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Visual tracking via temporally smooth sparse coding
Ting Liu, Gang Wang, Li Wang and Kap Luk Chan

Abstract—Sparse representation has been popular in visual
tracking recently for its robustness and accuracy. However,
for most conventional sparse coding based trackers, the target
candidates are considered independently between consecutive
frames. This paper shows that the temporal correlation of these
frames can be exploited to improve the performance of tracking
and makes the tracker more robust to noise. Furthermore, to
improve the tracking speed, we revisit a more efficient method
for `1 norm problem, marginal regression, which can solve
the sparse coding problem more efficiently. Consequently we
can realize real-time tracking based on the temporal smooth
sparse representation. Extensive experiments have been done to
demonstrate the effectiveness and efficiency of our method.

Index Terms—Sparse representation, marginal regression, tem-
poral smoothness, visual tracking.

I. INTRODUCTION

Visual tracking is an important technique in computer vision
with various applications such as security and surveillance,
human computer interaction and auto-control systems [1–3].
With the development of single object tracking method, most
of the tracking tasks in simple environment with slow motion
and slight occlusion can be solved well by current algorithms.
However, in more complicated situations more robust and
faster tracking methods are required to realize real-time and
accurate tracking.

Recently, the sparse representation has been approved to
be robust against partial occlusions [4–13], which leads to
improved tracking performance. However, the conventional
sparse coding based trackers treat the candidates independently
between consecutive frames. Apparently, the information of
neighbouring frames should be helpful for the stability of
tracking results, because the targets usually change slightly
between adjacent frames in the tracking sequences. We should
take advantage of the temporal correlation to enhance the
trackers. In this paper, we propose a temporally smooth sparse
coding method to model temporal correlation for tracking,
in the sparse coding framework. Furthermore, sparse coding
based trackers need to perform `1 minimization. Currently
most sparse coding based tracker [14–20] are using the Lasso
[21] to solve the `1 norm related problems which is computa-
tionally expensive, especially for tracking applications. Hence,
developing an efficient solver for the `1 minimization has been
a key to make the sparse coding based tracker useful.

Motivated by [18] and recent progress of marginal re-
gression which is a much older and computationally simpler
method, we propose a novel tracking algorithm, called Tempo-
ral smooth Tracker via Marginal Regression (TMRT), which
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explicitly considers the relationship of neighbouring frames
and take advantage of marginal regression to dramatically
improve the tracking speed. The experimental results show
that our tracker can achieve high speed and high accuracy.

II. TEMPORALLY SMOOTH TRACKING BASED ON SPARSE
REPRESENTATION

A. The basic sequential inference model

The visual tracking problem is usually carried out as an
inference task in a Markov model with hidden state variables.
Let xt denote the state variable describing the parameters of
an object at the time t (e.g. location or motion parameters)
and define Yt = [y1, y2, · · · , yt] as a set of observed video
frames. The optimal state x̂t is computed by the maximum a
posterior (MAP) estimation

x̂t = arg max
xi
t

p(xit |Yt ) (1)

where xit is the state of the i-th frame. Using Bayes’ theorem,
we have

p(xt|Yt) ∝ p(yt|xt)
∫
p(xt|xt−1)p(xt−1|Yt−1)dxt−1 (2)

The p(yt|xt) is the observation model.
The dynamics between states in this space is usually

modelled by the Brownian motion. Each parameter in xt is
modelled independently by a Gaussian distribution given its
counterpart in xt−1.

p(xt|xt−1) = N (xt, x1:t−1,Ψ) (3)

where Ψ is a diagonal covariance matrix whose elements are
the corresponding variances of affine parameters. The observa-
tion model p(yt|xt) denotes the likelihood of the observation
yt at state xt. p(yt|xt) is proportional to the similarity between
the candidate and the target.

B. Sparse representation in tracking

Our method is developed based on the sparse representation
method [18], hence we first give it a brief review. For the
dictionary construction, we have N target templates T =
[T1, T2, · · · , TN ]. Then M overlapped local image patches are
extracted from the target region of each template based on
a spacial layout. These local patches consist the dictionary,
D = [d1, d2, · · · , d(N×M)] ∈ RX×(N×M). Here X means
the dimension of the image patch vector. Each local patch
represents one fixed part of the target object. The target
candidates are also decomposed into a collection of local
patches, Y = [y1, y2, · · · , yM ] ∈ RX×M . The dictionary
captures the commonality of different templates and is able to
represent various forms of these parts. The target candidates



are represented by the patches from templates using sparse
codes. With the sparsity assumption, the local patches can
be represented as the linear combination of only a few basis
elements of the dictionary by solving

min
bi
‖yi −Dbi‖22 + λ‖bi‖1,

s.t. bi > 0
(4)

where bi ∈ R(N×M)×1 is the corresponding sparse code of
that local patch yi, and all the elements of bi are nonnegative.
Note β = [b1, b2, · · · , bM ] represents the sparse codes of
one candidate. The sparse coefficients of each local patch are
divided into several segments, according to the template that
each element of the vector corresponds to.

After obtaining the coefficients bi from Eq. 4, these seg-
mented coefficients are summed to obtain vi for the i-th
patch through

∑N
k=1 b

(k)
i . To improve the robustness of our

tracker, we take advantage of the structural relationship of the
local patches as in [18]. For the vector vi, each local patch
of the candidate is represented by the patches at the same
positions of the templates. Hence the feature is represented as
f = diag(V ). Based on II-A, the observation model p(yt |xt )

is proportioned to
M∑
k=1

fk. Refer to [18] for more details.

C. Temporally smooth tracking

As described above, the conventional sparse coding based
tracking methods infer bi independently. Obviously, in tracking
videos, neighbouring frames are presumably more related to
each other than frames that are farther apart. Hence, we
propose a mechanism to incorporate such feature similarity
and temporal information into the framework of sparse coding
tracking, leading to a sparse representation with an improved
tracking accuracy. We propose the formulation based on the
framework of sparse coding tracking methods.

min
btri

∥∥ytri −Dbtri∥∥22 + λ
∥∥btri∥∥1 + γ

∥∥btri − bt−1r∗i

∥∥2
2
, (5)

where ytri denotes the i-th local patch of the r-th candidate
at the frame t; btri is the corresponding sparse code at the
frame t; bt−1r∗i is the selected result from the frame t − 1.
The scalar γ controls the tradeoff between the temporal
smoothness and sparse constraint. Traditional sparse coding
trackers minimizes the reconstruction error of the encoded
samples. Our proposed method TMRT, on the other hand,
minimizes the reconstruction of encoded samples as well as
the difference between neighbouring frames. In the t-th frame,
we actually select a candidate whose sparse code is similar to
that of the previous frame’s result and has low reconstruction
error. As a result, our tracker can be more robust to noise at
individual frames.

Compared with traditional sparse based tracking methods,
we have an extra pairwise constraint term. Thus, it is difficult
to minimize directly. We adopt a two-step algorithm to solve
the optimization problem.

We first utilize marginal regression to solve the sparse
coding for each frame (II-D); then based on the obtained
sparse codes, we optimize the smooth part of the objective

function. The sparse codes btri for the t-th frame are calculated
by comparing the similarity with previous tracking results.
In the second step, in addition to the smooth constraint term∥∥btri − bt−1r∗i

∥∥2
2
, we also consider the reconstruction error ob-

tained from the first step. The reason is that in many situations,
such as heavy occlusion, if we ignore the reconstruction error,
the tracking results may drift to the occluded object which can
optimize

∥∥btri − bt−1r∗i

∥∥2
2
. Hence, we also consider the impact

of ‖ytri −Dbtri‖
2
2. In our experiments, when the value of

γ is between 10 to 50, we can get similar results. In our
experiments, we just simply set γ as 10.

Our method is illustrated with an example as shown in Fig.
1. There are two candidates (expressed as red and blue boxes)
at frame 167 and 168. The feature codes of the candidates
are shown on the right with corresponding colors. Without
temporal smoothness constraint, the regions in blue will be
considered as the target according to ASLA tracking method.
However, it will result in ”drifting” of the target. In fact, when
we consider the temporal smoothness between consecutive
frames, regions in red will be considered as the targets based
on the Eq. 5.

Because the computation of step two is simple, the main
time consuming part is solving sparse coding. Next we in-
troduce marginal regression to speedup the sparse coding
optimization.
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Fig. 1: Comparison of tracking performance obtained by
trackers without and with temporal smoothness constraint.
Because of the sparse coding noise, there is an apparent drift of
the blue boxes that are yielded from method without temporal
smoothness constraint. The red boxes are obtained from the
proposed method. By considering the temporal correlation, the
red features are more similar to neighbouring ones and red
boxes track the target more accurately.

D. Marginal regression for sparse solution

The speed of sparse coding based trackers is usually slow.
In the past, several methods have been proposed to improve
the speed, however it is still too slow for practical applica-
tions. Recently the Lasso [21, 22] is a popular tool for `1
optimization. Similar to other `1 optimization solutions, Lasso
has complicated operations. The gradient descent algorithms



and LARS algorithm [23] for Lasso require O(p3 + np2) op-
erations. To overcome this limitation, we show how marginal
regression can be used to obtain sparse codes faster.

Consider a regression model, Y = Dβ + z, where Y =
(Y1, Y2, · · · , Yn)T , D is a n × p design matrix, coefficients
β = (β1, β2, · · · , βp)T and z = (z1, z2, · · · , zn)T is the
noise variable. For sparse coding, the main problem is variable
selection: determining which components of β are non-zero.

Marginal regression [24] (also called correlation learning,
simple thresholding [25], and sure screening [26]) is an
efficient method for variable selection in which the outcome
variable is regressed on each covariate separately and the
resulting coefficient estimates are screened. To compute the
marginal regression estimates for sparse coding, we begin by
computing the marginal regression coefficients, assuming D
has been standardized, we calculate:

α̂ = DTY (6)

Then, we threshold α̂ using a parameter τ > 0:

β̂i =

{
α̂i |α̂i| > τ
0 otherwise

(7)

We sort these coefficient in terms of their absolute values, and
select the top largest coefficients whose `1 norm is bounded by
τ . The thresholding parameter τ is selected by cross validation.
In our experiments, we set τ as 0.8.

This procedure requires just O(np) operations. When p is
much larger than n, marginal regression provides two orders of
magnitude speedup over Lasso. This is a significant advantage
of marginal regression because it is now tractable for much
larger problems. [26] and [27] introduce more details about
the comparison of marginal regression and Lasso. Hence,
the marginal regression method improve the speed of the
tracker significantly by replacing the Lasso `1 optimization.
In addition, a template update scheme is adopted in [28] to
overcome pose and illumination changes.

III. EXPERIMENTS

To evaluate our proposed trackers, we compile a set of
22 challenging tracking sequences. Four of the sequences are
shown in Fig. 2. These videos are recorded in indoor and
outdoor environments and have variations of rotation, illu-
mination change, occlusion, etc. Besides the baseline tracker
ASLA [18], we also test the MRT tracker, which uses marginal
regression instead of Lasso for the baseline method. We
compared the proposed algorithms TMRT with nineteen state-
of-the-art visual trackers: Frag[29], BSBT [30], LOT [31], CT
[32], SMS [33], KMS [34], CPF [35], DFT [36], ORIA [37],
IVT [28], CSK [38], CXT [39], TLD [40], VTD [41],`1APG
[19], MTT [15], SCM [14], LSST [42], ASLA [18]. All our
experiments are performed using MATLAB R2012b on a 3.2
GHZ Intel Core i5 PC with 16 GB RAM. We resize the target
image patch to 32×32 pixels and extract 3×3 overlapped
local patches within the target region. For all experiments,
we set the number of particles as 600, the total number of
target templates as 10. For fair comparison, we use the source
codes provided by the authors. They were initialized using

their default parameters. For the IVT, `1APG, MTT, SCM,
LSST, ASLA and our proposed methods, we used the same
affine parameters (x, y translation, rotation angle, scale, etc.)
for each sequence in candidates sampling.

To assess the performance of the proposed tracker, two
criteria, the center location error as well as the overlap rate,
are employed in our paper. A smaller average error or a bigger
overlap rate means a more accurate result. Given the tracking
result of each frame RT and the corresponding ground truth
RG, we can get the overlap rate by the PASCAL VOC [43]
criterion, score = area(RT∩RG)

area(RT∪RG) . Table I and II report the
quantitative comparison results respectively.

We first compare the tracking accuracy of the proposed
TMRT tracker to that of the same tracker without smoothing
constraint (MRT). From Table I and II, we can see that our
tracker with temporal smoothing performs better than MRT
and ASLA. It proves that the marginal regression can obtain
similar convergence result for `1 norm problem compared with
Lasso; and the temporal smoothing gains extra accuracy com-
pared to conventional sparse coding based tracking methods.
As shown in the tables, the proposed tracker yields favorable
performance against other state-of-the-art methods.

We compare our method with other sparse coding based
trackers on speed. The computational cost of these methods
is huge due to the Lasso method or APG for `1 norm, even
though they employ the C language to improve the solution
speed as toolbox. Due to the inherent similarity between
these sparse coding based L1 tracker and the proposed tracker
(TMRT), we compare their average runtimes in Table III.
Based on the results, it is clear that our trackers TMRT is much
more efficient than the other sparse coding based L1 trackers.
Besides the mentioned sparse coding based L1 trackers, we
also test the speed of IVT, which is the baseline of most
particle filter based tracking methods. IVT can run at 16fps
in our computer. Our proposed method is only 1fps slower
than IVT, while getting much better performance with sparse
feature and temporal smoothness constraint.

TABLE III: Running speed comparison of several popular
sparse coding based L1 trackers

L1 `1apg MTT SCM ASLA LSST TMRT
0.1fps 1fps 2fps 0.5fps 1.5fps 5fps 15fps

We also plot the results of IVT, TLD, L1APG, CXT,
CSK, MTT, VTD, SCM, ASLA, LSST and TMRT trackers
in visualization comparison. Due to the pages limitation, we
only select four of 22 sequences for visualization and analysis.

In the david sequence, a moving face is tracked. The
tracking results are shown in Fig. 2(a). LSST fails at frames
402. L1APG, MTT and CSK start to drift around frame 467.
The other trackers track the moving face accurately.

As shown in Fig. 2(b), a stuffed animal is being moved
around on the Sylvser sequence. LSST, L1APG and IVT
trackers fail around frame 450, 597 and 928 respectively. Our
method track the target throughout the sequence.

In the Jumping sequence, the tracked object is subject to
fast location changes when the man is skipping rope. Most
methods fail to track the object when the man jump quickly.



(a) David (b) Sylvester

(c) Jumping (d) Freeman4

IVT TLD L1APG CXT CSK MTT VTD SCM ASLA LSST our

Fig. 2: Comparison of our approach with state-of-the-art trackers in challenging situations.

TABLE I: Average center location error (in pixels). The best three results are shown in red, blue, and green fonts.
Sequence FragT BSBT LOT CT SMS KMS CPF DFT ORIA IVT CSK CXT TLD VTD `1apg MTT SCM LSST ASLA MRT TMRT

Car4 179.8 57.7 165.6 229.7 140.2 52.9 38.7 61.9 237.4 2.9 19.1 49.5 18.8 12.3 16.4 37.2 3.8 2.9 4.3 4.5 2.7
Car11 63.9 8.1 30.8 78.0 88.9 30.3 43.8 21.6 26.8 2.1 3.2 15.9 25.1 27.1 1.7 1.8 1.8 1.6 2.0 2.1 1.3
David 76.7 20.9 23.9 12.8 25.1 20.3 26.7 27.5 23.3 3.6 17.6 6.0 9.7 13.6 10.8 13.4 3.4 4.3 3.6 3.7 3.4
Occ1 4.6 14.5 34.7 19.9 23.1 19.2 28.8 22.6 21.3 16.3 11.9 22.6 17.6 11.1 6.8 14.1 3.2 5.3 10.8 12.8 4.2
Occ2 15.5 15.6 14.9 12.8 29.3 28.9 21.0 7.9 5.5 10.2 5.9 6.3 18.6 10.4 6.3 9.2 4.8 3.1 3.8 4.3 4.0

Sylvester 15.0 14.7 11.3 8.6 17.8 18.1 12.8 44.9 9.3 34.2 9.9 14.8 10.5 19.6 26.2 7.5 8.0 69.6 14.6 13.1 7.2
Singer1 22.0 76.4 127.4 13.7 8.7 53.1 7.7 18.8 8.1 8.5 14.0 11.3 32.7 4.1 3.1 41.2 3.8 3.5 4.8 5.2 2.7

Skating1 144.2 57.9 110.5 150.4 230.1 89.7 118.3 168.3 69.6 19.3 7.8 129.7 96.0 9.3 101.5 219.2 16.3 17.8 6.0 5.9 5.6
Woman 111.9 33.2 117.1 113.6 97.6 13.9 83.8 9.5 212.2 167.5 207.3 72.5 47.9 118.5 128.9 137.3 7.9 118.5 2.8 3.6 2.5
Subway 15.8 81.0 4.7 11.1 139.1 117.0 80.1 13.5 120.1 130.8 159.5 129.1 79.9 141.3 145.2 157.1 3.5 117.9 63.5 68.9 3.5

Walking2 54.3 41.5 58.8 58.5 78.6 43.9 49.9 29.1 20.0 2.5 17.9 30.4 24.3 44.0 5.1 4.0 1.6 53.2 21.4 22.5 1.9
Caviar 94.2 79.6 43.9 65.5 11.1 19.3 20.9 89.1 76.6 66.2 69.1 72.6 53.0 60.9 68.6 67.5 2.2 3.1 2.3 2.2 2.0

Freeman4 47.3 46.7 38.6 93.0 105.9 36.0 62.0 57.5 54.5 43.0 64.7 65.2 39.2 60.8 22.1 23.5 37.7 72.3 45.5 46.7 3.5
Tiger1 74.0 64.0 111.4 29.9 45.8 69.6 37.3 19.0 87.0 93.2 50.4 45.4 49.5 102.3 58.4 59.1 75.4 86.3 55.9 52.2 18.0

Deer 50.4 27.5 65.2 10.5 78.6 43.8 79.6 98.7 149.2 127.5 5.0 6.7 25.7 11.9 38.4 9.2 36.8 10.0 8.0 7.9 4.2
Motorbike 196.7 41.8 24.9 187.1 136.1 54.4 211.0 20.2 7.1 7.7 6.5 159.6 195.2 9.8 8.3 7.1 10.6 132.2 9.7 10.2 4.9

Biker 76.4 96.6 65.2 21.1 14.1 95.2 74.4 122.6 83.5 17.6 27.3 83.0 78.3 13.2 71.8 29.2 99.8 47.3 19.0 20.1 13.1
Football 16.9 32.6 18.3 11.6 190.2 87.1 15.8 10.3 14.2 42.5 16.2 12.8 11.8 4.1 12.4 6.5 10.4 7.6 18.0 16.5 7.8
Jumping 58.4 33.5 5.6 53.0 37.4 84.2 56.1 65.6 76.1 36.8 49.1 7.0 3.6 63.0 8.8 19.2 3.9 4.8 39.1 42.3 4.5

Board 18.3 197.1 162.2 52.2 20.9 20.5 35.8 123.0 185.6 84.4 18.0 154.5 127.9 52.8 183.3 139.8 32.2 20.1 7.3 7.9 7.2
Surfer 22.8 40.0 14.8 17.2 15.5 19.8 25.2 42.2 48.7 84.3 157.5 14.9 25.5 33.9 56.8 30.2 62.1 146.9 51.9 50.6 9.2

Shaking 192.1 66.6 82.6 80.0 38.7 59.2 80.7 26.3 28.4 85.7 17.2 29.2 37.1 9.5 79.8 9.2 11.1 102.6 22.1 21.0 8.5

TABLE II: Average overlap rate(%). The best three results are shown in red, blue, and green fonts.
Sequence FragT BSBT LOT CT SMS KMS CPF DFT ORIA IVT CSK CXT TLD VTD `1apg MTT SCM LSST ASLA MRT TMRT

Car4 22 21 4 28 5 27 19 25 23 92 47 31 64 73 70 53 89 92 89 89 92
Car11 9 43 42 23 2 36 8 38 38 81 76 57 38 43 83 58 79 84 81 82 85
David 19 39 27 56 24 38 14 30 43 72 41 65 60 53 63 53 75 75 79 79 82
Ooc1 90 77 41 74 58 72 53 69 64 85 79 63 65 77 87 79 93 89 83 82 92
Occ2 60 64 46 68 8 46 42 77 72 59 78 74 49 59 70 72 82 86 82 81 83

Sylvester 58 57 57 68 7 47 56 38 65 52 63 60 67 62 40 65 69 28 59 60 65
Singer1 34 21 19 34 54 32 45 36 65 66 36 49 41 79 83 32 85 80 81 83 87

Skating1 13 16 26 9 4 31 19 14 22 34 50 14 19 53 10 10 47 34 42 45 57
Woman 15 19 9 13 6 57 7 76 15 19 19 20 13 14 16 16 66 78 78 79 82
Subway 46 17 56 57 18 15 12 73 17 17 19 18 18 16 16 7 72 15 19 21 67

Walking2 27 26 34 27 31 27 32 40 45 79 46 37 31 33 76 79 82 34 37 36 81
Caviar 19 14 25 33 56 42 32 14 19 21 19 19 21 19 13 14 87 85 84 85 89

Freeman4 14 15 16 0 2 3 5 17 20 15 13 17 22 16 34 22 26 13 13 36 62
Tiger 26 22 14 41 39 39 39 53 13 10 26 32 38 12 31 26 16 27 29 35 60
Deer 8 40 21 60 10 41 12 25 4 22 73 70 41 58 45 60 46 58 62 63 74

Motorbike 13 30 58 14 11 49 11 30 65 73 71 23 20 70 73 74 67 26 72 71 74
Biker 21 26 44 46 46 25 36 25 38 64 50 42 23 63 34 42 35 36 55 56 67

Football 57 29 65 46 2 8 64 65 51 55 55 54 56 81 68 71 69 69 57 51 70
Jumping 14 15 58 7 9 10 10 11 9 28 5 52 69 8 59 30 73 65 24 56 71

Board 67 10 19 45 52 65 55 31 13 33 67 17 20 47 16 19 63 40 74 73 82
Surfer 39 30 49 52 50 49 35 35 21 23 25 49 45 38 18 40 25 19 37 38 60

Shaking 8 11 13 20 25 23 12 63 44 30 57 12 39 70 28 69 68 42 46 50 75

LSST and TMRT methods can track the object quite well.
In the Freeman4 sequence, the target person move around a

classroom while the other students are waving papers ahead.
Initially, SCM, TLD, L1APG, VTD and our tracker succeed
to recover from the heavy occlusion. After frame 204, only
our TMRT tracker tracks the man successfully.

IV. CONCLUSION

In summary, based on the framework of the sparse based
trackers [16–18], we developed a real time temporal smooth
visual tracker with improved tracking performance. The pro-
posed tracker utilizes information among consecutive frames
to improve the tracking accuracy and employs marginal re-

gression to speedup the tracking speed significantly. Extensive
experiments on real-world video sequences have been done to
validate the high computational efficiency and better accuracy
of the TMRT method.
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