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This paper investigates the electrohydrodynamical instability of two miscible �ows
in a micro-pipe subject to an axial electric �eld. There is an electrical conductivity
strati�cation between the two layers. A weak shear �ow arises from a constant axial
pressure gradient. The three-dimensional linear stability analysis is studied under
the assumption of a quasi-steady state. The in�uences of the conductivity ratio �,
the interface location a, the interface thickness �, the Reynolds number Re and the
Schmidt number Sc on the linear stability of the �ows are investigated. The �ow
becomes more unstable for a larger conductivity contrast. When the conductivity in
the inner layer is larger, the critical unstable mode can be dominated by either the
corkscrew mode (the azimuthal wavenumber mD1) or the axisymmetric mode (mD0),
which is dependent on the interface location a. It is observed that, when the interface
is proximal to pipe’s wall, the critical unstable mode shifts from the corkscrew mode
to the axisymmetric mode. When the conductivity is larger in the outer layer, the
instability is dominated by the axisymmetric mode. A detailed parametric study shows
that the �ow is least stable when the interface between the two liquids is located
at approximately a D 0:3 and a D 0:2 for conductivity ratios of � D 0:5 and � D 2
respectively. The �ow becomes more stable as the interface becomes thicker, and
the shear �ow and ionic diffusion are found to have a stabilizing effect due to the
enhancement of dissipation mechanisms.

Key words: instability, MHD and electrohydrodynamics, micro-/nano-�uid dynamics

1. Introduction
For many years, electrohydrodynamics has attracted extensive research due to its

wide applications in micro�uidic devices, such as in ink jetting, drug delivery and
chemical analysis. One favourable application of the use of an electric �eld is to pump
liquids in micro-channels as it will not induce mechanical noise. Another potential use
of an electric �eld is to enhance the mixing in micro�uidic devices (Lin 2009). When
an external electric �eld is applied across a liquid layer, the Maxwell stress can initiate
�ow instability in the liquid layer with spatial changes in the electrical properties. In

� Email addresses for correspondence: zding001@e.ntu.edu.sg, mtnwong@e.ntu.edu.sg.

mailto:zding001@e.ntu.edu.sg
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previous studies, the instability of �ow systems could be triggered by an electric �eld
due to abrupt changes (Melcher & Schwartz 1968; Melcher & Smith 1969) or spatial
gradients in electrical properties (Melcher & Firebaugh 1967).

In the former case, the liquids are usually assumed to be immiscible and the
interfacial instability is of particular interest (Saville 1997; Ozen et al. 2006).
It is assumed that there is no electrical charge within the bulk region, while
electrical charges accumulate on the interface. One such model proposed was the
leaky-dielectric model by Taylor (1966). Recently, Wang (2012) discussed the
in�uence of surface charge transportation on the breakup of a poorly conducting
liquid thread surrounded by an insulating liquid layer in a radial electric �eld. Ding,
Wong & Li (2013) investigated the instability of two leaky-dielectric co-�ows in an
annulus duct in a radial electric �eld. There was an abrupt change in the electrical
conductivity as well as the electrical permittivity, such that the Maxwell stress could
either enhance or impede the interfacial deformation. Their results demonstrated that
the electric �eld may inhibit the capillary instability caused by surface tension and
interfacial wave instability due to viscosity strati�cation (Ding et al. 2013).

The latter study of liquids with spatial electrical property gradients focused on the
in�uence of electrical body force on the stability of electro-convection. The gradients
may be caused by non-isothermal heating (Yoshikawa, Crumeyrolle & Mutabazi
2013) or due to the non-uniform distribution of ionic concentration (Lin 2009). To
the best of our knowledge, previous studies of electro-convection in a liquid layer
with electrical conductivity gradients in an isothermal environment have been focused
on �ows in a square duct in past decades.

Pioneering work on electro-convection in a planar liquid layer with an electrical
conductivity gradient was carried out by Baygents & Baldessari (1998). A wall-normal
electric �eld was imposed between two parallel plates. They proposed that the
occurrence of instability was triggered by the dielectrophoretic effect (Baygents &
Baldessari 1998). They found that the lower conductivity boundary had a strong
stabilizing effect when the conductivity gradient was large. It should be noted that
the assumption of exchange of stability made by them was incorrect because the
critical unstable mode may be oscillatory (Baygents & Baldessari 1998). Chang, Ruo
& Chen (2009) dropped the assumption of exchange of stability and considered the
in�uence of an imposed shear �ow wherein the oscillatory and stationary unstable
modes were discovered. It was found that the instability could be enhanced by a
very weak shear �ow, and the transverse mode (zero spanwise wavenumber) became
critical rather than the longitudinal model (zero streamwise wavenumber). However,
as the shear �ow became stronger, they found that the longitudinal mode became
critical and the critical mode was independent of the shear �ow (Chang et al. 2009).
Ruo, Chang & Chen (2010) extended the study of Chang et al. (2009) and considered
the rotating effect. Their results showed that rotation played a stabilizing role in the
system while the electric �eld was the major cause of instability (Ruo et al. 2010).
Recently, Ding & Wong (2014) investigated the instability of an annular liquid layer
with electrical conductivity gradients. Their results showed that the critical unstable
mode depended on the geometry of the duct and the critical unstable mode may be
either stationary or oscillatory (Ding & Wong 2014).

Unlike the studies of Baygents & Baldessari (1998), Chang et al. (2009), Ruo
et al. (2010) and Ding & Wong (2014), in which the electro-convection was
triggered due to a spatial gradient in the electrical conductivity, Lin et al. (2004)
considered two miscible �ows with an electrical conductivity strati�cation. To achieve
such a conductivity strati�cation �ow in experiments, Lin et al. (2004) used two
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electrolytes with different ionic concentrations. The liquids were pumped into the
channel using a syringe pump. A Couette �ow arose from a tangential electric �eld
due to the electro-osmosis phenomenon after removing the pressure gradient. The
electro-osmosis phenomenon was treated as a slippery boundary condition and the
slip velocity was related to the zeta potential in the electrical double layer. However,
it should be noted that the electro-osmosis �ow was rather weak. They investigated
the linear stability by assuming a quasi-steady base �ow and veri�ed their results via
a direct numerical simulation. A depth-averaged model was proposed by Storey, Lin
& Santiago (2005) to investigate the electrohydrodynamical instability in a square
pipe. The depth-averaged model simpli�ed the problem to a two-dimensional �ow,
but showed good agreement with the three-dimensional results (Storey et al. 2005).
The convective and absolute electrokinetic instability with a conductivity strati�cation
was extended by Chen et al. (2005). Chen et al. (2005) used aqueous electrolytes of
10:1 conductivity ratio and applied a streamwise electric �eld. The two-dimensional
instability was studied via a thin-layer assumption that the channel width was much
larger than the channel depth. Santos & Storey (2008) extended the studies to a �ow
with streamwise conductivity gradients and investigated the linear instability as well
as the nonlinear evolution. Notably, in these studies (Baygents & Baldessari 1998;
Chang et al. 2009; Ruo et al. 2010) non-slippery conditions were adopted, while
in other studies (Lin et al. 2004; Chen et al. 2005; Storey et al. 2005; Santos &
Storey 2008) a slippery boundary condition was considered. The latter focused on
the stability of electro-osmosis �ow.

Previously, investigations of the electrohydrodynamical instability of multi-
immiscible electrolyte �ows in a circular pipe have mainly focused on the interfacial
instability. Georgiou et al. (1991) investigated the in�uence of an electro-double-layer
on the long-wave instability of a core�annular electrolyte �lm. They found that double
layer repulsion can impede the capillary instability, while double layer attraction
enhances the capillary instability. Extension of such a �ow was performed by Conroy
et al. (2010, 2011, 2012). They considered a two-electrolyte �ow in a pipe. The
interfacial instability and dynamics were studied in the framework of long-wave theory
in which the system was reduced asymptotically (Conroy et al. 2010, 2011, 2012).
When an axial electric �eld is applied, most previous studies have been focused on
the stability of a liquid jet. Theoretical and experimental studies have shown that the
electric �eld has a stabilizing (Melstel 1996) or destabilizing (Hohman et al. 2001)
effect in electri�ed jets. For miscible �ows in a circular pipe, we note that previous
studies focused on the problem of viscosity strati�cation �ows (Selvam et al. 2007;
d’Olce et al. 2008, 2009). The core�annular �ows were driven by two coaxial pumps
(Selvam et al. 2007; d’Olce et al. 2008, 2009). Water�natrosol mixtures were used
in experiments which could provide a large viscosity contrast but small variations in
densities (Selvam et al. 2007; d’Olce et al. 2008, 2009). Experiments by d’Olce et al.
(2008, 2009) demonstrated that perfect core�annular �ows can be observed in such
�ow systems. For a single �uid �ow in a circular micro-pipe, experimental study
showed that the �uid was laminar and the electro-osmotic moving speed was very
small (Sinton & Li 2003). A careful look at the literature indicates that studies on
electrohydrodynamic instability of miscible liquid �ows in a pipe are very limited. In
this paper, our aim is to extend the electrohydrodynamical instability of immiscible
�ows in a circular pipe to miscible �ows. In addition, in micro-channel �ows, the
Reynolds number is usually very small, therefore mixing due to turbulence will not
occur (Sinton & Li 2003). This paper provides a potential method that can facilitate
the mixing in a micro-pipe through electrohydrodynamic instability.



Electrohydrodynamic instability of miscible core�annular �ows 491

za
br

FIGURE 1. (Colour online) The geometry of the system. �1 and �2 represent the electrical
conductivity in the inner and outer layers respectively.

The rest of this paper is organized as follows. In § 2, the mathematical formulation
is constructed. Section 3 presents the base state and non-dimensional governing
system. In § 4, the linear stability analysis is implemented and the normal mode
analysis is considered. In § 5, the energy analysis is carried out to interpret the
instability mechanism. Section 6 presents the parametric studies of the dimensionless
parameters. In the last section, our conclusion is given.

2. Mathematical formulation
We consider a pipe �ow system as shown in �gure 1. The radius of the pipe is b.

The two liquids are miscible dilute electrolyte solutions. The liquids are Newtonian
and the values of the density �, kinematic viscosity � and dynamic viscosity �D ��
of the two liquids are assumed to be the same (Lin et al. 2004). There is a sharp
change in the ionic concentration where the two liquids meet at r D a. Therefore, a
sharp change in the electrical conductivity occurs at r D a. A constant electric �eld
is imposed in the axial direction. A constant pressure gradient is imposed along the
axis.

In this paper, the three-dimensional hydrodynamical problem is considered.
Cylindrical coordinates .r; �; z/ are chosen; gravity is neglected. The motion of
the liquids is governed by the continuity equation and the momentum equation,

r � v D 0; (2.1)

�
Dv
Dt
D�rpC�r2v C f ; (2.2)

where vD uer C ve� Cwez is the velocity and D=DtD @=@tC u.@=@r/C .v=r/.@=@�/C
w.@=@z/ is the material derivative operator. Here, f is the electrical force which can
be related to the Maxwell stress tensor T M by

f Dr � T M: (2.3)

Usually, analysis of (2.2) is dif�cult because the electric �eld is coupled to the
free charge density �e according to Maxwell’s equations. Moreover, the free charge
density is coupled to the �ow �eld. In this paper, we assume that the electrical
current density Je and the induced current density .@�E=@t/ are modest, such that
the induced magnetic �eld is negligible. Therefore, the electrostatic problem is
considered in this paper,

r� ED 0: (2.4)
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Hence, the Maxwell stress T MD �EE� .1=2/�kEk2I . The parameter � is the dielectric
permittivity and E is the electric �eld. Here, kEk2D E � E and I is the identity tensor.
The charge density is given by Gauss’s law,

�e Dr � .�E/: (2.5)

Hence, the momentum equation (2.2) is now written as

�
Dv
Dt
D�rpC�r2v C �e E�

1
2
kEk2r�: (2.6)

In isothermal and dilute electrolyte solution conditions, the electrical permittivity � is
approximately that of the solvent (Lin et al. 2004). In some non-isothermal conditions,
this term .kEk2r�/=2 is crucial since there is a gradient of permittivity due to the
non-isothermal condition which causes a circulation �ow in the system (Yoshikawa
et al. 2013). In this paper, we consider isothermal conditions and the electrical
permittivity is assumed to be constant for dilute electrolyte solutions. Therefore, the
term .kEk2r�/=2 is ignored. In previous studies by Chang et al. (2009) and Ding
et al. (2013), this term .kEk2r�/=2 was also neglected under the assumptions of
dilute electrolyte solution and an isothermal environment. The term �e E is called the
electrical body force.

Because the electrostatics is considered, the electric �eld E can be related to the
electrical potential by

ED�r�: (2.7)

Hence, Gauss’s law (2.5) is expressed by the following Poisson equation:

r2� D�
�e

�
: (2.8)

Conservation of electrical charge gives

@�e

@t
Cr � Je D 0: (2.9)

In this paper, the electrolyte solution is considered as an ohmic conductor, which
means that diffusion of the charge can be neglected. Then, the current density Je is
given by

Je D � EC �ev; (2.10)

where � is the electrical conductivity. Substituting (2.10) into the current conservative
law, we obtain

D�e

Dt
Cr � .� E/D 0: (2.11)

Because the electrolyte solution is considered to be an ionic conductor, the
conductivity depends on the local ion concentration. Accordingly, the conductivity
can be described by the following diffusion equation (Melcher 1981; Baygents &
Baldessari 1998; Chang et al. 2009):

D�
Dt
DKeffr2� ; (2.12)
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where Keff is an effective diffusivity due to the Brownian motion of the ions. Equation
(2.12) is valid if the local electrical time is much shorter than the �uid time and the
time for ion electromigration,

�
�
�

b2

�
�

b
!E

and
b2

!kBT
; (2:13a;b)

in which kBT is the Boltzmann temperature and ! is the characteristic mobility of
the charge-carrying solutes. The conditions imply that the ions are carried by a �uid
parcel. Typical values of these parameters can be found in Melcher’s book (Melcher
1981) and Lin et al.’s work (Lin et al. 2004): �� 10�10 C V�1; !� 10�8 m2 V�1 s�1,
kinematic viscosity � � 10�6 m2 s�1, conductivity � � 10�4 S m�1, strength of a
typical electric �eld E DO.103/ V m�1 and pipe radius bD 10�3 m. A similar form
to (2.12) was also derived by Lin et al. (2004) from the species conservation law if
the electromigration was neglected. Baygents & Baldessari (1998) indicated that the
diffusion term Keffr2� is responsible for the existence of a threshold electric �eld
and cannot be neglected. This was also mentioned in the following works of Lin
et al. (2004), Chang et al. (2009) and Ding & Wong (2014).

At the initial time, the electrical conductivity in each layer is � D �1jr<a,
�2ja<r<b (�1 6D �2). The subscript i D 1; 2 denotes the inner layer and outer layer
respectively. This can be achieved by using two aqueous electrolytes with different
ionic concentrations (Lin et al. 2004; Chen et al. 2005).

In this paper, we apply the non-slip and non-penetration boundary conditions at rD
b:

uD v DwD 0: (2.14)

Here, the basic �ow is driven by pressure, and the maximum speed occurring at the
centreline is approximately 10�4�10�2 m s�1. Usually, the electro-osmosis �ow is very
weak and the �ow velocity can be estimated by the Helmholtz�Smoluchowski formula
UE D ��E�=�, where � is the zeta potential which is responsible for the electro-
osmosis �ow. This velocity usually has an order of O.10�6/ m s�1 provided � D
�10�2 V, � D 10�10 C V�1 m�1, �D 10�3 kg m�1 s�1 and E D 103 V m�1. Clearly,
the electro-osmotic velocity is much weaker than the pressure driven �ow in this paper.
Hence, in what follows, the non-slip and non-penetration boundary conditions in (2.14)
are applied so that the electro-osmosis phenomenon is neglected.

There is no �ux of the ions at rD b; therefore,

@�
@r
D 0: (2.15)

The circular pipe is non-conducting,

@�
@r
D 0: (2.16)

3. Base state and scalings
At the base state, the �ow �eld and the electric �eld are decoupled because the

electrolyte solution is initially neutral, i.e. the net charge density is zero. The �ow is
driven by a constant pressure gradient @z Np. Therefore, the base velocity pro�le is

NwD
@z Np
4�
.r2 � b2/: (3.1)
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We assume that the interface between the two liquids has grown diffusively to a
�nite thickness �. Moreover, we assume that the diffusion is suf�ciently slow to allow
us to employ a quasi-steady base state for the linear stability analysis. Provided �� 1,
the pro�le of the conductivity can be approximated by the error function:

N� D
�1 C �2

2
C
�2 � �1

2
erf
�

r� a
�

�
: (3.2)

Equation (3.2) was used by Selvam et al. (2007) in their study to describe the pro�le
of the viscosity of a viscosity strati�ed �ow in a circular pipe.

The base electrical conductivity pro�le can also be obtained via solution of the
following equation (Lin et al. 2004):

@�
@t
DKeff

�
@2�
@r2
C

1
r
@�
@r

�
: (3.3)

In experiments, Keff ranges from 10�9 to 10�12 m2 s�1.
The charge density �e is zero, and the electric �eld exists only in the axial direction.

This gives the base state of the electrical potential:

N� D �0 � Ez; (3.4)

where E is the strength of the imposed electric �eld and �0 is the reference electrical
potential.

Taking the velocity scale W D�.@z Npb2/=4�, the length scale b, the time scale b=W,
the pressure scale �W2, the electrical potential scale Eb and the conductivity scale
�2 � �1, we non-dimensionalize the system (2.1)�(2.16):

r � v D 0; (3.5)
Dv
Dt
D�rpC

1
Re
r2v C

Q
Re2Sc

r2�r�; (3.6)

1
Rt

D.r2�/
Dt

Cr � fT.�� 1/� C 1Ur�g D 0; (3.7)

D�
Dt
D

1
ReSc
r2� ; (3.8)

where ReD�Wb=� is the Reynolds number, QD .�E2b2=�Keff / is the scaled electrical
energy and is de�ned as the electrical number in this paper, � D �2=�1 denotes the
conductivity ratio and Sc D �=Keff is the electrical Schmidt number. Baygents &
Baldessari (1998) proposed that Sc 2 T103; 106U. In the study of Chang et al. (2009),
Sc was assumed to vary in T102; 105U. The parameter Rt D .d=W/=.�=�1/ measures
the ratio of �uid time to electrical time. We assume that Rt is very large so that
the electric time is signi�cantly smaller than the �uid time. Therefore, (3.7) can be
simpli�ed to

T.�� 1/� C 1Ur2� C .�� 1/r� � r� D 0: (3.9)

The dimensionless boundary conditions at rD 1 are

uD v DwD
@�
@r
D
@�
@r
D 0: (3.10)
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FIGURE 2. (Colour online) The base electrical conductivity pro�le. The lines are obtained
by numerical experiments on the dimensionless form of (3.3) and the circles and
diamonds are obtained from the error function (3.12). The relevant parameters are aD 0:5,
ReScD 1000.

The dimensionless base state is de�ned as follows:

NwD 1� r2; (3.11)

N� D
1
2
C

1
2

erf
�

r� a
�

�
; (3.12)

N� D�z; (3.13)

in which a is scaled on the length scale b which falls in the range of .0; 1/. It should
be noted that r2 N�D 0 and @ N�=@rD 1=�

p
p exp.�.r� a/2=�2/. In this paper, the range

of � is �xed, � 2 T0:05; 0:15U. To verify (3.12), we assume that the concentration
has a Heaviside pro�le initially, the conductivity pro�le at time instant t is solved
numerically by the dimensionless form of (3.3) and a regular condition is imposed at
the centreline d�=drD 0.

The base conductivity pro�le is shown in �gure 2. It is obvious that the electrical
conductivity pro�le can be approximated by the error function in (3.12) by adjusting
the value of � at an instant t. In the following study, we use (3.12) as the pro�le
of the electrical conductivity at the base state for convenience in the study of linear
stability.

4. Linear stability analysis
The linear stability analysis of the �ow system is implemented by perturbing the

base state with in�nitesimal disturbances:

Tu; v;w; p; � ; �U D T0; 0; Nw; Np; N� ; N�U C Tu0; v0;w0; p0; � 0; �0U; (4.1)

where the primed variables are the in�nitesimal disturbances. In a standard way, we
consider the normal mode analysis:

Tu0; v0;w0; p0; � 0; �0U D TOu; Ov; Ow; Op; O� ; O�U exp.i.m� C �z/C �t/; (4.2)

in which TOu; Ov; Ow; Op; O� ; O�U is the Fourier amplitude, m is the azimuthal wavenumber,
� is the streamwise wavenumber and � is the complex temporal growth rate.
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On substituting (4.1) with the normal mode analysis into (3.5), (3.6), (3.8) and (3.9)
and after linearizing, we obtain the governing equations of the eigenvalue problem:

DOuC
OuC im Ov

r
C i� OwD 0; (4.3)

�OuD�DOp� i� NwOuC
1

Re

�
L Ou�

OuC 2im Ov
r2

�
; (4.4)

� Ov D�
imOp

r
� i� Nw Ov C

1
Re

�
L Ov �

Ov � 2imOu
r2

�
; (4.5)

� OwD�i� Op� i� Nw Ow� D NwOuC
1

Re
L Ow�

Q
PeRe

L O�; (4.6)

Pe� O� D�PeD N� Ou� iPe� Nw O� CL O� ; (4.7)
T.�� 1/ N� C 1UL O� C .�� 1/D N�D O� � i�.�� 1/ O� D 0; (4.8)

where L D D2 C .1=r/D � .m2=r2/ � �2, D D d=dr. The PØclet number Pe D ReSc. It
should be noted that the value of Pe cannot be small because diffusion of conductivity
is slow.

The boundary conditions at rD 1 are

OuD Ov D OwD D O� D D O� D 0: (4.9)

At the centreline r D 0, the singular nature of the cylindrical coordinate system
requires special treatment. To deal with the singular point of the system (4.3)�(4.8),
we use the fact that the velocity vector and the other scalar variables have a vanishing
azimuthal dependence as they approach the centreline, i.e.

lim
rD0

@v0

@�
D lim

rD0

@p0

@�
D lim

rD0

@� 0

@�
D lim

rD0

@�0

@�
D 0; (4.10)

where v0 D u0er C v0e� Cw0ez is the velocity disturbance.
In the form of Fourier modes, the regular boundary conditions are

imOu� Ov D OuC im Ov Dm OwDmOpDm O� Dm O� D 0: (4.11)

If mD 0, the boundary conditions are

OuD Ov D D OwD DOpD D O� D D O� D 0: (4.12)

If mD 1, the boundary conditions are

DOuD D Ov D OwD OpD O� D O� D 0: (4.13)

The velocity conditions of m D 1 agree with the boundary conditions given by
Khorrami (1991) for a single �uid �ow in a circular pipe.

When m > 2, the boundary conditions are

OuD Ov D OwD OpD O� D O� D 0: (4.14)

A Chebyshev collocation method is implemented to solve the eigenvalue problem,
and the physical domain is transformed into the Chebyshev domain,

� D 2r� 1: (4.15)
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The variables Ou, Ov, Ow, Op, O� , O� are expanded as

OuD
NX

0

anTn.� /; Ov D
NX

0

bnTn.� /; OwD
NX

0

cnTn.� /; (4:16a�c)

OpD
NX

0

dnTn.� /; O� D
NX

0

fnTn.� /; O� D
NX

0

enTn.� /; (4:17a�c)

where Tn.� / denotes the nth Chebyshev polynomial.
In order to modify the computation near the interface r D a, the Chebyshev

collocation points are clustered in the mixing region at r D a using the following
stretching function (Govindarajan 2004):

� D
a

sinh. fbr0/
TsinhT.r� r0/U C sinh. fba/U; (4.18)

where r0 D 1=2fb lnT.1C .exp. fb � 1/a/=1C .exp.�fb/� 1/a/U. The coef�cient fb
determines the degree of clustering, and fb D 6 in this paper. The parameter a
represents the location of the interface around which clustering is desired.

After clustering the Chebyshev collocation points into the diffusion region, we need
to calculate the eigenvalue problem via the clustered grid. Therefore, a transformation
on the derivatives between the clustered grid and the Chebyshev grid should be made,

df
d�
D

df
dr

dr
d�
D

1
G0.r/

df
dr
; (4.19)

where G.r/D � and f stands for the variable Ou, Ov, Ow, Op, O� or O�. It should be noted
that the derivative df =drD 2.df =d� /.

For the second derivative of f , using the chain rule, the transformation is written

d2f
d� 2
D

1
.G0/2

d2f
dr2
�

G00

.G0/3
df
dr
: (4.20)

The derivative d2f =dr2D 4.d2f =d� 2/. Numerical validation of our method will be made
in the following discussion.

5. Energy analysis
In order to understand the physical mechanism, we apply the energy analysis

(Govindarajan, L’vov & Procaccia 2001). We multiply the conjugates of the variables
Ou�, Ov� Ow� on both sides of (4.4)�(4.6). The real part of the equation obtained by
summing these equations and integrating over the cross-sectional area gives the
energy balance:

PEk D I C V C Ee: (5.1)

Here, the kinetic energy growth rate is

PEk D �r

Z 1

0
r.jOuj2 C jOvj2 C j Owj2/dr; (5.2)
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c .mD 0; � D 1/ c .mD 1; � D 0:5/ �0 .mD 1; � D 0/

SH 0:93675536� 0:06374551i 0:84646970� 0:07176332i �0:00734099
Present work 0:93675536� 0:06374551i 0:846469697� 0:07176332i �0:007340985

TABLE 1. The �rst leading eigenvalues of the system for ReD 2000, PeDQD 0. We have
utilized 51 points for the eigenvalue problem and related the eigenvalues to those of SH
by de�ning �0 D i� and cD �0=�.

the work done by the Reynolds stress is

I D�
Z 1

0
rRe.D Nw Ow� Ou/dr (5.3)

and the viscous dissipation is

V D �
1

Re

Z 1

0
r
�
.jDOuj2 C jD Ovj2 C jD Owj2/C

�
m2

r2
C �2

�
.jOuj2 C jOvj2 C j Owj2/

C
jOuj2 C jOvj2

r2
� 4m

Im.Ou� Ov/
r2

�
dr: (5.4)

The work done by the electrical force is

Ee D
Q

PeRe

Z 1

0
rRe

�
D Ow�D O� C

m2 Ow��
r2
C �2 Ow��

�
dr: (5.5)

Since the magnitude of the eigenfunction is arbitrary, we normalize the eigenfunction
by its maximum absolute value. The terms in the energy analysis are rescaled with
respect to the total kinetic energy

R 1
0 r.jOuj2 C jOvj2 C j Owj2/dr. For an unstable �ow, PE

should be positive. The energy analysis will be applied to interpret the instability
mechanism in the following discussion.

6. Results and discussion
6.1. Validation of numerical methods

We examine the validation of our numerical method by setting QD PeD 0; therefore,
the electric �eld is turned off and ionic advection is absent. Since we are setting QD0
and (4.8) does not produce any eigenvalues, the conductivity pro�le has no in�uence
on the spectrum of the problem and the eigenvalue problem should be identical to a
single �uid �owing in a circular pipe. We compare our numerical results with those of
Schmid & Henningson (2001) (hereafter referred to as SH) for ReD2000. The leading
eigenvalue is listed in table 1. Excellent agreement between our numerical results and
those of SH demonstrates the validity of our numerical method.

It should be noted that, when Re! 0, i.e. the inertia of the �uid is negligible,
the growth rate is determined by the ionic diffusion equation (4.7). In a viscosity
strati�ed plane-Poiseuille �ow (Talon & Meiburg 2011), the eigenspectrum of the
diffusion equation presents a similar structure to the Orr�Sommerfeld problem. Hence,
the diffusion equation will produce more eigenvalues in the strati�ed �ow than a
single �uid �ow (Talon & Meiburg 2011). Similarly, in pipe �ow with conductivity
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FIGURE 3. (Colour online) Eigenspectra for Re D 2000, m D 0, � D 1. (a) The
eigenspectrum for Hagen�Poiseuille �ow which is identical to that of SH. (b) A
comparison of conductivity strati�ed pipe �ow (triangular points) and Hagen�Poiseuille
�ow (circles). The conductivity ratio � D 2 and the parameters are Q D 0, a D 0:5,
�D 0:05. It is obvious that when Pe> 0, there are some extra eigenvalues compared with
Hagen�Poiseuille �ow. The parameter cD i�=�.

strati�cation, the eigenspectrum structure will be different from the result of SH, as
demonstrated in �gure 3. In the following discussion, we consider that the base �ow
in the pipe is weak and focus on the instability caused by the electrical force in
micro�uidic channels.

6.2. Parametric study
6.2.1. Effect of the conductivity ratio

The in�uence of the conductivity ratio on the linear stability analysis is of particular
interest and will be investigated in this section. Before presenting the numerical study,
let us consider the case of two liquids with the same electrical conductivity, i.e. �D 1.
The linearized electrical current conservation (4.8) reduces to

L O� D 0: (6.1)

Hence, in the linearized momentum equation (4.6), the electrical force that can trigger
instability is absent. Therefore, the system will be linearly stable. Numerical study
also indicates that the eigenvalue � is not in�uenced by the electrical number Q for
�D 1 and �r < 0 (see table 3 in appendix A). We can obtain a useful result here: the
system becomes more stable as � increases when � < 1, while the system becomes
more unstable as � increases when � > 1. To study the in�uence of the conductivity
ratio on the linear stability, the other parameters are �xed: ReD 1, ScD 1000, aD 0:5
and �D 0:1. To study the linear stability problem, 51 collocation points are suf�cient
to provide satisfying accuracy.

First, we consider two typical cases: � D 0:5, � D 2. The electrical number Q is
�xed so as to study the growth rate of the disturbance. The results in �gure 4(a)
demonstrate that the azimuthal disturbances make the system more unstable. They also
imply that the azimuthal wavenumber m of the critical mode is m D 1. The results
are different in �gure 4(b). They show that the azimuthal wavenumber of the most
unstable mode is mD 0 for �D 2. These results imply that the critical unstable mode
of the system varies with the conductivity ratio �. To elucidate the critical unstable
mode in the system, we investigate the marginal curves in the Q�� plane. Figure 5
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FIGURE 4. (Colour online) The real temporal growth rate �r versus the wavenumber �:
(a) QD 5� 104, �D 0:5; (b) QD 104, �D 2.
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FIGURE 5. (Colour online) The marginal stability curves: (a) �D 0:5; (b) �D 2.

demonstrates that the wavenumber m of the critical unstable mode for � D 0:5; 2 is
m D 1; 0 respectively. The azimuthal wavenumber of the critical unstable mode is
de�ned as the critical azimuthal wavenumber mc. Here, we de�ne Qc as the critical
electrical number and �c as the critical streamwise wavenumber. We have examined
the eigenvalue � of the critical unstable modes in �gure 5 whose imaginary part is
non-zero. It indicates that the critical unstable modes are oscillatory. The perturbed
�elds of the charge density and the conductivity in the r�� plane are shown in �gure 6
to illustrate the two different unstable modes. In �gure 6(a,b), the unstable mode is
de�ned as the corkscrew mode, while the unstable mode in 6(c,d) is de�ned as the
axisymmetric mode. We numerically evaluate the energy contribution of Ee which
is always positive. It demonstrates that the electrical force is the main factor that
destabilizes the system. The instability is referred to as the dielectrophoretic instability
(Baygents & Baldessari 1998; Chang et al. 2009; Ding & Wong 2014).

In order to reveal the in�uence of the conductivity ratio on the critical unstable
mode, i.e. in what range of � the critical unstable mode is the corkscrew mode or
the axisymmetric mode, we investigate the behaviour of .Qc; mc; c/ versus the value
of �. The wave speed c of the critical mode is de�ned as

cD��i=�c: (6.2)

The results in �gure 7(a) indicate that the system becomes more unstable for
a larger contrast in the electrical conductivity between the two layers. A similar
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FIGURE 6. (Colour online) (a,b) The perturbed �eld of the electrical charge �e and the
perturbed �eld of the conductivity � for � D 0:5, Qc D 4505:8, mc D 1, �c D 1:75 in the
r�� plane. (c,d) The perturbed �eld of the electrical charge �e and the perturbed �eld of
the conductivity � for �D 2, Qc D 6197:0, mc D 0, �c D 2:75 in the r�� plane.

phenomenon has been observed by Lin et al. (2004) in a liquid layer with conductivity
strati�cation in a square channel. Experimental observation and stability analysis
suggested that the �ow became more unstable for a larger conductivity contrast (Lin
et al. 2004). However, they focused on the two-dimensional instability, and the way
in which the conductivity ratio in�uenced the three-dimensional stability was not
investigated (Lin et al. 2004). In this paper, we investigate the three-dimensional
instability and our results in �gure 7(c) show that the critical wavenumber mc jumps
from 1 to 0 as the conductivity ratio increases to � D 1. This �gure indicates that,
for the selected input values of other dimensionless parameters, the critical unstable
mode is dominated by the corkscrew mode when the inner conductivity is larger,
while the axisymmetric mode dominates the instability when the outer conductivity
is larger. Moreover, in a square-duct �ow system, Lin et al. (2004) gave the physical
properties of the �ow system for a conductivity ratio � D 10, which are applied to
estimate the critical strength of the applied electric �eld in our present system. Our
results show that, for � D 10, the critical value electrical number Qc � 103. This
gives the critical electrical strength E � 2 � 103 V m�1 provided that the electrical
permittivity � D 6:9� 10�10 C V�1 m�1, the dynamic viscosity �D 10�3 kg m�1 s�1,
the effective diffusivity Keff D 2� 10�9 m2 s�1 and the pipe radius bD 10�3 m. Hence,
it is possible to achieve electromixing in a circular pipe at small Reynolds �ow by
an electric �eld in experiments. Figure 7(b) shows that �i 6D 0, which demonstrates
that the unstable mode is oscillatory. Figure 7(d) shows that the critical wave speed c
increases with increasing �. Figure 7(d) also shows that, when � < 1, the wave speed
is smaller for a larger conductivity contrast; when � > 1, the wave speed is larger for
a larger conductivity contrast. Additionally, the wave speed c > 0 indicates that the
linear wave propagates downstream.

6.2.2. Effect of interface location
This section discusses the in�uence of the interface location on the linear stability

of the system. The other parameters are �xed at Re D 1, Sc D 1000, � D 0:05 so
as to investigate the dielectrophoretic instability. Here, � D 0:05 is chosen under
the consideration of a sharper interface. Two conductivity ratios � D 0:5; 2 will
be considered in the following discussion. We examined the convergence of our
numerical method and found that N D 60 is suf�cient to provide adequate resolution
at reasonable computational cost.

Selvam et al. (2007) found that the interface location had a signi�cant in�uence on
the critical instability of a viscosity strati�ed pipe �ow and the least unstable mode
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FIGURE 7. (a) The critical electrical strength number Qc versus �; (b) the critical
frequency j�ij versus �; (c) the critical wavenumber mc versus �; (d) the wave speed of
the critical mode c versus �.

occurred at approximately 0.6 times the pipe radius. In our problem of a liquid with
conductivity strati�cation, a similar phenomenon is observed. However, the instability
of our problem is triggered by the electric �eld, while in the problem studied by
Selvam et al. (2007), the instability is due to the Reynolds stress. If the interfacial
location is very near the centreline or the pipe wall, the diffusion of ions will rapidly
remove the conductivity difference. Furthermore, we consider a very sharp interface,
when a ! 0 or a ! 1, so no matter how large an electric �eld is imposed, the
system should be stable due to the homogenous conductivity pro�le. Hence, it can
be concluded that, as the interface is slightly moved away from the centreline, the
system becomes more unstable. As the interface approaches the outer boundary, the
system should become more stable. Therefore, there should be an optimal location of
the interface where the �ow is least stable. Two typical cases of �D 0:5; 2 have been
investigated numerically and the range of the interface location a is considered to be
in T0:1; 0:9U. The variation of the critical wavenumber mc and the critical electrical
number Qc with the location a is shown in �gure 8. Figure 8(a) demonstrates that, for
� D 0:5; 2, the system becomes more unstable as a increases from 0.1 until a� 0:3,
a� 0:2 respectively, while it becomes more stable as a increases further. Additionally,
for �D 0:5, we observe that the critical unstable mode shifts from the corkscrew mode
mc D 1 to the axisymmetric mode mc D 0 as a increases to a critical value a� 0:83.
For �D 2, the axisymmetric mode dominates the instability.

We are interested in the maximum growth rate of the system since the rapid mixing
is of particular interest (Lin et al. 2004). To investigate the maximum growth rate,
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FIGURE 8. (Colour online) (a) The critical electrical strength number Qc versus a; (b) the
critical wavenumber mc versus a.

FIGURE 9. (Colour online) The maximum growth rate �m versus a: (a) QD 5� 104,
�D 0:5; (b) QD 5� 104, �D 2.

the electrical number is �xed. We examine the behaviour of the maximum growth
rate �m Dmax .Re.�// versus the interface location a. The maximum growth rate �m
describes the growth rate of the most unstable mode. The corkscrew mode and the
axisymmetric mode are investigated, as shown in �gure 9. Figure 9(a) shows that the
maximum growth rate occurs at a� 0:6. We examined the maximum growth rate �m
versus a by reducing the value of Q and found that the peak point in the �m�a plane
moved leftwards, as shown in �gure 10(a). This implies that, for a strong electric �eld,
the most unstable mode prefers an intermediate a for � D 0:5 although the critical
unstable mode prefers a� 0:3. The mechanism is very complex because the electrical
force destabilizes the �ow while the viscous dissipation and the ionic diffusion tend
to stabilize the system. In order to explain the results, we apply the energy analysis.
As the interface location a increases, the viscous dissipation effect becomes weaker
until a � 0:6, after which it becomes stronger as a increases further, as shown in
�gure 10(b). This is the reason why for an unstable �ow, QD 5� 104, the maximum
growth rate occurs at a� 0:6. In addition, we observe that, for �D 0:5, the maximum
growth rate of the axisymmetric mode dominates the corkscrew mode when a ’ 0:83
for Q D 5 � 104. This indicates that the axisymmetric mode becomes critical when
the interface approaches the pipe wall. Figure 9(b) demonstrates that the maximum
growth rate occurs at a � 0:2, which indicates that the most unstable mode and the
critical unstable mode prefer a� 0:2. Additionally, it is observed that, for �D 2, the
axisymmetric mode always dominates the corkscrew mode.
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FIGURE 10. (a) The maximum growth rate �m of the corkscrew mode mD 1 versus a for
different values of the input electrical number Q. (b) The log ratio between the energy Ee
and V , in which the electrical number QD 5� 104 and the wavenumber � corresponds to
the most unstable mode.

FIGURE 11. The marginal stability curves: (a) �D 0:5; (b) �D 2.

6.2.3. Effect of interface thickness
This section investigates of the in�uence of the interface thickness on the critical

instability. The other parameters are �xed: ReD 1, ScD 1000, aD 0:5. In the above
discussion, we have considered two values of �. It is observed that the system
becomes more stable for a larger value of �. The marginal stable curves for three
typical values of � are shown in �gure 11. For a liquid with viscosity strati�cation,
Selvam et al. (2007) reported that, for a thicker interface, the �ow became more
stable. Selvam et al. (2007) explained that the stabilizing effect was due to the
diffusion effect becoming more signi�cant for a thicker interface, which dissipated
the kinetic energy and inhibited the instability. Two studies by Chang et al. (2009)
and Ding & Wong (2014) show that the system becomes more stable with reduction
of the conductivity gradient when the conductivity gradient is small, while the �ow
becomes more stable as the conductivity gradient increases when the conductivity
gradient is large. In our present study, if we �x the conductivity ratio, the conductivity
gradient within the interface becomes smaller as the interface becomes thicker. Our
study shows that the �ow becomes more stable as the conductivity gradient decreases,
which is different from the previous two studies by Chang et al. (2009) and Ding
& Wong (2014). In fact, in our current study, a thicker interface implies that the
system undergoes a longer diffusion time. Assuming that the conductivity is uniform
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FIGURE 12. (Colour online) The critical electrical strength number Qc versus �: (a) �D
0:5; (b) �D 2.

in the system due to diffusion for quite a long time, we would expect a completely
stable �ow. Therefore, the system may become more stable as the interface becomes
thicker. Numerical studies demonstrate that, with increasing interface thickness �, the
marginal curve rises up in the Q�� plane, which indicates that the �ow becomes more
stable as the interface becomes thicker, supporting our analysis. Our result is similar
to the phenomenon in a viscosity strati�ed �ow (Selvam et al. 2007), but different
from the studies by Chang et al. (2009) and Ding & Wong (2014). The difference
is due to the fact that the �ow studied by Chang et al. (2009) and Ding & Wong
(2014) is bounded by two solid walls. However, in our problem, the �ow is only
bounded by the outer pipe wall. We observe that, for the axisymmetric mode, �D 2,
the critical wavenumber �c becomes smaller as � increases, as seen in �gure 11(b).
This indicates that the wavelength of the disturbance becomes longer as � increases.
In order to show the effect of � on the critical stability, the critical electrical number
Qc is plotted against � in �gure 12. Figure 12 also demonstrates that the system
becomes more stable as � increases. Additionally, the corkscrew mode dominates the
instability for �D 0:5, and the axisymmetric mode dominates the instability for �D 2.

6.2.4. Effect of shear �ow
In this section, we aim to reveal the in�uence of the shear �ow on the

dielectrophoretic instability. The other parameters are �xed at a D 0:5, � D 0:1.
Before presenting the numerical study, let us consider the electrical force term in the
linearized axial momentum equation (4.6):

�
Q

RePe
L O� D

Q
Re2Sc

O�e: (6.3)

The value of Sc is �xed at ScD 1000. Equating Q=.Re2Sc/ at two different values of
Re gives

Q2 D
Re2

2

Re2
1
Q1: (6.4)

This relation re�ects the fact that, when the value of Q=.Re2Sc/ is �xed, a smaller
Re describes a smaller Q. This implies that, when the Reynolds number is small, the
system may be more unstable. In this paper, we consider a weak shear �ow under
the consideration of �ow in a micro�uidic channel and propose that Re has a range
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FIGURE 13. (Colour online) The critical electrical strength number Qc versus Re: (a) �D
0:5; (b) �D 2.

of T0:1; 10U provided that the pipe radius is 10�3 m and the kinematic viscosity � D
10�6 m2 s�1. The maximum velocity occurring at the centreline r D 0 can be varied
from 10�4 to 10�2 m s�1.

It is observed that, for � D 0:5, the corkscrew mode dominates the instability, and
for �D 2, the axisymmetric mode dominates the instability. Figure 13 illustrates that
the critical electrical number Qc increases as Re increases, indicating that the shear
�ow impedes the electro-convection in the system. Interestingly, the corkscrew mode
for � D 2 can be enhanced by the shear �ow, as seen in �gure 13(b), although it
never becomes critical for the selected input values of Re, � and Sc. It is different
from the previous studies by Chang et al. (2009) and Ding & Wong (2014), which
show that the critical instability can be either enhanced or impeded by the shear
�ow. In the present study, we observe that the shear �ow always impedes the critical
instability. In order to understand the physical mechanism, we �x the value of Q
and the wavenumber � to investigate the energy contributions of the electrical force,
Reynolds stress and viscous stress. For some Re, the �ow is stable, e.g. Re> 2:5 for
�D 0:5 and Re> 2 for �D 2. The electrical energy becomes smaller, as demonstrated
in �gure 14(a). We have found that PEk becomes smaller as Re increases and becomes
negative as Re exceeds some critical value, which indicates that the system becomes
stable as Re increases. However, the underlying factor that stabilizes the system is not
the reduction in the electrical energy. Figure 14(b) shows that, as the Reynolds number
increases, ln.jEe=Vj/ decreases for �D 0:5, while ln.jEe=Vj/ increases for �D 2. This
indicates that the stabilizing mechanisms in the two cases � D 0:5; 2 are different.
We have examined the case of Re D 10 and found that, for � D 0:5, ln.jEe=Vj/ < 0,
while for � D 2, ln.jEe=Vj/ > 0. This indicates that, for � D 0:5, the increase of the
viscous dissipation is the major factor that stabilizes the �ow, although the Reynolds
stress also plays a stabilizing role, as shown in �gure 14(c). For � D 2, because the
electrical energy always dominates the viscous dissipation, i.e. Ee> jVj, the stabilizing
factor in the system is due to the Reynolds stress, which dissipates the kinetic energy
of the perturbation. The results indicate that the imposed shear �ow can impede the
dielectrophoretic instability via the dissipation mechanisms of the viscous stress and
the Reynolds stress.

Furthermore, we investigated the in�uence of Re on the wave speed c. Results are
shown in �gure 15. It is observed that, for �D 0:5, the critical wave speed c increases
slightly as Re increases initially, then it has a negligible in�uence on the wave speed.
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FIGURE 14. (a) Electrical energy Ee versus Re; (b) the log ratio between the electrical
energy and the viscous dissipation versus Re; (c) the work of the Reynolds stress versus
Re. The electrical number QD 104.

FIGURE 15. (Colour online) The wave speed of the critical unstable mode versus the
Reynolds number.

However, the wave speed decreases slightly as Re increases from Re D 1 for � D 2,
and then the wave speed seems to be independent of Re. The results by Chang et al.
(2009) indicated that the critical frequency of the critical transverse unstable mode ��i
was independent of the Reynolds number when Re> 1. This implies that the critical
wave speed is independent of Re. In our system, we observe that the wave speed c is
independent of Re for both the two critical unstable modes, the corkscrew mode and
the axisymmetric mode, when Re> 2.

6.2.5. Effect of ionic diffusion
This section presents a study of the in�uence of the ionic diffusion on the

dielectrophoretic instability. The other parameters are �xed: ReD 1, aD 0:5, � D 0:1.
In the governing equations (4.3)�(4.8), replacing Re by Pe does not change the
governing equations, which indicates that the effect of ionic diffusion on the �ow
instability should be similar to that of Re. However, the results should not be the
same as shown in § 6.2.4 above, in which Re is varied while Sc is �xed. Therefore,
it is necessary to investigate the in�uence of Sc on the stability by �xing the value
of Re.

The critical electrical number Qc versus the Schmidt number is shown in �gure 16.
The corkscrew mode dominates the instability for �D 0:5 and the axisymmetric mode
dominates the instability for � D 2, as shown in �gure 16. The system becomes
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FIGURE 16. (Colour online) The critical electrical strength number Qc versus Sc: (a) �D
0:5; (b) �D 2.

more stable as Sc increases. The results in �gure 16 are quite similar to those in
�gure 13, which demonstrates that the in�uence of Sc on the �ow stability is similar
to that of Re.

The instability mechanism is then interpreted by the energy analysis. We consider
the critical instability of the system when PEk D 0. The viscous dissipation term V is
always negative and plays a stabilizing role. The electrical force work Ee > 0, which
triggers the electro-convection in the system. We calculated ln.jEe=Vj/ and found that
its value increased with Sc initially, then it decreased as Sc increased further, as shown
in �gure 17(a). This indicates that the viscous dissipation effect becomes weaker as
Sc increases from ScD 100, while it becomes stronger when Sc is very large. When
Sc is not too large, Sc D O.102/, the Reynolds stress plays a key role in stabilizing
the system since its dissipation effect becomes stronger as Sc increases, as shown
in �gure 17(b). As Sc increases further, for � D 0:5, the dissipation effect by the
Reynolds stress becomes weaker, while for � D 2, the work of the Reynolds stress
reaches a plateau, as seen in 17(b). Such a phenomenon indicates that, although the
Reynolds stress dissipates the kinetic energy, it is not the major factor that causes the
system to be more stable when we increase Sc. As shown in �gure 17(a), ln.jEe=Vj/
starts to decrease when Sc exceeds a certain value. This indicates that the viscous
dissipation increases with Sc and becomes the major stabilizing factor. Moreover, we
recall the de�nition of Sc D �=Keff . This indicates that the viscous effect becomes
stronger as the parameter Sc increases. Since viscous dissipation plays a stabilizing
role, the system becomes more stable as Sc increases. The effect of Sc on the critical
stability in this system is different from that in the previous studies by Chang et al.
(2009) and Ding & Wong (2014). In these studies (Chang et al. 2009; Ding & Wong
2014), Sc was found to have a dual effect: increasing Sc can either enhance or inhibit
the critical instability. Our study shows that, for � D 2, the corkscrew mode can be
either enhanced or impeded as Sc increases, as seen in 16(b). However, the critical
unstable mode always becomes stable. For an unstable �ow, we observed that Sc can
play a dual role in the system, in that the growth rate of disturbances can become
either larger or smaller as Sc increases; this is not shown here since we are only
interested in the critical stability of this system.

7. Conclusion
This paper investigated the electrodynamical instability of two miscible �ows in

a micro-pipe with electrical conductivity strati�cation. An axial electric �eld was
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FIGURE 17. (a) The log ratio between the electrical energy and the viscous dissipation
versus Sc; (b) the work of the Reynolds stress versus Sc.

N D 40 N D 50 N D 60

� 0:291796693� 1:449416017i 0:291796697� 1:449416018i 0:291796697� 1:449416018i

TABLE 2. The �rst leading eigenvalues of the system for ReD1, QD104, ScD103, �D0:5,
aD 0:5, �D 0:05, �D 2, mD 1. This shows that our numerical method converges quickly
by clustering the Chebyshev collocation points into the interfacial region.

imposed, which can trigger electro-convection in the system. A weak shear �ow
arose from an axial pressure gradient. A three-dimensional linear stability analysis
was implemented to discuss the in�uences of conductivity ratio, interface location,
interface thickness, shear �ow and ionic diffusion on the critical stability of the �ow.
An energy analysis was carried out to interpret the instability mechanism.

It was found that the system was more unstable for a larger electrical conductivity
contrast. When the electrical conductivity was larger within the inner layer, the
critical unstable mode could be either the corkscrew mode or the axisymmetric
mode, depending on the interface location. A detailed study showed that the critical
unstable mode shifted from the corkscrew mode to the axisymmetric mode as the
interface approached the pipe wall. When the electrical conductivity was larger in
the outer layer, the critical unstable mode was dominated by the axisymmetric mode.
The interface location had a signi�cant in�uence on the critical unstable mode. The
system was more stable when the interface was close to the centreline or the pipe
wall. The �ow became more stable as the interface became thicker, and the shear
�ow and ionic diffusion were found to have a stabilizing effect via the dissipation
mechanisms of the Reynolds stress and viscous stress.
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Appendix A
The general eigenvalue problem is denoted as

A q D �Bq; (A 1)
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Q0 D 10 Q0 D 100 Q0 D 1000

cD i�=� 0:846469697� 0:071763323i 0:846469697� 0:071763323i 0:846469695� 0:071763321i

TABLE 3. The �rst leading eigenvalues of the system for Re D 2000, Pe D 0, � D 0:5,
mD 1, �D 1. We have also considered some other values of Re and the result shows that
the eigenvalue is only dependent on Re. Changing the value of Q0 D .�E2=�W2/ does not
affect the eigenvalue for �D 1. The parameter Q0 measures the ratio of electrical force to
the �uid inertia.

where q D .Ou; Ov; Ow; Op; O�; O�/T and
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B D

0

BBBBB@

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 Pe
0 0 0 0 0 0

1

CCCCCA
; (A 3)

in which L1 D L2 D 1=Re.L � 1=r2/� i� Nw, L3 D .1=Re/L � i� Nw, L4 D�Q=.RePe/L ,
L5DL � i�Pe Nw and L6DT.�� 1/ N� C 1UL C .�� 1/.D N�/D. The operator DD d=dr and
L D D2 C D=r�m2=r2 � �2. After imposing the boundary conditions at the centreline
r D 0 and the wall r D 1, the general eigenvalue problem is solved by the standard
MATLAB subroutine EIG (Schmid & Henningson 2001).

The convergence of our numerical method is tested here, see table 2. In the work
of Selvam et al. (2007), 251 Chebyshev collocation points were used to achieve
high numerical accuracy without using the technique of clustering the points into
the interfacial region, which is quite time consuming. They modi�ed their numerical
method by clustering the collocation points into the interfacial region in their further
study (Selvam et al. 2009). Another test is made by considering a special case: �D 1,
see table 3. The results in table 3 also agree with the results of SH since this special
case corresponds to a single �uid �ow. They also demonstrate that our numerical
method is valid.
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