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Abstract 

Ground surface settlement trough associated to tunneling is characterized by two 

important parameters: the maximum surface settlement at the point above the tunnel 

centerline (Smax) and the width parameter (i) which is defined as the distance from the 

tunnel centerline to the inflection point of the trough. The estimation of these 

settlement parameters is a very complex problem due to uncertain nature of the soil. 

Over the years, many methods have been proposed to predict the tunneling-induced 

settlements. Most of these methods are empirical in nature. However, a method with 

high degree of accuracy and consistency has not yet been developed. Accurate 

prediction of settlement is essential since settlement is the governing factor in the 

design process of the tunnels. In this research, the use of artificial neural network 

(ANN) for the prediction of maximum surface settlement and trough width is explored. 

The ability of ANNs to learn from examples and generalize beyond the training data 

has made it a potential alternative tool for the settlements prediction. ANNs are 

numerical modeling techniques that are inspired by the functioning of the human brain 

and nerve system. ANNs have been used successfully to solve many problems in the 

field of geotechnical engineering and some of their applications are demonstrated in 

this report. 

In this research, two main analyses have been performed. In the first main analysis, the 

feasibility of using artificial neural networks to predict the maximum settlements due to 

tunneling was investigated. A total of 158 case records collected from contracts NEL 

C705, Marina Line C825 and Circle Line C823 are used to develop and verify the ANN 
models. Eleven input parameters considered to have significant impact on the 

settlement are used in the initial analysis of the ANN models. These include cover, 

advance rate, earth pressure, average SPT blow count of the soil layers above tunnel 

crown (SPT1), average SPT blow count at tunnel springline level (SPT2), average SPT 

blow count at tunnel inverted level (SPT3), bulk density of soil, stiffness of soil, 
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ground water level, moisture content and grout pressure. Thirty two network models 

are developed from the combinations of these eleven parameters. The type of ANNs 

used is multi-layer perceptrons(MLPs) trained using the back-propagation algorithm. 

The results of the analysis show that the network model with eight input parameters 

(soil cover, advance rate, earth pressure, SPT1, SPT2, moisture content, stiffness and 

grout pressure) and eight hidden neuron is optimum. The effect of network parameters 

including momentum, learning rate, and transfer function on the performance of the 

model is investigated as well. In this research, the use of self-organizing map and 

fuzzy clustering as alternative data division methods is examined and the results are 

compared with those obtained using statistical consistent method. The performance of 

optimum ANN model is compared with the commonly used empirical method. It was 

found that ANN model can predict the settlement with relatively high degree of 

accuracy, whereas the empirical method underestimates the settlements with respect to 

all case records in the validation set. This shows that ANN method outperforms the 

empirical method and thus it can be used as an effective tool to obtain more accurate 

prediction of tunneling-induced maximum settlements. 

In the second main analysis, neural network models were developed for the prediction 

of maximum settlements and trough width using the data generated from the finite 

element software PLAXIS. PLAXIS is commonly used for geotechnical applications in 

which soil models are used to simulate the soil behavior. A total of 2161 patterns were 

generated from the combinations of six input parameters, namely coefficient of earth 

pressure (K0),  bulk density (γ), cohesion (c), ratio of stiffness over cohesion (E/c), ratio 

of depth over diameter (H/D), and volume loss (VL). Patterns which produce failed 

results were discarded; hence leaving 1836 patterns for the analysis. Two cases of 

network training are considered in the analysis. In the first case, network models are 

developed using three statistically consistent data sets i.e. training, testing and 

validation. In the second case, the input data is divided into training and testing sets 

only. For each case, two types of network models were developed. The first model has 

two output neurons where the predictions of Smax and trough width (i) can be carried 
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out simultaneously. The second model is the networks with one output neuron which 

predict Smax and (i) separately. The analysis indicated that two separate networks 

performed better than the single network used to predict Smax and (i) simultaneously as 

shown by higher correlation coefficients and lower error rates when the two networks 

are used. The use of faster training algorithms to improve the accuracy of the network 

is investigated and the results are compared with the result of standard gradient descent 

method. The optimum network models from the two cases of training and the optimum 

network trained using gradient descent method are retained and validated using a set of 

field data to examine the generalization ability. The field data were collected from 

contracts C823 Circle Line and C825 Marina Line. The validation results shows that 

ANN models are optimal and they can be used as an effective tool to obtain more 

accurate prediction of maximum settlements and trough widths in the field. 
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Chapter I Introduction 

Chapter 1 
Introduction 

1.1 Background 

The use of underground space has become more and more important throughout the 

world. Today, besides for supply lines of gas, water, electricity, telecommunications 

and disposal lines, the ground also provides space for transport tunnels for rail 

commuter traffic, long-distance trains, motor vehicles and pedestrians. In large cities, 

big structures such as four or five-storey administrative building, subterranean 

shopping malls, storage rooms, covered watercourses, production halls, offices, and 

sports facilities are also set up underground. Tunnels for roads and railways are key 

infrastructures in transport development that provide important impulses for the 

economic power of a region or a nation (Haack 2000). In many countries, the 

construction of transport tunnels and subsurface construction in general has reached a 

high standard. Cities in Europe, such as London, Paris, Budapest, Hamburg, Berlin 

have built and developed underground metros, urban railways or rapid transport system 

for the past 30 to 40 years. Similar is the situation in Japan, Taiwan, South Korea as 

well as other countries in the world. 

In a country like Singapore, going underground for infrastructural works becomes 

increasingly a necessity due to high population density and limited land area. Other 

advantages include saving up the surface for better use, direct saving of energy, 

protecting against natural disasters and decreasing the maintenance cost (Lathauwer 

1992). Numerous tunneling activities have been carried out extensively in Singapore 

for the past two decades. Before 1982, the tunneling works had been carried out to 

some limited extent. In 1983, a 3.7 m diameter tunnel approximately 3 km long was 

constructed using earth pressure balance machine (EPBM) to accommodate a 3.3 m 

1 
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Chapter 1 Introduction 

diameter sewage pipeline. The first major use of tunnels was the construction of the 

MRT railway through the densely developed central areas of Singapore city 

commencing in 1983. The MRT network has been expanding ever since. The latest 

major developments are the Changi Airport Line and the Northeast Line, with 17 

underground stations, which made up a total of 23.5 km of bored tunnels. Tunneling for 

the Deep Tunnel Sewerage System has commenced in year 2001 with a total of 

approximately 48 km of main tunnels and many subsidiary link tunnels. Other 

developments include the tunnels for the Marina Line MRT, the Cable Tunnels, Deep 

Tunnel Sewerage Scheme (Phase 2), Circle Line, Kallang expressway and future 

underground caverns. 

Ground movements and consequential surface settlements associated to tunneling 

are major concern in the design of tunnels in urban areas. This is mainly due to the 

damage that ground movements may cause to overlying and nearby building and 

services. An engineer in charge of tunnel design must be able to estimate settlement 

distribution along the tunnel route so that he can identify in advance options to 

minimize the damage to nearby structures. Several options are re-specifying the 

excavation and/or lining technique to reduce those settlements, rerouting the tunnel 

away from ‘sensitive’ buildings or buried services, using injection techniques or 

freezing to stabilize pockets of weak ground on the original route, protecting the 

existing building by underpinning the foundations, relocating buried pipelines, which is 

an expensive option (Attewell 1977). Hence ground surface settlement prediction is 

very essential to assess the effects of the tunnel construction on existing structures, 

design of the tunnels, and method of tunneling. 

In the early stage of design, estimate of ground surface settlement can be obtained 

using simple empirical formulas, such as those proposed by Peck (1969)’ 

Attewell( 1977)’ Attewell and Woodman (1982), O’Reilly and New(1982), and Mair et 

a1 (1993). Simple equations based on the theory of elasticity (Uriel and Sagaseta 1989) 

may also be used. For the final design, a more accurate method such as finite difference 

2 
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Chapter I Introduction 

or finite element is required (Rowe and Lee 1992). In this project, a neural-network 

based approach is used to analyze and predict settlement due to tunneling. Over the 

years, Artificial Neural Network (ANN) has been widely used in many fields to predict 

certain output given input values. Selection of the best stocks in the market, weather 

prediction, identification of people with cancer risk are some tasks that have been 

carried out successfully using the network of prediction. One advantage of ANN is its 

capability to establish the non-linear relationship between a set of input variables and 

the corresponding output without a need for predefined mathematical equations. In 

geotechnical field, relationships between input and output in most problems are often 

difficult to model as we are dealing with unpredictable behavior of the soil. In this 

situation, the problems are normally solved using empirical formulae. The above 

advantage makes ANN a powerful alternative to solve highly non-linear and complex 

geotechnical problems, particularly for engineering predictions. 

1.2 Objectives and Scope of study 

The main objective of this research is to study the feasibility of using ANN method for 

predicting the maximum ground surface settlement and settlement trough width 

induced by tunneling. To achieve the main objective, two main analyses are carried out 

in the project. In the first main analysis, the feasibility of using artificial neural 

networks to predict the maximum settlements due to tunneling was investigated. In the 

second main analysis, neural network models were developed for the prediction of 

maximum surface settlement and trough width. 

The works in the first main analysis include the following aspects: 

1. Developing neural network models using the input and output data collected 

from site offices and Land Transport Authority database. The input data were 

analyzed and preprocessed so as to produce the relevant inputs required for 

training, testing, and validation. The neural network models were tested in order 

to obtain the optimum network model. 
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2. 

3. 

4. 

5 .  

6 .  

7. 

Conducting a sensitivity study on the effect of network parameters including 

number of hidden neurons, learning rate, momentum, and transfer function on 

the network performance so as to obtain optimum network architecture. 

Investigating the effect of using other faster training algorithms on the accuracy 

of the optimum network and comparing the result with gradient-descent 

method. 

Studying the effect of several data division methods and comparing the result 

with the commonly used statistically consistent method. 

Conducting sensitivity analysis in order to identify which of the input variables 

have the most significant impact on settlement predictions. 

Comparing the settlement predictions from the neural network and conventional 

methods with the actual settlements. 

Proposing a simplified neural network model suitable for initial prediction of 

maximum surface settlements when only basic soil properties are known. 

In the second main analysis the following aspects are covered: 

Generating the relevant input and output data from finite element software for 

the training of neural network model. 

Evaluating the effect of two stopping techniques (using three sets and two sets 

of data) on the performance of the network. 

Investigating the performance of network models with two output neurons for 

simultaneous predictions of maximum surface settlement and trough width and 

comparing the results with two independent networks whereby one is to predict 

maximum surface settlement and the other to predict trough width. 

Examining the use of faster training algorithm and variation of the hidden 

neuron number so as to obtain optimum network model. 

Validating the reliability of optimum networks for the predictions of maximum 

surface settlement and trough width by testing with field data. 
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1.3 Layout of the report 

In Chapter 2, issues related to the main structure and operation of A N N s  are discussed. 

This includes layers of units, activation functions and learning rule. The popular back 

propagation algorithm used in this project with its limitations is described. Several 

faster training algorithms and their comparison with back propagation algorithm are 

briefly presented. In Chapter 3, applications of A " s  in the field of Geotechnical 

Engineering are reviewed to demonstrate the relative success of A N N s  in this field. 

In Chapter 4, the empirical method generally used to predict tunneling-induced 

settlements is described. This method requires the computations of few parameters 

namely maximum surface settlement, inflection point of settlement trough and ground 

loss. The mechanisms of soil settlement induced by tunneling are presented. In Chapter 

5, more details of Contract C705 Northeast Line, C823 and C825 Circle Line were 

given including geological section and bored tunnel construction. The input data for 

this project were collected from site offices of the three projects. 

In Chapter 6,  the analysis of neural network models is presented. The database used to 

develop ANN models is the combination of field data from contracts C705, (2823, and 

C825. The performance of several softwares is assessed and the most accurate one is 

selected for the ANN analysis. The potential factors, which may have significant effect 

on the settlement, are highlighted. Data division, pre-processing of data, model 

architecture and stopping criteria for the initial phase of the analysis are discussed. 

ANN models with different input combinations are investigated in order to obtain the 

optimum input combinations. The network model with the best input combinations 

(referred to as ANN model) is used throughout the remaining analysis. The effect of 

learning rate, number of hidden nodes, momentum term, and transfer fimctions on the 

accuracy of ANN model is examined. The performance of ANN model using various 

training algorithms is measured and the best algorithm is used for ANN model. Three 

data division methods for the development of ANN models are presented and the 
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results obtained using each method are compared and evaluated. The relative 

importance of the input factors affecting settlement is investigated. A comparison of 

the results obtained using ANN model and the most commonly used empirical method 

is presented. An alternative model of ANN which can give quick predictions of 

settlements is proposed. 

In Chapter 7, the neural network models are developed using the input generated from 

finite element program PLAXIS. The outputs of the models consist of maximum 

surface settlement (SmJ and trough width (i). Two cases of training are considered, 

namely training using three data sets and two data sets. For each case, two types of 

network are tested, namely network with two outputs neuron and network with one 

output neuron. The former is used to predict both SmaX and (i) simultaneously, while the 

later is used to predict Smax and (i) separately. The use of faster training algorithms to 

improve the accuracy of the network is investigated and the results are compared with 

the result of standard gradient descent method. The best network models are retained 

and validated using the field data to examine the generalization ability. 

In Chapter 8, the research work is summarized and conclusions are presented. 

Recommendations for future works are given as well. 
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Chapter 2 
Artificial Neural Networks 

2.1 Introduction 

Artificial neural networks are composed of simple elements operating in parallel, which 

are designed to simulate the behavior of biological neural networks for several 

purposes. These include pattern recognition, identification, classification, speech, 

vision and control systems. The surge of interest in neural networks is mainly based on 

the wish to build machines that are capable of performing complex tasks for which the 

programmable computers invented by von Neumann (1946) are not suitable. The 

research in the field of artificial neural networks has started ever since the general 

theory of information processing based on the so-called neurons was proposed in 1943 

by McCulloch and Pitts. In the 1950’s, several neural network models such as the 

perceptron (Rosenblatt 1962) and Adaline (Widrow and Hoff 1960) were invented. Due 

to the failure of perceptrons to be successfully applied to more complex sets, the 

research in the field of artificial neural networks almost stopped around 1970. The 

interest in neural networks was revived with the discovery of the so-called back- 

propagation algorithm by Rumelhart et al. (1986). Today, the neural networks have 

been rapidly developed through extensive research that they have been applied in 

many important areas such as business, aerospace, automotive, banking, defense, 

electronics, entertainment, industrial, medical, securities, telecommunications, and 

transportation. 

The architecture of neural networks is originally inspired by that of the human brain. 

The human brain forms a massive communication network, consisting of billions of 

nerve cells, also known as neurons (Figure 2.1). The neuron receives incoming 

7 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 2 ArtiJicial Neural Networks 

impulses via the dendrites and the impulses are transmitted via the axon and synapses 

to other neurons. 

Figure 2.1: Sketch of a biological neuron (after Tsoukalas and Uhrig, 1997) 

2.2 Structure and Operation of Artificial Neural Networks 

The first modeling of neurons was carried out by McCulloch and Pitts in 1940s. They 

proposed the model of a synthetic neuron with its inputs and outputs are Boolean 

values. In neural network, a synthetic neuron is also called a processing element (PE), a 

unit, or a node. The schematic diagram of a processing element is shown in Figure 2.2. 

Each PE receives inputs from other PES, performs a weighted summation, applies an 

activation function to the weighted sum, and outputs its results to other neurons in the 

network (Sundararajan and Saratchandran, 1998). 
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. 

Figure 2.2: A processing element of ANN and its operation (Anderson and McNeil, 1992) 

2.2.1 Layers of units 

Units, PES, or nodes are usually arranged in layers, each layer consisting of at least one 

neuron. A single-layer neural network in which there is no hidden layer is the 

characteristic of the simple perceptron model. Multi-layer feed-forward neural 

networks consist of multiple layers of neurons with input, hidden, and output layers 

(Figure 2.3). Each layer other than input layer, receives their inputs only from all 

neurons in the previous layer and from one bias signal source. Bias or threshold is a 

value that the summation of the input signals must exceed before it can be transmitted 

( Weijters and Hoppenbrouwers 1995). A two layer feed forward network (only one 

hidden layer) has been used in most applications. 

9 
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U 

Inputs Hidden layer outputs 

Figure 2.3: Structure of a Multi-Layer Feedforward ANN 

2.2.2 Activation functions 

The net input of units in neural networks is transformed by using a scalar-to-scalar 

function called an "activation function" to yield unit's activation value. The activation 

value is then fed via synaptic connections to one or more other units. The activation 

functions or transfer functions are very essential to introduce the nonlinearity to the 

network. Without nonlinearity, hidden units would not make nets more powerful than 

just plain perceptrons (which do not have any hidden units, just input and output units) 

(Sarle 2002). The nonlinearity will make the network able to represent nonlinear 

functions and this is why multilayer networks can be so powerful. Three commonly 

used activation functions are logistic, tanh, and linear activation functions. 

Linear activation function: 

y=D*x 

where x is the input to the neuron, y is the final value of the neuron and usually D = 1. 

10 
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Figure 2.4: Linear transfer function 

Most functions are difficult to approximate using linear function, hence nonlinear 

hnctions such as logistic and tanh are used. Nonlinear activation hnctions are used in 

most backpropagation networks because they are differentiable. 

The standard sigmoid (or logistic) runs from 0 to 1 and it is: 

y = l / ( l  +exp(-x)) 

Figure 2.5: Log-Sigmoid transfer function 

The function tanh has outputs in the range -1 to 1 and can be written as: 

y =  2 / (1 + exp (-2 * x)) - 1 
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Figure 2.6: Tan-Sigmoid transfer function 

Jordan (1995) stated that the logistic function is an excellent choice for binary (O/l) 

targets. Since its values are centered around 0, using tanh will result in faster training 

(Brown et. al, 1993). However, experiments by Tveter (1998) show that sometimes 

tanh is better but sometimes it is not. The backpropagation networks with linear output 

units and a single layer of non-polynomial hidden layer units can represent closely 

most reasonable functions (Leshno et al. 1993). Other transfer functions include 

Gaussian function, hard-limit transfer function, radial basis function, triangular basis 

function, softmax transfer hnction, satlin transfer function. 

2.2.3 Learning Rule 

Learning paradigm or learning rule is a procedure for modifying the weights and biases 

of a network. The neural network learns to solve a problem as its weights changes. Two 

learning rules commonly used are supervised learning and unsupervised learning. In 

supervised learning, the network is fed with the inputs and the resulting outputs are 

compared against the desired outputs. Errors are then propagated back through the 

system, causing the system to adjust the weights which control the network. This 

process is repeated over and over until the minimum error or desired accuracy is 

reached. In unsupervised training, the network is provided with inputs but not with 

desired outputs. The hidden neurons must find a way to organize themselves without 

help from the outside. Unsupervised learning is more representative of a real life 
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learning where the input-output sets do not exist. Kohonen (1 995) developed a network 

known as self-organizing map using this learning method. It is sometimes called an 

auto-associator, which learns without the benefit of knowing the right answer. 

Clustering operations, where the input patterns are categorized into a finite number of 

classes, are performed mostly using unsupervised learning. An example of such 

application is vector quantization. 

Several mathematical algorithms are used to update the connection weights and biases 

during network training. Hebb (1949) introduced the first learning rule later best known 

as Hebb’s rule. According to this rule, if a neuron receives an input from another 

neuron, and if both are highly active (mathematically have the same sign), the weight 

between the neurons should be strengthened. Hebb’s rule forms the foundation of later 

learning laws such as Hopfield Law and the popular Delta Rule. Developed by Widrow 

and Hoff (1960), the delta rule formed the basic concept of the well-known neural 

network type called Feed forward, Back-propagation. 

2.3 Backpropagation 

Since the publication of the Parallel Distributed Processing volumes by Rumelhart et al. 

in 1986, learning by backpropagation has become the most popular method of training 

neural networks. This is due to the relative power and the underlying simplicity of the 

algorithm. It is p o w e h l  because, unlike its precursors, the perceptron learning rule and 

the Widrow-Hoff learning rule, it can be employed for training nonlinear networks of 

arbitrary connectivity (Rumelhart et al. 1995). It is simple because the basic idea is to 

define an error function and use gradient descent to find a set of weights which 

optimize performance on a particular task (Rumelhart et al. 1995). In fact, 

backpropagation is little more than an extremely judicious application of the chain rule 

and gradient descent (le Cun 1988). It is a straightforward but elegant application of the 

chain rule of elementary calculus (Werbos 1994). The name backpropagation actually 

comes from the term used by Rosenblatt (1962) for his effort to generalize the 
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perceptron learning algorithm to the multilayer case. Unlike simple delta rule or the 

perceptron rule, which can be used for a single layer network only, backpropagation 

learning rule is mostly used in multilayer networks. The typical back-propagation 

network has an input layer, an output layer, and at least one hidden layer, as shown in 

Figure 2.7. 

connectlons connections 

output input hidden 
layer layer layer 

""i 

output 1 

owJ12 

"I 
output 

Figure 2.7: The typical back-propagation network structure 

The network most commonly used with the backpropagation algorithm is the 

multilayer feedforward network. As mentioned previously, each input to the network is 

multiplied by respective weight and the weighted sum of the inputs and the bias are 

then fed to the transfer functions (0 to generate the output. Any differentiable function 

can be used as transfer function. The most commonly used functions for 

backpropagation are log-sigmoid and tan-sigmoid transfer functions 
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2.3.1 The Back Propagation Rule 

In a multilayer feed-forward network with backpropagation learning, the objective is to 

find a set of weights that minimizes the network error function. Backpropagation rule is 

based on the idea of continuously modifying the strengths of the input connections to 

reduce the difference (the delta) between the desired output value and the actual output 

of a neuron. The connection weights are adjusted to minimize the error of the network. 

The error is back propagated into previous layers one layer at a time. The process of 

back-propagating the network errors continues until the first layer is reached. The main 

steps to train the network with backpropagation are as follows (Freeman and Skapura 

199 1): 

1. 

2. 

3. 

4. 

5 .  

6.  

Apply an input vector to the network and calculate the corresponding output 

values. 

Compare the actual outputs with the correct outputs and determine a measure of 

the error. 

Determine in which direction (+ or -) to change each weight in order to reduce 

the error. 

Determine the amount by which to change each weight. 

Apply the corrections to the weights. 

Repeat items 1 through 5 with all the training vectors until the error for all 

vectors in the training set is reduced to an acceptable value. 

Saratchandran and Sundararajan (1 998) divided the backpropagation learning phase 

into a forward phase and a backward phase. Forward phase starts from initializing the 

weights to calculating the actual outputs. Based on the difference between actual and 

desired outputs (error), weights are adjusted to reduce the difference; this is the 

backward phase. Details of the two phases during training for a single training-vector 

pair are given in the following sections. 
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Forward Phase 

The input vector X = (XI, x2, ..., XNi)T is multiplied by the hidden layer weight matrix w h  

to obtain the net-input values to the hidden layer units (Eq. 2.1). The net-input values 

are passed through activation hnctions to produce outputs from the hidden layer (Eq. 

2.2). Equation 2.1 is applied to these outputs again to calculate the net-input values to 

each unit in the output layer (Equation 2.3). The net-input values are fed to output 

activation functions to obtain actual outputs. (Eq. 2.4). 

where: whji is the weight connecting input unit i to unit j in the hidden neuron layer, 

function f is a nonlinear activation function, wo,&j is the weight connecting hidden unit j 

to unit k in the output neuron layer, Ni is the number of neurons in input layer, Nj is the 

number of neuron in hidden layer, bj and b k  are the bias term of the unit in the hidden 

and output layer. The indices i, j, and k are used to denote the input, hidden, and output 

neuron layers, respectively. 

Backward Phase 

The actual output and the desired output are compared and the difference (error) is used 

to adapt the weights to reduce the overall error measure E for a training set of P 

patterns. The error measure E, for a training pattern p is the sum of the squared errors 

of the actual output and desired output of the neurons in the output layer (Eq. 2.5). 
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L k=l 

where dp,k and yp,o,kare the desired output and the output of the neuron in output layer 

for training pattern p respectively, No is the number of neurons in output layer. 

The overall error measure for a training set of P patterns is: 

P 
E =  C E P  

p=l 

In the following expressions, the pattern index p has been omitted on all variables to 

improve clarity. The error terms 6 for the output units and hidden units can be shown to 

be (Rumelhart et al. 1986): 

If learning by epoch is applied, changes of weight on the output layer and hidden layer 

are: 

Awo,kj = q  &o,k Yh,j (2.9) 

AWh,ji "1 &h,j  xi (2.10) 

where q is the learning rate coefficient. The output layer weights and hidden layer 

weights are updated accordingly. 

(2.1 1) 

(2.12) 
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The method used for finding the correct weight changes (Aw) is known as gradient 

descent. Henseler (1995) explained this method as follow. If E is considered as a 

hnction of weights (wl,. . .,wn), then the gradient of E with respect to w denotes the 

slope of the “error-surface”. By descending this surface downhill, i.e., in the direction 

of the negative gradient, we will finally reach at the bottom of the surface. At that point 

the error can no longer be decreased and the procedure finishes. Details of the 

backpropagation learning rule are described in Rumelhart et al. (1 986). 

Momentum 

Typical characteristic for many gradient descent methods is its slow convergence. 

Hence, efforts have been made to speed up the learning process of back propagation. 

One method is to include the momentum term in the back propagation learning rule. 

Imagine a ball rolling down a hill. As it does so, it gains momentum, so that its speed 

increases and it becomes more difficult to stop. Similar is the hnction of momentum 

term. A little of the previous iteration’s weight changes are added to the weight 

changes for the current iteration. How small to make the additional changes is 

controlled by a parameter ct called the momentum, which is set to a value between 0 

and 1. The weight changes on the output layer then become: 

Where p is the training pattern index and a is the momentum term. The weights are 

then updated 

w 0,kj7(p+1) = wo,kj (p) + Awo,kj @+I) 

The equations for updating of the hidden weights can be derived in the sam 

(2.13) 

manner. 

Here, delta weight equation (Aw) is modified so that a portion of the previous delta 

weight is fed to the current delta weight. Hagan et al. (1996) stated that momentum 

allows a network to respond not only to the local gradient, but also to recent trends in 

18 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 2 Artificial Neural Networks 

the error surface. Acting like a low-pass filter, momentum allows the network to ignore 

small features in the error surface. Without momentum a network may get stuck in a 

shallow local minimum. With momentum a network can slide through such a minimum. 

If momentum is used, the learning rate can be increased without leading to oscillation. 

Higher learning rate means more rapid learning as the changes in the weights become 

larger. 

Faster Training Algorithms 

The commonly used backpropagation training algorithm, gradient descent with 

momentum, is often too slow for practical problems. Attempts have been made to 

discover new training algorithms which can converge faster than the algorithms 

discussed above. From the analysis of standard descent algorithm, two more techniques 

are developed, namely variable learning rate backpropagation and resilient 

backpropagation. Other high performance algorithms are derived from the standard 

numerical optimization techniques. Three types of numerical optimization techniques 

for neural network training are conjugate gradient, quasi-Newton, and Levenberg- 

Marquardt. 

1. Variable learning rate backpropagation 

With gradient descent method, the learning rate is held constant throughout training. 

The chosen learning rate may not be the optimal one as it is unlikely to determine the 

optimal learning rate before training. Too high learning rate will cause the algorithm to 

oscillate and become unstable. Too small learning rate will cause the algorithm to 

converge very slowly. In fact, the optimal learning rate changes during the training 

process, as the algorithm moves across the performance surface. Variable learning rate 

backpropagation allows the learning rate to change during the training process. This 

will improve the Performance of gradient descent algorithm as the learning rate is made 

responsive to the complexity of the local error surface. 
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2. Resilient backpropagation 

The problem of using logistic transfer function is that the slope approaches zero when 

the input gets large. As a result, the gradient can be very small and this causes small 

changes in the weights and biases. Yet the weights and biases are still far from their 

optimal values. Resilient backpropagation technique tackles this problem by taking 

only the sign of the derivative to determine the direction of the weight update. The 

magnitude of the derivative plays no role on the weight update. Instead, a factor is used 

to update the value for each weight and bias. The update value is increased by the 

factor whenever the derivative of the performance hnction with respect to that weight 

has the same sign for two successive iterations. The update value is decreased by the 

factor whenever the derivative with respect to that weight changes sign from the 

previous iteration. 

3. Conjugate gradient 

In backpropagation, the performance function (error) decreases most rapidly in the 

steepest descent direction (negative of the gradient). However, this does not mean that 

the fastest convergence is already achieved. In standard gradient descent method, the 

length of the weight update (step size) is determined by learning rate and thereby a 

constant. In the conjugate gradient algorithms, a search is made along the conjugate 

gradient direction to determine the step size, which minimizes the performance 

function along that line. All of the conjugate gradient algorithms start out by searching 

in the steepest descent direction (negative of the gradient) on the first iteration. Then 

the next search direction is determined so that it is conjugate to previous search 

directions. The general procedure for determining the new search direction is to 

combine the new steepest descent direction with the previous search direction. The step 

size is adjusted at each iteration; this produces generally faster convergence. There are 

four different variations of conjugate gradient algorithms namely Fletcher-Reeves 

update, Polak-RibiCre update, Powell-Beale restarts, and Scaled Conjugate Gradient. 
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4. Quasi-Newton Algorithm 

Newton's method is used to update values of the weights and biases. This algorithm 

often converges faster than conjugate gradient methods. The most successful quasi- 

Newton method is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update. Since 

the BFGS algorithm requires more storage and computation in each iteration than the 

conjugate gradient algorithms, there is need for a secant approximation with smaller 

storage and computation requirements. The one step secant (OSS) method is an attempt 

to bridge the gap between the conjugate gradient algorithms and the quasi-Newton 

(secant) algorithms. It can be considered a compromise between full quasi-Newton 

algorithms and conjugate gradient algorithms. 

5. Levenberg-Marquardt 

The Levenberg-Marquardt algorithm is a general nonlinear downhill minimisation 

algorithm for the case when derivatives of the objective function are known 

(McLauchlan, 2002). It is derived from further modification of Newton's method 

where it dynamically combines Gauss-Newton and gradient-descent iterations. This 

algorithm ensures that the performance function will always be reduced at each 

iteration. Levenberg-Marquardt appears to be the fastest method for training moderate- 

sized feedforward neural networks (up to several hundred weights) (Hagan et al. 1996). 

All the methods discussed above are local optimization methods; they normally find 

local optima. There is no guarantee that a global optimum will be obtained using the 

above methods. One approach to find global optimum for any of the above methods is 

to use numerous random starting points. Another way is to use more complicated 

methods designed for global optimization such as simulated annealing or genetic 

algorithms. Experiments conducted by Hagan et al. (1 996) show that generally the 

Levenberg-Marquardt algorithm will have the fastest convergence for networks that 

contain up to a few hundred weights. However, this applies on function approximation 

problems only. As the number of weights in the network increases, the performance of 

this algorithm decreases. Levenberg-Marquardt does not perform well on pattern 
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recognition problems. The fastest algorithm on these problems is Resilient 

backpropagation (Hagan et al. 1996). Yet, its performance is relatively poor on 

function approximation problems. For a wide variety of problems, the conjugate 

gradient algorithms seem to perform well particularly for networks with a large number 

of weights (Hagan et al. 1996). 

2.3.2 Limitations & Cautions 

There are some problems associated with back-propagation algorithm, which have not 

been resolved up to now. 

Local Minima 

In a gradient descent procedure, the system will follow the contour of the error surface 

and always move downhill in the direction of steepest descent. For single-layer linear 

model (e.g. the least-mean-square (LMS) learning paradigm), this is not a problem as it 

always have bowl-shaped error surfaces (Figure 2.8). Hence, the global minima will 

always be found. However, in multilayer networks, the error surfaces become more 

complex with many minima (Figure 2.8). Many algorithms that rely on a sequential 

search over the error surface may become trapped in local minima. In the gradient- 

descent technique, the use of momentum term helps to minimize this problem. Another 

approach to overcome local minima and make training more efficient is proper 

initialization of weights. It is recommended that the neural network is reinitialized and 

retrained several times to ensure that the best solution is obtained. Two more powerful 

techniques to avoid local minima are simulated annealing and genetic algorithm. 

Simulated annealing is easy to understand and implement and has low memory 

requirements; whilst genetic algorithm is more complex and has quite large memory 

needs but is generally superior (Masters 1993). 
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Figure 2.8: Error surfaces: (a) for single-layer network (after Henseler 1999, (b) for multilayer 
network (after Kordos and Duch 2003) 

Slow Training 

The standard back-propagation algorithm consumes large quantities of computing time 

due to extensive calculations of error derivatives and updating the weights. However, 

many methods have been proposed to speed up the training of backprop, such as 

Quickprop (Fahlman 1989) and RPROP (Riedmiller and Braun 1993). Another 

approach is to use faster algorithm for nonlinear optimization such as conjugate 

gradients, Levenberg-Marquardt, etc. 

Underfitting and Overfitting 

The critical issue in developing a neural network is generalization. It measures how 

accurate the neural network in predicting cases that are not in the training set. Neural 

network model can also suffer from either underfitting or overfitting depending on the 

complexity of the network. A network that is too simple will be unable to detect hlly 

the pattern in a complicated data set, leading to underfitting. On the other hand, a very 

complex network will fit the pattern and the noise as well, leading to overfitting. The 

best way to avoid overfitting is to use as many data as possible for the training set. The 

most commonly used method to overcome underfitting and overfitting problem is Early 

Stopping. In Early Stopping, the available data is divided into training, testing, and 

23 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 2 Artificial Neural Networks 

validation sets. During training, the error rate of testing test is monitored periodically 

and training is stopped when the error rate "starts to go up". The network is then run on 

the third set of data, validation set, to estimate its generalization ability. 

Network Architecture 

To date, there is no hard and fast rule or even a satisfactory empirical formula which 

can be used to determine the dimension of a network (no. of hidden layer, no. of hidden 

units) for a particular problem. However, in Multi Layer Perceptrons with any of a 

wide variety of continuous nonlinear hidden-layer activation functions, one hidden 

layer with an arbitrarily large number of units suffices for the "universal 

approximation" property (Hornik et al. 1989). For the vast majority of practical 

problems, there is no reason to use more than one hidden layer (Masters 1995). Number 

of hidden neurons in hidden layer is also vital to the performance of the network. Too 

few neurons will render the network incapable of solving the problem due to lack of 

resources; whilst too many neurons will cause over fitting problem where the network 

displays low training error but high generalization error. Many books and articles offer 

"rules of thumb" for choosing number of hidden units. However, the reliability is 

doubted as they ignore the number of training cases, the amount of noise in the targets, 

and the complexity of the function. An intelligent choice of the number of hidden units 

depends on whether we are using early stopping or some other form of regularization. 

If early stopping is used, it is essential to use many hidden units to avoid bad local 

optima (Sarle 2002). The common way adopted to determine the optimum number of 

hidden unit is by trial and error. Many networks with different numbers of hidden units 

are tested and generalization error for each one is recorded. The network with 

minimum estimated generalization error gives the optimum number of hidden neurons. 
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Chapter 3 

Applications in Geotechnical Engineering 

3.1 Introduction 

Geotechnical engineering is a field involving large number of uncertain parameters due 

to the fact that we are dealing with the product of nature (the ground), In many 

circumstances, prediction of ground behavior is a major problem because of limited 

fundamental understanding of soil and rock behavior (Toll 1996). In this situation, 

many researchers resort to empirical approaches to solve the geotechnical problems. As 

mentioned previously, Artificial Neural Network is very useful for problems where 

there is no direct relationship between the input and the output. Thus it should be 

ideally suited for application in the field of geotechnical engineering. Artificial Neural 

Network applications was started to be used in the field of geotechnical engineering in 

1991. The literatures reveal the successfd use of A N N s  in pile capacity prediction, 

predicting the settlement of structures, modeling soil properties and behavior, 

determination of liquefaction potential, site characterization, modeling earth retaining 

structures, evaluating stability of slopes and the design of tunnels and underground 

opening. Some of them are described in this chapter. 

3.2 Liquefaction 

When earthquake occurs, the soil will lose its strength due to shaking (liquefaction). 

Most often, soil liquefaction causes extensive damage to infrastructure and serious loss 

of life. The prediction of soil liquefaction is difficult due to many critical factors, which 

influence liquefaction, such as the properties of the soil, the depth of the soil deposit, 

the magnitude and intensity of the earthquake, the distance fiom the source of the 

earthquake, and the seismic attenuation properties (Goh 1995). A study by Goh (1995) 
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illustrated the potential use of neural networks to predict the seismic liquefaction. The 

popular back-propagation algorithm was adopted in the study, and the training was 

carried out using actual field records. A total of 85 case records, representing 42 sites 

with liquefaction and 43 sites without liquefaction, were evaluated using the neural 

networks. Eight input variables were tested in the models namely, earthquake 

magnitude (M), total vertical stress ( q,), effective stress (cT,'), the standard penetration 

test (SPT) value, normalized peak horizontal acceleration at ground surface (a/g), the 

equivalent dynamic shear stress, fines content, and the mean grain size of the soil. 

Different number of input variables were tried in order to determine the most reliable 

model. Table 3.1 summarizes the performance of several neural network models. 

Table 3.1 : Summary of neural networks performance (Goh, 1995) 

The result of model M8 indicates high correlation between the input and output data for 

both training and testing set; thus, it is considered as the best model. Totally, there 

were 2 errors in the training data and 2 errors in testing data. This means a 95% success 

rate which is higher than the result using the Seed et al. procedure (84% success rate or 

14 errors). This shows that neural network perform better than the more conventional 

method for evaluating liquefaction potential. 

Ural and Saka (1998) used artificial neural network to evaluate soil liquefaction 

potential and resistance from the CPT data. For this study, eleven soil and seismic 
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parameters are selected as input, and seven different models are constructed by 

changing the input parameters. The best model gave an overall success rate of 92%. 

They concluded that comparisons between the neural network approach and simplified 

liquefaction procedure indicate that network results are as reliable as conventional 

methods. 

A hzzy adaptive neural network called “Fuzz-ART”, based on adaptive resonance 

theory combined with fuzzy set theory is developed by Chern et al. (2001) to evaluate 

liquefaction potentials induced by Chi-Chi earthquake in Yuan-Lin area. The system is 

a combination of back propagation algorithm for parameter learning and the Fuzzy 

ART algorithm for structure learning. The training and testing data used in Goh’s 

network were also used for the proposed network. The network produced only one 

error in the training data and also one error in the testing data. This indicates an overall 

success rate of 97.6 %, much higher than those of Seed et. a1 (84%) and Goh (95%). 

Furthermore, the present Fuzz-ART model converges much faster than Goh’s model. 

The study shows that Fuzzy-ART neural network model is more reliable than the 

methods of conventional three-layer neural networks. 

3.3 Pile Capacity 

Determination of the axial load-bearing capacity of driven piles is a complex problem 

involving large number of uncertain parameters. One widely used approach to this 

problem is to use empirical design methods, which establish correlation between the 

soil parameters and pile capacity. Although it is not very accurate, this approach is 

simple and able to give quick estimate of pile load capacity. Neural network is a 

suitable alternative for this problem because of its inherent ability to incorporate the 

uncertainties associated with the controlling parameters. 

Nawari et al. (1999) proposed neural network models to predict the axial and lateral 

load capacity of piles, using only simple input data such as SPT-N values and the 
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geometrical properties. Feedfonvard Backpropagation(BPNN) and Generalized 

Regression Networks(GRNN) are utilized in this study. The data were derived from 60 

load test records and 23 full-scale laterally loaded drilled shafts tests. Complete input 

parameters include the SPT-values with depth, Pile length, cross-sectional area, 

circumference and the amount of steel reinforcement. Figure 3.1 presents the measured 

axial capacities of H-piles versus the results predicted by the BPNN, GRNN, AASHTO 

and SPT91 respectively. Overall, the results indicate that BPNN and G R "  can predict 

satisfactorily the total pile capacity, especially that of the H-piles. Their results are even 

better than those of AASHTO and the SPT9 1, which are considered here because they 

often provide better results than other empirical design formulas. The correlation 

coefficient for the neural network models ranges between 0.88 and 0.94, while for 

AASHTO and the SPT91, it varies between 0.65 and 0.78. 

1 2000 1" ....~.. ........................ ...... "I ......... 
I 
/ A g 10000 4 A 
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Measured Pile Capacity (kN) 

Figure 3.1: Comparisons of predicted and measured pile capacity for various methods (Nawari et 
al. 1999) 

In another study by Teh et al. (1997), a back-propagation neural network model was 

used to estimate static pile capacity from dynamic stress-wave data. The database for 

training and testing of the network comprise 37 records of precast reinforced concrete 
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(RC) piles from 21 different sites. The CAPWAP procedure, proposed by Rausche et 

al. (1972), was used to determine the target values. Three neural network models, 

denoted as NN 1, "2, and "3, were developed during the training phase. NNl is set 

up to predict the total pile capacity only; the layer output has a single neuron. The 

resistance distribution of piles is predicted by "2, which has, in output layer, 20 

neurons representing the shaft resistance and one neuron for the toe resistance. "3 

predicted the damping and quake parameters as well as the soil resistance distribution. 

The output layer consists of 21 neurons to represent the resistance, and 4 neurons to 

keep the information on the damping and quake parameters. The results indicate that 

neural network models can provide good estimation of the total static capacity based on 

digitized force and velocity information alone. In addition, determination of resistance 

profile from stress-wave data becomes feasible as demonstrated by models "2 and 

"3.  The study also shows that networks trained on RC pile data are capable of 

predicting the capacities of non-RC piles as well, but the accuracy is less. 

McKinley (1996) studied the applicability of artificial neural networks to the 

interpretation of bearing capacity data. He concluded that artificial neural networks can 

successfully characterize the underlying pattern in scattered and uncertain data such as 

might be obtained from bearing capacity tests. 

Other applications of ANNs for pile capacity include prediction of load bearing 

capacity of piles from Statnamic Pile Test Data (Javadi et al. 2001) and prediction of 

pile axial capacity and pile driving analysis ( Hoi 1999). 
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Performance 
measure 

r 
RMSE 
MAE 

3.4 Settlement of Foundations 

ANN Meyerhof Schultze and Sherif Schmertmann 
et al. 

0.905 0.44 0.729 0.798 
1 1.04 25.72 23.55 23.67 
8.78 16.59 11.81 15.69 

For shallow foundations, the designs are usually governed by settlement factor. As a 

result, prediction of settlement is a major step in the design process. Shahin (2003) 

investigated the feasibility of using artificial neural networks for settlement prediction 

of shallow foundations on cohesionless soils. A total of 189 records were used to 

calibrate and validate the neural network models. The input parameters for the models 

include footing width, footing net applied pressure, average SPT blow count over the 

depth of influence of the foundation, footing geometry and footing embedment ratio. 

The models were trained with the back-propagation algorithm and the results were 

compared to traditional methods proposed by Meyerhof (1965), Schultze & Sherif 

(1973), and Schmertmann et al. (1978). Table 3.2 shows the comparisons of the results 

using ANN model and the three traditional methods. 

Table 3.2: Results of ANN and traditional methods for settlement prediction 

The above results indicate that ANN method surpasses the traditional methods, based 

on measures of correlation coefficient (r), root mean square error (RMSE), and mean 

absolute error (MAE). 

Sivakugan et al. (1 998) proposed a network with one hidden layer and 1 1 hidden nodes 

to predict the settlement of shallow foundations on sands. The study was carried out on 

data of 79 records, and five inputs were used to train the network. The optimum model 

has shown good performance compared to methods proposed by Terzaghi and Peck 

(1 967) and Schmertmann (1 970). 

A neural network was developed by Goh (1994) to predict the settlement of a vertically 

loaded pile foundation in a homogeneous soil stratum. The input parameters were ratio 
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of the elastic modulus of the pile to the shear modulus of the soil, pile length, pile load, 

shear modulus of the soil, Poisson’s ratio of the soil and radius of the pile; the output 

parameter was the pile settlement. Finite element and integral equation method by 

Randolph and Wroth (1978) was used to obtain the desired output. The results indicate 

that the neural network can be used to model the settlement of pile foundations 

effectively. 

3.5 Tunneling 

In the design of a tunnel, ground surface settlement due to tunnel excavation is a major 

consideration as it can severely disrupt the fbnction of nearby structures and utilities. 

Many empirical and semi-empirical formulae are available to predict ground surface 

settlement. However, the predictions are frequently inaccurate because they do not take 

into consideration all the relevant factors. Kim et al. (2001) utilized the capabilities of 

pattern recognition and memorization of ANN to solve the problem. From literature 

reviews, three categories of major factors affecting ground movements in tunneling are 

Tunnel geometries, Ground conditions, Excavation and support conditions. Each major 

factor incorporate a number of parameters with some parameters can be hrther divided 

into several detailed items which serve as inputs to the neural networks. As a result, a 

total of 47 nodes were used in input layer and 2 nodes were used in output layer to 

predict i and &,ax. The training data is composed of ‘113’ field results, which have 

been collected from Seoul subway sites. Twenty seven candidate models were 

developed, and a model with three hidden layers of 47 neurons each was found to give 

optimal result. This model was then verified on the real database. With further 

modification in the training, the average errors for i-values and 6s,x can be reduced to 

approximately 0.6 and 0.2 %, respectively. To confirm the generality of a trained ANN, 

simple examples are undertaken with two different sets of 12 data in each, extracted 

from ‘ 1 13’ original data. The first 12 data have relatively large values of maximum 
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surface settlements, while the second 12 data have relatively small values of maximum 

surface settlements. For both cases, the remaining ‘101’ data were used to train the 

network. It is noted that the ‘101‘ data are not the same data in each other case. After 

separate training in both cases, the extracted two sets composed of 12 data in each are 

used for prediction using the corresponding ANNs to the data sets. Figures 3.2 and 3.3 

show the predicted results for the maximum settlements using the first and second data 

set. Overall, it is shown that ANN model is able to predict with high confidence (less 

than about 16% on inference error) and the generality is guaranteed for further 

predictions. The shortcoming of the ANN model proposed by Kim et al. is that it 

requires a lot of input parameters in the input layer (47 nodes). Most of these 

parameters are detailed items which might not be readily available from the site. 

Hence, in this project, an attempt is made to develop ANN models which requires less 

input parameters but with high accuracy for the prediction of maximum surface 

settlement and trough width (i). 
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Figure 3.2: Results for untrained 12 data in the first data set (Kim et al. 2001) 
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Figure 3.3: Results for untrained 12 data in the second data set (Kim et al. 2001) 

Duan (200 1) used a theoretical approach, empirical approach, numerical simulation 

approach, and artificial intelligence approach to study ground settlement caused by 

microtunneling. Microtunneling is a trenchless technology for construction of 

pipelines. Its process is a cyclic pipe jacking operation. In the numerical approach, a 

commercial finite element software FLAC3D was used to simulate the ground 

settlement caused by microtunneling. In the artificial intelligence approach, a three- 

layer back propagation neural network is developed to predict the ground settlement 

caused by microtunneling using the numerical simulation results. The results indicate 

that the neural network provides a means of rapid prediction of the surface ground 

settlement curve based on the soil parameters, project geometry and estimated ground 

loss. The predictions matched closely the results of FLAC3D over the fbll range of 

parameters studied and have a reasonable correspondence to the field results with 

which it was compared. 

Another neural network model for predicting settlements during tunneling was 

proposed by Shi et al. (1 998). The input layer consists of 1 1 nodes representing 1 1 
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major affecting factors while the output layer consists of 3 nodes representing three 

settlement parameters; maximum settlement at tunnel crown level, maximum 

settlement at tunnel inverted arch level, and maximum final settlement after tunnel 

excavation. The neural network model is trained and tested using the actual collected 

data from the 6.5 km Brasilia Tunnel in Brazil. The results show poor agreement 

between the predicted and measured values for test pattern with an average error of 70 

mm (Figure 3.4). 

Figure 3.4: Results of Test Patterns for Maximum Settlements after Stabilization (Poor 
Agreement) (after Shi et al., 1998) 

To improve the prediction accuracy, modular neural network models were used. A 

modular network consists of multiple NN modules, each of which only models one 

specific category of expertise. Each module is trained and tested separately using the 

data patterns in its category. All predictions from the trained modules are then 

combined into one report before it is deployed to the end user. By using modular NN 

models, the average prediction error is reduced to 33.4 mm; thus improving the 

agreement between the measured and predicted values for testing patterns (Figure 3.5). 

This shows that modular NN model has better performance than the general network 

model used in the beginning. 
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Figure 3.5: Test Results from Modular ANN Approach (after Shi et al., 1998) 

3.6 Researches on Artificial Neural Network (ANN) at Nanyang Technological 
University 

Various ANN applications, especially in geotechnical engineering, have been 

developed at Nanyang Technological University and some of them were mentioned in 

previous sections. The applications are Reliability assessment of serviceability 

performance of braced retaining walls using a neural network approach (Goh 2005), 

Neural network approach to model the limit state surface for reliability analysis (Goh 

2003), Nonlinear modeling in geotechnical engineering using neural networks (Goh 

1994), Seismic liquefaction potential assessed by neural network (Goh 1995), Pile 

driving records reanalyzed using neural network (Goh 1996), and Prediction of pile 

capacity using neural networks (Teh et al. 1997). In addition, a text book titled Parallel 

architectures for artificial neural networks: paradigms and implementations 

(Sundararajan and Saratchandran 1998) has been published and an ANN software 

NNGeo (Hefny 2000) has been developed. The research carried out for this thesis 

focused on the application of ANN to predict the ground surface settlement caused by 

tunneling works. Project of the same title has been carried out previously but with 
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lesser amount of data for training, testing, and validation sets. In this thesis’s project 

the generalization ability of ANN has been improved greatly by adding more data from 
i several tunneling projects in the training set. Furthermore, a special feature in this 
I 

L 
project include the Finite Element analysis for the development of reliable ANN model 

which can be used to predict the maximum surface settlement (Smax) and the trough 

width (i); whereas, the previous project concentrated only on the prediction of 

maximum surface settlement. The two parameters ( SmaX and i ) are important in the 

assessment of the shape of a settlement trough. In this context, the produced neural 

network, which can predict both parameters, will be of great benefit to study the impact 

of the tunneling works on the ground surface settlement. 
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Chapter 4 

Empirical methods for ground surface settlements 

4.1 Introduction 

Difficulty of predicting surface movements has always been the major problem in the 

study of ground subsidence induced by underground excavation. Many authors have 

tried to solve the problem using different approaches. Let's consider the simplest case 

of a circular tunnel in a homogeneous ground with horizontal surface (Figure 4.1). 

Horizontal 
/ disptacemftnt 

/ 
Settlements 

Figure 4.1: Soil movements and Ground loss (after Uriel and Sagaseta, 1989) 

Opening of an underground excavation causes local relaxation of existing stress. As a 

result, the soil moves inward, more or less towards the center of the opening. The 

excavation line deforms to a new shape, which is smaller than the theoretical line. The 
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area enclosed between the theoretical and the deformed excavation lines is referred to 

as the ‘ground loss’, Vt (Uriel and Sagaseta 1989). The ground loss depends on many 

factors such as soil type, presence of water and method of construction. Ground surface 

settlements are attributed to this ground loss which occurs during tunnel construction. 

Ground loss indicates the volume of ground relaxing into the tunnel excavation, 

expressed in terms of unit distance advance of the excavation that causes the relaxation 

(i.e. cubic meters per meter advance). The final result of this loss is the formation of 

subsidence troughs. 

4.2 Ground surface settlement profile 

To date, the most popular method adopted in engineering practice to predict the surface 

settlement profile is the Gaussian distribution curve proposed by Peck (1969). Two 

main parameters used in the curve to determine the settlement trough are: the 

maximum surface settlement at the point above the tunnel centerline (&,a, or Sma,) and 

inflection point i (Figure 4.2). 

i 

Figure 4.2: Surface settlement profiles (after Peck, 1969) 
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When the two parameters are available, the vertical settlement (displacement), 6,, along 

the transverse line to tunnel axis can be calculated by (Attewell et al, 1986): 

where y is the coordinate distance measure from the tunnel centerline. Equation (4.1) is 

a simplified form of Equation (4.2) in the case where x is much smaller than Xi. 

(4.3) 

where x is the distance between a point of concern and tunnel face, xi is the initial 

position of tunnel face, xf is the final position of tunnel face and i ,  can be replaced by 

the inflection point, i. Maximum surface settlement is mainly governed by type of 

ground, size of tunnel, depth of tunnel, method of tunneling, and type of lining 

(Attewell 1977). 

4.3 Estimation of total volume loss, Vt, and the surface settlement volume, V, 

In cohesive soils, the ground loss is expected to be between about 0.5 % and 2.5% of 

the tunnel face excavated area, depending upon the stiffness of the soil and the speed at 

which the initial support is installed (Attewell 1977). A more satisfactorily approach is 

to estimate total volume loss,Vt and surface settlement volume,Vs base on an ‘Simple 

Overload Factor’ defined as the ratio of overburden pressure o, minus any supporting 

internal pressure oi (e.g. compressed air pressure) to the undrained shear strength cu 

under conditions in which the external, pre-existing stress field is uniform (0, = oy = ox) 

( Deere et al, 1969). 
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The overburden pressure is normally expressed as the product of bulk unit weight y and 

depth of tunnel axis ZO.  Figure 4.3 shows V, and V, as a function of the overload factor. 

maximum theoretical 
e v (ground loss volume) or 

I/ J, (surface settlement volume) 
ae (Schmidt, 1969) 
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Figure 4.3: Estimation of ground losses and surface settlement volumes fi-om the overload 
factor for tunnels in cohesive soils. Open circles are Schmidt's( 1969) data from shield-driven 
tunnels. Solid circles are as presented in Attewell and Yeates (1984) (after Attewell et al, 1986) 

For tunneling in most clay soils, Equation (4.5) will give reasonable estimate of V, for 

1.5 5 OFS 5 4 (Glossop 1978): 

Vs%= 1.33 x (0FS)-1.4 (4.5) 

For tunneling in granular soils above a water table, approximate Vt will be of 2-5 

percent. If tunneling is carried out below the water table, compressed air will be 

necessary to control the stability of the granular soil. In that case, the range of Vt will 
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be between 2 and 10 percent. For preliminary calculations, a 5 percent approximate 

could be adopted in both cases (Attewell et al, 1986). 

If the settlements occur without any change in volume of the soil (undrained behaviour), 

then volume of the settlement trough along a unit length of tunnel having the same 

shape as the Gaussian distribution curve is given as (Attewell and Farmer, 1974): 

V, = 2.5 i 6,,, 

Equation (4.6) allows maximum settlement ti,,,,, to be estimated from surface settlement 

volume Vs, and inflection point i. The magnitude of V, depends on the type and 

strength of the soil, the tunnel depth and the method and quality of construction. For 

most single tunnels in firm-to-stiff clay soils, the volume V, of the settlement trough is 

approximately equal to the volume Vt of ground lost at the tunnel, whilst in granular 

non-cohesive soil, dilation may occur through arching above the tunnel crown if depth 

of tunnel axis is equal or greater than three times the excavated radius of a tunnel 

(Hansmire, 1975). 

Attewell et al. (1986) concluded that Gauss-function settlement troughs was confirmed 

by the settlement data compiled from monitoring programs of soft ground tunnels 

around the world. However, when the magnitude of the maximum surface settlement 

exceeds about 0.5% of the tunnel axis depth, the edges of the trough do not expand in 

line with increasing settlement, and the profile deviates from the normal probability 

curve (Attewell 1977). The normal probability profile assumptions require that the 

width of the fully-developed transverse settlement trough is infinite. However, in 

practice, it can be approximated as 242ni (i.e. Si)(Attewell et al, 1986). 

To date, the most powerful tool to simulate tunneling is the finite element method. This 

is mainly due to the availability of powerful codes and rapid improvement in computer 

efficiency. Burd et a1 (2000) used finite element for a three-dimensional analysis of 

tunnel, soil and a building interaction. The study provides a method to estimate the 

extent of crack damage caused to masonry structures by nearby shallow tunneling. 
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be between 2 and 10 percent. For preliminary calculations, a 5 percent approximate 

could be adopted in both cases (Attewell et al, 1986). 

If the settlements occur without any change in volume of the soil (undrained behaviour), 

then volume of the settlement trough along a unit length of tunnel having the same 

shape as the Gaussian distribution curve is given as (Attewell and Farmer, 1974): 

V, = 2.5 i 6,,, (4.6) 

Equation (4.6) allows maximum settlement 6,,x to be estimated from surface settlement 

volume Vs, and inflection point i. The magnitude of V, depends on the type and 

strength of the soil, the tunnel depth and the method and quality of construction, For 

most single tunnels in firm-to-stiff clay soils, the volume V, of the settlement trough is 

approximately equal to the volume Vt of ground lost at the tunnel, whilst in granular 

non-cohesive soil, dilation may occur through arching above the tunnel crown if depth 

of tunnel axis is equal or greater than three times the excavated radius of a tunnel 

(Hansmire, 1975). 

Attewell et al. (1 986) concluded that Gauss-function settlement troughs was confirmed 

by the settlement data compiled from monitoring programs of soft ground tunnels 

around the world. However, when the magnitude of the maximum surface settlement 

exceeds about 0.5% of the tunnel axis depth, the edges of the trough do not expand in 

line with increasing settlement, and the profile deviates from the normal probability 

curve (Attewell 1977). The normal probability profile assumptions require that the 

width of the fully-developed transverse settlement trough is infinite. However, in 

practice, it can be approximated as 2d2n;i (i.e. Si)(Attewell et al, 1986). 

To date, the most powerful tool to simulate tunneling is the finite element method. This 

is mainly due to the availability of powerful codes and rapid improvement in computer 

efficiency. Burd et a1 (2000) used finite element for a three-dimensional analysis of 

tunnel, soil and a building interaction. The study provides a method to estimate the 

extent of crack damage caused to masonry structures by nearby shallow tunneling. 
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However, the finite element method is complex and it requires dedicated computing 

facilities. 

4.4 Settlement trough dimension parameter, i 

Normally, the maximum ground surface settlement (&ax) can be measured directly, 

whilst it is very difficult to determine an inflection point i on a trough curve. Tunnel 

geometry and soil conditions are several factors which govern the location of inflection 

point (Kim 2001). A common way to determine inflection point is to take a distance x 

corresponding to settlement value of 0.616,,,, (Attewell et al, 1986). Cording and 

Hansmire (1975) proposed the 'best-fit method', where the inflection point is 

determined from the plot of recorded settlements in logarithm scale against the square 

of the transverse distance (log &-x2 diagram). By utilizing a linear-fitting curve, a point 

corresponding to settlement value of 0.616,,x can be determined. Equation (4.6) can 

be used as well to obtain the inflection point. This is known as the 'volume method'. 

All three methods use Gaussian normal probability function as their basis. In cases 

where the settlement trough perfectly matches the Gaussian curve, the three methods 

will produce identical i value. In addition to the above methods, several empirical 

relations are available as well to approximate the parameter i (Peck 1969, O'Reilly and 

New 1982, Leach 1985, Atkinson and Potts 1976). 

Based on the stochastic theory and empirical evidence, a simple expression for soil, 

clay and rock incorporating normalized factors (i.e. Z,/D and i/R) is derived as follows 

(Attewell 1977): 

i/R = K(ZJD)" (4.7) 

where K and n are constants depending on the ground conditions. R is the radius of the 

tunnel and Zo is the depth of the tunnel axis from the ground surface. For clayey soils, 

Attewell and Farmer (1977) suggested values of K=l.O and nz1.0, while Clough and 

Schmidt (1981) proposed values of Kzl.0 and ~ 0 . 8 .  Peck (1969) synthesized the 
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Chapter 4 Empirical method for ground surface settlements 

range of K and n-values with respect to certain ground conditions, as shown in Figure 

4.4. 

The following values of K and n suggested by Attewell (1982) will be used in Chapter 

5 to calculate the surface settlement of the validation set by using empirical method: 

1) K = 1.0 and n = 1.0 for clays 

2) K = 0.63 and n = 0.97 for granular soils irrespective of water table 

i/ 

Figure 4.4: Peck’s (1969) zoning for i as a function of tunnel depth and soil type. 
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From Equations (4.1), (4.6), and (4.7), the steps to estimate settlement for a real tunnel 

can be formulated as follows (Gunn (1992)): 

(a) the engineer estimates a figure for ground loss on the basis of experience with 

similar tunneling techniques in similar soils. 

(b) a value of ilD is assumed, based on Peck's chart (Figure 4.5) or Equation (4.7) or a 

similar relationship. 

(c) Equation (4.6) is now used to find 6,,,, and hence Equation (4.1) can now be used 

to predict the surface settlement at any point. 

4.5 Settlement profile along tunnel drive 

A significant ground surface settlement is usually induced during the tail void closure, 

which occurs immediately after the passage of the shield machine (Ou and 

Cherng ,1995). The settlement due to the tail void closure can be obtained from the 

settlement history curve, as shown in Figure 4.5. Line a-b denotes the tail void closure, 

while line b-c, which has a gentler slope, is considered as the consolidation stage. 

Days 

-100 -50 0 50 100 150 200 250 300 

6o 70 : 
Figure 4.5: Typical settlement history due to shield tunneling (Ou et al. 1998) 

44 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 4 Empirical method for ground surjiace settlements 

According to Attewell et al. (1986), ground loss is a total summation of face loss, 

shield loss, pregrout loss, and postgrout loss. Face loss is associated with the axial loss 

at the tunnel face during the intrusion of the shield. Shield loss is radial loss over the 

shield through closure of a bead or other overcutting device. Pregrout loss is radial 

groud loss occurs behind the tailskin due to closure of an ungrouted space between 

lining and ground. Postgrout loss is radial loss occurs behind the tail of the shield due 

to closure of the grouted space (Figure 4.6). Attewell and Woodman (1982) developed 

equations to predict the three-dimensional ground movements and strains caused by 

tunneling based on the analysis of some case history data. They concluded that the soil 

movement ahead and at the sides of a tunnel face can be quantified by assuming that 

there is no change in the volume of soil at ground surface and ground movement is the 

sum total of elementary movements of assumed form resulting from increments of 

tunnel advance. 

0 

Grout 

and 
tail 

Figure 4.6: Major areas of ground loss around a shield-driven tunnel in soil: (1) intrusion at the 
face; (2) radial loss over the shield through closure of a bead or other overcutting device; (3) 
and (4) post-shield radial losses. (3) represents closure of an ungrouted space between lining 
and ground, (4) represents closure of the grouted space (Attewell and Farmer 1974). 
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Ground displacement caused by tunneling is a three-dimensional problem. Figure 4.7 

shows, in a three dimensional view, how settlements develop as the tunnel heading 

advances. The soil in front of the face tends to move inwards producing settlements 

well ahead the heading. At a certain distance from it, the ground deformation does not 

occur yet; whilst at a certain distance behind it the ground displacements have reached 

their maximum values. 

Along the direction of shield driving, the surface settlement profile may be divided into 

five different regions, as shown in Figure 4.8. The mechanisms of soil settlement 

induced by shield driving for each region are given in Table 4.1 (Sun 2000). According 

to the study by Woodman and Attewell (1982), a cumulative probability function can 

approximate fairly well the settlement profile along the tunnel axis. 

tent of iurfsoe 

I 

Figure 4.7: 3-D view of ground subsidence (fiom Attewell et al, 1986) 
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Region 

I 

II 

Figure 4.8: Different regions of ground surface displacement along direction of shield driving 
(Sun 2000) 

Table 4.1 : Mechanism of soil settlement induced by shield driving (modified from Sun 2000) 

Types of soil Causdreason 
settlement 

Soil heaving when, pi>pz+pw, soil heaving 
at a certain when, pi<pz+pw, soil settling 
distance in front of pi-excerting slurry pressure in 
shield working face closed cabin 

pz- static external earth pressure 
pw- ground water pressure 

soil consolidated due to squeezing 
& compaction under shield driving 

Initial settlement 

111 

IV 

V 

Settlement just at 
the while shield construction; shearing-dilatation 
passing through 

soil disturbance during 

between shell of shield & its 
surrounding soils; excess amount 
of soil excavation 

Settlement caused soil losses shield supporting, loss 
by gap-space of earth strata caused by 
existing at shield "constructional gap-space'' at 
tail shield-tail; grouting behind tunnel 

lining segment not in time 

time dependent viscous soil Settlement due to 
secondary (delayed) deformation (follow-up 
consolidation of soil creep) 

Stress 
Disturbance 

creasing of pore-water 
ressure; increasing of 
)tal soil stress 

issipating of pore water 
ressure; increasing of 
ffective soil stress 

stress release of soils 

stress release of soils 

stress relaxation 
of soils 
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Chapter 5 
Details of Contract C705 Northeast Line, C825 Marina Line and C823 
Circle Line 

In the first main analysis presented in Chapter 6 ,  the feasibility of using artificial neural 

networks to predict the maximum settlements due to tunneling is investigated. For this 

analysis, the case records used to develop and verify the ANN models were collected 

from contracts North East Line C705, Marina Line C825 and Circle Line (2823. The 

details of the contracts and the relevant information of Singapore geological profile are 

presented in the following sections. 

5.1 Geological Profile 

The geological formations of Singapore encountered during tunneling and excavation 

works can be broadly grouped into 4 main types (Moss 2000): 

1) Kallang formations. These are recent deposits of soft clays and fluvial sands, 

including the Singapore Marine Clay 

2) Jurong Sedimentary. These are sedimentary series of sandstones, siltstones and 

mudstones with degrees of weathering varying from fresh rock through to 

residual soil 

3 )  Old Alluvium. It mainly consists of medium dense to very dense clayey coarse 

sand and fine gravel. 

4) Bukit Timah Granite. It is fresh rock at depth and completely weathered 

approaching the ground surface, producing silty clay. 

5.2 Contract C705, Singapore North East Line 

C705 is one of the eleven designs and construct contracts of the Northeast Line project, 

which dealt with the construction of bored running tunnels from Boon Keng Station to 
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Potong Pasir Station. The Northeast Line provides a predominantly underground mass 

transit railway from the World Trade Centre in the south to Punggol in the northeast of 

Singapore Island. The contract was awarded to a joint venture comprising Kumagai 

Gumi, Sembawang and Mitsui (KSM) in 1997. Babtie Tunnelling Division in the 

United Kingdom carried out the design for the tunneling works. Geology for C705 

comprised mainly Old Alluvium overlain by soft deposits of the Kallang Formation. 

The Old Alluvium is composed of very dense silty sands with layers of hard clays and 

silts, while the Kallang formation includes sands and soft to firm clays of 

marine/alluvial origin. Erosion in the past is responsible for the undulating surface of 

the Old alluvium. Due to removal of overburden, the Old Alluvium is considered to be 

overconsolidated, however, the marine clay of the Kallang formation is typically 

normally or very slightly overconsolidated. The twin bored tunnels were driven mainly 

within the Old Alluvium, while encounter with marine clay is experienced locally. A 

geological section along the northbound tunnel is shown in Figure 5.1. 

Figure 5.1: Geological section along North Bound Tunnel (South bound tunnel is similar) 
(Izumi et al. 2000) 
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5.2.1 Bored Tunnel Construction 

The twin tunnels run approximately parallel to each other with the horizontal spacing 

between the tunnel axes varying from about 15 m to 24 m. The depth to the tunnel axis 

varies between 12 and 25 m below ground level. The internal diameter of both tunnels 

is 5800 mm and the thickness of the pre-cast segment lining is 250 mm. Two Earth 

Pressure Balance Shield machines (EPBM) with an external diameter of 6440 nun were 

used to construct the tunnels. To support the face, the EPBMs used a cutter pressure 

chamber filled with plasticised soil. During the excavation time, polymer was injected 

to lubricate the material and avoid the blocked nozzles. By balancing polymer against 

material removed, a continuous pressure was maintained. The EPBMs were equipped 

with three pressure gauges mounted on the front face of the machine and the gauge at 

center elevation is used to control the slurry pressure. Initially, one tail grouting device 

was used to inject grout (at ground receiving pressure plus around 0.5 to 2 bar) into the 

tail void as the tunnel shield advanced and the lining was installed. Later on, due to 

faulty ports, the grout was injected through the upper lining segment through a grout 

nozzle screwed into the lifting sockets. Grouting started immediately after the ring was 

installed and continued until the next ring was placed upon which the grout nozzle was 

moved forward. Figure 5.2 shows the EPBM used in C705, while its specification is 

given in Table 5.1. Figure 5.3 shows the typical settlement profile due to shield 

tunneling for contract C705.The graph displays the similar trend as the graph of 

settlement profile along tunnel drive in Figure 4.5. The ground surface settled 

immediately after the first passage of the shield machine followed by the consolidation 

settlement stage. There was a slight heave before the tail passing. 
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Table 5.1 : Specifications of C705 Earth Pressure Balance Machine (Izumi et al., 2000) 

Figure 5.2: C705 Earth Pressure Balance Machine (Izumi et al. 2000) 

51 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Nurashikin
Rectangle



Chapter 5 Details of Contract C705 Northeast Line, C825 Marina Line and C823 Circle Line 

_ __ - . - _  

Settlement vs Time (C705) 

Time (day) 
L _ ~ ~_ _ _ - _. __ _- - _ 

Figure 5.3: Typical settlement profile due to shield tunneling for contract C705 

5.3 Contract (2825, Marina Line 

The Marina Line (MRL) is part of the Land Transport Authority’s ongoing effort at 

building a comprehensive rapid transit system network. The MRL serves as the first 

stage of the Circle Line (CCL), an orbital line that will link all MRT lines which run 

into the city (East West Line, Nort South Line, North East Line). The Marina Line 

comprises six stations and runs underground from Dhoby Ghaut Interchange Station on 

the North East Line to end at Boulevard Station at Stadium Boulevard. The project of 

the MRL is divided into two contracts C824 and C825 with C824 awarded to the JV 

Nishimatsu-Lam Chum and C825 to the JV WoHup-Shanghai Tunnel Engineering. 

Both projects are currently under construction. 

Contract C825 consists of 4 stations and tunnels in between (Figure 5.4). They are 

Dhoby Ghaut Station (DBG), Museum Station (MSM), CVC Station, and Millenia 

Station (MLN). All the four stations are built using the top-down construction method. 

This method was opted in order to reduce soil movements and ground water lowering. 

The length of tunnels constructed using TBM is approximately 1400m. The soil 
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conditions vary considerably along the project from soft Marine Clay at Millenia 

Station, Old Alluvium at CVC Station, Fort Canning Boulder Bed at Museum station to 

Jurong Formation at Dhoby Ghaut. From previous tunneling projects within Singapore, 

Old Alluvium has proved to be an ideal tunneling medium in terms of settlement as 

volume losses of less than 1% can be attained easily. Old alluvium is a Pleistocene 

deposit of medium dense to very dense clayey coarse sand and fine gravel, containing 

lenses of silt and clay. It originated from weathered granite and thus contains a high 

proportion of slightly rounded quartz. 

The TBM Herrenknecht machines for the bored tunnels are operating in closed mode 

according to the EPB method. The TBM starts from a temporary shaft at the east end of 

the project (Figure 5.4). Initially, the tunnels were arranged vertically one above the 

other to minimize impact on piled foundations. The lower tunnel was driven ahead of 

the upper tunnel. This arrangement was changed from vertical to become horizontal 

(side by side) prior to reaching CVC Station. The TBMs are driven from the first shaft 

through CVC station before station excavation to be picked up at a temporary shaft at 

the eastern end of Museum Station. The TBMs are then transported to Dhoby Ghaut 

station and driven in opposite direction to the western end of Musem Station (Osborne 

et al., 2004). The specifications for the C825 EPBM are shown in Table 5.2. 
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Figure 5.4: C825 comprising 4 Stations and Tunnels (Osborne et al. 2004) 
Table 5.2: Specifications of C825 Earth Pressure Balance Machine (Osborne et al., 2004) 

TBM Manufacturer 
Outer Diameter (mm) 
Overall TBM Length (mm) 
Overall Length (inc Back-up) (n 
Cutterhead Drive 
Power (kW) 
Cutterhead Motors 
Torque (rpm) 
Face Injection Ports (No.) 
Bulkhead Ports (No.) 
Total Cutter Picks (No.) 
Total Discs (No.) 
Copy Cutters (No.) 
Overcut amount (mm) 
Thrust Rams (No.) 
Stroke (mm) 
Equipped Propulsion (kN) 
Articulation Rams (No.) 
Total capacity (kN) 

Herrenknechl 
6580 
7400 
55 
Hydraulic 
945 
8 
2.7 
8 
4 
72 
40 
2 
30 
16 
2200 
42575 
14 
73 892 
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5.4 Contract C823, Circle Line 

Contract C823 is part of Circle Line project Stage 2. This contract was awarded to the 

JV Nishimatsu-Lam Chum. The contract comprises 3 stations and bored tunnels in 

between. The stations are Old Airport Road Station, Tanjong Katong Station, and Paya 

Lebar Station. In this project, the settlement readings from this contract were obtained 

from level instruments along the tunnel line between Old Airport Road Station and 

Tanjong Katong Station. The soil investigation on site was carried out by Soil & 

Foundation (Pte). Based on the borehole data and in-situ tests results obtained from site, 

the underlying subsoils can be broadly classified into the following layers: Fill, Kallang 

Formation, and Old Alluvium. The fill layer consists typically of clayey sand, sandy silt 

and clayey silt mixed with foreign debris such as woods and concrete. The Kallang 

Formation was found beneath the fill layer in most boreholes. It comprises peaty Clay, 

fluvial sand, fluvial clay, and marine clay. The Old Alluvium occurred as basement 

subsoils in this area, Tunneling was carried out mostly within clay sediments such as 

marine clay, estuarine, and fluvial clay. The estuarine and fluvial clay were found to be 

mainly underlying the marine clay or as the intermediate layer within the two marine 

member. Marine clay is soft compressible normally consolidated clay that can contain 

pockets and lenses of silt and sand, but behaves in an undrained manner during 

tunneling. A typical near surface strength is 22 kPa with minor strength gain as the 

strata goes deeper. Therefore, positive support pressure from the EPBM needs to be 

maintained at all times. The old alluvium with SPT less than 30 was encountered for a 

short distance near the Old Airport Road station. Hitachi Zosen EPBMs were used to 

construct the bored tunnels on C823. The specifications for the EPBM are shown in 

Table 5.3. Figure 5.5 shows the map of Circle Line project including C825 and C823. 
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Table 5.3: Specifications of C823 Earth Pressure Balance Machine (Osborne et al., 2004) 

Outer Diameter (mm) 
Overall TBM Length (mm) 
Overall Length (inc Back-up) (n 
Cutterhead Drive 
Power (kW) 
Cutterhead Motors 
Torque (rpm) 
Face Injection Ports (No.) 
Bulkhead Ports (No.) 
Total Cutter Picks (No.) 
Total Discs (No.) 
Copy Cutters (No.) 
Overcut amount (mm) 
Thrust Rams (No.) 
Stroke (mm) 
Equipped Propulsion (kN) 
Articulation Rams (No.) 

6630 
8615 

Electric 
660 
12 
1.06 
6 
4 
92 bits 
0 
2 
150 
26 
2050 
39000 
12 

I) 51 

ITotal capacity (kN) 124000 

Figure 5.5: Map of Circle Line including project C825 and C823 (from LTA) 
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Chapter 6 
Prediction of Maximum Surface Settlement by Multi-layer 
Perceptrons (MLP) 

The settlement trough, as described by Gaussian distribution, is determined by two 

main parameters: the maximum surface settlement at the point above the tunnel 

centerline (SI,,,) and the width parameter (i) defined as the distance from the tunnel 

centerline to the inflection point of the trough. Due to insufficient information of 

width parameters from the field, this chapter focused only on the development of 

ANN models to predict maximum surface settlements induced by single tunneling. 

The most commonly used neural network type is Feed-forward multi-layer 

perceptrons (MLPs) trained with the back-propagation algorithm, as they have a 

high capability of data mapping. MLPs trained with back-propagation algorithm 

have been used successfully in many geotechnical engineering problems; hence 

they are used in this research. 

6.1 Comparison of softwares 

Several software systems for neural network operation are tested and the results are 

compared. The best software is then used for network analysis in this project. This 

section presents a comparison of performance of available back propagation neural 

network softwares , namely NNGeo, Pittnet , and MatLab. Results and details of the 

tests using NNGeo and Pittnet were obtained from the report by Robin (2001). 

NNGeo was developed by Hefny (2000) and applicable in Windows platform. The 

program code was written in Visual Basic. It can read the input data from both, 

normal text files and Microsoft Excel files and output of the training can be written 

to these two file formats as well. Pittnet was developed by Smith (1997) at the 

University of Pittsburgh. This computer program works in a DOS environment 

allowing the user to construct, train and test different types of artificial neural 

networks. Matlab is a technical computing software developed by The Mathworks, 

Inc. It has been used by technical people all over the world for their engineering and 
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scientific work. The neural network toolbox contained in Matlab is used for the 

network analysis. The three softwares are used to predict the friction capacity of 

driven piles. The data was obtained from load test records compiled by Goh (1 995). 

A total of 45 patterns were used to train the neural network and 20 patterns to test 

the predictive ability of the neural network. Summary of the training and testing 

data are shown in Appendix A. 

For NNGeo and MatLab, the learning rate and momentum used were 0.2 and 0.9, 

respectively. For Pittnet, the learning rate was 0.9 while the momentum was set at a 

default value of zero since it could not be changed by the user. For all three 

programs, the number of training iterations used was 30000 and the number of 

hidden neurons was three. The accuracy of the three networks was compared with 

that obtained by Goh (1995). Table 6.1 shows the comparison of prediction 

accuracy of the different networks. It can be seen that MatLab showed the highest 

correlation coefficient and lowest error rate for testing set compared to other 

networks, whereas Pittnet displayed lowest correlation coefficient and highest error 

rate. Hence, MatLab is used for the subsequent analysis of neural network in order 

to obtain more accurate settlement prediction. 

Table 6.1 : Comparison of prediction accuracy of different back propagation networks using 
pile driving data from Goh (1 995) 
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2 
3 
4 
5 
6 

6.2 Preliminary analysis to obtain optimum ANN Model 

Earth Pressure EP H a  
Advance Rate AR d m i n  

Mean SPT above Crown level SI N300 
Mean SPT at Springline level s2 N300 

SPT at Invert level s3  N300 

Model Inputs and Outputs 

Eleven parameters are accepted to have significant impact on the settlement of 

ground surface due to tunneling, and are thus tested as the ANN model inputs. The 

model output is the initial maximum surface settlement immediately after the tail 

passing. The input and output parameters used for the network analysis are listed in 

Table 6.2. 

7 

8 

Table 6.2: Input and Output parameters for ANN analysis 

Mean bulk density above crown level BD m/m3 
Mean stiffness around tunnel circumference E MDa 

Cover l ~ l m l  

9 Moisture Content MC % 

10 Ground Water Level GWL m 

1 Initial Maximum Surface Settlement S mm 

1. Soil Cover 

Soil cover is measured from tunnel crown to ground surface level. Since Equation 

4.7 uses depth of tunnel axis from ground surface (z,) as a parameter, soil cover is 

obviously an important factor to estimate surface settlement. 
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2. Advance Rate 

Attewell et a1 (1986) used the average rate of tunnel advance to calculate three 

components of ground loss namely face loss, radial loss, and postshield lost. This 

signifies high correlation between advance rate and final ground surface settlement. 

3. Earth Pressure 

As discussed before, EPBM provides the ability to maintain full support to the 

excavation face by applying earth or face pressure. Excessive pressure on the 

tunnel-excavated face reduces the life span of the TBM’s cutter head while 

insufficient pressure will cause ground surface settlement. 

4. SPT I ,  SPT 2, SPT 3 

SPT “N” values describe geotechnical properties of the soils where tunnels are 

excavated. They are included in the log of boring produced from site-specific soil 

investigation and testing. Three types of SPT value are used in this project, namely 

SPT 1, SPT 2, and SPT 3. SPT 1 is the mean SPT N value of soil layers above the 

tunnel crown up to ground surface. SPT 2 is obtained by taking the average of the 

SPT values at the crown, middle and invert levels, as shown in Figure 6.1. SPT 3 is 

the SPT N value at tunnel inverted level. 

5. Bulk Density, Stiffness 

Soil stiffness, E, soil density, and coefficient of earth pressure at rest, KO, are the 

key parameters for the design of tunnel lining. The LTA Design Criteria used KO = 

Fkcavated tunnel SPT at Crown 
level 

SPT at Middle 

SPT at Invert level 

Figure 6.1 : SPT 2 - The average of the SPT values at the crown, middle and invert levels 
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1.0, considered to be conservative for the Old Alluvium, Marine Clay and Kallang 

soils. The values of bulk density and stiffness adopted in this project are given in 

Table 6.3. The parameters were used by Babtie Tunnelling Division for the tunnel 

design of contract C705 North East Line. 

darine Clay M 

iluvial Sand F1 

>Id Alluvium 0 N<25 

N 25-80 

N>80 
C, = Undrained Cohesion kPa 

15.5 

18.0 

19.0 

20.0 

21.0 

0.3C, 

20 

1.5N 

1.5N 

120 

6. Moisture Content, Ground Water Level 

Presence of water in the soil is indeed a factor that has significant effect on the 

magnitude of ground loss (Attewell et a1 (1986), Uriel and Sagaseta (1989)). 

Moisture content and ground water level gauge the amount of water present in the 

soil excavated. For neural network analysis, the moisture content of soil layer, 

driven through by the tunnels, is used as an input. The ground water table is 

measured from the ground surface level to the water table. 

7. Grout Pressure 

As the tunnel shield advanced, the space around the exterior of the tunnel was 

immediately filled by the grout, which was injected at ground receiving pressure 

into the tail void. Since postgrout loss occurs due to closure of the grouted space, 

the grout pressure used for the injection will have an impact on the potential ground 

loss. Hence, it is included as one of the input factors. 
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Data Division 

Neural network models were developed using different input combinations and the 

results were compared to obtain the network model with optimum input 

combinations. A total of 158 patterns are used to develop the models. The data are 

divided into three sets: training, testing and validation, as is the standard practice in 

the development of ANN models in geotechnical engineering. 90 patterns are used 

for training set, 39 patterns for testing set and 29 patterns for validation set. The 

three sets are divided in such a way that they are statistically consistent and thus 

represent the same statistical population. In order to achieve this, several random 

combinations of the training, testing and validation sets are tested until three 

statistically consistent data sets are obtained, The data and statistics of the training, 

testing and validation sets are shown in Appendix B. The statistical parameters 

considered are mean, standard deviation, minimum, maximum and range. 

Pre-processing of Data 

To increase the efficiency of neural network training, certain preprocessing steps 

are performed on the network inputs and targets. Before training, the input and 

output variables are scaled to eliminate their dimension and to ensure that all 

variables receive equal attention during training. Scaling has to be commensurate 

with the limits of the transfer functions used in the hidden and output layers. In this 

analysis, input and output variables are scaled so that they fall in the range -1.0 to 

1 .O. This is because tan-sigmoid transfer function is used for both hidden and output 

layers for all models. For each variable x with minimum and maximum values of 

xlnin and xmaX, respectively, the scaled value x,, is calculated as follows: 

6.3 Model Architecture and Stopping Criteria 

62 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 6 Prediction of Maximum Surface Settlement by Multi-layer Perceptrons (MLP) 

A total of thirty two network models with different input combinations were tested 

to obtain the optimum one. All the models used one hidden layer with eight neurons. 

Prior to this, a preliminary test was conducted whereby the network of eleven input 

parameters is trained using different number of hidden neurons. The network 

obtained the lowest testing error when the number of hidden neuron is eight, as 

shown in Table 6.4. Hence, eight hidden neuron is considered optimal and is used 

for the remaining thirty one networks. This initial step is necessary to avoid under 

fitting which may occur when small number of hidden neurons is used for the 

network with many input parameters. On the other hand, the optimum number of 

hidden neuron from the network of maximum number of input parameter can be 

used for the network with smaller number of input parameters. In this case, over 

fitting is rarely a problem since early-stopping is used as the stopping criteria. The 

learning rate and momentum used were 0.2 and 0.9 respectively. The performance 

of each model is quantified from two measures; the coefficient of correlation (r) and 

error rate. The expression for error rate is given as follows: 

where errori is the error of the ith pattern, Ti is the target output value, Oi is the 

predicted output value and N, is the number of patterns. 

Table 6.4: Performance of ANN model "1 with different hidden layer nodes 
e 

No. of No. of 
Model Hidden input Correlation Coefficient Error Rate (unscaled) 

Neurodes units Trainin Testing Validation Training TestinQ Validation 

k 
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The performance results of the 32 models are shown in Table 6.5. Four network 

models "6, "7, "16, and "26 were selected for further analysis as they 

have high coefficient of correlation, relatively low error rates, and consistent 

performance on the training, testing, and validation sets. The four models were 

retrained with different number of hidden layer nodes. The maximum number of 

hidden layer nodes tested was 12 as the aim is to obtain a model, which provides 

satisfactory performance coupled with a small number of hidden nodes. The 

performance results of the four models with different hidden layer nodes are shown 

in Table 6.6 to 6.9. It can be seen that ANN model "6 with 8 hidden neurons 

performs well, as it showed high coefficient of correlation, low error rate on the 

testing set and validation set, and consistent performance on the training, testing, 

and validation sets. Thus, from here onwards, the input variables considered for the 

ANN model analysis are cover (H), earth pressure (EP), advance rate (AR), average 

SPT above tunnel Crown level (SPTl), average SPT at tunnel Springline level 

(SPT2), stiffness (E), moisture content (MC) and grout pressure (GP). 
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Table 6.8: Performance of ANN model "16 with different hidden laver nodes 
No. of 

Model Hidden Correlation Coefficient Error Rate (unscaied) 
Neurodes Training I Testing I Validation Training I Testing 1 Validation 

I NN16A I 2 I 0.86 I 0.93 I 0.89 I 6.67 I 4.74 I 6.13 I 

I I I I I I I 

"26D I 8 I 0.94 I 0.93 1 0.87 f 4.69 I 5.23 I 5.59 

"26E I 10 I 0.95 I 0.90 I 0.73 I 4.14 I 5.78 I 7.44 

NN7RF I 13 I 091 I 0.92 I 0.88 I 5.99 I 5.95 I 6.73 
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6.4 Optimum ANN model 

As discussed previously, a common way to obtain the optimum network 

architectures is by using a trial-and-error approach. A network with one hidden 

layer can approximate any continuous function, provided that sufficient connection 

weights are used (Cybenko 1989). Thus, one hidden layer is used in the analysis. 

The steps adopted for finding the best network architectures can be summarized as 

follows: 

1. A number of trials are carried out with one hidden layer and varying 

number of hidden layer nodes. 

2. The network that performs best with respect to the testing set is then 

retrained with different combinations of momentum terms, learning rates and 

transfer hnctions in order to improve model performance. 

3. The model that has the optimum momentum term, learning rate and transfer 

functions is retrained several times with different initial weights until no 

further improvement occurs. 

The third step is necessary to avoid getting trapped in a local minimum. Since back- 

propagation algorithm with gradient descent method is used to adjust the connection 

weights, problems with local minimum may be encountered if the initial starting 

point in weight space is unfavorable. Step 1 has been carried out in previous section 

which yield ANN model "6 with 8 hidden layer nodes as the optimal model. The 

effect of momentum, learning rate and transfer function on model performance is 

summarized in Table 6.10. Figure 6.2 shows graphically the effect of momentum 

term on model performance. It can be seen that momentum does not affect much the 

performance of "6 model in the range 0.01 to 0.7. The best prediction was 

obtained with a momentum value of 0.9. The effect of different learning rates on 

model performance is shown graphically in Figure 6.3. It c m  be seen that the error 

rate is the smallest at learning rate of 0.2. Table 6.10 shows that the model performs 

well when both the hidden layer and output layer use tan-sigmoid (tansig) transfer 
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function. The model produces poor results for logsig-logsig, logsig-tansig, and 

tansig-logsig. Other two combinations (tansig-linear and logsig-linear) produced 

satisfactory coefficients of correlation and error rates. However, the results are not 

as optimal as those when tansig-tansig combination was used for hidden and output 

layer. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Momentum term 

Figure 6.2: Effect of various momentum terms on ANN performance (L.R = 0.2) 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Learning rate 

Figure 6.3: Effect of various learning rates on ANN performance (Momentum = 0.9) 
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For subsequent analysis, the ANN model NN 6 used learning rate of 0.2, 

momentum of 0.9 and tan-sigmoid transfer function for both hidden layer and 

output layer. 

6.5 Comparison of training algorithms 

In the previous analysis, the network models used back-propagation training 

algorithm: gradient descent with momentum to adjust the weights. In Chapter 2, 

several faster algorithms are discussed. This section investigates the effect of their 

use on the network performance. These algorithms with their acronym are listed in 

Table 6.11. The results of all the algorithms training including gradient descent 

method are tabulated in Table 6.12. The model used was NN 6 with 8 hidden 

neurons. 

Table 6.1 1: Back-propagation Training Algorithms 

LM 
GDM 
BFG 
RP 

SCG 
CGB 
CGF 
CGP 
oss 
GDX 

trainlm - Levenberg-Marquardt 
traingdm - Gradient Descent Method 
trainbfg - BFGS Quasi-Newton 
trainrp - Resilient Backpropagation 
trainscg - Scaled Conjugate Gradient 
traincgb - Conjugate Gradient with PowelVBeale Restarts 
traincgf - Fletcher-Powell Conjugate Gradient 
traincgp - Polak-Ribiere Conjugate Gradient 
trainoss - One-Step Secant 
traingdx - Variable Learning Rate Backpropagation 

Table 6.12: Performance of ANN model NN 6 using various training algorithms 

a 

- 

8 
Si ,  S2, E, 

- 
ilgorithn 

- 
LM 

GDM 
BFG 
RP 

SCG 
CGB 
CGF 
CG P 
oss 
G DX - 
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Figure 6.4 shows graphically the comparison of all training algorithms with respect 

to the testing set. It can be seen that Gradient Descent Method (GDM) gives the 

lowest error rate compared to other algorithms. Thus, its use for network analysis in 

this project is appropriate. Other algorithms, which give low error rates as well, 

include One-Step Secant method (OSS) and Variable Learning Rate Back 

propagation (GDX). As expected, the GDM method requires the most number of 

cycles compare to other faster algorithms to reach the minimum error. 

0 2 4 6 8 10 12 

Training Algorithm 

Figure 6.4: Comparison of ANN model performance using various training algorithms 

6.6 Data Division for ANN Models 

Recent studies indicate that the way the data are divided can have a significant 

impact on the performance of network model (Tokar and Johnson 1999). ANN 

models are developed for its interpolation ability, and not extrapolation ability. 

Consequently, the training set should contain all maximum and minimum data 

points in order to perform well. If early-stopping is used as the stopping criterion, 

the testing set should be representative of the training set, as the testing set is used 

to decide when to stop training and obtain optimal model architecture. Validation 

set is used to test the generalization ability of the model, thus it should be 

representative of the training set as well. For these reasons, the statistical properties 

of the various data subsets (training, testing and validation) need to be similar to 
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ensure that each subset represents the same statistical population (Masters 1993). In 

this section, the effect of data division on ANN model performance is investigated. 

Three data division methods are tested: (i) data division to ensure statistical 

consistency; (ii) data division using self-organizing maps (SOMs); and (iii) data 

division using fuzzy clustering. To examine how representative the training, testing 

and validation sets are with respect to each other, t- and F-tests are carried out. The 

t-test checks the null hypothesis of no difference in the means of two data sets and 

the F-test investigates the null hypothesis of no difference in the standard deviations 

of the two sets. For a given level of significance, test statistics can be calculated to 

test the null hypotheses for the t- and F-tests, respectively. Traditionally, a level of 

significance equal to 0.05 is selected (Levine et al. 1999). This means that there is a 

confidence level of 95% that the training, testing and validation sets are statistically 

consistent. 

Approach 1: Statistically Consistent 

This method of data division has been adopted for analysis of ANN in the previous 

sections. In this approach, the input data are divided into their subsets in such a way 

that the statistical properties of the training, testing and validation are as close to 

each other as possible. Hence, the three data sets represent the same statistical 

population. The available 158 patterns are divided into three statistically consistent 

subsets as shown in Table 6.13. It can be seen that, for each input variable, the 

statistical properties of training, testing and validation sets are very close to each 

other. This is also confirmed by the results of null hypothesis tests in Table 6.14, 

which show that the hypotheses of testing and validation sets for all input 

parameters passed the t-test and the F-test. 
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Training set 16.8 22.9 0.2 112.9 
Testing set 15.6 20.2 0.3 94.4 
Validation set 17.0 19.5 0.9 79.9 

112.7 
94.1 
79.0 
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Approach 2: Self-organizing Map (SOM) 

Teuvo Kohonen introduced the Self-organizing Map (SOM) in 1982. The SOM 

algorithm is based on unsupervised, competitive learning which means that no 

human intervention is needed during the learning. Self-organizing feature maps 

(SOFM) learn to classify input vectors according to how they are grouped in the 

input space. In this section, SOM is used to organize the data into clusters. Once 

clustering has been successfully accomplished, samples are chosen from each 

cluster to form the training, testing and validation sets. The method proposed by 

Bowden et al. (2002) is followed whereby three samples are selected randomly 

from each cluster; one for each of the training, testing, and validation sets. If a 

cluster contains two data, one is chosen for training and the other for testing. If a 
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cluster contains only one data, it is included in the training set. SOM is a convenient 

method for data division as it eliminates the need to decide which proportion of the 

data to use for training, testing and validation sets. Furthermore, the statistical 

properties of the training, testing and validation sets are nearly similar. However, 

this method requires the controlling parameters in learning process (i.e. learning 

rate, neighbourhood size, size and shape of the map) to be selected in advance. To 

obtain optimum combinations of these parameters, a trial-and-error approach should 

be used. As part of this approach, SOM function in MatLab’s Neural Network 

toolbox is used to cluster the data. The available input variables (Le. H, EP, AR, 

SPT1, SPT2, MC, E, GP) and output variable (S) are presented to the SOM as 

inputs (Figure 6.5). As there is no precise rule to determine the optimum size of the 

map, three map sizes, 5x5, 8x8, and 10x10 are investigated. Training is carried out 

for 10000 iterations using the default parameters recommended in the Networmata 

Manager (neighbourhood distance : 1, Ordering phase learning rate:0.9, Tuning 

phase learning rate:0.02). 

Map size 5x5 

From the clusters of data, 119 patterns are selected for training set, 22 patterns for 

testing set and 20 patterns for validation set. The statistics of the training, testing 

and validation sets for map size 5x5 are shown in Table 6.15. It can be seen that the 

statistical properties of the three subsets are quite similar as expected. This is further 

verified by the results of t- and F-tests (Table 6.16), whereby hypothesis of all input 

parameters for both testing and validation sets are acceptable. 

1put I Aayer I 
Figure 6.5: SOM for settlement data clustering 
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Training set 
Testing set 
Validation set 

Training set 17.1 4.3 8.5 30.0 21.5 
Testing set 18.0 4.3 11 .o 29.0 18.0 
Validation set 18.7 3.6 13.0 25.0 12.0 

25.2 28.2 0.7 80.3 79.7 
28.1 26.1 0.9 70.4 69.5 
30.8 28.4 2.4 80.3 77.9 

IAdvance Rate. ARfmmlmin) I 

Training set 

Validation set 
Testing set 

ISPT1, N I 

16.6 21.4 0.2 112.9 112.7 
16.3 23.7 0.5 94.4 93.9 
14.1 20.2 0.3 79.9 79.6 

Validation set I 79.6 I 47.0 I 5.3 I 120.0 I 114.7 
Grout Pressure, GP(kPa) 
Training set 240.0 163.3 1.8 700.0 698.2 
Testing set 277.3 144.0 13.5 500.0 486.5 
Validation set 283.6 133.8 32.0 500.0 468.0 
IMeasured settlement. S(mrn1 I 
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Map size 8x8 

The numbers of patterns for training, testing and validation sets are 98, 36 and 27 

respectively. The statistical properties of the training, testing and validation sets for 

map size 8x8 are shown in Table 6.17. The statistics of the three subsets are 

consistent and this is confirmed by the outcomes of the t- and F-tests (Table 6.18). 
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Map size 10x10 

Since its size is the largest, this map has the most clusters of data. Therefore, more 

data can be included in the testing set. The numbers of patterns for training, testing 

and validation sets are 91, 46 and 24. Table 6.19 shows the statistical properties of 

the three subsets while its consistency is verified from the t- and F-tests results 

(Table 6.20). 
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Training set 
Testing set 
Validation set 

-. 

Training set 24.5 27.2 0.7 80.3 79.7 
Testing set 27.8 27.8 0.8 80.3 79.5 
Validation set 30.2 31 .O 2.7 80.3 77.6 

247.9 162.2 1.8 700.0 698.2 
248.7 151.6 13.5 500.0 486.5 
264.2 156.7 31.2 500.0 468.8 

Training set 

Validation set 
Testing set 

80 

16.7 22.3 0.2 112.9 112.7 
16.4 21.4 0.5 94.4 93.9 
14.3 18.6 0.8 79.9 79.1 
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Approach 3: Fuzzy Clustering 

In normal partitioning methods, each object of the data set is assigned to one and 

only one cluster. As a result, each object has a membership of 1 in some cluster and 

a zero membership in all other clusters. Frequently, we have intermediate data 

objects which lie approximately the same distance from some clusters. In this case, 

it would be very difficult to decide in which cluster to put the objects. Normally, the 

partitioning method would assign the objects arbitmrily to one of the clusters from 

which the objects have the same distance. A fuzzy clustering technique is much 

better equipped to handle such situations. This method assigns membership 

coeficients (range from 0 to 1) to all data objects which indicate the degree of 

belonging of each object to all the clusters. For instance, if object 1 belongs for 87% 

to cluster 1, for 6% to cluster 2, and for 7% to cluster 3, then object 1 belong mainly 
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to the first cluster. In the case of intermediate objects, the membership coefficients 

will be approximately equal with respect to several clusters. The object is then 

grouped to the cluster to which it has the largest membership coefficient. 

The fuzzy clustering algorithm attempts to minimize the following objective 

function (Kaufman and Rousseeuw 1990): 

where : 

k = number of clusters; 

dij = given distance between data point i and j 

Uiv = unknown membership of object i to cluster v 

The membership functions are subject to the constraints: 

u , ,>_Ofor i= l ,  ..., n ; v = l ,  ..., k (6.5) 

(6.6) C uiv = 1 fori = 1, ..., n 
V 

The constraints imply that memberships cannot be negative and that each object has 

a constant total membership of 1, distributed over the different clusters. 

The procedure for fuzzy clustering adopted in this research is as follows: 

1. The optimum number of clusters is determined by using subtractive 

clustering method provided in MatLab’s Fuzzy Logic ToolBox. 

2. For the optimum number of clusters, the data records included in each 

cluster are ranked according to their membership values in incremental 

intervals of 0.1 between 0.0 and 1.0 (i.e. 0.0-0.1, 0.1-0.2,.. ., 0.9-1.0). 

3. For each cluster and membership interval (e.g. cluster 1 and membership 

interval 0.0-O.l), two samples are chosen, one for the testing set and one for 

the validation set, and the remaining data samples are chosen for the training 

set. In the case where two records are obtained, one record is chosen for 

82 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 6 Prediction of Maximum Surface Settlement by Multi-layer Perceptrons (MLP) 

Correlation coefficient, r 0.91 
Error rate (mm) 5.37 

training and the other is chosen for testing. If only one record is obtained, 

this record is included in the training set. 

0.96 0.97 I 0.85 0.84 
4.02 3.46 1 6.99 6.61 

From step no. 1, the optimum number of clusters was found to be 8. The 

membership values obtained for all data records are shown in Appendix C .  From 

step no. 3, 98 patterns are used for training set, 38 patterns for testing set and 25 

patterns for validation set. Table 6.22 shows the statistics of the data in the training, 

testing and validation sets obtained using fuzzy clustering. The results of t- and F- 

tests verify the statistical consistency of the three subsets as shown in Table 6.23. 

Testing 
Correlation coefficient, r 0.95 0.89 0.81 0.86 0.90 
Error rate (mm) 4.38 6.57 7.48 7.83 5.48 
Validation 
Correlation coefficient, r 0.92 0.70 0.89 0.92 0.94 

r 

Error rate (mm) 4.77 10.94 8.73 6.22 4.75 

6.7 Results and Discussion 

Performance of ANN model "6 using data subsets obtained 

approaches of data division is shown in Table 6.21. It can be seen 

obtained for the statistically consistent data division method are 

from different 

that the results 

better than the 

results obtained for SOM and fuzzy clustering data division methods. The testing 

set has a high correlation coefficient coupled with low error rate. In addition, the 

generalization ability of the model is satisfactory, as shown by high correlation 

coefficient and low error rate of the validation set. Consequently, ANN model NN6 

developed using statistically consistent data division will be used for the subsequent 

analysis and will be referred to as the ANN model. 

Table 6.21: Performance of ANN models using data subsets obtained for different 
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Table 6.22: Input and output statistics for data sets obtained using fuzzy clustering 

Training set 25.8 27.9 0.7 80.3 79.7 
Testing set 30.7 29.7 0.8 76.1 75.3 
Validation set 21.5 24.5 1.4 80.3 79.0 

IStiffness. E(MPa) I 

84 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 6 Prediction of Maximum Surface Settlement by Multi-layer Perceptrons (MLP) 

6.8 Sensitivity Analysis of the ANN Model Inputs 

The purpose of sensitivity analysis is to identify which of the input variables have 

the most significant impact on settlement predictions. The relative importance of the 

input variables is obtained from the connection weights of the trained network using 

a simple and innovative technique proposed by Garson (1991). The optimum ANN 

model presented in the first year report of this project was used to illustrate the 

technique. The optimum ANN model had four input nodes, six hidden nodes and 

one output node with connection weights as shown in Table 6.24. 
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Hidden 1 
Hidden 2 
Hidden 3 
Hidden 4 

Table 6.24: Connection weights of a network with four inputs and six hidden nodes 

-0.622740 0.382930 0.41 6470 -0.34501 0 -1.094900 
-0.333050 -0.157240 -3.320500 1.535800 2.282600 
1.102200 -0.731 470 -0.2921 80 -0.105380 1.577700 
0.632980 0.275680 -1.634400 0.269070 -3.3621 00 

Hidden 5 
Hidden 6 

-1.294700 0.681 890 0.1 30640 -1.01 4300 -1.399800 
0.91 8280 0.674620 0.582060 0.22741 0 -0.49461 0 

The computational process proposed by Garson (1991) is as follows: 

1. For each hidden node i, multiply the absolute value of the hidden-output 

layer connection weight by the absolute value of the hidden-input layer 

connection weight of each input variable j to obtain the products Pi, (i 

represents the column number of the weights mentioned above). As an 

example: P11 = 0.622740 x 1.094900 = 0.681838. The results are tabulated 

in Table 6.25. 

Table 6.25: Products PI] 

Hidden 2 I 0.760220 I 0.35891 6 I 7.579373 
Hidden 3 I 1.738941 I 1.154040 I 0.460972 

3.50561 7 
0.166258 

Hidden 4 
Hidden 5 
Hidden 6 

2. For each hidden node, divide Pij by the sum of all input variables to obtain Qij 

(Table 6.26). As an example : 

Q11 = 0.681838 /(0.681838+0.419270+0.0.455993+0.377751) = 0.352398 

2.128142 0.926864 5.495016 0.904640 
1.81 2321 0.95451 0 0.1 82870 1 -41 981 7 
0.4541 90 0.333674 0.287893 0.1 12479 

Table 6.26: Products Qij 

nodes. ICover(H) 
Hidden 1 I 0.352398 

SRTl An.(= .I GWL 

0.216694 0.235673 0.195235 
Hidden 2 I 0.062292 I 0.029409 I 0.621 050 I 0.287249 
Hidden 3 I 0.493988 I 0.327833 I 0.130950 I 0.047230 

L 

Hidden 4 I 0.225089 I 0.098032 0.581 196 0.095682 
Hidden 5 I 0.41 4765 I 0.21 8447 0.041 851 0.324937 

[Hidden 6 I 0.382239 I 0.280814 I 0.242286 I 0.094661 I 
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3. For each input node, sum Qij to obtain Sj (Table 6.27). As an example: 

S ~=0.352398+0.062292+0.493988+0.225089+0.4 14765+0.382239=1.93077 

Table 6.27: Products Sj 

Sum 

4. Divide Sj by the sum for all input variables to get the relative importance of 

all output weights attributed to the given input variable (Table 6.28). As an 

example, the relative importance for input node 1 is equal to : 

(1.930771~100)/6 = 32.2 % 

Table 6.28: Relative importance (%) 

By using Garson method above, the relative importance of input parameters for the 

thirty two networks analyzed in section 6.3 are given in Table 6.29. The most 

important input for each network is indicated by the shaded box. It is observed that 

every network assigned relatively different relative importance with respect to an 

input parameter. What could be an important input for a particular network might be 

less important for other networks. Table 6.30 shows the relative importance of input 

variables for "1, "6, "7, "16, and "26. The shaded box indicates the 

most important input for the network while the yellow box denotes the least 

important input. From the analysis in section 6.3, the last four networks are 

considered optimum out of the thirty two networks while NN1 is the network using 

the eleven parameters as input. NNl put the highest importance on bulk density, 

whereas the most important input for "6, "7, "16 and "26 are earth 

pressure, advance rate, stiffness, and moisture content. Advance rate, which is an 

input of highest importance for "7, is the least important for "6. Similarly, 

stiffness is the least important for "7, whereas it is the most important input for 

"16. Overall, moisture content is considered very essential as it displays 

relatively high importance whenever it is used as input of the network. 
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Table 6.29: Relative importance (%) of inputs for 32 networks in Section 6.3 

88 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Nurashikin
Rectangle

Nurashikin
Rectangle

Nurashikin
Rectangle

Nurashikin
Rectangle

Nurashikin
Rectangle

Nurashikin
Rectangle
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Table 6.29: Relative importance (%) of inputs for 32 networks in Section 6.3 

Table 6.30: Relative importance (%) of inputs for "1, "6, "7, "16, and "26 
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Chapter 6 Prediction of Maximum Surface Settlement by Multi-layer Perceptrons (MLP) 

6.9 Empirical method for settlement calculation 

In this section, the empirical method described in Chapter 4 is used to obtain the 

predicted settlements for the same validation set used in ANN method. Since all the 

level instruments used in this research were positioned right above the tunnels, the 

maximum settlement over crown (W,,) calculated from empirical method, will 

serve as estimated settlement value. 

The process to obtain the maximum ground surface settlements (W,,) above each 

tunnel is as follows (Gunn 1992): 

1. The figure for volume loss is estimated and in this case it is assumed to be 3 %. 

This value is selected since 93 % of the sections along the North East Line 

tunnels show a volume loss of 2 % or less (Shirlaw et al. 2001). In contract 

C825, settlements predictions have been carried out based on equivalent face 

loss between 0.5 to 2 % (Osborne et al. 2004); while field observations 

indicated volume loss between 2-2.5 % for contract C823. Hence, the 3% 

volume loss will be on the conservative side with respect to the three contracts. 

2. Point of inflection i is estimated from Equation 4.7 in Chapter 4 using the K 

and n values recommended by Attewell(1981). 

3. Equation 4.6 in Chapter 4 is used to obtain maximum surface settlement 

(Wrn,?J. 

Details of the above calculations are shown in Appendix D. 

Table 6.31 presents the maximum surface settlements of the validation set with 

their corresponding K, n and i values. 
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Table 6.31: Maximum surface settlement (W,,,), K, n and i values obtained using empirical 
method 

6.10 Comparison of ANN Model with Empirical method 

Results of the validation set obtained using the optimum ANN model NN6 and the 

empirical method are compared in Figure 6.6. It is observed that ANN model 

predicts closely the measured settlements, whereas the empirical method under 

predicts the settlements for all the case record in validation set. Figure 6.7 shows the 

predicted results from ANN model against the measured settlements for all data 

obtained from contract C705. The figure shows that there is good agreement 

between the measured and the predicted settlemnts from ANN approach. Figures 

6.8 to 6.10 show the separate comparisons of measured and predicted settlements 

obtained using optimum ANN model (a) and empirical method (b) for the training, 
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testing and validation sets. As shown in the figures, the superiority of ANN method 

over empirical one is clearly demonstrated as well for the data in the training and 

testing sets. 

Validation Set 

. ." . 

10 15 20 25 30 35 0 5 

Record no. 

Figure 6.6: Comparison of measured settlements and the predicted settlements obtained 
using ANN and Empirical method 
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Figure 6.7: Comparison of measured and predicted settlements obtained using ANN for all 
data from contract C705 
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Predicted = Measured 

I L- 

20 40 60 80 100 120 
Measured maximum settlement (mm) 

(a) ANN 

0 ,  0, 00 

Measured maximum settlement (m) 

(b) Empirical Method 

Figure 6.8: Comparison of measured and predicted maximum settlements for training set 
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(a) ANN 
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0 
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(b) Empirical Method 
Figure 6.9: Comparison of measured and predicted maximum settlements for testing set 
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I 1  I 

0 10 20 30 40 50 60 70 80 
Measured maximum settlement (mm) 

(a)ANN 

Data Points 
Predicted = Measured 

0 10 20 30 40 50 60 70 80 
Measured maximum settlement (mm) 

(b) Empirical Method 
Figure 6.10: Comparison of measured and predicted maximum settlements for 

validation set 
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Chapter 6 Prediction of Maximum Surface Settlement by Multi-layer Perceptrons (MLP)  

6.11 Alternative ANN model for initial prediction of maximum settlement 

From section 6.3 onwards, neural network model "6 has been employed to 

predict the surface settlements induced by tunneling and the results mapped the 

field settlements quiet accurately. However, this network model might not be 

effective for quick initial prediction of surface settlements as it involves many input 

parameters i.e. 8 inputs. Furthermore, the input parameters such as earth pressure, 

advance rate, and grout pressure may not be available at the beginning of 

construction period. Hence, only soil related input parameters can be used to 

calculate the initial settlement predictions. In such circumstances, alternative 

network "29 can be utilized as it requires only four inputs which are readily 

available from the site, namely cover (H), SPTl, SPT2, and moisture content (MC). 

Table 6.5 indicated that model "29 generate results with high correlation 

coefficients for training, testing, and validation sets and relatively low error rates for 

testing and validation sets. Therefore, this model is acceptable for the initial 

predictions of surface settlement. The comparisons of measured and predicted 

settlements obtained using "29 for training, testing and validation set are shown 

in Figures 6.11 to 6.13. The final weights and bias terms of model "29 are 

presented in Table 6.32 and Table 6.33 respectively. 
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Hidden 3 I -0.436 
Hidden4 I 0.568 
Hidden 5 I -1.002 
Hidden 6 I 1.128 
Hidden7 I 1.363 
Hidden 8 I -0.992 

I Output 1 I -0.665 I 

R = 0.926 / 
/' 

0 

/ /" 
/ 0 

0 20 40 60 80 100 120 

0 Data Points 

Measured maximum settlement (mm) 

Figure 6.11: Comparison of measured and predicted maximum settlements for training set 
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Figure 6.12: Comparison of measured and predicted maximum settlements for testing set 
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Figure 6.13: Comparison of measured and predicted maximum settlements for validation set 
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Chapter 7 

Prediction o daximum Surface Settlement (Smax) an1 
(i) by Multi Layer Perceptron 

As explained in Chapter 4, settlement trough is characterized by two important 

parameters: the maximum surface settlement at the point above the tunnel centerline 

(Smx) and the width parameter (i) which is defined as the distance from the tunnel 

centerline to the inflection point of the trough. This chapter presents the development 

of neural network models to estimate both the maximum surface settlement and width 

parameter (i). In Chapter 6,  the data set used to develop the networks is derived from 

the field reports database. However, the field reports did not provide information of 

volume loss which is an influential parameter for the prediction of both maximum 

surface settlement (Smx) and the trough width (i). Hence, for analysis in this chapter, 

the finite element software PLAXIS is utilized to generate the relevant input data for 

the training of the neural network model. 

Overview of PLAXIS 

PLAXIS is a finite element program for geotechnical applications in which soil models 

are used to simulate the soil behavior. Its development started in 1987 at the Technical 

University of Delft as an initiative of the Dutch Department of Public Works and Water 

Management. Initially, it was developed to create an easy-to-use 2D finite element code 

for the analysis of river embankments on the soft soils of the lowlands of Holland. In 

later years, PLAXIS was extended to cover most other areas of geotechnical 

engineering. PLAXIS is used specifically for the analysis of deformation and stability 

in geotechnical engineering projects. It finds the applications in several studies such as 

submerged construction of an excavation, undrained river embankment, dry excavation 

using a tie back wall, settlement of circular footing on sand, and settlements due to 

tunnel construction. For the last application, PLAXIS requires a number of input 
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3 
4 
5 
6 

parameters which varies according to material model and material behavior. For the 

analysis of settlement, Mohr-Coulomb model is used to simulate the behavior of soil. 

This model involves five parameters, namely Young's modulus, E, Poisson's ratio, v, 

cohesion, c, the friction angle, cp, and the dilatancy angle, y. PLAXIS provides a choice 

of three types of behavior for each soil model which incorporate the effect of pore 

water in the soil response: drained, undrained, and non-porous. Since we are interested 

in the short term settlements (settlements induced immediately after the passing of 

TBM machine), it is appropriate to set the material behavior to undrained. However, 

this setting requires that the effective model parameters should be entered, i.e. E' etc 

and not E, etc. However, the field data, which is used to validate the neural network 

model, mostly provide the undrained parameters. Hence it is decided to use the Non- 

porous option instead to simulate the undrained behavior. In this setting, we can 

directly enter the undrained elastic properties E = E, and v = vu = 0.495 in combination 

with the undrained strength properties c = c, and cp = cpu = 0". In this case a total stress 

analysis is performed and all pore pressures are set to zero. 

Cohesion C kN/mz 
Ratio of stiffness over cohesion 

Ratio of depth over diameter 
€IC 
HID 

Volume Loss VL % 

There are two methods for numerical simulation using Plaxis namely method by 

relaxation factor and method by volume loss. For the simulation in this project, the 

method by volume loss has been adopted for the calculation of surface settlement 

trough. The input parameters used for PLAXIS in this project are presented in Table 

7.1. For each parameter, several values are selected and they are used to generate the 

combinations comprising the six input parameters. The values are listed in Table 7.2. 

Table 7.1 : h u t  Parameters 

1 Coefficient of lateral earth pressure KO I 
2 Bulk unit weiaht Y I kN/rn3 
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1 
2 
3 
4 
5 
6 

Table 7.2: Selected values for each inDut Darameter 

K O  0.5,1,2 

Y 15,19,22 
c 1 5,50,100,250,500 

€IC 1 00,300,500 
H/D 0.5,1,3,5 
VL 0.1.1.3.10 

The output of PLAXIS generation is the surface settlement curve from which the 

magnitude of horizontal and vertical settlements at each point on the surface can be 

obtained. However, the trough width parameter (i) of the settlement curve is not 

provided in the output report. In this case, Least-Square regression analysis was 

performed on the settlements measurements in order to obtain the width parameter (i) 

assuming Gauss settlement distribution. The tunnel diameter considered in the analysis 

is 6.0 m. The soil layer surrounding the tunnel is considered to have uniform properties 

described by the four input parameters (KO, y, c, Elc). From the initial mesh analysis 

carried out using the sample from field data, it is concluded that the adopted mesh in 

the numerical simulation is considered reasonable for shallow tunnels. The depth of 1D 

from tunnel invert is considered appropriate based on the result of sensitivity analysis 

carried out with different bottom boundary conditions. Figure 7.1 shows the geometry 

of the tunnel used in PLAXIS. 

The total combinations which can be generated from parameter values in Table 7.2 

amount to 2161. However, a large number of combinations can not be used since they 

produced either a collapsed soil body or bad surface settlement graph. This reduces the 

number of input combinations further to 1836. In the first analysis, network models are 

developed using three data sets i.e. training, testing and validation. In the second 

analysis, the input data is divided into training and testing sets only. The field data set 

is used as the validation set to examine the predictive capability of the optimum 

networks obtained in the first and second analysis. 
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8D 
4 b 

H 

D 

1D 

Figure 7.1: Geometry of the tunnel with indications of depth (H), diameter (D) and soil layer 

7.1 Analysis using three sets of data: Training, Testing, and Validation 

The input patterns are divided into three sets: training, testing and validation. 1031 

patterns are used for training set, 441 patterns for testing set and 364 patterns for 

validation set. The three sets are divided in such a way that they are statistically 

consistent and thus represent the same statistical population. In order to achieve this, 

several random combinations of the training, testing and validation sets are tested until 

three statistically consistent data sets are obtained. The statistical properties of the 

training, testing and validation sets are shown in Table 7.3. It can be seen that, for each 

input variable, the statistical properties of the three sets are similar to each other. This 

is also confirmed by the results of null hypothesis tests in Table 7.4, which show that 
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the hypotheses of testing and validation sets for all input parameters passed the t-test 

and the F-test. 

The neural network tool available in MatLab is employed to develop the neural 

network models. Training is carried out using backpropagation algorithm and optimum 

parameters obtained from the analysis in section 6.4. One hidden layer is used for all 

the models. 

Table 7.3: Input and output statistics for data sets 
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Table 7.4: Null hvnothesis tests 

I KO I 

7.1.1. Networks with two output neurons 

In this analysis, a neural network model with two output neurons is trained to yield the 

predictions of maximum surface settlement (SmJ and trough width (i) simultaneously. 

Network of different hidden neurons are tested and the results in term of correlations 

coefficients and error rate are displayed in Table 7.5 and Table 7.6. Neural network 

model with 12 hidden neurons is considered optimal as it exhibits lowest error rate 

coupled with high correlation coefficient for both testing and validation sets. 
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Correlation Coefficient Error Rate (unscaled) No. of 
Hidden 

Model 
Neurodes Training Testing Validation Training Testing Validiltion 

1 

Table 7.5: Performance of ANN model with two output neurons for S,, prediction 

0.95 I 0.91 I 0.93 I 5.25 I 7.05 I 6.23 I 

Table 7.6: Performance of ANN model with two output neurons for (i) prediction 

I I . 
6 0.91 I 0.94 I 1.36 I 1.75 I 1.74 I 

Comparison of training algorithms 

In this section, faster training algorithms discussed in Chapter 2 are used to develop the 

network. The networks are trained using the same data sets as in the gradient descent 

method. The results of all the training algorithms including gradient descent method are 

tabulated in Table 7.7 and Table 7.8. Twelve neurons are used in the hidden layer as it 

is the optimum number in the case of the gradient descent method. The network has 

two neurons in the output layer meant for the simultaneous prediction of maximum 
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settlement (Smx) and inflection point (i). Table 7.7 and Table 7.8 show that the results 

of all faster training algorithms are better than the result of gradient descent method. 

The trained network produces more accurate predictions as indicated by higher 

correlation coefficient and lower error rate for the training, testing, and validation sets. 

This applies for both predictions of maximum settlement (Smx) and inflection point (i). 

Among the improved networks, the network trained using the One-Step Secant method 

(OSS) is considered to be optimum as its overall result is better than those of other 

networks. Figures 7.2 to 7.7 present the comparisons of measured against predicted 

S,, and (i) obtained using the OSS network with respect to the training, testing and 

validation set. 

Table 7.7: Performance of ANN model using various training algorithms for S,, prediction 

LM 
GDM 
BFG 
RP 

SCG 
CGB 
CGF 
CGP 
oss 
GDX 

0.96 0.93 0.93 4.50 5.76 5.27 
0.99 0.96 0.96 2.94 4.18 4.33 
0.98 0.95 0.94 3.65 5.40 5.18 
0.99 0.98 0.96 2.79 3.39 4.16 
0.99 I 0.96 I 0.97 I 2.75 I 4.12 I 4.04 

3.70 I 0.96 I 0.96 I 2.74 I 3.91 I 
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Table 7.8: Performance of ANN model using various training algorithms for (1) prediction 

GDX 

Correlation Coefficient Error Rate (unscaled) No. of 
Hidden 

Ncurodes Training Testing Validation Training Testing Validation 

14 0.98 0.94 0.96 1.24 1.74 1.51 
0.94 0.89 0.93 1.28 1.87 1.85 
0.99 0.96 0.98 0.88 1.21 1.03 
0.98 0.96 0.97 0.98 1.39 1.25 
0.99 0.97 0.98 0.74 I 1.04 0.94 
0.99 0.95 0.98 0.83 I 1.26 1.06 

I 0.98 I 0.94 I 0.97 I 1.09 I 1.49 I 1.33 I 

250 7 8  
___ 

R = 0.99 

- 200- - E 
- E 

2 'E 

c 

ar 

? 150- 

V 

5 5 100- 

FEM maximum settlement (mrn) 

0 Data Points I 
-- Predicted = FEMJ 

Figure 7.2: Predicted vs. FEM maximum settlements for training set 
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Predicted = FEM 

0 20 40 60 80 100 120 140 160 180 
FEM maximum settlement (mm) 

Figure 7.3: Predicted vs. FEM maximum settlements for testing set 

R = 0.968 -1 
0 Data Points 

0 50 100 150 200 250 
FEM maximum settlement (mm) 

Figure 7.4: Predicted vs. FEM maximum settlements for validation set 
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Figure 7.5: Predicted vs. FEM trough width for training set 
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Figure 7.6: Predicted vs. FEM trough width for testing set 
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Figure 7.7: Predicted vs. FEM trough width for validation set 

7.1.2. Networks with one output neuron 

Two separate networks are developed whereby one network is used to predict S,, and 

the other to predict trough width (i). The results for the two networks tested with 

different hidden neurons are shown in Table 7.9 and 7.10. Network used for S,, 

prediction is labeled as ANNS followed by the hidden neuron number while that used 

for trough width (i) prediction is labeled as ANNi. Networks with 12 hidden neurons 

give optimal predictions of S,, as indicated by the maximum correlation coefficients 

and minimum error rates for both testing and validation sets. Network for (i) prediction 

is optimum when it used 6 neurons in the hidden layer. It is also observed that the two 

separate networks perform better than the single network used to predict S,,, and (i) 

simultaneously. This is pointed out by higher correlation coefficients and lower error 

rates when the two separate networks are used. In this case, one network is independent 
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Correlation Coefficient Error Rate (unscaled) No. of 
Hidden Model 

Ncurodes Training Testing Validation ‘Inlining Testing Validation . 

of another network. It can freely develop itself to higher degree of accuracy without 

having to take into account the conditions of another output. In a single network with 

combined S,, and (i) outputs, this is not the case as the training is carried out to 

produce a set of weights which will give optimal results for both outputs at once. 

ANNi 
ANNi 

Table 7.9: Performance of ANN models for S,,, prediction 

2 0.96 0.90 0.92 1.44 1.87 1.90 
4 0.97 0.94 0.94 1.40 1.79 1.97 

No. of 
Hidden Correlation Coefficient Error Ratc (unscalcd) 

Model 
Neurodes Training Testing Vaiidation Training Testing Validation 

ANNi 
ANNi 
ANNi 

Table 7.10: Performance of ANN models for trough width (i) prediction 

8 0.97 0.93 0.94 1.31 1.73 1.80 
10 0.96 0.89 0.92 1.43 1.95 2.02 
12 0.98 0.94 0.95 1.15 1.59 1.62 

ANNi [ 6 I 0.97 I 0.02 I 0.96 I 1.18 I 1.55 I I .48 

Comparison of training algorithms 

The two optimum networks for the predictions of S,, and (i) are improved further 

using the faster training algorithms. The results of all the training algorithms including 

gradient descent method are tabulated in Table 7.11 and Table 7.12. For speed 
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comparison, number of cycles required to reach the minimum error for each training 

algorithm is listed in the Tables as well. The network trained using the Polak-Ribikre 

Conjugate Gradient (CGP) is considered to be optimum for the prediction of S,, while 

network trained using Fletcher-Powell Conjugate Gradient (CGF) is optimal for trough 

width (i) prediction. Thus the two optimum networks are labeled as ANNS12CGP and 

ANNiGCGF. From the comparison of results, it is shown that the networks 

ANNS 12CGP and ANNiGCGF performed relatively better than the improved OSS 

network used for simultaneous prediction of S,, and (i). This is indicated by higher 

coefficients of correlation and lower error rates for the training, testing, and validation 

sets when the two improved networks are used to predict S,, and (i) separately. Hence 

these two networks will be used in section 7.3 to provide the predictions of the field 

data. From the comparison of speed, it is deduced that training algorithm Levenberg- 

Marquardt exhibits the fastest convergence for both predictions of S,, and (i) as 

indicated by the lowest number of cycles required to reach minimum error. As 

expected, training algorithm Gradient-Descent with Momentum (GDM) requires the 

most number of cycles to reach minimum error. The optimum networks, ANNS12CGP 

and ANNi6CGF, also display fast convergence for the respective prediction. The 

variable learning rate algorithm (GDX) is usually much slower than the other faster 

methods as shown in the prediction of Smx. However for (i) prediction, it is faster than 

training algorithms Resilient Backpropagation (RP) and Scaled Conjugate Gradient 

(SCG). Figures 7.8 to 7.10 present the comparison of measured against predicted 

maximum settlements of the training, testing and validation set for ANNS 12CGP, 

while the comparison of measured against predicted trough width (i) for ANNi6CGF 

are shown in Figures 7.1 1 to 7.13 . 
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Table 7.1 1: Performance of ANNS12 model using various training algorithms 

smx 

Algorith 

LM 
GDM 
BFG 
RP 

SCG 
CGB 
CGF 
CGP 
oss 
GDX 

No of. Correlation Coefficient Error Rate (unscaled) 

cycles Training Testing Validittion Training Testing Validation 
Model 

ANNS12 23 
204245 
2800 
4172 
6887 
3509 
5627 
1279 
2350 
68904 

0.98 0.95 0.94 3.26 5.33 5.61 
0.97 0.92 0.94 4.21 5.85 5.44 
0.99 0.95 0.96 2.06 3.69 3.35 
0.99 0.95 0.93 3.05 5.01 5.65 
0.99 0.96 0.97 1.94 3.69 3.56 
0.99 0.97 0.96 2.06 3.38 4.16 

Trougl 

Algorithn 

LM 
GDM 
BFG 
RP 

SCG 
CGB 
CGF 
CGP 
oss 
GDX 

Table 7.12: Performance of ANNi6 model using various training algorithms 

width (i) - 
- 
ANNi6 

No of. Correlation Coefficient Error Rate (unscaled) 

cycles Training Testing Vididation Training Tcsting Villidution 
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Figure 7.8: Predicted vs. EEM maximum settlements for training set (ANNS12CGP) 
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Figure 7.9: Predicted vs. FEM maximum settlements for testing set (ANNS12CGP) 
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Figure 7.10: Predicted vs. FEM maximum settlements for validation set (ANNS12CGP) 
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Figure 7.11: Predicted vs. FEM trough widths for training set (ANNi6CGF) 
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Figure 7.12: Predicted vs. FEM trough widths for testing set (ANNiGCGF) 
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Figure 7.13: Predicted vs. FEM trough widths for validation set (ANNIGCGF) 
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I Training set 1.07 
Testing set 1.10 f 

7.2 Analysis using two sets of data: Training and Testing 

The input patterns are divided into two sets: training and testing. 1395 patterns are used 

for training set and 441 patterns for testing set. The two sets are divided in such a way 

that they are statistically consistent and thus represent the same statistical population. 

In order to achieve this, several random combinations of the training and testing sets 

are tested until two statistically consistent data sets are obtained. The statistical 

properties of the training and testing sets are shown in Table 7.13. It can be seen that, 

for each input variable, the statistical properties of training and testing sets are similar 

to each other. This is also confirmed by the results of null hypothesis tests in Table 

7.14, which show that the hypotheses of testing set for all input parameters passed the 

t-test and the F-test. 

Table 7.13: Input and output statistics for data sets 

0.58 0.50 2.00 1.5 
0.60 0.50 2.00 1.5 

Training set I 18.64 2.92 
Testing set I 18.72 2.85 

Training set I 2.49 I 1.78 I 0.50 I 5.00 I 4.5 
Testing set 1 I 2.49 I 1.75 I 0.50 I 5.00 I 4.5 

15.00 I 22.00 I 7.0 
15.00 I 22.00 I 7.0 

I Volume Loss I%) i 

Training set I 197.87 I 180.87 
Testing set I 193.37 I 172.15 

15.00 I 500.00 I 485.0 
15.00 I 500.00 I 485.0 
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Training set 
Testing set I 

16.67 I 27.77 I 0.35 I 212.58 212.2 
17.23 I 28.37 1 0.37 I 175.50 175.1 

Training set I I 15.42 I 7.84 I 4.62 I 66.91 
Testing set I 15.94 I 8.14 I 5.11 I 62.55 

62.3 
57.4 
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Y 

Testing I -1.05 I -1.96 I 1.96 I Accept I 0.93 I 0.86 I 1.17 I Accept 

7.2.1. Networks with two output neurons 

In this analysis, a neural network model with two output neurons is trained to yield the 

predictions of maximum surface settlement (Smx) and trough width (i) simultaneously. 

Network of different hidden neurons are tested and the results in term of correlations 

coefficients and error rate are displayed in Tables 7.15 and 7.16. Neural network model 

with 12 hidden neurons is considered optimal as it exhibits lowest error rate coupled 

with high correlation coefficient for both training and testing sets. 
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Chapter 7 Prediction of Maximum Sugace Settlement (SmU) and Trough Width (i) by MLP 

"2 4 0.92 0.89 6.61 7.5 1 
" 3  6 0.92 0.88 6.52 7.96 
"4 8 0.95 0.91 4.98 5.93 
"5 10 0.94 0.91 5.28 6.16 

r 

Table 7.15: Performance of ANN model with two output neurons for S,,,, prediction 

"4 
" 5  

8 0.95 0.92 1.56 1.74 
10 0.97 0.95 1.39 1.56 

Table ction 

Comparison of training algorithms 

As in the analysis of 3 data sets, the above optimum networks for the simultaneous 

predictions of S,, and (i) are improved further using the faster training algorithms. 

The results of all the algorithms training including gradient descent method are 

tabulated in Tables 7.17 and 7.18. The network trained using the BFGS Quasi Newton 

(BFG) method is considered to be optimum as its error rates for testing set are the 

lowest. Figures 7.14 to 7.17 present the comparisons of measured against predicted 

S,, and (i) obtained using the BFG network for the training and testing set. 
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Table 7.17: Performance of ANN model using various training algorithms for S,,, prediction 

LM 
GDM 
BFG 
Rp 

SCG 
CGB 
CGF 
CGP 
oss 
GDX 

3.58 
0.97 0.95 4.36 
0.98 0.97 2.5 1 3.41 - .  . .  

0.98 0.97 3.34 3.63 
0.98 0.96 3.25 4.03 

Table 7.18: Performance of ANN model using various training algorithms for (i) prediction 

- 
LM 

GDM 
BFG 
RP 

SCG 
CGB 
CGF 
CGP 
oss 
GDX 

0.97 I 1.16 I 1.29 I 
0.98 0.96 1.02 1.20 
0.98 0.97 0.95 1.18 
0.98 0.96 1.13 1 . 3 3  
0.98 0.96 1.06 1.21 
0.98 0.97 1.08 1.29 
0.98 0.96 1.10 1.33 
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Figure 7.14: Predicted vs. FEM maximum settlements for training set 

Figure 7.15: Predicted vs. FEM maximum settlements for testing set 
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Figure 7.17: Predicted vs. FEM trough widths for testing set 
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7.2.2. Networks with one output neuron 

Two separate networks are developed whereuy one network is used to predict S,, and 

the other to predict trough width (i). The results for the two networks tested with 

different hidden neurons are shown in Table 7.19 and 7.20. Network used for S,, 

prediction is labeled as ANNS followed by the hidden neuron number while that used 

for (i) prediction is labeled as ANNi. Networks with 12 hidden neurons give optimal 

predictions of Smx as indicated by the maximum correlation coefficients and minimum 

error rates for both training and testing. Network for (i) prediction is optimum when it 

used 8 neurons in the hidden layer. From the comparison of results, it is also observed 

that the two separate networks perform better than the single network used to predict 

S,, and (i) simultaneously, as indicated by higher correlation coefficients and lower 

error rates when the two separate networks are used. 

Table 7.19: Performance of ANN models for S,, prediction 

ANNS 2 0.90 
ANNS 4 0.93 
ANNS 6 0.95 
ANNS 8 0.96 
ANNS 10 0.95 

0.93 7.69 6.85 
0.95 5.65 4.94 
0.96 4.89 4.77 
0.97 4.56 4.56 
0.96 4.60 4.45 
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Table 7.20: Performance of ANN models for trough width (i) prediction 

ANNi 
ANNi 

4 0.96 0.93 1.52 1.73 
6 0.97 0.95 1.41 1.55 

I 

ANNi I 12 I 0.98 I 0.96 I 1.19 I 1.41 

Comparison of training algorithms 

The two optimum networks for the predictions of S,, and (i) are improved further 

using the faster training algorithms. The results of all the algorithms training including 

gradient descent method are tabulated in Table 7.21 and Table 7.22. The network 

trained using Fletcher-Powell Conjugate Gradient (CGF) is considered to be optimum 

for the prediction of S,,, while the network trained using Levenberg-Marquardt (LM) 

algorithm is optimal for trough width (i) prediction. Thus the two optimum networks 

are labeled as ANNS12CGF and ANNi8LM. From the comparison of results, it is 

shown that the networks ANNS 12CGF and ANNi8LM performed relatively better than 

the improved BFG network used for simultaneous prediction of Smx and (i). This is 

indicated by higher coefficients of correlation and lower error rates for the training and 

testing sets when the two improved networks are used to predict S,, and (i) separately. 

Hence these two networks will be validated in section 7.3 using the field data set. 

Figures 7.18 and 7.19 present the comparison of measured against predicted maximum 

settlements of the training and testing set for ANNS12CGF, while the comparison of 

measured against predicted trough width (i) for ANNi8LM are shown in Figures 7.20 

and7.21 . 
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Table 7.21: Performance of ANNS12 model using various training algorithms for S,,, 

prediction 

Correlation Error Rate 
Model Coefficient (unscaled) 

Training I Testing Training I Testing 
A 

. .x 

,I,, , .' , 

, . 

0.98 0.97 3.41 3.67 
0.99 0.98 2.87 3.43 
0.98 0.98 3.00 3.04 

- - ~ .  

~ - - ~  ~ 

Table 7.22: Performance of A m i 8  model using various training algorithms for (i) prediction 

Correlation Error Rate 
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Figure 7.18: Predicted vs. FEM maximum settlements for training set (ANNS 12CGF) 
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Figure 7.19: Predicted vs. FEM maximum settlements for testing set (ANNS 12CGF) 
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Figure 7.20: Predicted vs. FEM trough widths for training set (ANNi8LM) 
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Figure 7.21: Predicted vs. FEM trough widths for testing set (ANNi8LM) 
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7.3 Validation of the optimum networks using the field data 

The predictive ability of optimum neural models, obtained from analysis in section 

7.1.2 and 7.2.2, is validated using a set of field data. The optimum networks are 

ANNS12CGP, ANNiGCGF, ANNS 12CGF, and ANNi8LM. The optimum networks, 

trained using the gradient-descent method, in section 7.2.2 (ANNS 12GDM and 

ANNi8GDM) are tested as well in this analysis for the purpose of comparison with the 

above networks. The field set comprises 15 patterns of input variables and the 

corresponding two outputs compiled from contracts C823 and C825 Circle Line project 

(Table 7.23). The limited number of patterns in the field set is due to insufficient good 

settlement troughs profile from the field data. The values of input variables are 

obtained from properties of the soil layer at the tunnel level. The field input and output 

variables lie within the range specified by the maximum and minimum values for the 

respective input and output given in Table 7.3. This ensures that the model perfoms 

correctly as neural network is designed specifically for interpolation purpose. The field 

input data is fed to ANNS12CGP, ANNS12CGF and ANNSl2GDM to obtain 

predicted maximum settlements. Whereas the predicted trough widths (i) are obtained 

using networks ANNi6CGF, ANNi8LM, and ANNi8GDM. Table 7.24 and Table 7.25 

show the correlation coefficients and error rates of the validation set for the prediction 

of S,, and (i) with respect to each network. The comparison of predicted settlements 

and measured settlements for ANNS 12GDM, ANNS 12CGP, and ANNS 12CGF are 

shown in Figures 7.22 to 7.24. The comparison of predicted trough widths and 

measured trough widths for ANNi12GDM, ANNiGCGF, and ANNi8LM are shown in 

Figures 7.25 to 7.27. 
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ANNiGCGF 
ANNi8LM 

Table 7.23: Field data set for validation of optimum networks 

6 0.87 2.94 
8 0.82 2.11 

Table 7.24: Performance of ANNS 12GDM, ANNS 12CGP and ANNS 12CGF 

Table 7.25: Performance of ANNiSGDM, ANNi6CGF and ANNi8LM 
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Figure 7.22: Measured vs. predicted maximum settlements for field data set (ANNSl2GDM) 
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Figure 7.23: Measured vs. predicted maximum settlements for field data set (ANNS12CGP) 
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Figure 7.24: Measured vs. predicted maximum settlements for field data set (ANNS12CGF) 
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Figure 7.25: Measured vs. predicted trough widths for field data set (ANNil2GDM) 
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Figure 7.26: Measured vs. predicted trough widths for field data set (ANNi6CGF) 
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Figure 7.27: Measured vs. predicted trough widths for field data set (ANNi8LM) 
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The following conclusions can be drawn from the comparison of the networks' results. 

For the prediction of field maximum settlements, network trained using the gradient- 

descent algorithm ANNS 12GDM perform comparatively better than the other two 

optimum networks ANNSl2CGP and ANNS12CGF. This is indicated in Table 7.24 

whereby the results of GDM network produced the highest correlation coefficient and 

lowest error rate with respect to field data set. For the prediction of field trough width, 

the results of network ANNi6CGF display the highest correlation coefficient, while the 

lowest error rate was obtained from the predictions of network ANNi8LM. Overall, 

network ANNi6CGF is considered optimum for the prediction of trough width. The final 

weights and bias terms of optimum models ANNSl2GDM and ANNiGCGF are listed in 

Appendix E. 

7.4 Sensitivity Analysis of the ANN Model Inputs 

The neural models considered in this analysis are ANNS 12CGP, ANNiGCGF, 

ANNS12CGF, and ANNi8LM. These are the optimum networks obtained previously in 

section 7.1.2 and 7.2.2 for the separate predictions of maximum settlement (Smx) and 

trough width (i). The relative importance of the six input variables is obtained from the 

connection weights of the network. By using Garson (1991) method, the relative 

importances of input parameters with respect to each optimum network are given in 

Table 7.26. 

Table 7.26: Relative importance (%) of inputs for A"S12CGP, ANNi6CGF, ANNS12CGF 
and ANNi8LM 
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Table 7.26 shows that cohesion (c) is the most important input variable for all the four 

networks. Its relative importance is significantly higher than those of other five inputs. 

Overall, volume loss (VL) is considered the second important output followed by the 

depth over diameter ratio (WD), coefficient of earth pressure (KO), ratio of stiffness 

over cohesion (Elc), and bulk density (y). 

It is observed that the comparison graphs for S,, and (i) in section 7.1 and 7.2 display 

similar trend, whereby the data points concentrated more on the lower region of 

settlement values (approximately 50 mm and below). This is perhaps contrary to the 

common expectation that small maximum settlement will correspond to large trough 

width and vice versa. This occurrence is related to the result of the sensitivity analysis 

above and is explained below. 

Using the total 1836 patterns as the data, graphs were plotted with a particular input 

variable on the x-axis and the resulting maximum settlement and trough width on the y- 

axis. For each input variable, the graph with respect to maximum settlements is plotted 

separately from the graph corresponding to trough widths. These graphs are shown in 

Figures 7.28 to 7.33 for all the six input variables. 

Coefficient of lateral earth pressure (KO) Coefficient of lateral earth pressure (KO) 

0 0 s  1 1 5  2 2 5  

Figure 7.28: Coefficient of lateral earth pressure (&) vs. S,, and (i) 
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Figure 7.29: Bulk unit weight (y) vs. S,, and (i) 
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Figure 7.30: Cohesion (c) vs. S,,, and (i) 
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Figure 7.31: Ratio of stiffness over cohesion (Elc) vs. S,, and (i) 
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Figure 7.32: Ratio of depth over diameter (WD) vs. S,,, and (i) 
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Figure 7.33: Volume loss (VL) vs. S,, and (i) 

It is observed from the graphs above that, for some input variables, a trend exists which 

describe the relationship between maximum settlement (SmJ and the corresponding 

trough width (i). For coefficient of lateral earth pressure (KO), the maximum settlement 

decreases and the corresponding trough width increases as KO value increases. The 

same trend is observed as well in the graphs of input variable ratio of depth over 

diameter (WD). However the graphs of input variable volume loss display the opposite 

trend whereby the maximum settlement increase and the corresponding trough width 

decrease as volume loss increases. For input variables bulk unit weight and ratio of 

stiffness over cohesion (Ek), such distinct pattern is not observed in the graphs. In the 

I 
1 
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case of input variable cohesion, both the maximum settlement and the corresponding 

trough width decrease as cohesion values increases. Based on this pattern, it can be 

stated as well that the trough with large maximum settlement has large trough width 

and vice versa. 

The optimum networks consider cohesion (c)  as the most important input, and this will 

influence the process of predictions and the results. Consequently it is observed that the 

comparison graphs of both S,, and trough width (i) display similar pattern following 

the trend for input variable cohesion explained above. The settlement data points in the 

comparison graphs of both S,, and trough width (i) concentrate on the lower region of 

settlement values (approximately 50 mm and below). 
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Chapter 8 Conclusions 

Chapter 8 

Conclusions and Recommendations 

8.1 Conclusions 

In this research, the feasibility of using artificial neural networks (ANN) as an alternative 

method to predict the maximum ground surface settlement and settlement trough width 

due to tunneling was investigated. MatLab software was utilized for the network 

analyses. 

Two main analyses were carried out: 

1. Prediction of maximum surface settlement by ANN using the field data. 

2. Prediction of maximum surface settlement and settlement trough width by ANN using 

the finite element data. 

In the first main analysis, a total of 158 case records of actual field measurements 

obtained from contracts NEL C705, Circle Line C823 and Marina Line C825 were used 

to develop and verify the ANN models. Eleven input units considered to be influential on 

settlement value were investigated. From the combinations of these input units, 32 

network models were developed and tested to obtain the optimal combination of input 

parameters. The value of several network parameters including learning rates, momentum 

terms, transfer hnctions and initial weights were varied in order to study their effect on 

the network performance and obtain the optimum architecture of the network model. The 

effect of using other training algorithms on the performance of ANN model was also 

examined. Four data division methods namely random, statistical consistent, Self- 

Organizing Map and hzzy clustering were used to obtain optimal data sets for the 

training, testing and validation. A sensitivity analysis was carried out on the ANN model 

to study the relative importance of the factors that affect settlement. Finally, the 

settlement predictions obtained using ANN model were compared with those obtained 

using empirical method. 
I 
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From the analysis performed, the following conclusions can be made. 

1. From 32 network models, ANN model with eight input parameters namely soil 

cover, advance rate, earth pressure, SPTl, SPT2, moisture content, stiffness and 

grout pressure is considered optimal. 

2. It appears that the number of hidden nodes does not affect significantly the 

performance of ANN models. This can be attributed to the early-stopping method 

which was used as the stopping criterion. The initial set of weights used to train 

the network is important as well since the favorable initial weights will produce 

optimum final weights and vice versa. The ANN model with eight hidden neurons 

yielded optimum results for the prediction of ground surface settlements, and thus 

it was used in the network parameter analysis. 

3. The study of various momentum terms and learning rates showed that the 

minimum error rate for testing set was achieved when the momentum and 

learning rate were 0.9 and 0.2. Consequently, the remaining analysis was carried 

out using 0.9 and 0.2 as the momentum and learning rate. These results also 

support the argument that in the initial phase of network analysis, it is 

recommended to set momentum and learning rate to these two values. 

4. The results obtained using Backpropagation with gradient descent method was 

slightly better than those obtained using other algorithms. The major shortcoming 

of gradient descent method is its convergence which is much slower than the 

other algorithms. However, when early stopping is used as the stopping criterion, 

it is better to use algorithm that converges more slowly. If the algorithm which 

converges too quickly is used, there is a possibility that we may overshoot the 

point at which the error on the validation set is minimized. 

5. It is essential to maintain the consistency of the statistics between the training, 

testing and validation sets in order to produce results which are representative of 

the available data set. This can be achieved by using one of the three approaches 

namely statistical consistent method, Self-organizing Map and fuzzy clustering. 

In this project, it appears that the ANN model performed relatively better when it 

used data subsets obtained using statistical consistent method. 
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6. The sensitivity analysis indicated that every network assigns relatively different 

relative importance with respect to an input parameter. The most important input 

for a particular network might be the least important for other network and vice 

versa. Overall, moisture content is considered an essential input parameter as it 

displays relatively high importance whenever it is used as input of the network. 

7. Optimum ANN model NN6 performed significantly better than the empirical 

method considered for the same validation set. The predictions obtained by ANN 

model "6, were quite close to the measured maximum settlements; whilst the 

empirical method underpredicted the measured settlements. Hence, it is evident 

that ANN model provide more accurate settlement predictions than the empirical 

method. This confirms the feasibility of using artificial neural networks as an 

alternative method to predict the maximum settlements due to tunneling. 

8. ANN model "6 might not be effective for quick initial prediction of maximum 

surface settlements. This is because it requires complete data of the eight input 

parameters from the project, whereas some input such as earth pressure, advance 

rate, and grout pressure may not be available at the beginning of construction 

period. Hence it is proposed to use another model " 2 9  which requires only four 

inputs readily available from the site, namely cover (H), SPT1, SPT2, and 

moisture content (MC). The reliability of this alternative network is substantiated 

by high correlation coefficients for training, testing, and validation sets and 

relatively low error rates for testing and validation sets. 

In the second main analysis, neural network models were developed for the prediction of 

maximum settlements and trough width using the data generated from the finite element 

software PLAXIS. PLAXIS is commonly used for geotechnical applications in which soil 

models are used to simulate the soil behavior. A total of 2161 patterns were generated 

from the combinations of six input parameters, namely coefficient of earth pressure (&), 

bulk density (y), cohesion (c), ration of stiffness over cohesion (Elc), ratio of depth over 

diameter (H/D), and volume loss (VL). The main output of the program is the settlement 

curve from which the settlement of the points along the soil surface can be obtained. The 

Gaussian distribution was fitted to the settlement points and the standard deviation of the 
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equation was used as the corresponding trough width (i). Patterns which produce failed 

results or bad settlement graphs were discarded; hence leaving 1836 patterns for the 

analysis. Two cases of network training are considered in the analysis. In the first case, 

network models are developed using three statistically consistent data sets i.e. training, 

testing and validation. In the second case, the input data is divided into training and 

testing sets only. For each case, two types of network models were developed. The first 

model has two output neurons where the predictions of S,, and trough width (i) can be 

carried out simultaneously. The second model is the networks with one output neuron 

which predict Smax and (i) separately. The use of faster training algorithms to improve the 

accuracy of the network is investigated and the results are compared with the result of 

standard gradient descent method. The optimum network models from the two cases of 

training and the optimum network trained using gradient descent method are retained and 

validated using a set of field data to examine the generalization ability. The field data 

were collected from contracts C823 and C825 Circle Line project. From the network 

analysis, the following conclusions can be drawn: 

1. Two separate networks performed better than the single network used to predict 

S,,, and (i) simultaneously as shown by higher correlation coefficients and lower 

error rates when the two networks are used. As discussed earlier, the main reason 

for this is that each of the two independent networks has more freedom to 

improve its degree of accuracy without having to take into account the conditions 

of another output. 

2. For the case of training with three data sets, the network of 12 hidden neuron 

trained using the Polak-Ribikre Conjugate Gradient (CGP) is considered to be 

optimum for the prediction of Smax, For trough width (i) prediction, network of six 

hidden neurons trained using Fletcher-Powell Conjugate Gradient (CGF) is the 

best. The two optimum networks are labeled as A N N S  12CGP and ANNi6CGF. In 

case of training with two data sets, the network of 12 hidden neuron trained using 

Fletcher-Powell Conjugate Gradient (CGF) is considered to be optimum for the 

prediction of S,, while the network of 8 hdden neuron trained using Levenberg- 

140 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 8 Conclusions 

Marquardt (LM) algorithm is optimal for trough width (i) prediction. The two 

optimum networks are labeled as A"Sl2CGF and ANNi8LM. 

3. For the prediction of field maximum settlements, network trained using the 

Gradient-Descent Method (GDM) ANNS 12GDM perform relatively better than 

the other two optimum networks ANNS12CGP and ANNS12CGF. The prediction 

results of GDM network showed the highest correlation coefficient and lowest 

error rate with respect to field data set. For the prediction of field trough width, 

the results of network ANNiGCGF display highest correlation coefficient, while 

the lowest error rate was obtained from the predictions of network ANNi8LM. 

Overall, the performance of network ANNi6CGF is considered better than the 

other two optimum networks ANNi12GDM and ANNi8LM. Hence, it is 

concluded that ANN models A N N S  12GDM and ANNiGCGF are optimal and they 

can be used for the prediction of maximum settlements and trough widths 

respectively. 

4. The sensitivity analysis indicated that the four optimum networks A N N S  12CGP, 

ANNi6CGF, ANNS12CGF, and ANNi8LM consider cohesion (c) as the most 

important input. Its relative importance is significantly higher than those of 

remaining five inputs. In general, volume loss (VL) is the second important output 

followed by the depth over diameter ratio (H/D), coefficient of earth pressure 

(KO), ratio of stiffness over cohesion (Elc), and bulk density (y). 

8.2 Recommendations for Future Works 

For the first main analysis, more case records are required in the network analysis to 

improve the reliability of network model. Thus, it is recommended to collect more data in 

the future from various tunneling projects not only in Singapore but also in other parts of 

the world. Networks with different input parameters which showed satisfactory 

performance in the testing of neural network models can be further investigated in order 

to assess their actual predictive capability. Other factors related to Shield operation such 

141 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 8 Conclusions 

as pitching angle, thrust force, cutter torque, and shield position can be added in the list 

of input parameters and their effect on the network performance should be examined. 

For the second main analysis, more field data are required to verify the predictive ability 

of the optimum networks. In this project, the limited amount of field data for validation 

set is due to shortage of good settlement trough curves from the site offices. Hence, good 

settlement curves should be collected as many as possible from other tunneling projects 

currently going on in Singapore. The good settlement troughs from other projects 

provided in the literature can added to the field data set as well. The validation of 

ANNS I2GDM network performance using the field data indicated underestimation for 

large maximum settlements around 120mm and above. The large maximum settlements 

are by and large associated with high volume loss. Among the volume losses used in 

PLAXIS to generate the input data, only 10% volume loss is considered high. The 

remaining volume losses are below 5%. This means lack of input data for the large 

maximum settlements. Hence, other volume loss from 5% to 10% should be included in 

the input data generation as well in order to get better estimation of large maximum 

settlements. In this project, the field measurements indicated small volume losses (around 

0.1% to 3%) for most of the field data. Therefore, the values of volume losses selected 

for input data generation are within this range. 
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Appendix B 
Database Used for ANN Models 

Training Set 
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Appendix C 
Membership Values of Fuzzy Clustering 

Number of clusters: 8 

Patterns 1 through 8 
1 2 

1 0.0008 0.0089 
2 0.0138 0.0848 
3 0.0021 0.024 
4 0.0008 0.009 
5 0.003 0.029 
6 0.0031 0.01 91 
7 0.0129 0.75 
8 0.9635 0.0752 

Patterns 9 through 16 
9 10 

1 0.0026 0.0276 
2 0.0047 0.0737 

3 
0.004 
0.047 
0.012 
0.0041 
0.012 
0.0081 
0.877 
0.0359 

11 
0.2197 
0.0032 

3 0.0029 0.0372 0.0077 
4 0.0024 0.0264 0.7564 
5 0.0506 0.2292 0.004 
6 0.9226 0.3524 0.0024 
7 0.0067 0.1141 0.0041 
8 0.0075 0.1394 0.0024 

Patterns 17 through 24 
17 18 

1 0.0232 0.0066 
2 0.1339 0.222 
3 0.0429 0.0205 
4 0.0231 0.0068 
5 0.0927 0.0184 
6 0.1432 0.0186 
7 0.1301 0.0919 
8 0.4109 0.6153 

19 
0.0055 
0.1006 
0.01 55 
0.0056 
0.01 95 
0.0203 
0.0834 
0.7496 

4 
0.0032 
0.0847 
0.009 
0.0032 
0.0098 
0.01 
0.048 
0.8321 

12 
0.2364 
0.0069 
0.01 66 
0.7126 
0.0083 
0.0052 
0.0087 
0.0053 

20 
0.0023 
0.006 
0.9775 
0.0027 
0.0018 
0.0012 
0.0058 
0.0027 

5 
0.0038 
0.1092 
0.01 11 
0.0039 
0.01 13 
0.01 16 
0.0571 
0.7921 

13 
0.2889 
0.005 
0.01 13 
0.6735 
0.0067 
0.0041 
0.0065 
0.004 

21 
0.0521 
0.1751 
0.0949 
0.053 
0.1 107 
0.1434 
0.1415 
0.2293 

6 
0.0055 
0.0093 
0.0059 
0.0052 
0.0984 
0.8481 
0.013 
0.0145 

14 
0.4003 
0.0043 
0.0092 
0.5677 
0.006 
0.0036 
0.0056 
0.0034 

22 
0.0302 
0.051 8 
0.7734 
0.0359 
0.01 82 
0.0129 
0.051 3 
0.0261 

7 
0.01 37 
0.1627 
0.0365 
0.01 39 
0.0544 
0.0574 
0.1644 
0.497 

15 
0.6372 
0.005 
0.01 06 
0.3253 
0.0071 
0.0042 
0.0066 
0.004 

23 
0.136 
0.0853 
0.3821 
0.1703 
0.0475 
0.0334 
0.0925 
0.053 

8 
0.1386 
0.0628 
0.0721 
0.1179 
0.3305 
0.1088 
0.1071 
0.0622 

16 
0.0039 
0.1059 
0.01 16 
0.004 
0.01 23 
0.01 25 
0.0599 
0.7899 

24 
0.0075 
0.0226 
0.9203 
0.0087 
0.0061 
0.0043 
0.0206 
0.0098 
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Patterns 25 
25 

1 0.0042 
2 0.0076 
3 0.0046 
4 0.0039 
5 0.076 
6 0.8802 
7 0.011 
8 0.0124 

through 32 
26 

0.025 
0.0967 
0.0428 
0.0246 
0.2162 
0.2807 
0.1296 
0.1 844 

27 
0.1623 
0.0818 
0.1192 
0.1556 
0.1955 
0.0814 
0.135 
0.0692 

28 
0.1599 
0.0752 
0.1007 
0.1436 
0.2373 
0.088 
0.1285 
0.0668 

29 
0.0058 
0.0122 
0.007 
0.0055 
0.1164 
0.81 58 
0.01 72 
0.0202 

30 
0.0091 
0.01 

0.0078 
0.0083 
0.8778 
0.058 
0.01 64 
0.0126 

31 
0.0066 
0.3524 
0.021 6 
0.0068 
0.01 89 
0.01 62 
0.2682 
0.3093 

32 
0.001 1 
0.0269 
0.0032 
0.0012 
0.0037 
0.0039 
0.0181 
0.9419 

Patterns 33 
33 

1 0.3284 
2 0.003 
3 0.0067 
4 0.6492 
5 0.004 
6 0.0024 
7 0.0039 
8 0.0023 

through 40 
34 

0.8391 
0.0018 
0.0037 
0.1472 
0.0027 
0.001 6 
0.0024 
0.001 5 

35 
0.491 9 
0.027 
0.0431 
0.294 
0.0526 
0.0309 
0.0367 
0.0238 

36 
0.09 

0.0005 
0.0012 
0.9059 
0.0007 
0.0004 
0.0007 
0.0004 

37 
0.21 15 
0.0047 
0.01 1 
0.7538 
0.0059 
0.0036 
0.0059 
0.0036 

39 
0.5701 
0.0033 
0.0073 
0.405 
0.0046 
0.0027 
0.0044 
0.0026 

38 
0.4642 
0.031 
0.0479 
0.2837 
0.0653 
0.0373 
0.0428 
0.0277 

40 
0.7226 
0.001 9 
0.004 
0.263 
0.0028 
0.001 6 
0.0025 
0.001 5 

f 'atterns 41 through 48 
41 42 

0.409 0.3639 
0.001 7 0.0026 
0.0038 0.0059 
0.5782 0.61 67 
0.0023 0.0034 
0.0014 0.0021 
0.0022 0.0034 
0.0013 0.002 

43 
0.4741 
0.001 8 
0.004 
0.5122 
0.0025 
0.0015 
0.0024 
0.0014 

44 
0.2877 
0.0017 
0.004 
0.6993 
0.0023 
0.0014 
0.0023 
0.001 3 

45 
0.71 99 
0.001 6 
0.0035 
0.2678 
0.0023 
0.0014 
0.0021 
0.001 3 

46 
0.01 32 
0.5218 
0.0609 
0.014 
0.0272 
0.0243 
0.166 
0.1725 

47 
0.006 
0.0703 
0.01 74 
0.0061 
0.01 78 
0.0121 
0.81 65 
0.0539 

48 
0.0007 
0.01 48 
0.0019 
0.0007 
0.0023 
0.0024 
0,0109 
0.9663 

Patterns 49 through 56 
49 50 

1 0.0009 0.002 
2 0.0211 0.0504 
3 0.0025 0.0056 
4 0.0009 0.002 
5 0.003 0.0063 
6 0.0031 0.0065 
7 0.0145 0.031 2 
8 0.954 0.8958 

51 
0.0049 
0.0625 
0.01 15 
0.005 
0.0204 
0.021 9 
0.0725 
0.8013 

52 
0.9313 
0.0008 
0.001 6 
0.063 
0.001 1 
0.0007 
0.001 
0.0006 

53 
0.8748 
0.0017 
0.0035 
0.1121 
0.0026 
0.001 6 
0.0023 
0.0014 

54 
0.2352 
0.0567 
0.1866 
0.3434 
0.0455 
0.0312 
0.0621 
0.0392 

55 
0.2351 
0.0575 
0.1896 
0.3378 
0.0459 
0.0315 
0.063 
0.0397 

56 
0.4185 
0.0045 
0.0097 
0.548 
0.0062 
0.0037 
0.0059 
0.0035 
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Patterns 57 through 64 
57 58 

1 0.5824 0.0038 
2 0.0066 0.7658 
3 0.0133 0.0152 
4 0.3677 0.004 
5 0.01 0.0088 
6 0.0059 0.0072 
7 0.0087 0.123 
8 0.0054 0.0722 

59 
0.0063 
0.5916 
0.0255 
0.0066 
0.01 41 
0.01 11 
0.2568 
0.088 

60 
0.0034 
0.8222 
0.01 45 
0.0036 
0.0073 
0.0059 
0.093 
0.05 

61 
0.0066 
0.7339 
0.0324 
0.007 

0.01 22 
0.0096 
0.1382 
0.0601 

62 
0.0129 
0.2039 
0.0409 
0.0131 
0.0447 
0.036 
0.4087 
0.24 

63 
0.014 
0.1789 
0.0461 
0.01 43 
0.0466 
0.0342 
0.5072 
0.1588 

64 
0.0155 
0.2216 
0.0551 
0.016 
0.0486 
0.0364 
0.4353 
0.1715 

Patterns 65 
65 

1 0.113 
2 0.0971 
3 0.3693 
4 0.1396 
5 0.0667 
6 0.0416 
7 0.1128 
8 0.0598 

through 72 
66 

0.1258 
0.0981 
0.326 
0.1563 
0.0714 
0.0448 
0.1 152 
0.0624 

67 
0.1248 
0.0931 
0.3553 
0.1593 
0.063 
0.0407 
0.1055 
0.0583 

68 
0.3328 
0.0234 
0.0513 
0.4992 
0.0281 
0.0182 
0.0287 
0.01 83 

69 
0.2978 
0.0285 
0.0686 
0.4967 
0.031 7 
0.0204 
0.0346 
0.0216 

70 
0.184 
0.0061 
0.01 54 
0.771 
0.007 
0.0044 
0.0076 
0.0046 

71 
0.1607 
0.0044 
0.01 13 
0.8064 
0.0051 
0.0031 
0.0056 
0.0033 

72 
0.1723 
0.0022 
0.005 
0.81 17 
0.0028 
0.001 7 
0.0028 
0.0017 

Patterns 73 
73 

1 0.1338 
2 0.001 
3 0.0024 
4 0.8586 
5 0.0013 
6 0.0008 
7 0.0013 
8 0.0008 

through 80 
74 

0.1833 
0.001 5 
0.0034 
0.8057 
0.001 9 
0.0012 
0.001 9 
0.001 1 

75 
0.3304 
0.0026 
0.006 
0.65 

0.0034 
0.0021 
0.0034 
0.002 

76 
0.2151 
0.0013 
0.003 
0.775 1 
0.0017 
0.001 
0.001 7 
0.001 

77 
0.4586 
0.0026 
0.0059 
0.5218 
0.0035 
0.0021 
0.0034 
0.002 

78 
0.2498 
0.0025 
0.006 
0.7313 
0.0033 
0.002 
0.0033 
0.002 

79 
0.2257 
0.002 
0.0046 
0.7595 
0.0026 
0.001 5 
0.0026 
0.001 5 

80 
0.6009 
0.001 9 
0.0042 
0.3846 
0.0027 
0.0016 
0.0025 
0.0015 

P 'atterns 81 through 88 
81 82 

0.2733 0.0204 
0.0024 0.1 162 
0.0055 0.0438 
0.7088 0.0202 
0.0031 0.0776 
0.001 9 0.0494 
0.0031 0.5385 
0.001 8 0.1 34 

83 
0.0038 
0.0444 
0.01 36 
0.0039 
0.0092 
0.0062 
0.8943 
0.0246 

84 
0.0054 
0.1279 
0.0175 
0.0056 
0.017 
0.0132 
0.6963 
0.1171 

85 
0.0042 
0.0518 
0.01 54 
0.0043 
0.01 

0.0066 
0.8808 
0.0269 

86 
0.0053 
0.1001 
0.022 
0.0055 
0.01 17 
0.0082 
0.8077 
0.0395 

87 
0.004 
0.0872 
0.0153 
0.0041 
0.0093 
0.0067 
0.8365 
0.0369 

a8 
0.01 12 
0.1591 
0.0515 
0.01 17 
0.0212 
0.0145 
0.6725 
0.0583 
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Pat te rns  89 
89 

1 0.003 
2 0.0362 
3 0.0097 
4 0.0031 
5 0.0083 
6 0.0056 
7 0.91 
8 0.0241 

through 96 
90 

0.0099 
0.133 
0.0444 
0.01 03 
0.01 93 
0.01 3 
0.71 9 
0.051 1 

Pat te rns  97 
97 

1 0.0042 
2 0.802 
3 0.017 
4 0.0044 
5 0.0092 
6 0.0081 
7 0.0696 
8 0.0854 

through 104 
98 

0.0023 
0.9 

0.01 08 
0.0024 
0.0045 
0.0037 
0.0492 
0.0272 

Pat te rns  105 through 112 
1 05 106 

1 0.0152 0.9189 
2 0.5213 0.0009 
3 0.0905 0.0018 
4 0.0162 0.0743 
5 0.0267 0.001 3 
6 0.0221 0.0008 
7 0.1904 0.001 2 
8 0.1177 0.0007 

Pat te rns  113 through 120 
113 114 

1 0.0053 0.0107 
2 0.1636 0.01 19 
3 0.0159 0.0093 
4 0.0054 0.0098 
5 0.0154 0.8559 
6 0.0156 0.0677 
7 0.0765 0.0197 
8 0.7023 0.0151 

91 
0.0122 
0.1838 
0.0615 
0.01 29 
0.0227 
0.0154 
0.6304 
0.061 1 

99 
0.001 2 
0.9445 
0.0055 
0.0012 
0.0024 
0.002 
0.0271 
0.0161 

107 
0.8631 
0.0023 
0.0045 
0.1196 
0.0035 
0.0021 
0.003 
0,0019 

115 
0.0089 
0.0253 
0.9048 
0.0102 
0.0074 
0.005 
0.0273 
0.01 11 

92 
0.0392 
0.193 
0.2604 
0.043 
0.0587 
0.0368 
0.2809 
0.088 

100 
0.0023 
0.8845 
0.0098 
0.0024 
0.0051 
0.0044 
0.0442 
0.0472 

108 
0.0207 
0.0489 
0.0267 
0.01 99 
0.2469 
0.481 1 
0.0712 
0.0846 

116 
0.0055 
0.1976 
0.0243 
0.0057 
0.0123 
0.009 
0.6937 
0.0519 

93 
0.0691 
0.0953 
0.4996 
0.0821 
0.0479 
0.0293 
0.1252 
0.0514 

101 
0.012 

0.1389 
0.031 5 
0.01 22 
0.0426 
0.0322 
0.5517 
0.1789 

109 
0.0216 
0.05 

0.0272 
0.0208 
0,1469 
0.5837 
0.0606 
0.0893 

117 
0.0243 
0.381 
0.1954 
0.0264 
0.0377 
0.0299 
0.1926 
0.1127 

94 
0.0236 
0.3263 
0.1022 
0.0251 
0.0554 
0.0418 
0.2692 
0.1563 

1 02 
0.01 

0.5666 
0.0475 
0.0105 
0.021 7 
0.01 82 
0.1954 
0.1302 

110 
0.0024 
0.0046 
0.0027 
0.0023 
0.0465 
0.9275 
0.0066 
0.0075 

118 
0.001 1 
0.0201 
0.0028 
0.001 1 
0.0038 
0.0039 
0.01 66 
0.9507 

95 
0.004 
0.8436 
0.0182 
0.0043 
0.0079 
0.0068 
0.0617 
0.0535 

103 
0.0105 
0.5683 
0.0479 
0.01 11 
0.0225 
0.01 98 
0.1626 
0.1574 

111 
0.0237 
0.0484 
0.028 1 
0.0227 
0.1562 
0.5806 
0.0589 
0.081 4 

119 
0.0024 
0.0595 
0.0093 
0.0025 
0.006 
0.0043 
0.891 7 
0.0243 

96 
0.0061 
0.762 
0.0258 
0.0064 
0.0123 
0.0109 
0.0814 
0.095 

1 04 
0.01 17 
0.5639 
0.066 
0.01 24 
0.0222 
0.01 82 
0.1975 
0.1079 

112 
0.01 12 
0.101 1 
0.0235 
0.01 11 
0.0531 
0.0592 
0.141 1 
0.5997 

120 
0.0084 
0.0893 
0.01 94 
0.0084 
0.0387 
0.0423 
0.1185 
0.675 
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Patterns 121 through 128 
121 122 

1 0.0144 0.007 
2 0.5251 0.5547 
3 0.084 0.0243 
4 0.0154 0.0073 
5 0.0265 0.01 71 
6 0.022 0.01 58 
7 0.1926 0.1 152 
8 0.12 0.2587 

Patterns 129 through 136 
129 130 

1 0.8733 0.8847 
2 0.0013 0.001 3 
3 0.0027 0.0027 
4 0.1169 0.1055 
5 0.0019 0,0019 
6 0.0011 0.001 1 
7 0.0017 0.0017 
8 0.0011 0.001 

Patterns 137 through 144 
137 138 

1 0.0165 0.0247 
2 0.0406 0.0614 
3 0.0212 0.0321 
4 0.0157 0.0234 
5 0.2205 0.2769 
6 0.5475 0.3696 
7 0.0625 0.1 009 
8 0.0755 0.1 109 

Patterns 145 through 152 
1 45 146 

1 0.0089 0.0082 
2 0.1509 0.01 38 
3 0.024 0.0088 
4 0.009 0.0077 
5 0.0343 0.6729 
6 0.0285 0.246 
7 0.3904 0.0221 
8 0.3541 0.0205 

123 
0.0059 
0.6601 
0.0216 
0.0062 
0.014 
0.01 26 
0.1031 
0.1765 

131 
0.6931 
0.0027 
0.0058 
0.2869 
0.0037 
0.0022 
0.0035 
0.0021 

139 
0.027 
0.0731 
0.0364 
0.0258 
0.229 
0.3555 
0.1134 
0.1 398 

1 47 
0.01 17 
0.21 37 
0.0356 
0.01 2 
0.0373 
0.0381 
0.1 439 
0.5077 

124 
0.0033 
0.8448 
0.0151 
0.0035 
0.0066 
0.0053 
0.0816 
0.0399 

1 32 
0.78 
0.005 
0.0096 
0.1821 
0.0079 
0.0046 
0.0067 
0.0041 

140 
0.0025 
0.0364 
0.0061 
0.0025 
0.0097 
0.01 03 
0.0389 
0.8936 

148 
0.0055 
0.0095 
0.0059 
0.0052 
0.0999 
0.8462 
0.01 32 
0.01 47 

125 
0.0085 
0.71 05 
0.0504 
0.0091 
0.0142 
0.01 13 
0.1335 
0.0624 

133 
0.8208 
0.0035 
0.0069 
0.1523 
0.0056 
0.0033 
0.0047 
0.0029 

141 
0.0029 
0.0459 
0.0072 
0.0029 
0.01 08 
0.01 14 
0.0441 
0.8748 

1 49 
0.001 9 
0.0039 
0.0023 
0.001 8 
0.0393 
0.9387 
0.0056 
0.0065 

126 
0.0022 
0.91 37 
0.01 1 
0.0023 
0.0041 
0.0034 
0.0388 
0.0245 

1 34 
0.7697 
0.0057 
0.0108 
0.1868 
0.0093 
0.0054 
0.0077 
0.0047 

1 42 
0.0005 
0.009 
0.001 3 
0.0005 
0.001 7 
0.001 8 
0.0078 
0.9774 

150 
0.081 7 
0.0889 
0.5263 

0.1 
0.0389 
0.0285 
0.0852 
0.0506 

127 
0.001 7 
0.9185 
0.008 1 
0.0018 
0.0034 
0.0027 
0.043 
0.0207 

135 
0.8345 
0.0009 
0.001 9 
0.1587 
0.001 3 
0.0008 
0.0012 
0.0007 

143 
0.0091 
0.1 581 
0.0242 
0.0092 
0.0333 
0.0281 
0.3708 
0.3672 

151 
0.007 
0.01 33 
0.0079 
0.0066 
0.1293 
0.7954 
0.01 88 
0.0216 

128 
0.3899 
0.0018 
0.004 
0.5967 
0.0024 
0.0014 
0.0023 
0.0014 

1 36 
0.01 08 
0.0203 
0.01 25 
0.01 03 
0.4005 
0.4842 
0.0303 
0.031 

144 
0.0081 
0.1 799 
0.0226 
0.0082 
0.0276 
0.0233 
0.358 
0.3723 

152 
0.0236 
0.1282 
0.0428 
0.0234 
0.0997 
0.1618 
0.13 

0.3905 
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Patterns 153 through 160 
153 154 

1 0.0019 0.0225 
2 0.0298 0.0503 
3 0.0048 0.0281 
4 0.002 0.021 7 
5 0.0075 0.1 509 
6 0.0079 0.5797 
7 0.0303 0.0599 
8 0.9157 0.0869 

Pattern 161 
161 

1 0.0032 
2 0.8498 
3 0.0131 
4 0.0033 
5 0.0069 
6 0.006 
7 0.0543 
8 0.0633 

155 
0.0222 
0.4083 
0.1761 
0.0239 
0.0341 
0.0273 
0.1958 
0.1 123 

156 
0.0077 
0.0229 
0.91 9 
0.0089 
0.0062 
0.0044 
0.021 
0.01 

157 
0.0212 
0.1 357 
0.041 5 
0.0212 
0.0839 
0.1287 
0.1 235 
0.4444 

158 
0.0032 
0.0061 
0.0036 
0.003 
0.0646 
0.901 
0.0086 
0.0098 

159 
0.01 98 
0.1 192 
0.045 
0.01 98 
0.0785 
0.0487 
0.5356 
0.1 335 

160 
0.0091 
0.01 07 
0.0083 
0.0083 
0.8775 
0.055 
0.01 77 
0.01 34 
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Appendix D 
Calculation of settlement using empirical method 

1) Tunnel geometry 
Excavated tunnel diameter D =  
Excavated tunnel radius r =  
Depth of tunnel axis zo= 
Cover to tunnel crown C =  15.94 
Volume excavated per metre r V = 28.28 

2) Subsurface soil conditions 

total 18.94 
where, by linear interpolation, 
K = (CK, + SK,) / (C + S) 
n = (Cn, + Sn,) / (C + S) 

Representative K: 0.71 
Representative n: 0.98 

3) Settlement trough prediction 

Volume Loss 

K, = K of Clay 
n, = n of Clay 
C = total thickness of Clay layer 
S = total thickness of Sand layer 

K, = K of Sand 
n, = n of Sand 

Assumed volume loss, Vs(%) = 

Estimation of Point of Inflection, i Attewell (1 977) 

( i / r ) = K ( q / 2 r ) "  

Location of i = 6.527 m 

Estimation of Maximum Settlement over crown, W, 

Vs(%) = {[i * (27c)t)/\o.5 *W,,,] / V} x 100 

Maximum settlement (over crown of each tunnel), W,,, = 51 -84 mm 
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Appendix E 
Final weights and bias terms for optimum ANN models ANNS12GDM and 

ANNMCGF 

Final weights of ANNS 12GDM 

Bias terms of ANNS12GDM 
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Final weights of ANNi6CGF 

Bias terms of ANNiGCGF 
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Appendix F 
MatLab Neural Network Program Code 

TrainingJnput = xlsread('Data.xls','trainI'); 
TraininKTarget = xlsread('Data.xls','trainT'); 
TestingJnput = xlsread('Data.xls','testI'); 
TestingTarget = xlsread('Data.xls','testT'); 
Valid-Input = xlsread('Data.xls','validI'); 
Valid-Target = xlsread('Data.xls','validT'); 

[ TrainingInputn,minTrainingInput ,maxTraining_Input,Training-Targetn,minTrainin 
g.Target,maxTrainingTarget] = premnmx(Training-hput,Training_Target); 

va1.P =Testing_Input ; 
va1.T = TestinLTarget; 
test.P = Valid-Input ; 
test.T = Valid-Target ; 

net=newff(minmax(TrainingInputn),[2, I], { 'tansig','tansig'} ,'traingdm'); 
net.initFcn = 'initlay'; 
net.layers { l }  .initFcn = 'initwb'; 
net.layers (2) .initFcn = 'initwb'; 
net.biases { 1 } .initFcn = 'rands'; 
netinputweights ( 1,1] .initFcn = 'rands'; 
net.biases (2) .initFcn = 'rands'; 
net.layerWeights {2,1} .initFcn = 'rands'; 
net = init(net); 
wtsl = net.IW{ l,l}; 
wts2 = net.LW(2,l); 
bias1 = net.b{l}; 
bias2 = net.b{2]; 

net.trainParam.show = 1000; 
net.trainParam.lr = 0.2; 
net.trainParam.mc = 0.9; 
net.trainParam.epochs = 40000; 
net.trainParam.goa1 = le-4; 
net.trainParam.m-fail = 30000; 
net.adaptParam.passes = 100; 
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[net, tr]=train(net,TrainingInputn,TrainingTargetn,[],[],val,test); 

network 1-outputs = sim(net,TrainingInputn); 
network 1-outputsTe = sim(net,Testing_Input); 
networkl-outputsv = sim(net,Valid-Input); 

TraininLOutput = postmnmx(networkl_outputs,minTrainingTarget,maxTrainingTarget); 
ErrorTraining = TrainingTarget-Trainingputput; 
perf = mae(Err0rTraining) 

TestinLOutput = postmnmx(networkl_outputsTe,minTraining_Target,maxTrainiet); 
TestinLTargetn = postmnmx(TestingTarget,minTraining_Tar~et,maxTraininTarget); 
Error-Testing =TestingTargetn-Testingoutput; 
perf=mae(Error-Testing) 

Valid-Output = postmnmx(networkl_outputsV,minTraining_Target,maxTrainin~Target); 
Valid-Targetn = postmnmx(Valid_Target,minTraining_Target,maxTrainin~Target); 
ErrorValid = Valid-Targetn-Valid-Output; 
perf=mae(Error-Valid) 

[m,b,r] = postreg(TrainingOutput,Training_Target) 
[m,b,r] = postreg(Testing_Output,Testing-Targetn) 
[m,b,r] = postreg(Va1id-Output,Valid-Targetn) 

Fwtsl = net.IW(1,l); 
Fwts2 = net.LW (2,l j ; 
Fbiasl = net.b{l j ;  
Fbias2 = net.b{2); 
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