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A RELATION BETWEEN EMBEDDING DEGREES
AND CLASS NUMBERS OF BINARY QUADRATIC

FORMS

SAN LING, ENVER OZDEMIR, AND CHAOPING XING

Abstract. In this paper, we describe a relation between the em-
bedding degree of an elliptic curve over a prime field Fp and the
inertial degree of the primes above p in a certain ring class field.
From this relation, we conclude that the embedding degree divides
the class number of a group of binary quadratic forms of a fixed
discriminant.

1. Introduction

Determining the embedding degrees of elliptic curves over the finite
fields have attracted attention due to cryptographic applications ([2]).
In this paper, we show that the nth-embedding degree of an ordinary
elliptic curve E defined over a prime field Fp is equal to the inertial
degree of the primes above p in the ring class field arising from an order
of discriminant n2D in an imaginary quadratic field, where D is the
discriminant of the endomorphism ring of E. This implies that the
nth-embedding degree divides the cardinality of the class group of the
binary quadratic forms with discriminant n2D.

The paper is organized as the follows. In Section 2, we introduce el-
liptic curves and embedding degrees. In Section 3, we prove our main
result, Theorem 3.3, after the discussion of quadratic forms, endomor-
phism ring of elliptic curves and ring class fields.

2. Embedding Degrees of Elliptic Curves

Let p be a prime integer and let Fp be the field with p elements. We

denote by Fp the algebraic closure of Fp. The field Fpk is a subfield of

Fp with pk elements for an integer k ≥ 1. An elliptic curve E over Fp

is a smooth algebraic curve defined by an equation of the form

(2.1) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6
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with ai ∈ Fp. If x, y ∈ Fp satisfy the equation 2.1, we say that the point

(x, y) ∈ Fp × Fp is on the curve E. The set of all points on the curve
with a point P∞ (identity) at infinity form an abelian group and the
group is denoted by E(Fp). The subgroup E(Fpk) of E(Fp) consisting
of points (x, y) ∈ Fpk × Fpk with P∞ is of finite order for any positive

integer k. The details for the group operation in E(Fp) and computing
the order of E(Fpk) can be found in [4, Chapter 4] or [8].

Throughout this paper, we make two assumptions: (i) n is a positive
integer coprime to p; (ii) E is an ordinary elliptic curve over Fp.

Definition 2.1. A point P in E(Fp) is called an n-torsion point if
nP = P∞.

The set E[n] of all n-torsion points of E is a subgroup of E(Fp) and
it is isomorphic to Zn ⊕ Zn where Zn is the quotient group Z/nZ (see
[8, Section 3.1]). An integer k such that E[n] lies in E(Fpk) is called
an nth embedding degree of the curve E and the minimum of such an
integer k is called the nth embedding degree of E.

The following result provides a necessary condition for which k is an
nth embedding degree of the curve E.

Proposition 2.2. Let p, E, n, k be the same as above. If we have
E[n] ⊆ E(Fpk), then pk ≡ 1 mod n.

Proof. See the proof of Corollary 3.11 in [8]. �

We will see in a moment that under certain conditions the converse
of the above statement is also correct.

3. Class Numbers and Embedding Degrees

We first give a brief summary of binary quadratic forms, endomor-
phism rings of elliptic curves and ring class fields.

We consider here binary quadratic forms in two variables f = ax2 +
bxy+cy2 = (a, b, c) of discriminant D = b2−4ac. We assume D < 0 < a
and gcd(a, b, c) = 1. A form of this kind is called a positive definite
form. From now on, we assume all forms are positive definite. Let

g(x′, y′) = a′x′2 + b′x′y′ + c′y′2 and f(x, y) = ax2 + bxy + cy2

be two forms of the same discriminant. They are called equivalent if
there exist integers

α, β, γ, δ with αδ − βγ = 1

such that

x1 = αx′ + βy′ , y1 = γx′ + δy′ and f(x1, y1) = g(x′, y′).
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This equivalence relation makes the set of binary quadratic forms
of the same discriminant an abelian group which we will denote by
C(D). The group C(D) is isomorphic to the ideal class group of an
order OD of discriminant D in an imaginary quadratic field. Let p be
a prime integer such that D is a square mod p. Then we have a form
fp = (p, b, c) for some b, c ∈ Z which is called a prime form and prime
forms generate the group C(D) [7]. See [3] for justification of the above
statements.

Let E be an ordinary elliptic curve over a finite field Fp. The en-
domorphism ring of the elliptic curve E is isomorphic to an order OD

with a discriminant D in an imaginary quadratic field K. The ideal
class group C(OD) of OD is isomorphic to the group C(D) of the binary
quadratic forms of discriminant D. Hence any ideal class I of C(OD)
is represented by a triple [A,B,C] such that B2 − 4AC = D and the

number τ = −B+
√
D

2A
is in the standard fundamental domain. The cor-

responding j value for the ideal I is j
(
−B+

√
D

2A

)
, where j(τ) is Klein’s

j-function, and each j value is the j-invariant of an elliptic curve over
C with the endomorphism ring OD. This implies that there are hD
isomorphism classes of elliptic curves over C with endomorphism ring
OD, where hD is the class number of C(D). The extension field KD of
K generated by these j values is called the ring class field for OD. The
extension is finite abelian and has degree hD. The common minimal
polynomial PD(x) for the j values is called the Hilbert class polynomial
for OD.

Let p be a prime integer such that p splits completely in K and
℘ be a prime ideal above p in K. The inertial degree of the primes
above ℘ in KD is the degree of the irreducible factors of PD(x) mod
p as [OK/℘ : Z/(p)] = 1 where OK is the ring of integers of K. By
Deuring’s lifting theorem [5], the inertial degree of the primes above ℘
in KD is the smallest k such that Fpk is the definition field of elliptic

curves over Fp with the endomorphism ring OD as the j-invariants of
such elliptic curves E are the roots of PD(x).

Let Fpt be the (pt)th-power Frobenious endomorphism of E, i.e.

Fpt(x, y) = (xp
t
, yp

t
) for (x, y) ∈ E(Fp). Since the endomorphism ring

of E is isomorphic to the order OD, each endomorphism of E corre-
sponds to a number in OD. The following propositions give relations
between an nth embedding degree k and n.

Proposition 3.1. Let E, E[n], k, p be as above such that #E(Fp) is
divisible by n and n - p(p − 1). E[n] ⊆ E(Fpk) if and only if pk ≡ 1
mod n.
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Proof. See the proof of Proposition 5.9 in [8] or [1]. �

Proposition 3.2. Let the notations be the same as above. If E[n] ⊆
E(Fpk), then Fpk ≡ 1 mod nOD, where OD is the the endomorphism
ring of E.

Proof. Fpk ≡ 1 mod nO(D) means the pk
th

-power Frobenious Fpk

acts as the identity on the subgroup of n-torsions, that is Fpk(x, y) =

(xp
k
, yp

k
) = (x, y) for (x, y) ∈ E[n]. For more details see [6, Proposition

3.7] or [8, Section 10.4]. �

The following theorem shows that the embedding degree divides the
class number C(n2D), where D is the discriminant of the endomor-
phism ring of the elliptic curve.

Theorem 3.3. Let E, E[n], k, p be as above such that n - p(p − 1),
n is square-free and #E(Fp) = in for some integer i < n. Then the
nth embedding degree of E(Fp) is equal to the inertial degree of the
primes above p in the ring class field Kn2D of K. Consequently, the nth

embedding degree k of E divides the order of C(n2D).

Proof. Let b be pk + 1 − #E(Fpk). We first show that the following
equations

(3.1) 4pk = b2 − v2(n2D) for some integer v

and

(3.2) pk ≡ 1 mod n.

are equivalent.
Assume that (3.1) holds. Then we have

4pk ≡ (−#E(Fpk) + pk + 1)2 ≡ (pk + 1)2 mod n.

This is equivalent to the (3.2) as n is square-free. Now assume that
the equation (3.2) holds. By Proposition 3.1, k is an nth embedding
degree of E. By proposition 3.2, the element (Fpk − 1)/n belongs to
OD. Thus, Z[(Fpk − 1)/n] is a subring of OD. This implies that the
discriminant of Z[(Fpk − 1)/n] is equal to v2D for some integer v. A
simple computation shows that the the discriminant of Z[(Fpk − 1)/n]
is (b2 − 4pk)/n2, where b is equal to #E(Fpk) − (pk + 1). Thus, the
equation (3.1) holds.

By Proposition 3.1, the smallest positive integer k satisfying the
equation (3.1) is the nth embedding degree of E. Similarly, we know
that the smallest k satisfying the equation (3.1) gives the definition
field Fpk of an elliptic curve with the endomorphism ring On2D. Hence,
the inertial degree of the primes above p in the ring class field Kn2D is
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the smallest k satisfying the equation (3.1). This implies that the nth

embedding degree of E(Fp) is equal to the inertial degree of the primes
above p in the ring class field Kn2D.

Since the inertial degree divides the extension degree hn2D = [Kn2D :
K], the second result follows. �
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