can

calculate a functional similarity score for a core (or a protein complex) by averaging the semantic simi-

larities among all bait-prey pairs (Wang et al., 2007). Table 4 shows the average functional similarity for all

cores and protein complexes.

The functional similarities in Table 4 were calculated using two subontologies of GO (biological process

and cellular component). The protein-complex cores generated by all three MWIS heuristics were found to

have higher average functional similarities than the corresponding protein complexes. This demonstrates

that our detected cores are more functionally consistent and likely to be more biologically significant.

Table 2. Performance for Various MWIS Heuristics Using

SA Scores on Gavin et al.’s Data (o¼ 0.2)

Methods No. of complexes Precision Recall F-measure

H1 437 0.643 0.439 0.521

H2 438 0.651 0.446 0.529

H3 369 0.678 0.441 0.534

2Please note that the singleton complexes (those with only one protein) are not considered for p-value calculation
(Wu et al., 2009).
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Figure 5 shows two examples to illustrate the organization of our predicted complexes. In Figure 5A, our

identified core was reported in Gavin et al. (2006), and the predicted complex also matched well with the

histone deacetylase complex (all eight proteins in our identified complexes are involved in the benchmark

histone deacetylase complex). The protein YPL139C was identified as both bait-attachment and prey-

attachment, and it is required to bind the protein YNL330C in the core for its activity. The protein

YNL097C, which is predicted as another bait-attachment, has also been shown to be a possible component

of the histone deacetylase complex (Gavin et al., 2006, 2002). In Figure 5B, the identified complex

contained 14 proteins, which covered 10 of the 12 proteins in the benchmark DNA-directed RNA poly-

merase II complex (Cramer et al., 2000). The other four proteins in gray (YDL115C, YGR005C,

YGR186C, and YML010W) are novel to our benchmark complex. However, YDL115C has already been

demonstrated to belong to the DNA-directed RNA polymerase II complex (Krogan et al., 2006). The other

three proteins identified as attachments were all annotated with the term GO:0006366 (transcription from

RNA polymerase II promoter), which is also closely related to the function of this complex. This example

indicates that our CACHET may be used to detect the potential knowledge absent in current reference data.

Our identified core with the seven proteins was also validated in Gavin et al. (2006).

4.4. Effect of the parameter r

The reliability parameter r in Algorithm 1 determines the number and quality of the protein-complex

cores detected by our CACHET. We investigate how the variation of r affects the performance of our

CACHET. Figure 6 shows the Precision, Recall, and F-measure of CACHET on Gavin et al.’s data under

different values of r.

FIG. 2. Comparison among vari-

ous methods employed on Gavin

et al.’s data using different reliability

schemes.
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Table 3. Performance for Various Methods on Gavin et al.’s Data (o¼ 0.2)

Methods No. of complexes Precision Recall F-measure

MCODE 136 0.632 0.257 0.366

MCL 302 0.483 0.429 0.455

DC-CM 851 0.249 0.424 0.314

CODEC w0 1082 0.276 0.343 0.306

CODEC w1 1005 0.417 0.424 0.420

COACH 346 0.540 0.387 0.451

Gavin 491 0.267 0.309 0.287

Gavin-Core 478 0.329 0.414 0.367

CACHET 369 0.678 0.441 0.534
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Fewer false positive bait-prey links are involved in our identified complexes as we increase the reliability

value of r, as expected. The predicted complexes are thus more likely to be true complexes, as reflected by the

ascending trend of the precision of CACHET when r becomes larger, as shown in Figure 6. On the other

hand, when r becomes too large, CACHET may filter away some true positive bait-prey interactions. As such,

it will predict a small number of complexes with a low recall but achieving a very high precision. Overall, the

resulting curve for the F-measure in Figure 6 has three distinct ranges. It increases significantly in the first

range (r 2 [0:55, 0:65]), remains stable in the second range (r 2 [0:65, 0:8]), and decreases drastically in the

last range. As such, in our experiments, we set r¼ 0.7 on Gavin et al.’s data to filter false positive interactions

effectively while retaining most of true bait-prey relationships. For the other datasets and reliability mea-

surements and to see how we select the value of r, see Section 5 in Supplementary Material.

4.5. Impact of reliability indexing and redundancy filtering

Recall that indexing the reliability of bait-prey links to identify reliable bicliques (denoted as Step I; see

Section 3.1) and filtering redundancy amongst the detected reliable bicliques (denoted as Step II; see

Section 3.2) are two key steps in CACHET. To see the impact of reliability indexing and redundancy
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FIG. 3. The proportion of signif-

icant complexes predicted by vari-

ous methods.
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filtering, we performed experiments to run CACHET without each step, respectively. In Table 5, CA-

CHETwoI and CACHETwoII denote CACHET without Step I and Step II, respectively. CACHETwoI was

observed to achieve a much lower precision than CACHET and CACHETwoII, indicating that detecting

reliable bicliques does filter false positives effectively and increase the reliability of resulting protein

complexes. Although CACHETwoII has the highest recall, it predicts protein complexes with huge re-

dundancy (e.g., 4576/188¼ 24.3 predicted complexes match a real one on average). The results showed

that these two steps in CACHET are indeed essential to filter potential false positive interactions and reduce

redundancy among protein-complexes.

4.6. Running CACHET on the combined data

Currently, Gavin et al. (2006) and Krogan et al. (2006) have already provided comprehensive TAP data.

However, they just produced quite different descriptions of the yeast interactome due to the fact that they

exploited different purification techniques and utilized a different number of baits in their purifications.

Therefore, combining these two data sources will definitely improve the coverage of the data for better

identifying protein complexes (Friedel et al., 2008; Hart et al., 2007; Pu et al., 2007).

Assuming that Ggavin¼ (Ug, Vg, Eg) and Gkrogan¼ (Uk, Vk , Ek) denote Gavin et al.’s and Krogan et al.’s

data, respectively, Gcombined¼ (Uc, Vc , Ec) is the resulting combined data, where Uc¼Ug[Uk,

Vc¼Vg[Vk, and Ec¼Eg[Ek. To index the reliability scores of edges in Ec, it is a possible solution to re-

compute these scores based on the purification records in the combined data. Here, we adopt the strategy

used in Collins et al. (2007) to assign reliability scores for bait-prey links in the combined data based on

their original scores in individual datasets. For an edge e2Ec, wk(e) and wg(e) are its scores in Krogan

et al.’s data, and Gavin et al.’s data respectively. wc(e), its score in the combined data, is calculated the

same as PE scores by a weighted sum of wk(e) and wg(e) in Equation (11) instead of a straight sum, as

suggested by Collins et al. (2007):

wc(e)¼ 0:5 · wk(e)þwg(e): (11)

We compared our CACHET with existing methods: MCODE, MCL, COACH, the bootstrapping method

(BT) (Friedel et al., 2008), Pu et al.’s method (Pu et al., 2007), and Hart et al.’s method (Hart et al., 2007).

Since the last three methods are independent of scoring schemes, we first show the F-measure of CACHET,

YDL076C YMR263W YNL330C YOL004W YPL181W

YIL084C YOL004W YPL181W

YPL139C

YPL139CYNL097C

YDR404C YGL070C YIL021W YOR151C

YBR154C YDR404C YIL021W YJL140W YOR151C

YDL140C YGR005C YGR186W YOL005C YOR224C

YGR005C YML010W YPR187W

YIL084C

A B

YDL115C

FIG. 5. The organization of our identified protein complexes. The predicted complexes are histone deacetylase

complex in (A) and DNA-directed RNA polymerase II complex in (B).

Table 4. Average Functional Similarity Within Protein-Complex Cores and Protein Complexes

Biological process (BP) Cellular component (CC)

in cores In complexes In cores In complexes

H1 0.656 – 0.008 0.601 – 0.018 0.779 – 0.006 0.762 – 0.012

H2 0.675 – 0.005 0.639 – 0.016 0.796 – 0.006 0.772 – 0.008

H3 0.645 – 0.010 0.582 – 0.016 0.756 – 0.007 0.724 – 0.008
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MCODE, MCL, and COACH using various scoring schemes in Figure 7. The result is very similar to that of

Gavin et al.’s data (Fig. 2). In terms of using individual scoring schemes, CACHET achieved the highest F-

measure when using SA and DC scores, and performed equally well as MCL when using PE scores. In

particular, CACHET with SA scores achieved the highest F-measure as compared to other methods with any

scoring schemes. For example, CACHET with SA scores has an F-measure of 61.5%, (5.5% higher than

MCL with PE scores), which is the best performer by combining existing methods and scoring schemes.

CACHET with SA scores predicted 449 protein complexes from the combined data (the reliability

threshold is set as 0.7, which is the same as on the Gavin et al.’s data). Compared with the results from

individual data, CACHET achieved higher Precision, Recall, and F-measure on the combined data as

shown in Table 6, indicating that CACHET can effectively exploit the biological knowledge from multiple

data. Table 7 shows the comparison details between our CACHET using SA scores and other methods on

the combined data. While MCL, BT, Pu, and Hart were shown to obtain relatively high recall, our

CACHET gained much higher Precision, and thus obtained the highest overall F-measure. Our higher

Precision indicates that the complexes predicted by CACHET are more accurate, implying that our un-

matched complexes are more likely to be novel true complexes. We also show the F-measure of the above

methods with different values of o in Figure 8 and observe that our CACHET consistently achieved the

best overall performance even with more stringent matching criteria.

Finally, for functional homogeneity, Figure 9 shows the proportion of statistically significant complexes

from the combined data under different values of a. Our CACHET is again observed to consistently achieve

the highest proportion of statistically significant complexes. For example, when a was set as 2, CACHET

produced 89.8% significant complexes, which is 6.4%, 18%, and 23.3% higher than COACH, Hart, and Pu

(the top three performers), respectively.

5. CONCLUSION

In this article, we have proposed a novel algorithm CACHET to detect protein complexes as well as their

core-attachment structures from TAP data. CACHET first computes all the maximal bicliques from the
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FIG. 6. Performance of our CA-

CHET method used on Gavin

et al.’s data under different values

of r.

Table 5. Performance for CACHET on Gavin et al.’s Data (o¼ 0.2)

Methods No. of complexes Ncp Ncb Precision Recall F-measure

CACHETwoI 3126 163 174 0.052 0.427 0.093

CACHETwoII 9862 4576 188 0.464 0.461 0.462

CACHET 369 250 180 0.678 0.441 0.534
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Table 6. Performance of Various Methods Using SA Scores on Combined Data (o¼ 0.2)

Data No. of complexes Ncp Ncb Precision Recall F-measure

Gavin 369 250 180 0.678 0.441 0.534

Krogan 404 254 172 0.629 0.422 0.506

Combined 449 343 210 0.764 0.515 0.615

Table 7. CACHET on Combined Data Using SA Scores (o¼ 0.2)

Method No. of complexes Ncp Ncb Precision Recall F-measure

CACHET 449 343 210 0.764 0.515 0.615

BT 409 204 244 0.499 0.598 0.544

Pu 400 201 241 0.503 0.591 0.543

Hart 390 203 242 0.521 0.593 0.554

MCODE 265 123 149 0.462 0.365 0.408

MCL 1076 236 270 0.219 0.662 0.329

COACH 439 221 174 0.502 0.426 0.462

FIG. 7. Comparison among vari-

ous methods employed on the

combined data using different reli-

ability schemes.
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TAP bipartite graph. It detects high-quality protein-complex cores from the computed maximal bicliques

by extracting reliable bicliques and removing redundancy among them. Then, CACHET forms protein

complexes by incorporating attachments into cores.

CACHET significantly outperformed existing methods in terms of the F-measure and functional ho-

mogeneity of predicted complexes. Experimental evaluation on our identified protein complexes and cores

also demonstrated the following advantages of our CACHET. First, as CACHET detects protein complexes

directly from TAP data, it is able to exploit the co-complex information in the TAP data and avoid the step

of converting the TAP data into a binary PPI network. Second, the protein complexes predicted by

CACHET are with core-attachment structures, which provide useful information for revealing the inherent

organization of the detected protein complexes.
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