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Abstract

Ground surface settlement trough associated to tunneling is characterized by two
important parameters: the maximum surface settlement at the point above the tunnel
centerline (Smax) and the width parameter (i) which is defined as the distance from the
tunnel centerline to the inflection point of the trough. The estimation of these
settlement parameters is a very complex problem due to uncertain nature of the soil.
Over the years, many methods have been proposed to predict the tunneling-induced
settlements. Most of these methods are empirical in nature. However, a method with
high degree of accuracy and consistency has not yet been developed. Accurate
prediction of settlement is essential since settlement is the governing factor in the
design process of the tunnels. In this research, the use of artificial neural network
(ANN) for the prediction of maximum surface settlement and trough width is explored.
The ability of ANNsto learn from examples and generalize beyond the training data

has made it a potential alternative tool for the settlements prediction. ANNsare

numerical modeling techniques that are inspired by the functioning of the human brain
and nerve system. ANNSs have been used successfully to solve many problems in the

field of geotechnical engineering and some of their applications are demonstrated in

this report.

In this research, two main analyses have been performed. In the first main analysis, the
feasibility of using artificial neural networks to predict the maximum settlements due to
tunneling was investigated. A total of 158 case records collected from contracts NEL
C705, Marina Line C825 and Circle Line C823 are used to develop and verify the ANN
models. Eleven input parameters considered to have significant impact on the
settlement are used in the initial analysis of the ANN models. These include cover,

advance rate, earth pressure, average SPT blow count of the soil layers above tunnel
crown (SPT1), average SPT blow count at tunnel springline level (SPT2), average SPT
blow count at tunnel inverted level (SPT3), bulk density of soil, stiffness of soil,
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ground water level, moisture content and grout pressure. Thirty two network models
are developed from the combinations of these eleven parameters. The type of ANNs
used is multi-layer perceptrons(MLPs) trained using the back-propagation algorithm.
The results of the analysis show that the network model with eight input parameters
(soil cover, advance rate, earth pressure, SPT1, SPT2, moisture content, stiffness and
grout pressure) and eight hidden neuron is optimum. The effect of network parameters
including momentum, learning rate, and transfer function on the performance of the
model is investigated as well. In this research, the use of self-organizing map and
fuzzy clustering as alternative data division methods is examined and the results are
compared with those obtained using statistical consistent method. The performance of
optimum ANN model is compared with the commonly used empirical method. It was
found that ANN model can predict the settlement with relatively high degree of
accuracy, whereas the empirical method underestimates the settlements with respect to
all case records in the validation set. This showsthat ANN method outperforms the
empirical method and thus it can be used as an effective tool to obtain more accurate
prediction of tunneling-induced maximum settlements.

In the second main analysis, neural network models were developed for the prediction
of maximum settlements and trough width using the data generated from the finite
element software PLAXIS. PLAXIS is commonly used for geotechnical applications in
which soil models are used to simulate the soil behavior. A total of 2161 patterns were
generated from the combinations of six input parameters, namely coefficient of earth
pressure (Ko), bulk density (y), cohesion (c), ratio of stiffness over cohesion (E/c), ratio
of depth over diameter (H/D), and volume loss (VL). Patterns which produce failed
results were discarded; hence leaving 1836 patterns for the analysis. Two cases of
network training are considered in the analysis. In the first case, network models are
developed using three statistically consistent data sets i.e. training, testing and
validation. In the second case, the input data is divided into training and testing sets
only. For each case, two types of network models were developed. The first model has
two output neurons where the predictions of Sya and trough width (i) can be carried
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out simultaneously. The second model is the networks with one output neuron which
predict Sy and (i) separately. The analysis indicated that two separate networks
performed better than the single network used to predict S,a and (i) simultaneously as
shown by higher correlation coefficients and lower error rates when the two networks
are used. The use of faster training algorithms to improve the accuracy of the network
is investigated and the results are compared with the result of standard gradient descent
method. The optimum network models from the two cases of training and the optimum
network trained using gradient descent method are retained and validated using a set of
field data to examine the generalization ability. The field data were collected from
contracts C823 Circle Line and C825 Marina Line. The validation results shows that
ANN models are optimal and they can be used as an effective tool to obtain more
accurate prediction of maximum settlements and trough widths in the field.
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Chapter 1

Introduction

1.1 Background

The use of underground space has become more and more important throughout the
world. Today, besides for supply lines of gas, water, electricity, telecommunications
and disposal lines, the ground also provides space for transport tunnels for rail
commuter traffic, long-distance trains, motor vehicles and pedestrians. In large cities,
big structures such as four or five-storey administrative building, subterranean
shopping malls, storage rooms, covered watercourses, production halls, offices, and
sports facilities are also set up underground. Tunnels for roads and railways are key
infrastructures in transport development that provide important impulses for the
economic power of a region or a nation (Haack 2000). In many countries, the
construction of transport tunnels and subsurface construction in general has reached a
high standard. Cities in Europe, such as London, Paris, Budapest, Hamburg, Berlin
have built and developed underground metros, urban railways or rapid transport system
for the past 30 to 40 years. Similar is the situation in Japan, Taiwan, South Korea as

well as other countries in the world.

In a country like Singapore, going underground for infrastructural works becomes
increasingly a necessity due to high population density and limited land area. Other
advantages include saving up the surface for better use, direct saving of energy,
protecting against natural disasters and decreasing the maintenance cost (Lathauwer
1992). Numerous tunneling activities have been carried out extensively in Singapore
for the past two decades. Before 1982, the tunneling works had been carried out to
some limited extent. In 1983, a 3.7 m diameter tunnel approximately 3 km long was

constructed using earth pressure balance machine (EPBM) to accommodate a 3.3 m
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diameter sewage pipeline. The first major use of tunnels was the construction of the
MRT railway through the densely developed central areas of Singapore city
commencing in 1983. The MRT network has been expanding ever since. The latest
major developments are the Changi Airport Line and the Northeast Line, with 17
underground stations, which made up a total of 23.5 km of bored tunnels. Tunneling for
the Deep Tunnel Sewerage System has commenced in year 2001 with a total of
approximately 48 km of main tunnels and many subsidiary link tunnels. Other
developments include the tunnels for the Marina Line MRT, the Cable Tunnels, Deep
Tunnel Sewerage Scheme (Phase 2), Circle Line, Kallang expressway and future

underground caverns.

Ground movements and consequential surface settlements associated to tunneling
are major concern in the design of tunnels in urban areas. This is mainly due to the
damage that ground movements may cause to overlying and nearby building and
services. An engineer in charge of tunnel design must be able to estimate settlement
distribution along the tunnel route so that he can identify in advance options to
minimize the damage to nearby structures. Several options are re-specifying the
excavation and/or lining technique to reduce those settlements, rerouting the tunnel
away from ‘sensitive’ buildings or buried services, using injection techniques or
freezing to stabilize pockets of weak ground on the original route, protecting the
existing building by underpinning the foundations, relocating buried pipelines, which is
an expensive option (Attewell 1977). Hence ground surface settlement prediction is
very essential to assess the effects of the tunnel construction on existing structures,

design of the tunnels, and method of tunneling.

In the early stage of design, estimate of ground surface settlement can be obtained
using simple empirical formulas, such as those proposed by Peck (1969),
Attewell(1977), Attewell and Woodman (1982), O’Reilly and New(1982), and Mair et
al (1993). Simple equations based on the theory of elasticity (Uriel and Sagaseta 1989)

may also be used. For the final design, a more accurate method such as finite difference
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or finite element is required (Rowe and Lee 1992). In this project, a neural-network
based approach is used to analyze and predict settlement due to tunneling. Over the
years, Artificial Neural Network (ANN) has been widely used in many fields to predict
certain output given input values. Selection of the best stocks in the market, weather
prediction, identification of people with cancer risk are some tasks that have been
carried out successfully using the network of prediction. One advantage of ANN is its
capability to establish the non-linear relationship between a set of input variables and
the corresponding output without a need for predefined mathematical equations. In
geotechnical field, relationships between input and output in most problems are often
difficult to model as we are dealing with unpredictable behavior of the soil. In this
situation, the problems are normally solved using empirical formulae. The above
advantage makes ANN a powerful alternative to solve highly non-linear and complex

geotechnical problems, particularly for engineering predictions.

1.2 Objectives and Scope of study

The main objective of this research is to study the feasibility of using ANN method for
predicting the maximum ground surface settlement and settlement trough width
induced by tunneling. To achieve the main objective, two main analyses are carried out
in the project. In the first main analysis, the feasibility of using artificial neural
networks to predict the maximum settlements due to tunneling was investigated. In the
second main analysis, neural network models were developed for the prediction of

maximum surface settlement and trough width.

The works in the first main analysis include the following aspects:

1. Developing neural network models using the input and output data collected
from site offices and Land Transport Authority database. The input data were
analyzed and preprocessed so as to produce the relevant inputs required for
training, testing, and validation. The neural network models were tested in order

to obtain the optimum network model.
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2. Conducting a sensitivity study on the effect of network parameters including
number of hidden neurons, learning rate, momentum, and transfer function on
the network performance so as to obtain optimum network architecture.

3. Investigating the effect of using other faster training algorithms on the accuracy
of the optimum network and comparing the result with gradient-descent
method.

4. Studying the effect of several data division methods and comparing the result
with the commonly used statistically consistent method.

5. Conducting sensitivity analysis in order to identify which of the input variables
have the most significant impact on settlement predictions.

6. Comparing the settlement predictions from the neural network and conventional
methods with the actual settlements.

7. Proposing a simplified neural network model suitable for initial prediction of

maximum surface settlements when only basic soil properties are known.

In the second main analysis the following aspects are covered:

1. Generating the relevant input and output data from finite element software for
the training of neural network model.

2. Evaluating the effect of two stopping techniques (using three sets and two sets
of data) on the performance of the network.

3. Investigating the performance of network models with two output neurons for
simultaneous predictions of maximum surface settlement and trough width and
comparing the results with two independent networks whereby one is to predict
maximum surface settlement and the other to predict trough width.

4, Examining the use of faster training algorithm and variation of the hidden
neuron number so as to obtain optimum network model.

5. Validating the reliability of optimum networks for the predictions of maximum

surface settlement and trough width by testing with field data.
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1.3 Layout of the report

In Chapter 2, issues related to the main structure and operation of ANNSs are discussed.
This includes layers of units, activation functions and learning rule. The popular back
propagation algorithm used in this project with its limitations is described. Several
faster training algorithms and their comparison with back propagation algorithm are
briefly presented. In Chapter 3, applications of ANNs in the field of Geotechnical

Engineering are reviewed to demonstrate the relative success of ANNs in this field.

In Chapter 4, the empirical method generally used to predict tunneling-induced
settlements is described. This method require‘s the computations of few parameters
namely maximum surface settlement, inflection point of settlement trough and ground
loss. The mechanisms of soil settlement induced by tunneling are presented. In Chapter
5, more details of Contract C705 Northeast Line, C823 and C825 Circle Line were
given including geological section and bored tunnel construction. The input data for

this project were collected from site offices of the three projects.

In Chapter 6, the analysis of neural network models is presented. The database used to
develop ANN models is the combination of field data from contracts C705, C823, and
C825. The performance of several softwares is assessed and the most accurate one is
selected for the ANN analysis. The potential factors, which may have significant effect
on the settlement, are highlighted. Data division, pre-processing of data, model
architecture and stopping criteria for the initial phase of the analysis are discussed.
ANN models with different input combinations are investigated in order to obtain the
optimum input combinations. The network model with the best input combinations
(referred to as ANN model) is used throughout the remaining analysis. The effect of
learning rate, number of hidden nodes, momentum term, and transfer functions on the
accuracy of ANN model is examined. The performance of ANN model using various
training algorithms is measured and the best algorithm is used for ANN model. Three

data division methods for the development of ANN models are presented and the

cal University Library
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results obtained using each method are compared and evaluated. The relative
importance of the input factors affecting settlement is investigated. A comparison of
the results obtained using ANN model and the most commonly used empirical method
is presented. An alternative model of ANN which can give quick predictions of

settlements is proposed.

In Chapter 7, the neural network models are developed using the input generated from
finite element program PLAXIS. The outputs of the models consist of maximum
surface settlement (S_ ) and trough width (i). Two cases of training are considered,
namely training using three data sets and two data sets. For each case, two types of
network are tested, namely network with two outputs neuron and network with one
output neuron. The former is used to predict both S__and (i) simultaneously, while the
later is used to predict S_, and (i) separately. The use of faster training algorithms to
improve the accuracy of the network is investigated and the results are compared with
the result of standard gradient descent method. The best network models are retained

and validated using the field data to examine the generalization ability.

In Chapter 8, the research work is summarized and conclusions are presented.

Recommendations for future works are given as well.
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Chapter 2
Artificial Neural Networks

2.1 Introduction

Artificial neural networks are composed of simple elements operating in parallel, which
are designed to simulate the behavior of biological neural networks for several
purposes. These include pattern recognition, identification, classification, speech,
vision and control systems. The surge of interest in neural networks is mainly based on
the wish to build machines that are capable of performing complex tasks for which the
programmable computers invented by von Neumann (1946) are not suitable. The
research in the field of artificial neural networks has started ever since the general
theory of information processing based on the so-called neurons was proposed in 1943
by McCulloch and Pitts. In the 1950’s, several neural network models such as the
perceptron (Rosenblatt 1962) and Adaline (Widrow and Hoff 1960) were invented. Due
to the failure of perceptrons to be successfully applied to more complex sets, the
research in the field of artificial neural networks almost stopped around 1970. The
interest in neural networks was revived with the discovery of the so-called back-
propagation algorithm by Rumelhart et al. (1986). Today, the neural networks have
been rapidly developed through extensive research that they have been applied in
many important areas such as business, aerospace, automotive, banking, defense,
electronics, entertainment, industrial, medical, securities, telecommunications, and

transportation.

The architecture of neural networks is originally inspired by that of the human brain.
The human brain forms a massive communication network, consisting of billions of

nerve cells, also known as neurons (Figure 2.1). The neuron receives incoming
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impulses via the dendrites and the impulses are transmitted via the axon and synapses

to other neurons.

—_——,

Information Flow
Dendrites

Figure 2.1: Sketch of a biological neuron (after Tsoukalas and Uhrig, 1997)

2.2 Structure and Operation of Artificial Neural Networks

The first modeling of neurons was carried out by McCulloch and Pitts in 1940s. They
proposed the model of a synthetic neuron with its inputs and outputs are Boolean
values. In neural network, a synthetic neuron is also called a processing element (PE), a
unit, or a node. The schematic diagram of a processing element is shown in Figure 2.2.
Each PE receives inputs from other PEs, performs a weighted summation, applies an
activation function to the weighted sum, and outputs its results to other neurons in the

network (Sundararajan and Saratchandran, 1998).
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Figure 2.2: A processing element of ANN and its operation (Anderson and McNeil, 1992)

2.2.1 Layers of units

Units, PEs, or nodes are usually arranged in layers, each layer consisting of at least one
neuron. A single-layer neural network in which there is no hidden layer is the
characteristic of the simple perceptron model. Multi-layer feed-forward neural
networks consist of multiple layers of neurons with input, hidden, and output layers
(Figure 2.3). Each layer other than input layer, receives their inputs only from all
neurons in the previous layer and from one bias signal source. Bias or threshold is a
value that the summation of the input signals must exceed before it can be transmitted
( Weijters and Hoppenbrouwers 1995). A two layer feed forward network (only one

hidden layer) has been used in most applications.
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Inputs Hidden layer Qutputs

Figure 2.3: Structure of a Multi-Layer Feedforward ANN
2.2.2 Activation functions

The net input of units in neural networks is transformed by using a scalar-to-scalar
function called an "activation function" to yield unit’s activation value. The activation
value is then fed via synaptic connections to one or more other units. The activation
functions or transfer functions are very essential to introduce the nonlinearity to the
network. Without nonlinearity, hidden units would not make nets more powerful than
just plain perceptrons (which do not have any hidden units, just input and output units)
(Sarle 2002). The nonlinearity will make the network able to represent nonlinear
functions and this is why multilayer networks can be so powerful. Three commonly

used activation functions are logistic, tanh, and linear activation functions.

Linear activation function:

y=D*x 2.1

where x is the input to the neuron, y is the final value of the neuron and usually D = 1.

10
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a = purelinin)

Figure 2.4: Linear transfer function

Most functions are difficult to approximate using linear function, hence nonlinear
functions such as logistic and tanh are used. Nonlinear activation functions are used in

most backpropagation networks because they are differentiable.

The standard sigmoid (or logistic) runs from 0 to 1 and it is:

y=1/(1+exp (-x)) (2.2)

S

a = logyiging

Figure 2.5: Log-Sigmoid transfer function
The function tanh has outputs in the range -1 to 1 and can be written as:

y=2/(1+exp(2*x))-1 (2.3)

11
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a = tansiging

Figure 2.6: Tan-Sigmoid transfer function

Jordan (1995) stated that the logistic function is an excellent choice for binary (0/1)
targets. Since its values are centered around 0, using tanh will result in faster training
(Brown et. al, 1993). However, experiments by Tveter (1998) show that sometimes
tanh is better but sometimes it is not. The backpropagation networks with linear output
units and a single layer of non-polynomial hidden layer units can represent closely
most reasonable functions (Leshno et al. 1993). Other transfer functions include
Gaussian function, hard-limit transfer function, radial basis function, triangular basis

function, softmax transfer function, satlin transfer function.

2.2.3 Learning Rule

Learning paradigm or learning rule is a procedure for modifying the weights and biases
of a network. The neural network learns to solve a problem as its weights changes. Two
learning rules commonly used are supervised learning and unsupervised learning. In
supervised learning, the network is fed with the inputs and the resulting outputs are
compared against the desired outputs. Errors are then propagated back through the
system, causing the system to adjust the weights which control the network. This
process is repeated over and over until the minimum error or desired accuracy is
reached. In unsupervised training, the network is provided with inputs but not with
desired outputs. The hidden neurons must find a way to organize themselves without

help from the outside. Unsupervised learning is more representative of a real life

12
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learning where the input-output sets do not exist. Kohonen (1995) developed a network
known as self-organizing map using this learning method. It is sometimes called an
auto-associator, which learns without the benefit of knowing the right answer.
Clustering operations, where the input patterns are categorized into a finite number of
classes, are performed mostly using unsupervised learning. An example of such

application is vector quantization.

Several mathematical algorithms are used to update the connection weights and biases
during network training. Hebb (1949) introduced the first learning rule later best known
as Hebb’s rule. According to this rule, if a neuron receives an input from another
neuron, and if both are highly active (mathematically have the same sign), the weight
between the neurons should be strengthened. Hebb’s rule forms the foundation of later
learning laws such as Hopfield Law and the popular Delta Rule. Developed by Widrow
and Hoff (1960), the delta rule formed the basic concept of the well-known neural

network type called Feed forward, Back-propagation.

2.3 Backpropagation

Since the publication of the Parallel Distributed Processing volumes by Rumelhart et al.
in 1986, learning by backpropagation has become the most popular method of training
neural networks. This is due to the relative power and the underlying simplicity of the
algorithm. It is powerful because, unlike its precursors, the perceptron learning rule and
the Widrow-Hoff learning rule, it can be employed for training nonlinear networks of
arbitrary connectivity (Rumelhart et al. 1995). It is simple because the basic idea is to
define an error function and use gradient descent to find a set of weights which
optimize performance on a particular task (Rumelhart et al. 1995). In fact,
backpropagation is little more than an extremely judicious application of the chain rule
and gradient descent (Ie Cun 1988). It is a straightforward but elegant application of the
chain rule of elementary calculus (Werbos 1994). The name backpropagation actually
comes from the term used by Rosenblatt (1962) for his effort to generalize the

13
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perceptron learning algorithm to the multilayer case. Unlike simple delta rule or the
perceptron rule, which can be used for a single layer network only, backpropagation
learning rule is mostly used in multilayer networks. The typical back-propagation
network has an input layer, an output layer, and at least one hidden layer, as shown in

Figure 2.7.

connections connections
(weights) (weights)

input hidden oﬁput
layer layer layer

Figure 2.7: The typical back-propagation network structure

The network most commonly used with the backpropagation algorithm is the
multilayer feedforward network. As mentioned previously, each input to the network is
multiplied by respective weight and the weighted sum of the inputs and the bias are
then fed to the transfer functions (f) to generate the output. Any differentiable function
can be used as transfer function. The most commonly used functions for

backpropagation are log-sigmoid and tan-sigmoid transfer functions

14
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2.3.1 The Back Propagation Rule

In a multilayer feed-forward network with backpropagation learning, the objective is to
find a set of weights that minimizes the network error function. Backpropagation rule is
based on the idea of continuously modifying the strengths of the input connections to
reduce the difference (the delta) between the desired output value and the actual output
of a neuron. The connection weights are adjusted to minimize the error of the network.
The error is back propagated into previous layers one layer at a time. The process of
back-propagating the network errors continues until the first layer is reached. The main
steps to train the network with backpropagation are as follows (Freeman and Skapura
1991):
1. Apply an input vector to the network and calculate the corresponding output
values.
2. Compare the actual outputs with the correct outputs and determine a measure of
the error.
3. Determine in which direction (+ or -) to change each weight in order to reduce
the error.
4. Determine the amount by which to change each weight.
5. Apply the corrections to the weights.
6. Repeat items 1 through 5 with all the training vectors until the error for all

vectors in the training set is reduced to an acceptable value.

Saratchandran and Sundararajan (1998) divided the backpropagation learning phase
into a forward phase and a backward phase. Forward phase starts from initializing the
weights to calculating the actual outputs. Based on the difference between actual and
desired outputs (error), weights are adjusted to reduce the difference; this is the
backward phase. Details of the two phases during training for a single training-vector

pair are given in the following sections.

15
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e Forward Phase

The input vector X = (x1, Xa,..., Xni)’ is multiplied by the hidden layer weight matrix Wy
to obtain the net-input values to the hidden layer units (Eq. 2.1). The net-input values
are passed through activation functions to produce outputs from the hidden layer (Eq.
2.2). Equation 2.1 is applied to these outputs again to calculate the net-input values to
each unit in the output layer (Equation 2.3). The net-input values are fed to output

activation functions to obtain actual outputs. (Eq. 2.4).

N,
net—input, =i, . = Y W, . X. (2.1
p i h,j hji i
i=1
output j = yn; = f{in; - bj) (2.2)
. . Nj
net-inputy =i, = ZWO’kj Yh,j 2.3)
=1
outputy =y, = f(io,k —by) (2.4)

where: wyji is the weight connecting input unit i to unit j in the hidden neuron layer,
function f is a nonlinear activation function, w,; is the weight connecting hidden unit j
to unit k in the output neuron layer, N; is the number of neurons in input layer, N;j is the
number of neuron in hidden layer, b; and by are the bias term of the unit in the hidden
and output layer . The indices 1, j, and k are used to denote the input, hidden, and output

neuron layers, respectively.

o Backward Phase

The actual output and the desired output are compared and the difference (error) is used
to adapt the weights to reduce the overall error measure E for a training set of P
patterns. The error measure E,, for a training pattern p is the sum of the squared errors

of the actual output and desired output of the neurons in the output layer (Eq. 2.5).

16
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N
J 7
Ep = ’2— kzll(dp,k - Yp,o,k) (2.5)

where d, and y, .k are the desired output and the output of the neuron in output layer
for training pattern p respectively, N, is the number of neurons in output layer.

The overall error measure for a training set of P patterns is:
P
E=YE, (2.6)
p=1

In the following expressions, the pattern index p has been omitted on all variables to
improve clarity. The error terms 8 for the output units and hidden units can be shown to

be (Rumelhart et al. 1986):

0o,k = Yo,k(1= Yok )dk —¥o.x) (2.7)
NO

8h,j = Yh,j(1=¥h,)) D 80,k Wouki 2.8)
k=1

If learning by epoch is applied, changes of weight on the output layer and hidden layer

are:
AW, 15 =N80 k Yh,j 2.9)
Awy i =10 j X; (2.10)

where 1 is the learning rate coefficient. The output layer weights and hidden layer

weights are updated accordingly.

w o,kj’ = Wok T AWo,kj (2.11)

Wi = Whgit Awpji (2.12)

17
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The method used for finding the correct weight changes (Aw) is known as gradient
descent. Henseler (1995) explained this method as follow. If E is considered as a
function of weights (wi,...,wy), then the gradient of E with respect to w denotes the
slope of the “error-surface”. By descending this surface downhill, i.e., in the direction
of the negative gradient, we will finally reach at the bottom of the surface. At that point
the error can no longer be decreased and the procedure finishes. Details of the

backpropagation learning rule are described in Rumelhart et al. (1986).

e Momentum

Typical characteristic for many gradient descent methods is its slow convergence.
Hence, efforts have been made to speed up the learning process of back propagation.
One method is to include the momentum term in the back propagation learning rule.
Imagine a ball rolling down a hill. As it does so, it gains momentum, so that its speed
increases and it becomes more difficult to stop. Similar is the function of momentum
term. A little of the previous iteration’s weight changes are added to the weight
changes for the current iteration. How small to make the additional changes is
controlled by a parameter o called the momentum, which is set to a value between 0

and 1. The weight changes on the output layer then become:

Awoxi(pt1) = nBox(pt+1) onj(pt1) + & AWoi(p) (2.12)

Where p is the training pattern index and o is the momentum term. The weights are

then updated

W o,kj’(p""l) = Wokj (p) + AWo,kj (p+l) (213)

The equations for updating of the hidden weights can be derived in the same manner.
Here, delta weight equation (Aw) is modified so that a portion of the previous delta
weight is fed to the current delta weight. Hagan et al. (1996) stated that momentum

allows a network to respond not only to the local gradient, but also to recent trends in

18
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the error surface. Acting like a low-pass filter, momentum allows the network to ignore
small features in the error surface. Without momentum a network may get stuck in a
shallow local minimum. With momentum a network can slide through such a minimum.
If momentum is used, the learning rate can be increased without leading to oscillation.
Higher learning rate means more rapid learning as the changes in the weights become

larger.

e Faster Training Algorithms

The commonly used backpropagation training algorithm, gradient descent with
momentum, is often too slow for practical problems. Attempts have been made to
discover new training algorithms which can converge faster than the algorithms
discussed above. From the analysis of standard descent algorithm, two more techniques
are developed, namely wvariable learning rate backpropagation and resilient
backpropagation. Other high performance algorithms are derived from the standard
numerical optimization techniques. Three types of numerical optimization techniques
for neural network training are conjugate gradient, quasi-Newton, and Levenberg-

Marquardt.

1. Variable learning rate backpropagation

With gradient descent method, the learning rate is held constant throughout training.
The chosen learning rate may not be the optimal one as it is unlikely to determine the
optimal learning rate before training. Too high learning rate will cause the algorithm to
oscillate and become unstable. Too small learning rate will cause the algorithm to
converge very slowly. In fact, the optimal learning rate changes during the training
process, as the algorithm moves across the performance surface. Variable learning rate
backpropagation allows the learning rate to change during the training process. This
will improve the performance of gradient descent algorithm as the learning rate is made

responsive to the complexity of the local error surface.
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2. Resilient backpropagation

The problem of using logistic transfer function is that the slope approaches zero when
the input gets large. As a result, the gradient can be very small and this causes small
changes in the weights and biases. Yet the weights and biases are still far from their
optimal values. Resilient backpropagation technique tackles this problem by taking
only the sign of the derivative to determine the direction of the weight update. The
magnitude of the derivative plays no role on the weight update. Instead, a factor is used
to update the value for each weight and bias. The update value is increased by the
factor whenever the derivative of the performance function with respect to that weight
has the same sign for two successive iterations. The update value is decreased by the
factor whenever the derivative with respect to that weight changes sign from the

previous iteration.

3. Conjugate gradient

In backpropagation, the performance function (error) decreases most rapidly in the
steepest descent direction (negative of the gradient). However, this does not mean that
the fastest convergence is already achieved. In standard gradient descent method, the
length of the weight update (step size) is determined by learning rate and thereby a
constant. In the conjugate gradient algorithms, a search is made along the conjugate
gradient direction to determine the step size, which minimizes the performance
function along that line. All of the conjugate gradient algorithms start out by searching
in the steepest descent direction (negative of the gradient) on the first iteration. Then
the next search direction is determined so that it is conjugate to previous search
directions. The general procedurc for determining the new search direction is to
combine the new steepest descent direction with the previous search direction. The step
size is adjusted at each iteration; this produces generally faster convergence. There are
four different variations of conjugate gradient algorithms namely Fletcher-Reeves

update, Polak-Ribiére update, Powell-Beale restarts, and Scaled Conjugate Gradient.
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4. Quasi-Newton Algorithm

Newton's method is used to update values of the weights and biases. This algorithm
often converges faster than conjugate gradient methods. The most successful quasi-
Newton method is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update. Since
the BFGS algorithm requires more storage and computation in each iteration than the
conjugate gradient algorithms, there is need for a secant approximation with smaller
storage and computation requirements. The one step secant (OSS) method is an attempt
to bridge the gap between the conjugate gradient algorithms and the quasi-Newton
(secant) algorithms. It can be considered a compromise between full quasi-Newton

algorithms and conjugate gradient algorithms.

S. Levenberg-Marquardt

The Levenberg-Marquardt algorithm is a general non-linear downhill minimisation
algorithm for the case when derivatives of the objective function are known
(McLauchlan, 2002). It is derived from further modification of Newton’s method
where it dynamically combines Gauss-Newton and gradient-descent iterations. This
algorithm ensures that the performance function will always be reduced at each
iteration. Levenberg-Marquardt appears to be the fastest method for training moderate-

sized feedforward neural networks (up to several hundred weights) (Hagan et al. 1996).

All the methods discussed above are local optimization methods; they normally find
local optima. There is no guarantee that a global optimum will be obtained using the
above methods. One approach to find global optimum for any of the above methods is
to use numerous random starting points. Another way is to use more complicated
methods designed for global optimization such as simulated annealing or genetic
algorithms. Experiments conducted by Hagan et al. (1996) show that generally the
Levenberg-Marquardt algorithm will have the fastest convergence for networks that
contain up to a few hundred weights. However, this applies on function approximation
problems only. As the number of weights in the network increases, the performance of

this algorithm decreases. Levenberg-Marquardt does not perform well on pattern
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recognition problems. The fastest algorithm on these problems is Resilient
backpropagation (Hagan et al. 1996). Yet, its performance is relatively poor on
function approximation problems. For a wide variety of problems, the conjugate
gradient algorithms seem to perform well particularly for networks with a large number

of weights (Hagan et al. 1996).

2.3.2 Limitations & Cautions

There are some problems associated with back-propagation algorithm, which have not

been resolved up to now.

¢ Local Minima

In a gradient descent procedure, the system will follow the contour of the error surface
and always move downhill in the direction of steepest descent. For single-layer linear
model (¢.g. the least-mean-square (LMS) learning paradigm), this is not a problem as it
always have bowl-shaped error surfaces (Figure 2.8). Hence, the global minima will
always be found. However, in multilayer networks, the error surfaces become more
complex with many minima (Figure 2.8). Many algorithms that rely on a sequential
search over the error surface may become trapped in local minima. In the gradient-
descent technique, the use of momentum term helps to minimize this problem. Another
approach to overcome local minima and make training more efficient is proper
initialization of weights. It is recommended that the neural network is reinitialized and
retrained several times to ensure that the best solution is obtained. Two more powerful
techniques to avoid local minima are simulated annealing and genetic algorithm.
Simulated annealing is easy to understand and implement and has low memory
requirements; whilst genetic algorithm is more complex and has quite large memory

needs but is generally superior (Masters 1993).
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Figure 2.8: Error surfaces: (a) for single-layer network (after Henseler 1995), (b) for multilayer

network (after Kordos and Duch 2003)

o Slow Training

The standard back-propagation algorithm consumes large quantities of computing time
due to extensive calculations of error derivatives and updating the weights. However,
many methods have been proposed to speed up the training of backprop, such as
Quickprop (Fahlman 1989) and RPROP (Riedmiller and Braun 1993). Another
approach is to use faster algorithm for nonlinear optimization such as conjugate

gradients, Levenberg-Marquardt, etc.

o Underfitting and Overfitting

The critical issue in developing a neural network is generalization. It measures how
accurate the neural network in predicting cases that are not in the training set. Neural
network model can also suffer from either underfitting or overfitting depending on the
complexity of the network. A network that is too simple will be unable to detect fully
the pattern in a complicated data set, leading to underfitting. On the other hand, a very
complex network will fit the pattern and the noise as well, leading to overfitting. The
best way to avoid overfitting is to use as many data as possible for the training set. The
most commonly used method to overcome underfitting and overfitting problem is Early

Stopping. In Early Stopping, the available data is divided into training, testing, and

23



ATTENTION: The

ument. Nanyang Techr University Library

Chapter 2 Artificial Neural Networks

validation sets. During training, the error rate of testing test is monitored periodically
and training is stopped when the error rate "starts to go up". The network is then run on

the third set of data, validation set, to estimate its generalization ability.

e Network Architecture

To date, there is no hard and fast rule or even a satisfactory empirical formula which
can be used to determine the dimension of a network (no. of hidden layer, no. of hidden
units) for a particular problem. However, in Multi Layer Perceptrons with any of a
wide variety of continuous nonlinear hidden-layer activation functions, one hidden
layer with an arbitrarily large number of units suffices for the "universal
approximation" property (Hornik et al. 1989). For the vast majority of practical
problems, there is no reason to use more than one hidden layer (Masters 1995). Number
of hidden neurons in hidden layer is also vital to the performance of the network. Too
few neurons will render the network incapable of solving the problem due to lack of
resources; whilst too many neurons will cause over fitting problem where the network
displays low training error but high generalization error. Many books and articles offer
“rules of thumb” for choosing number of hidden units. However, the reliability is
doubted as they ignore the number of training cases, the amount of noise in the targets,
and the complexity of the function. An intelligent choice of the number of hidden units
depends on whether we are using early stopping or some other form of regularization.
If early stopping is used, it is essential to use many hidden units to avoid bad local
optima (Sarle 2002). The common way adopted to determine the optimum number of
hidden unit is by trial and error. Many networks with different numbers of hidden units
are tested and generalization error for each one is recorded. The network with

minimum estimated generalization error gives the optimum number of hidden neurons.
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Applications in Geotechnical Engineering

-

3.1 Introduction

Geotechnical engineering is a field involving large number of uncertain parameters due
to the fact that we are dealing with the product of nature (the ground). In many
circumstances, prediction of ground behavior is a major problem because of limited
fundamental understanding of soil and rock behavior (Toll 1996). In this situation,
many researchers resort to empirical approaches to solve the geotechnical problems. As
mentioned previously, Artificial Neural Network is very useful for problems where
there is no direct relationship between the input and the output. Thus it should be
ideally suited for application in the field of geotechnical engineering. Artificial Neural
Network applications was started to be used in the field of geotechnical engineering in
1991. The literatures reveal the successful use of ANNs in pile capacity prediction,
predicting the settlement of structures, modeling soil properties and behavior,
determination of liquefaction potential, site characterization, modeling earth retaining
structures, evaluating stability of slopes and the design of tunnels and underground

opening. Some of them are described in this chapter.

3.2 Liquefaction

When earthquake occurs, the soil will lose its strength due to shaking (liquefaction).
Most often, soil liquefaction causes extensive damage to infrastructure and serious loss
of life. The prediction of soil liquefaction is difficult due to many critical factors, which
influence liquefaction, such as the properties of the soil, the depth of the soil deposit,
the magnitude and intensity of the earthquake, the distance from the source of the

earthquake, and the seismic attenuation properties (Goh 1995). A study by Goh (1995)
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illustrated the potential use of neural networks to predict the seismic liquefaction. The
popular back-propagation algorithm was adopted in the study, and the training was
carried out using actual field records. A total of 85 case records, representing 42 sites
with liquefaction and 43 sites without liquefaction, were evaluated using the neural
networks. Eight input variables were tested in the models namely, earthquake
magnitude (M), total vertical stress ( ©,), effective stress (0,’), the standard penetration
test (SPT) value, normalized peak horizontal acceleration at ground surface (a/g), the
equivalent dynamic shear stress, fines content, and the mean grain size of the soil.
Different number of input variables were tried in order to determine the most reliable

model. Table 3.1 summarizes the performance of several neural network models.

Table 3.1: Summary of neural networks performance (Goh, 1995)

Model Input variables Success Rates (%)
Training Testing

M4 M, N)gr./o'F : 95 65
M5 M, (N)gt./0'F, alg 93 85
M6 M; (Nl)ms‘cv/ G'osFa a/g’ 0"o 95 85

M7 M, (N))s: T/ F, a/g, o', Dy, 95 92
M7A M, (N)gt./0. 3/8, 0,0 ,D, 95 81
Ms M: (Nl)(io;cﬂ/ U'O)F’ a/ g’ co’ G‘o’ DSO 97 92

The result of model M8 indicates high correlation between the input and output data for
both training and testing set; thus, it is considered as the best model. Totally, there
were 2 errors in the training data and 2 errors in testing data. This means a 95% success
rate which is higher than the result using the Seed et al. procedure (84% success rate or
14 errors). This shows that neural network perform better than the more conventional

method for evaluating liquefaction potential.

Ural and Saka (1998) used artificial neural network to evaluate soil liquefaction

potential and resistance from the CPT data. For this study, eleven soil and seismic
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parameters are selected as input, and seven different models are constructed by
changing the input parameters. The best model gave an overall success rate of 92%.
They concluded that comparisons between the neural network approach and simplified
liquefaction procedure indicate that network results are as reliable as conventional

methods.

A fuzzy adaptive neural network called “Fuzz-ART”, based on adaptive resonance
theory combined with fuzzy set theory is developed by Chern et al. (2001) to evaluate
liquefaction potentials induced by Chi-Chi earthquake in Yuan-Lin area. The system is
a combination of back propagation algorithm for parameter learning and the Fuzzy
ART algorithm for structure learning. The training and testing data used in Goh’s
network were also used for the proposed network. The network produced only one
error in the training data and also one error in the testing data. This indicates an overall
success rate of 97.6 %, much higher than those of Seed et. al (84%) and Goh (95%).
Furthermore, the present Fuzz-ART model converges much faster than Goh’s model.
The study shows that Fuzzy-ART neural network model is more reliable than the

methods of conventional three-layer neural networks.

3.3 Pile Capacity

Determination of the axial load-bearing capacity of driven piles is a complex problem
involving large number of uncertain parameters. One widely used approach to this
problem is to use empirical design methods, which establish correlation between the
soil parameters and pile capacity. Although it is not very accurate, this approach is
simple and able to give quick estimate of pile load capacity. Neural network is a
suitable alternative for this problem because of its inherent ability to incorporate the

uncertainties associated with the controlling parameters.

Nawari et al. (1999) proposed neural network models to predict the axial and lateral

load capacity of piles, using only simple input data such as SPT-N values and the

27



ATTENTION: The Sing

copyright Act applies to the use of this document. Nanyang Techn cal University Library

Chapter 3 Applications in Geotechnical Engineering

geometrical properties. Feedforward Backpropagation(BPNN) and Generalized
Regression Networks(GRNN) are utilized in this study. The data were derived from 60
load test records and 23 full-scale laterally loaded drilled shafts tests. Complete input
parameters include the SPT-values with depth, Pile length, cross-sectional area,
circumference and the amount of steel reinforcement. Figure 3.1 presents the measured
axial capacities of H-piles versus the results predicted by the BPNN, GRNN, AASHTO
and SPT91 respectively. Overall, the results indicate that BPNN and GRNN can predict
satisfactorily the total pile capacity, especially that of the H-piles. Their results are even
better than those of AASHTO and the SPT91, which are considered here because they
often provide better results than other empirical design formulas. The correlation
coefficient for the neural network models ranges between 0.88 and 0.94, while for
AASHTO and the SPT91, it varies between 0.65 and 0.78.

12000
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8
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g A SPTYI
g 2000 % BPNN
& ¥ GRlNN

0 2000 4000 6000 2000 10000 12000
Measured Pile Capacity (kN)

Figure 3.1: Comparisons of predicted and measured pile capacity for various methods (Nawari et
al. 1999)

In another study by Teh et al. (1997), a back-propagation neural network model was
used to estimate static pile capacity from dynamic stress-wave data. The database for

training and testing of the network comprise 37 records of precast reinforced concrete
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(RC) piles from 21 different sites. The CAPWAP procedure, proposed by Rausche et
al. (1972), was used to determine the target values. Three neural network models,
denoted as NN1, NN2, and NN3, were developed during the training phase. NN1 is set
up to predict the total pile capacity only; the layer output has a single neuron. The
resistance distribution of piles is predicted by NN2, which has, in output layer, 20
neurons representing the shaft resistance and one neuron for the toe resistance. NN3
predicted the damping and quake parameters as well as the soil resistance distribution.
The output layer consists of 21 neurons to represent the resistance, and 4 neurons to
keep the information on the damping and quake parameters. The results indicate that
neural network models can provide good estimation of the total static capacity based on
digitized force and velocity information alone. In addition, determination of resistance
profile from stress-wave data becomes feasible as demonstrated by models NN2 and
NN3. The study also shows that networks trained on RC pile data are capable of

predicting the capacities of non-RC piles as well, but the accuracy is less.

McKinley (1996) studied the applicability of artificial neural networks to the
interpretation of bearing capacity data. He concluded that artificial neural networks can
successfully characterize the underlying pattern in scattered and uncertain data such as

might be obtained from bearing capacity tests.

Other applications of ANNs for pile capacity include prediction of load bearing
capacity of piles from Statnamic Pile Test Data (Javadi et al. 2001) and prediction of
pile axial capacity and pile driving analysis ( Hoi 1999).
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3.4 Settlement of Foundations

For shallow foundations, the designs are usually governed by settlement factor. As a
result, prediction of settlement is a major step in the design process. Shahin (2003)
investigated the feasibility of using artificial neural networks for settlement prediction
of shallow foundations on cohesionless soils. A total of 189 records were used to
calibrate and validate the neural network models. The input parameters for the models
include footing width, footing net applied pressure, average SPT blow count over the
depth of influence of the foundation, footing geometry and footing embedment ratio.
The models were trained with the back-propagation algorithm and the results were
compared to traditional methods proposed by Meyerhof (1965), Schultze & Sherif
(1973), and Schmertmann et al. (1978). Table 3.2 shows the comparisons of the results
using ANN model and the three traditional methods.

Table 3.2: Results of ANN and traditional methods for settlement prediction

Performance ANN Meyerhof | Schultze and Sherif | Schmertmann
measure et al.
r 0.905 0.44 0.729 0.798
RMSE 11.04 25.72 23.55 23.67
MAE 8.78 16.59 11.81 15.69

The above results indicate that ANN method surpasses the traditional methods, based
on measures of correlation coefficient (r), root mean square error (RMSE), and mean

absolute error (MAE).

Sivakugan et al. (1998) proposed a network with one hidden layer and 11 hidden nodes
to predict the settlement of shallow foundations on sands. The study was carried out on
data of 79 records, and five inputs were used to train the network. The optimum model
has shown good performance compared to methods proposed by Terzaghi and Peck

(1967) and Schmertmann (1970).

A neural network was developed by Goh (1994) to predict the settlement of a vertically

loaded pile foundation in a homogeneous soil stratum. The input parameters were ratio
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of the elastic modulus of the pile to the shear modulus of the soil, pile length, pile load,
shear modulus of the soil, Poisson’s ratio of the soil and radius of the pile; the output
parameter was the pile settlement. Finite element and integral equation method by
Randolph and Wroth (1978) was used to obtain the desired output. The results indicate
that the neural network can be used to model the settlement of pile foundations

effectively.

3.5 Tunneling

In the design of a tunnel, ground surface settlement due to tunnel excavation is a major
consideration as it can severely disrupt the function of nearby structures and utilities.
Many empirical and semi-empirical formulae are available to predict ground surface
settlement. However, the predictions are frequently inaccurate‘because they do not take
into consideration all the relevant factors. Kim et al. (2001) utilized the capabilities of
pattern recognition and memorization of ANN to solve the problem. From literature
reviews, three categories of major factors affecting ground movements in tunneling are
Tunnel geometries, Ground conditions, Excavation and support conditions. Each major
factor incorporate a number of parameters with some parameters can be further divided
into several detailed items which serve as inputs to the neural networks. As a result, a
total of 47 nodes were used in input layer and 2 nodes were used in output layer to
predict i and Ogmax. The training data is composed of ‘113’ field results, which have
been collected from Seoul subway sites. Twenty seven candidate models were
developed, and a model with three hidden layers of 47 neurons each was found to give
optimal result. This model was then verified on the real database. With further
modification in the training, the average errors for i-values and Ssmay can be reduced to
approximately 0.6 and 0.2 %, respectively. To confirm the generality of a trained ANN,
simple examples are undertaken with two different sets of 12 data in each, extracted

from ‘113 original data. The first 12 data have relatively large values of maximum
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surface settlements, while the second 12 data have relatively small values of maximum
surface settlements. For both cases, the remaining ‘101’ data were used to train the
network. It is noted that the '101’ data are not the same data in each other case. After
separate training in both cases, the extracted two sets composed of 12 data in each are
used for prediction using the corresponding ANNSs to the data sets. Figures 3.2 and 3.3
show the predicted results for the maximum settlements using the first and second data
set. Overall, it is shown that ANN model is able to predict with high confidence (less
than about 16% on inference error) and the generality is guaranteed for further
predictions. The shortcoming of the ANN model proposed by Kim et al. is that it
requires a lot of input parameters in the input layer (47 nodes). Most of these
parameters are detailed items which might not be readily available from the site.
Hence, in this project, an attempt is made to develop ANN models which requires less
input parameters but with high accuracy for the prediction of maximum surface

settlement and trough width (7).
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Figure 3.2: Results for untrained 12 data in the first data set (Kim et al. 2001)
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Figure 3.3: Results for untrained 12 data in the second data set (Kim et al. 2001)

Duan (2001) used a theoretical approach, empirical approach, numerical simulation
approach, and artificial intelligence approach to study ground settlement caused by
microtunneling. Microtunneling is a trenchless technology for construction of
pipelines. Its process is a cyclic pipe jacking operation. In the numerical approach, a
commercial finite element software FLAC3D was used to simulate the ground
settlement caused by microtunneling. In the artificial intelligence approach, a three-
layer back propagation neural network is developed to predict the ground settlement
caused by microtunneling using the numerical simulation results. The results indicate
that the neural network provides a means of rapid prediction of the surface ground
settlement curve based on the soil parameters, project geometry and estimated ground
loss. The predictions matched closely the results of FLAC3D over the full range of
parameters studied and have a reasonable correspondence to the field results with

which it was compared.

Another neural network model for predicting settlements during tunneling was

proposed by Shi et al. (1998). The input layer consists of 11 nodes representing 11
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major affecting factors while the output layer consists of 3 nodes representing three
settlement parameters; maximum settlement at tunnel crown level, maximum
settlement at tunnel inverted arch level, and maximum final settlement after tunnel
excavation. The neural network model is trained and tested using the actual collected
data from the 6.5 km Brasilia Tunnel in Brazil. The results show poor agreement
between the predicted and measured values for test pattern with an average error of 70

mm (Figure 3.4).
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Figure 3.4: Results of Test Patterns for Maximum Settlements after Stabilization (Poor
Agreement) (after Shi et al., 1998)

To improve the prediction accuracy, modular neural network models were used. A
modular network consists of multiple NN modules, each of which only models one
specific category of expertise. Each module is trained and tested separately using the
data patterns in its category. All predictions from the trained modules are then
combined into one report before it is deployed to the end user. By using modular NN
models, the average prediction error is reduced to 33.4 mm; thus improving the
agreement between the measured and predicted values for testing patterns (Figure 3.5).
This shows that modular NN model has better performance than the general network

model used in the beginning.
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Figure 3.5: Test Results from Modular ANN Approach (after Shi et al., 1998)

3.6 Researches on Artificial Neural Network (ANN) at Nanyang Technological
University

Various ANN applications, especially in geotechnical engineering, have been
developed at Nanyang Technological University and some of them were mentioned in
previous sections. The applications are Reliability assessment of serviceability
performance of braced retaining walls using a neural network approach (Goh 2005),
Neural network approach to model the limit state surface for reliability analysis (Goh
2003), Nonlinear modeling in geotechnical engineering using neural networks (Goh
1994), Seismic liquefaction potential assessed by neural network (Goh 1995), Pile
driving records reanalyzed using neural network (Goh 1996), and Prediction of pile
capacity using neural networks (Teh et al. 1997). In addition, a text book titled Parallel
architectures for artificial neural networks: paradigms and implementations
(Sundararajan and Saratchandran 1998) has been published and an ANN software
NNGeo (Hefny 2000) has been developed. The research carried out for this thesis
focused on the application of ANN to predict the ground surface settlement caused by

tunneling works. Project of the same title has been carried out previously but with
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lesser amount of data for training, testing, and validation sets. In this thesis’s project
the generalization ability of ANN has been improved greatly by adding more data from
several tunneling projects in the training set. Furthermore, a special feature in this
project include the Finite Element analysis for the development of reliable ANN model
which can be used to predict the maximum surface settlement (Sp.x) and the trough
width (i); whereas, the previous project concentrated only on the prediction of
maximum surface settlement. The two parameters ( Spax and i ) are important in the
assessment of the shape of a settlement trough. In this context, the produced neural
network, which can predict both parameters, will be of great benefit to study the impact

of the tunneling works on the ground surface settlement.
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Chapter 4

Empirical methods for ground surface settlements

4.1 Introduction

Difficulty of predicting surface movements has always been the major problem in the
study of ground subsidence induced by underground excavation. Many authors have
tried to solve the problem using different approaches. Let’s consider the simplest case

of a circular tunnel in a homogeneous ground with horizontal surface (Figure 4.1).

Horizontal
displacement
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Figure 4.1: Soil movements and Ground loss (after Uriel and Sagaseta, 1989)
Opening of an underground excavation causes local relaxation of existing stress. As a

result, the soil moves inward, more or less towards the center of the opening. The

excavation line deforms to a new shape, which is smaller than the theoretical line. The
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area enclosed between the theoretical and the deformed excavation lines is referred to
as the ‘ground loss’, V; (Uriel and Sagaseta 1989). The ground loss depends on many
factors such as soil type, presence of water and method of construction. Ground surface
settlements are attributed to this ground loss which occurs during tunnel construction.
Ground loss indicates the volume of ground relaxing into the tunnel excavation,
expressed in terms of unit distance advance of the excavation that causes the relaxation
(i.e. cubic meters per meter advance). The final result of this loss is the formation of

subsidence troughs.
4.2 Ground surface settlement profile

To date, the most popular method adopted in engineering practice to predict the surface
settlement profile is the Gaussian distribution curve proposed by Peck (1969). Two
main parameters used in the curve to determine the settlement trough are: the
maximum surface settlement at the point above the tunnel centerline (Bsmax OF Smax) and

inflection point ; (Figure 4.2).
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Figure 4.2: Surface settlement profiles (after Peck, 1969)
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When the two parameters are available, the vertical settlement (displacement), &;, along

the transverse line to tunnel axis can be calculated by (Attewell et al, 1986):

2
5= B yma exp[—%] 4.1
2i

where y is the coordinate distance measure from the tunnel centerline. Equation (4.1) is

a simplified form of Equation (4.2) in the case where x is much smaller than x;.

2 -
5s= 8 smax exp{— y—z]{G(x X j— G(x = } (42)
2i ix ix

Gla) = 1 ?exp[yz—z- }u 4.3)

27l'a

where x is the distance between a point of concern and tunnel face, x; is the initial
position of tunnel face, x; is the final position of tunnel face and ix can be replaced by
the inflection point, i, Maximum surface settlement is mainly governed by type of
ground, size of tunnel, depth of tunnel, method of tunneling, and type of lining
(Attewell 1977).

4.3 Estimation of total volume loss, Vy, and the surface settlement volume, V;

In cohesive soils, the ground loss is expected to be between about 0.5 % and 2.5% of
the tunnel face excavated area, depending upon the stiffness of the soil and the speed at
which the initial support is installed (Attewell 1977). A more satisfactorily approach is
to estimate total volume loss,V; and surface settlement volume,V base on an ‘Simple
Overload Factor’ defined as the ratio of overburden pressure o, minus any supporting
internal pressure o; (e.g. compressed air pressure) to the undrained shear strength cy
under conditions in which the external, pre-existing stress field is uniform (6,= 6,= 6y)

( Deere et al, 1969).
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OFS = (0;- 6i) / ¢ (4.4)

The overburden pressure is normally expressed as the product of bulk unit weight y and

depth of tunnel axis zy. Figure 4.3 shows V; and V; as a function of the 6verload factor.
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Figure 4.3: Estimation of ground losses and surface settlement volumes from the overload

factor for tunnels in cohesive soils. Open circles are Schmidt’s(1969) data from shield-driven
tunnels. Solid circles are as presented in Attewell and Yeates (1984) (after Attewell et al, 1986)

For tunneling in most clay soils, Equation (4.5) will give reasonable estimate of V; for

1.5 <OFS <4 (Glossop 1978):
V% = 1.33 x (OFS)-1.4 (4.5)
For tunneling in granular soils above a water table, approximate V; will be of 2-5

percent. If tunneling is carried out below the water table, compressed air will be

necessary to control the stability of the granular soil. In that case, the range of V, will
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be between 2 and 10 percent. For preliminary calculations, a 5 percent approximate
could be adopted in both cases (Attewell et al, 1986).

If the settlements occur without any change in volume of the soil (undrained behaviour),
then volume of the settlement trough along a unit length of tunnel having the same

shape as the Gaussian distribution curve is given as (Attewell and Farmer, 1974):
Vs =2.5 7 Ssmax (4.6)

Equation (4.6) allows maximum settlement §_,_to be estimated from surface settlement
volume Vg, and inflection point i. The magnitude of V; depends on the type and
strength of the soil, the tunnel depth and the method and quality of construction. For
most single tunnels in firm-to-stiff clay soils, the volume V; of the settlement trough is
approximately equal to the volume V; of ground lost at the tunnel, whilst in granular
non-cohesive soil, dilation may occur through arching above the tunnel crown if depth
of tunnel axis is equal or greater than three times the excavated radius of a tunnel

(Hansmire, 1975).

Attewell et al. (1986) concluded that Gauss-function settlement troughs was confirmed
by the settlement data compiled from monitoring programs of soft ground tunnels
around the world. However, when the magnitude of the maximum surface settlement
exceeds about 0.5% of the tunnel axis depth, the edges of the trough do not expand in
line with increasing settlement, and the profile deviates from the normal probability
curve (Attewell 1977). The normal probability profile assumptions require that the
width of the fully-developed transverse settlement trough is infinite. However, in

practice, it can be approximated as 227 (i.e. Si)(Attewell et al, 1986).

To date, the most powerful tool to simulate tunneling is the finite element method. This
is mainly due to the availability of powerful codes and rapid improvement in computer
efficiency. Burd et al (2000) used finite element for a three-dimensional analysis of
tunnel, soil and a building interaction. The study provides a method to estimate the

extent of crack damage caused to masonry structures by nearby shallow tunneling.
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be between 2 and 10 percent. For preliminary calculations, a 5 percent approximate
could be adopted in both cases (Attewell et al, 1986).

If the settlements occur without any change in volume of the soil (undrained behaviour),
then volume of the settlement trough along a unit length of tunnel having the same

shape as the Gaussian distribution curve is given as (Attewell and Farmer, 1974):
Vs =251 Ssmax (46)

Equation (4.6) allows maximum settlement §_, to be estimated from surface settlement
volume V;, and inflection point i. The magnitude of V, depends on the type and
strength of the soil, the tunnel depth and the method and quality of construction. For
most single tunnels in firm-to-stiff clay soils, the volume V; of the settlement trough is
approximately equal to the volume V, of ground lost at the tunnel, whilst in granular
non-cohesive soil, dilation may occur through arching above the tunnel crown if depth
of tunnel axis is equal or greater than three times the excavated radius of a tunnel

(Hansmire, 1975).

Attewell et al. (1986) concluded that Gauss-function settlement troughs was confirmed
by the settlement data compiled from monitoring programs of soft ground tunnels
around the world. However, when the magnitude of the maximum surface settlement
exceeds about 0.5% of the tunnel axis depth, the edges of the trough do not expand in
line with increasing settlement, and the profile deviates from the normal probability
curve (Attewell 1977). The normal probability profile assumptions require that the
width of the fully-developed transverse settlement trough is infinite. However, in

practice, it can be approximated as 2\2mi (i.e. 5i)(Attewell et al, 1986).

To date, the most powerful tool to simulate tunneling is the finite element method. This
is mainly due to the availability of powerful codes and rapid improvement in computer
efficiency. Burd et al (2000) used finite element for a three-dimensional analysis of
tunnel, soil and a building interaction. The study provides a method to estimate the

extent of crack damage caused to masonry structures by nearby shallow tunneling.
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However, the finite element method is complex and it requires dedicated computing

facilities.
4.4 Settlement trough dimension parameter, i

Normally, the maximum ground surface settlement (8smax) can be measured directly,
whilst it is very difficult to determine an inflection point i on a trough curve. Tunnel
geometry and soil conditions are several factors which govern the location of inflection
point (Kim 2001). A common way to determine inflection point is to take a distance x
corresponding to settlement value of 0.618,max (Attewell et al, 1986). Cording and
Hansmire (1975) proposed the ‘best-fit method’, where the inflection point is
determined from the plot of recorded settlements in logarithm scale against the square
of the transverse distance (log 8s-x* diagram). By utilizing a linear-fitting curve, a point
corresponding to settlement value of 0.618smax can be determined. Equation (4.6) can
be used as well to obtain the inflection point. This is known as the 'volume method'.
All three methods use Gaussian normal probability function as their basis. In cases
where the settlement trough perfectly matches the Gaussian curve, the three methods
will produce identical i value. In addition to the above methods, several empirical
relations are available as well to approximate the parameter i (Peck 1969, O’Reilly and
New 1982, Leach 1985, Atkinson and Potts 1976).

Based on the stochastic theory and empirical evidence, a simple expression for soil,
clay and rock incorporating normalized factors (i.e. Zs/D and i/R) is derived as follows
(Attewell 1977):

iR = K(Z/D)" 4.7

where K and n are constants depending on the ground conditions. R is the radius of the
tunnel and Zo is the depth of the tunnel axis from the ground surface. For clayey soils,
Attewell and Farmer (1977) suggested values of K=1.0 and n=1.0, while Clough and
Schmidt (1981) proposed values of K=1.0 and n=0.8. Peck (1969) synthesized the
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range of K and n-values with respect to certain ground conditions, as shown in Figure
4.4,

The following values of K and n suggested by Attewell (1982) will be used in Chapter
5 to calculate the surface settlement of the validation set by using empirical method:
1) K=1.0 and n= 1.0 for clays

2) K =0.63 and n= 0.97 for granular soils irrespective of water table
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Figure 4.4: Peck’s (1969) zoning for i as a function of tunnel depth and soil type.
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From Equations (4.1), (4.6), and (4.7), the steps to estimate settlement for a real tunnel
can be formulated as follows (Gunn (1992)):

(a) the engineer estimates a figure for ground loss on the basis of experience with
similar tunneling techniques in similar soils.

{b) a value of i/D is assumed, based on Peck’s chart (Figure 4.5) or Equation (4.7) or a
similar relationship.

(c) Equation (4.6) is now used to find 84y, and hence Equation (4.1) can now be used

to predict the surface settlement at any point.

4.5 Settlement profile along tunnel drive

A significant ground surface settlement is usually induced during the tail void closure,
which occurs immediately after the passage of the shield machine (Ou and
Cherng ,1995). The settlement due to the tail void closure can be obtained from the
settlement history curve, as shown in Figure 4.5. Line a-b denotes the tail void closure,

while line b-c, which has a gentler slope, is considered as the consolidation stage.
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Figure 4.5: Typical settlement history due to shield tunneling (Ou et al. 1998)
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According to Attewell et al. (1986), ground loss is a total summation of face loss,
shield loss, pregrout loss, and postgrout loss. Face loss is associated with the axial loss
at the tunnel face during the intrusion of the shield. Shield loss is radial loss over the
shield through closure of a bead or other overcutting device. Pregrout loss is radial
groud loss occurs behind the tailskin due to closure of an ungrouted space between
lining and ground. Postgrout loss is radial loss occurs behind the tail of the shield due
to closure of the grouted space (Figure 4.6). Attewell and Woodman (1982) developed
equations to predict the three-dimensional ground movements and strains caused by
tunneling based on the analysis of some case history data. They concluded that the soil
movement ahead and at the sides of a tunnel face can be quantified by assuming that
there is no change in the volume of soil at ground surface and ground movement is the
sum total of elementary movements of assumed form resulting from increments of

tunnel advance.

® @@@
|

Grout
v

Figure 4.6: Major areas of ground loss around a shield-driven tunnel in soil: (1) intrusion at the
face; (2) radial loss over the shield through closure of a bead or other overcutting device; (3)
and (4) post-shield radial losses. (3) represents closure of an ungrouted space between lining
and ground, (4) represents closure of the grouted space (Attewell and Farmer 1974).
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Ground displacement caused by tunneling is a three-dimensional problem. Figure 4.7
shows, in a three dimensional view, how settlements develop as the tunnel heading
advances. The soil in front of the face tends to move inwards producing settlements
well ahead the heading. At a certain distance from it, the ground deformation does not
occur yet; whilst at a certain distance behind it the ground displacements have reached

their maximum values.

Along the direction of shield driving, the surface settlement profile may be divided into
five different regions, as shown in Figure 4.8. The mechanisms of soil settlement
induced by shield driving for each region are given in Table 4.1 (Sun 2000). According
to the study by Woodman and Attewell (1982), a cumulative probability function can

approximate fairly well the settlement profile along the tunnel axis.

Figure 4.7: 3-D view of ground subsidence (from Attewell et al, 1986)
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1l

Figure 4.8: Different regions of ground surface displacement along direction of shield driving

(Sun 2000)

Table 4.1: Mechanism of soil settlement induced by shield driving (modified from Sun 2000)

distance in front of

pi-excerting slurry pressure in

shield working face Jclosed cabin

pz- static external earth pressure
pw- ground water pressure

-ﬁegion Types of soil Cause/reason Stress
seftiement Disturbance
| Soil heaving when, pi>pz+pw, soil heaving increasing of pore-water
ata certain when, pi<pz+pw, soil settling pressure; increasing of

total soil stress

Initial settiement

soil consolidated due to squeezing
& compaction under shield driving

dissipating of pore water
pressure; increasing of
effective soil stress

consolidation of
soils

soil creep)

1 Settlement just at  fsoil disturbance during stress release of soils
the while shield construction; shearing-dilatation
passing through between shell of shield & its
surrounding soils; excess amount
of soil excavation
v Settlement caused |soil losses shield supporting, loss stress release of soils
by gap-space of earth strata caused by
existing at shield  |"constructional gap-space” at
tail shield-tail; grouting behind tunnel
lining segment not in time
\' Seitlement due to  Jtime dependent viscous soil stress relaxation
secondary (delayed) deformation (follow-up of soils
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Chapter 5

Details of Contract C705 Northeast Line, C825 Marina Line and C823
Circle Line

In the first main analysis presented in Chapter 6, the feasibility of using artificial neural
networks to predict the maximum settlements due to tunneling is investigated. For this
analysis, the case records used to develop and verify the ANN models were collected
from contracts North East Line C705, Marina Line C825 and Circle Line C823. The
details of the contracts and the relevant information of Singapore geological profile are

presented in the following sections.
5.1 Geological Profile

The geological formations of Singapore encountered during tunneling and excavation
works can be broadly grouped into 4 main types (Moss 2000):
1) Kallang formations. These are recent deposits of soft clays and fluvial sands,
including the Singapore Marine Clay
2) Jurong Sedimentary. These are sedimentary series of sandstones, siltstones and
mudstones with degrees of weathering varying from fresh rock through to
residual soil
3) Old Alluvium. It mainly consists of medium dense to very dense clayey coarse
sand and fine gravel.
4) Bukit Timah Granite. It is fresh rock at depth and completely weathered

approaching the ground surface, producing silty clay.
5.2 Contract C705, Singapore North East Line

C705 is one of the eleven designs and construct contracts of the Northeast Line project,

which dealt with the construction of bored running tunnels from Boon Keng Station to
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Potong Pasir Station. The Northeast Line provides a predominantly underground mass
transit railway from the World Trade Centre in the south to Punggol in the northeast of
Singapore Island. The contract was awarded to a joint venture comprising Kumagai
Gumi, Sembawang and Mitsui (KSM) in 1997. Babtie Tunnelling Division in the
United Kingdom carried out the design for the tunneling works. Geology for C705

comprised mainly Old Alluvium overlain by soft deposits of the Kallang Formation.

The Old Alluvium is composed of very dense silty sands with layers of hard clays and
silts, while the Kallang formation includes sands and soft to firm clays of
marine/alluvial origin. Erosion in the past is responsible for the undulating surface of
the Old alluvium. Due to removal of overburden, the Old Alluvium is considered to be
overconsolidated, however, the marine clay of the Kallang formation is typically
normally or very slightly overconsolidated. The twin bored tunnels were driven mainly
within the Old Alluvium, while encounter with marine clay is experienced locally. A

geological section along the northbound tunnel is shown in Figure 5.1.

BNK STATION, - PEATY CLAY ~FIL

L. _ KALLANG -

MLl /-~ WAMPOA SUNGEI CANAL  ~TWO STOREY SHOP HOUSES- = o ety

1035m /™7 LOOSE SAND — M2 - -HR / M3 s A . i
% . : WH_Nh i e e hy - ‘

R R OLD ALLUVIOM
_400 500

Figure 5.1: Geological section along North Bound Tunnel (South bound tunnel is similar)
(Izumi et al. 2000)
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5.2.1 Bored Tunnel Construction

The twin tunnels run approximately parallel to each other with the horizontal spacing
between the tunnel axes varying from about 15 m to 24 m. The depth to the tunnel axis
varies between 12 and 25 m below ground level. The internal diameter of both tunnels
is 5800 mm and the thickness of the pre-cast segment lining is 250 mm. Two Earth
Pressure Balance Shield machines (EPBM) with an external diameter of 6440 mm were
used to construct the tunnels. To support the face, the EPBMs used a cutter pressure
chamber filled with plasticised soil. During the excavation time, polymer was injected
to lubricate the material and avoid the blocked nozzles. By balancing polymer against
material removed, a continuous pressure was maintained. The EPBMs were equipped
with three pressure gauges mounted on the front face of the machine and the gauge at
center elevation is used to control the slurry pressure. Initially, one tail grouting device
was used to inject grout (at ground receiving pressure plus around 0.5 to 2 bar) into the
tail void as the tunnel shield advanced and the lining was installed. Later on, due to
faulty ports, the grout was injected through the upper lining segment through a grout
nozzle screwed into the lifting sockets. Grouting started immediately after the ring was
installed and continued until the next ring was placed upon which the grout nozzle was
moved forward. Figure 5.2 shows the EPBM used in C705, while its specification is
given in Table 5.1. Figure 5.3 shows the typical settlement profile due to shield
tunneling for contract C705.The graph displays the similar trend as the graph of
settlement profile along tunnel drive in Figure 4.5. The ground surface settled
immediately after the first passage of the shield machine followed by the consolidation

settlement stage. There was a slight heave before the tail passing.
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Table 5.1: Specifications of C705 Earth Pressure Balance Machine (Izumi et al., 2000)

Out side diameter |6440mm
Overall length 7500mm
Propulsion force  |3500tf

Shield Jack speed |10.0 coymin
Shield Jack 24pcs 1471KN*1800stroke

Cutter torque 4714 kNm
Rotational speed 0.9 rpm
Copy cutter jack |2pcs 161.8KN*150 stroke

3-Stime injection holes 8~Shme injection pipes
;O-slimc Injection pipes Manlock -Prftectton cuiters
cutters Tail grouting device
rCopy Segmcnt refmn device
X ‘600 /——%mw discharger
i . ﬁ_l_ (J g
=
& e | "_ E 'g I
& A §
s - - g
el 1t cogveyor >
‘ . - 'UEJ W
) bV l 1 $1
2-Tail seals
12-Shell bits Plates preventing grout migration
3-Earth pressure gauges Erector system
8-Front body retracting jacks g;s'!s'g:k‘i“;:gi‘:“ pipes (rear body)

Figure 5.2: C705 Earth Pressure Balance Machine (Izumi et al. 2000)
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Settlement vs Time (C705)
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5.3 Contract C825, Marina Line

The Marina Line (MRL) is part of the Land Transport Authority’s ongoing effort at
building a comprehensive rapid transit system network. The MRL serves as the first
stage of the Circle Line (CCL), an orbital line that will link all MRT lines which run
into the city (East West Line, Nort South Line, North East Line). The Marina Line
comprises six stations and runs underground from Dhoby Ghaut Interchange Station on
the North East Line to end at Boulevard Station at Stadium Boulevard. The project of
the MRL is divided into two contracts C824 and C825 with C824 awarded to the JV
Nishimatsu-Lam Chum and C825 to the JV WoHup-Shanghai Tunnel Engineering.

Both projects are currently under construction.

Contract C825 consists of 4 stations and tunnels in between (Figure 5.4). They are
Dhoby Ghaut Station (DBG), Museum Station (MSM), CVC Station, and Millenia
Station (MLN). All the four stations are built using the top-down construction method.
This method was opted in order to reduce soil movements and ground water lowering.

The length of tunnels constructed using TBM is approximately 1400m. The soil
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conditions vary considerably along the project from soft Marine Clay at Millenia
Station, Old Alluvium at CVC Station, Fort Canning Boulder Bed at Museum station to
Jurong Formation at Dhoby Ghaut. From previous tunneling projects within Singapore,
Old Alluvium has proved to be an ideal tunneling medium in terms of settlement as
volume losses of less than 1% can be attained easily. Old alluvium is a Pleistocene
deposit of medium dense to very dense clayey coarse sand and fine gravel, containing
lenses of silt and clay. It originated from weathered granite and thus contains a high

proportion of slightly rounded quartz.

The TBM Herrenknecht machines for the bored tunnels are operating in closed mode
according to the EPB method. The TBM starts from a temporary shaft at the east end of
the project (Figure 5.4). Initially, the tunnels were arranged vertically one above the
other to minimize impact on piled foundations. The lower tunnel was driven ahead of
the upper tunnel. This arrangement was changed from vertical to become horizontal
(side by side) prior to reaching CVC Station. The TBMs are driven from the first shaft
through CVC station before station excavation to be picked up at a temporary shaft at
the eastern end of Museum Station. The TBMs are then transported to Dhoby Ghaut
station and driven in opposite direction to the western end of Musem Station (Osborne

et al., 2004). The specifications for the C825 EPBM are shown in Table 5.2.
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Figure 5.4: C825 comprising 4 Stations and Tunnels (Osborne et al. 2004)
Table 5.2: Specifications of C825 Earth Pressure Balance Machine (Osborne et al., 2004)

TBM Manufacturer Herrenknecht
Outer Diameter (mm) 6580
Overall TBM Length (mm) 7400
Overall Length (inc Back-Up) (m) {55
Cutterhead Drive Hydraulic
Power (kW) 945
Cutterhead Motors 8

Torque (rpm) 2.7

Face Injection Ports (No.) 8
Bulkhead Ports (No.) 4

Total Cutter Picks (No.) 72

Total Discs (No.) 40

Copy Cutters (No.) 2

Overcut amount (mm) 30

Thrust Rams (No.) 16

Stroke (mm) 2200
Equipped Propulsion (kN) 42575
Articulation Rams (No.) 14

Total capacity (kN) 73892
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54 Contract C823, Circle Line

Contract C823 is part of Circle Line project Stage 2. This contract was awarded to the
JV Nishimatsu-Lam Chum. The contract comprises 3 stations and bored tunnels in
between. The stations are Old Airport Road Station, Tanjong Katong Station, and Paya
Lebar Station. In this project, the settlement readings from this contract were obtained
from level instruments along the tunnel line between Old Airport Road Station and
Tanjong Katong Station. The soil investigation on site was carried out by Soil &
Foundation (Pte). Based on the borehole data and in-situ tests results obtained from site,
the underlying subsoils can be broadly classified into the following layers: Fill, Kallang
Formation, and Old Alluvium. The fill layer consists typically of clayey sand, sandy silt
and clayey silt mixed with foreign debris such as woods and concrete. The Kallang
Formation was found beneath the fill layer in most boreholes. It comprises peaty Clay,
fluvial sand, fluvial clay, and marine clay. The Old Alluvium occurred as basement
subsoils in this area. Tunneling was carried out mostly within clay sediments such as
marine clay, estuarine, and fluvial clay. The estuarine and fluvial clay were found to be
mainly underlying the marine clay or as the intermediate layer within the two marine
member. Marine clay is soft compressible normally consolidated clay that can contain
pockets and lenses of silt and sand, but behaves in an undrained manner during
tunneling. A typical near surface strength is 22 kPa with minor strength gain as the
strata goes deeper. Therefore, positive support pressure from the EPBM needs to be
maintained at all times. The old alluvium with SPT less than 30 was encountered for a
short distance near the Old Airport Road station. Hitachi Zosen EPBMs were used to
construct the bored tunnels on C823. The specifications for the EPBM are shown in

Table 5.3. Figure 5.5 shows the map of Circle Line project including C825 and C823.
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Outer Diameter (mm)
Overall TBM Length (mm)

Overall Length (inc Back-Up) (m)

Cutterhead Drive

Power (kW)

Cutterhead Motors
Torque (rpm)

Face Injection Ports (No.)
Bulkhead Ports (No.)
Total Cutter Picks (No.)
Total Discs (No.)

Copy Cutters (No.)
Overcut amount (mm)
Thrust Rams (No.)
Stroke (mm)

Equipped Propulsion (kN)
Articulation Rams (No.)
Total capacity (kN)

Table 5.3: Specifications of C823 Earth Pressure Balance Machine (Osborne et al., 2004)

Hitachi Zosen
6630

8615

51

Electric

660

12

1.06

6
4
92 bits
0
2
150
26
2050
39000
12

24000

Figure 5.5;: Map of Circle Line including project C825 and C823 (from LTA)
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Chapter 6

Prediction of Maximum Surface Settlement by Multi-layer
Perceptrons (MLP)

>

The settlement trough, as described by Gaussian distribution, is determined by two
main parameters: the maximum surface settlement at the point above the tunnel
centerline (S, ) and the width parameter (i) defined as the distance from the tunnel
centerline to the inflection point of the trough. Due to insufficient information of
width parameters from the field, this chapter focused only on the development of
ANN models to predict maximum surface settlements induced by single tunneling.
The most commonly used neural network type is Feed-forward multi-layer
perceptrons (MLPs) trained with the back-propagation algorithm, as they have a
high capability of data mapping. MLPs trained with back-propagation algorithm
have been used successfully in many geotechnical engineering problems; hence

they are used in this research.

6.1 Comparison of softwares

Several software systems for neural network operation are tested and the results are
compared. The best software is then used for network analysis in this project. This
section presents a comparison of performance of available back propagation neural
network softwares , namely NNGeo, Pittnet , and MatLab. Results and details of the
tests using NNGeo and Pittnet were obtained from the report by Robin (2001).
NNGeo was developed by Hefny (2000) and applicable in Windows platform. The
program code was written in Visual Basic. It can read the input data from both,
normal text files and Microsoft Excel files and output of the training can be written
to these two file formats as well. Pittnet was developed by Smith (1997) at the
University of Pittsburgh. This computer program works in a DOS environment
allowing the user to construct, train and test different types of artificial neural
networks. Matlab is a technical computing software developed by The MathWorks,

Inc. It has been used by technical people all over the world for their engineering and
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scientific work. The neural network toolbox contained in Matlab is used for the
network analysis. The three softwares are used to predict the friction capacity of
driven piles. The data was obtained from load test records compiled by Goh (1995).
A total of 45 patterns were used to train the neural network and 20 patterns to test

the predictive ability of the neural network. Summary of the training and testing

data are shown in Appendix A.

For NNGeo and MatLab, the learning rate and momentum used were 0.2 and 0.9,
respectively. For Pittnet, the learning rate was 0.9 while the momentum was set at a
default value of zero since it could not be changed by the user. For all three
programs, the number of training iterations used was 30000 and the number of
hidden neurons was three. The accuracy of the three networks was compared with
that obtained by Goh (1995). Table 6.1 shows the comparison of prediction
accuracy of the different networks. It can be seen that MatLab showed the highest
correlation coefficient and lowest error rate for testing set compared to other
networks, whereas Pittnet displayed lowest correlation coefficient and highest error
rate. Hence, MatLab is used for the subsequent analysis of neural network in order

to obtain more accurate settlement prediction.

Table 6.1: Comparison of prediction accuracy of different back propagation networks using
pile driving data from Goh (1995)

NNGeo Sy, 0y 3 0.962 4.56

Goh S,. 0y 3 0.963 4.72
Pittnet S,, o, 3 0.959 5.53
MatLab Su, Gy 3 0.972 3.97
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6.2 Preliminary analysis to obtain optimum ANN Model

¢ Model Inputs and OQutputs

Eleven parameters are accepted to have significant impact on the settlement of
ground surface due to tunneling, and are thus tested as the ANN model inputs. The
model output is the initial maximum surface settlement immediately after the tail
passing. The input and output parameters used for the network analysis are listed in
Table 6.2.

Table 6.2: Input and Output parameters for ANN analysis

1 Cover H m

2 Earth Pressure EP kPa
3 Advance Rate AR mm/min
4 Mean SPT above Crown level S1 N300
5 Mean SPT at Springline level S2 N300
6 SPT at Invert level S3 N300
7 Mean bulk density above crown level BD kN/m’
8 Mean stiffness around tunnel circumference E Mpa
9 Moisture Content MC %
10 Ground Water Level GWL m
11 Grout Pressure kPa

1 Initial Maximum Surface Settlement S mm

1. Soil Cover
Soil cover is measured from tunnel crown to ground surface level. Since Equation
4.7 uses depth of tunnel axis from ground surface (z,) as a parameter, soil cover is

obviously an important factor to estimate surface settlement.
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2. Advance Rate
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Attewell et al (1986) used the average rate of tunnel advance to calculate three

components of ground loss namely face loss, radial loss, and postshield lost. This

signifies high correlation between advance rate and final ground surface settlement.

3. Earth Pressure

As discussed before, EPBM provides the ability to maintain full support to the

excavation face by applying earth or face pressure. Excessive pressure on the

tunnel-excavated face reduces the life span of the TBM’s cutter head while

insufficient pressure will cause ground surface settlement.

4. SPT 1, SPT 2, SPT 3

SPT “N” values describe geotechnical properties of the soils where tunnels are

excavated. They are included in the log of boring produced from site-specific soil

investigation and testing. Three types of SPT value are used in this project, namely
SPT 1, SPT 2, and SPT 3. SPT 1 is the mean SPT N value of soil layers above the

tunnel crown up to ground surface. SPT 2 is obtained by taking the average of the

SPT values at the crown, middle and invert levels, as shown in Figure 6.1. SPT 3 is

the SPT N value at tunnel inverted level.

5. Bulk Density, Stiffness

Soil stiffness, E, soil density, and coefficient of earth pressure at rest, K, are the

key parameters for the design of tunnel lining. The LTA Design Criteria used K =
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Figure 6.1: SPT 2 — The average of the SPT values at the crown, middle and invert levels
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1.0, considered to be conservative for the Old Alluvium, Marine Clay and Kallang
soils. The values of bulk density and stiffness adopted in this project are given in
Table 6.3. The parameters were used by Babtie Tunnelling Division for the tunnel

design of contract C705 North East Line.

rameters adopted for C705 Tunnel design

Marine Clay M 15.5 0.3C,
Fluvial Sand F1 18.0 20
Old Alluvium O| N<25 19.0 1.5N
N 25-80 20.0 1.5N
N>80 21.0 120

C, = Undrained Cohesion kPa

6. Moisture Content, Ground Water Level

Presence of water in the soil is indeed a factor that has significant effect on the
magnitude of ground loss (Attewell et al (1986), Uriel and Sagaseta (1989)).
Moisture content and ground water level gauge the amount of water present in the
soil excavated. For neural network analysis, the moisture content of soil layer,
driven through by the tunnels, is used as an input. The ground water table is

measured from the ground surface level to the water table.

7. Grout Pressure

As the tunnel shield advanced, the space around the exterior of the tunnel was
immediately filled by the grout, which was injected at ground receiving pressure
into the tail void. Since postgrout loss occurs due to closure of the grouted space,
the grout pressure used for the injection will have an impact on the potential ground

loss. Hence, it is included as one of the input factors.
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¢ Data Division

Neural network models were developed using different input combinations and the
results were compared to obtain the network model with optimum input
combinations. A total of 158 patterns are used to develop the models. The data are
divided into three sets: training, testing and validation, as is the standard practice in
the development of ANN models in geotechnical engineering. 90 patterns are used
for training set, 39 patterns for testing set and 29 patterns for validation set. The
three sets are divided in such a way that they are statistically consistent and thus
represent the same statistical population. In order to achieve this, several random
combinations of the training, testing and validation sets are tested until three
statistically consistent data sets are obtained. The data and statistics of the training,
testing and validation sets are shown in Appendix B. The statistical parameters

considered are mean, standard deviation, minimum, maximum and range.

¢ Pre-processing of Data

To increase the efficiency of neural network training, certain preprocessing steps
are performed on the network inputs and targets. Before training, the input and
output variables are scaled to eliminate their dimension and to ensure that all
variables receive equal attention during training. Scaling has to be commensurate
with the limits of the transfer functions used in the hidden and output layers. In this
analysis, input and output variables are scaled so that they fall in the range -1.0 to
1.0. This is because tan-sigmoid transfer function is used for both hidden and output
layers for all models. For each variable x with minimum and maximum values of

Xmin aNd Xpay, respectively, the scaled value x, is calculated as follows:

Xn = 2X(X'Xmin)/ (Xmax'xmin) -1 (6 1)

6.3 Model Architecture and Stopping Criteria
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A total of thirty two network models with different input combinations were tested
to obtain the optimum one. All the models used one hidden layer with eight neurons.
Prior to this, a preliminary test was conducted whereby the network of eleven input
parameters is trained using different number of hidden neurons. The network
obtained the lowest testing error when the number of hidden neuron is eight, as
shown in Table 6.4. Hence, eight hidden neuron is considered optimal and is used
for the remaining thirty one networks. This initial step is necessary to avoid under
fitting which may occur when small number of hidden neurons is used for the
network with many input parameters. On the other hand, the optimum number of
hidden neuron from the network of maximum number of input parameter can be
used for the network with smaller number of input parameters. In this case, over
fitting is rarely a problem since early-stopping is used as the stopping criteria. The
learning rate and momentum used were 0.2 and 0.9 respectively. The performance
of each model is quantified from two measures; the coefficient of correlation (r) and

error rate. The expression for error rate is given as follows:

Error rate = X errory/N, fori=1,2,...N (6.2)

P

error; = |(Ti — Oy)| (6.3)

where error; is the error of the ith pattern, T; is the target output value, O; is the

predicted output value and N, is the number of patterns.

RN | ORI o it e
‘Model. i Hidden Correlation Coefficient = =
t L Yheioges  Teinng | Testng | Maliietic R
NN1 2 11 . . 7.114 6.238 5.150
4 0.906 0.892 0.913 5.608 5.935 5.360
6 0.917 0.935 5.385 5.704 5.510
8 . .
10 0.916 0.914 0.881 5.274 5.602 8.344
12 0.908 0.871 0.928 5.758 7.077 5.932
20 0.884 0.887 0.891 6.598 6.440 7.138
30 0.950 0.836 0.929 4.933 7.522 5.685
40 0.842 0.894 0.827 7.144 6.517 8.771
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The performance results of the 32 models are shown in Table 6.5. Four network
models NN6, NN7, NN16, and NN26 were selected for further analysis as they
have high coefficient of correlation, relatively low error rates, and consistent
performance on the training, testing, and validation sets. The four models were
retrained with different number of hidden layer nodes. The maximum number of
hidden layer nodes tested was 12 as the aim is to obtain a model, which provides
satisfactory performance coupled with a small number of hidden nodes. The
performance results of the four models with different hidden layer nodes are shown
in Table 6.6 to 6.9. It can be seen that ANN model NN6 with 8 hidden neurons
performs well, as it showed high coefficient of correlation, low error rate on the
testing set and validation set, and consistent performance on the training, testing,
and validation sets. Thus, from here onwards, the input variables considered for the
ANN model analysis are cover (H), earth pressure (EP), advance rate (AR), average
SPT above tunnel Crown level (SPT1), average SPT at tunnel Springline level
(SPT2), stiffness (E), moisture content (MC) and grout pressure (GP).
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Table 6.5: Com anson of Neural Network Models of dlfferent 1nut combmatlons
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G - v 1 E .Vahdatmn
W] H NS 5 5360 E VG GWLF i g . —m-‘
e 10 5 IH, E_P, AR, 51, 52, 53, BD, E, MC, GWL 083 001 622 | 207 |
k) 9 8 [H, EP, AR, 51, S2, 53, BD, E, MC, 007 | 000 | 0% 55 1 047 |
e 9 I EP, AR, 51, 52, BD, E, MC,GP 093 | 080 | 086
3 B

| 5 BD‘E:MC

EP, AR, S1, S2, S3, BD, E, MC

L 7 8 |EP, AR, 51,53, BD, E, MC 008 | 0 | 02 | 500 | o7 | oo |

Wo 8 |MC,GWLEEP,HS1,S3 0% | 087 | 078 | 3606 | 051 [ o0

W7 B |AREPSISINCEGP 004 | 001 | 073 | 230 | o630 | 008

e 7 8 R EP.S1,53, MC,GWL,GP 006 | 083 | 089 | 448 | 650 | 74 |

Wi 6 8 |EP,S1, 53, BD, E. MC 093 | 0 | 077 | 511 | 757 | 1100

WT] 6 8 |H, S1, 52, BD, E, MC 088 | 001 | 086 | 662 | 5% | 789 |
3 3 E 088 | 083 A

AR, 51, 52, GP, E, MC

; H, 52, BD, MC, GWL, GP X ) . : ,
0GE I B |N.EP,S1S3MC,E 080 | 087 | 079 | 76 | 678 | 1037
5 8 |EP, S1,BD, E, MC 09 | 077 | 068 | 357 | 763 | 10.2
L 8 [|HEP.S1S3MC 083 | 083 | 088 | 707 | 759 | 6.2
e 5 8 [51,52 GP,E MC 05 | 085 | 081 815 | 6% | 747 |
11772 5 |AR 1,52, E MC 08 | 00T | 0% | o8 | o5 | 752
) 5 8 |AR S1,S2,BD.E 080 | 085 | 083 | 807 | 690 | 878 |
12 8 |EP, AR, 51,52, MC 0% | 083 | 088 | 744 | 78 | 79
4 8 075 | 048 821 | 1057 | 974

EP, S1,BDMC

S1,53MC,E

‘ B 092 | 001 | 076 | 550 | 551 | 914
7 8 [EP, AR, ST, 52 080 | 087 | 088 | 808 | 732 | 757
7 B [H,S1.52MC 093 | 091 | 088 | 569 | 59 | 749
3 8 |BD,EP, S 080 | 062 | 063 | 888 | 991 | 109
3 8 |BD,MC,EP 080 | 079 | 080 | 772 | 740 | 804
3 8 [H,51,92 086 | 086 | 091 | 683 | 688 | 488
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Table 6.6: Performance of ANN model NN6 with dlfferent hxdden layer nodes

No. of
Model Hidden. - , Gorrelatron Ooeffmlent : Error Rate (unscaled)

L Neurodes' | Training 'r Testing Vahd‘étion’i fffTi'annm_g_ Testing ] Validation
NNGA 2 0.82 0.85 0.75 7.20 CFTI By
NN6B 4 0.90 0.92 0.91 5.84 5.53 6.40
NN6C 6 0.89 0.89 0.84 555 5.99 7.67
NN6D 8 ’ ' : _‘
NNGE 10 . 0.90 0.78 578 6.26 9.56
NN6F 12 0.84 0.90 0.89 7.20 6.02 9.37

Table 6.7: Perfonnance of ANN model NN7 w1th dlfferent hldden layer nodes »

v No: of
Model | Hidden Correlatlon Coefflcxen o Eror 'Rate (unscaled) ‘
Sl EoNeurodes | Tr;amlng‘ 1 Testing | Vali . ' Vaildation
NN7A 2 " 083 0.85

NN7B 4 0.89 0.94 .

NN7C 6 0.91 0.89 6.39

NN7D 8 ) 0

NN7E 10 0.86 0.95 0.89 6.97 4.78 5.48
NN7F 12 0.90 0.93 0.91 6.46 5.60 6.08

Table 6.8: Performance of ANN model NN16 w1th dlfferent hldden _ler nodes

T BT S T R
Model Hldden Correlation Coeffi lClent o Error Rate (unscaled)_ o _
© | Neurodes | Training | Testing | Validation | Training | = Testing 5I-Valldam.
NN16A 2 086 0.93 0.89 6.67 4.74 6.13
NN16B 4 0.87 0.93 0.87 6.36 5.11 5.59
NN16C 6 0.97 0.94 0.80 3.43 4.59 9.04
NN16E 10 0.90 0.86 0.90 5.57 6.20 6.16
NN16F 12 0.90 0.88 0.91 5.84 5.48 5.30

Table 6.9: Performance of ANN model NN26 w1th dlfferent hldden layer nodes

"Modex 1

NN26A

. Training.

- ‘Gorrelation Coett |cient

Testing

‘ijféiﬁ‘!DQ) 1. Te

NN26B 2
NN26C 6 )

NN26D 8 : 0 i 5.50.
NN26E 10 0.95 0.90 0.73 414 5.78 7.44
NN26F 12 0.91 0.92 0.88 5.99 5.95 6.73
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6.4 Optimum ANN model

As discussed previously, a common way to obtain the optimum network
architectures is by using a trial-and-error approach. A network with one hidden
layer can approximate any continuous function, provided that sufficient connection
weights are used (Cybenko 1989). Thus, one hidden layer is used in the analysis.
The steps adopted for finding the best network architectures can be summarized as
follows: \

1. A number of trials are carried out with one hidden layer and varying

number of hidden layer nodes.

2. The network that performs best with respect to the testing set is then

retrained with different combinations of momentum terms, learning rates and

transfer functions in order to improve model performance.

3. The model that has the optimum momentum term, learning rate and transfer

functions is retrained several times with different initial weights until no

further improvement occurs.

The third step is necessary to avoid getting trapped in a local minimum. Since back-
propagation algorithm with gradient descent method is used to adjust the connection
weights, problems with local minimum may be encountered if the initial starting
point in weight space is unfavorable. Step 1 has been carried out in previous section
which yield ANN model NN6 with 8 hidden layer nodes as the optimal model. The
effect of momentum, learning rate and transfer function on model performance is
summarized in Table 6.10. Figure 6.2 shows graphically the effect of momentum
term on model performance. It can be seen that momentum does not affect much the
performance of NN6 model in the range 0.01 to 0.7. The best prediction was
obtained with a momentum value of 0.9. The effect of different learning rates on
model performance is shown graphically in Figure 6.3. It can be seen that the error
rate is the smallest at learning rate of 0.2. Table 6.10 shows that the model performs

well when both the hidden layer and output layer use tan-sigmoid (tansig) transfer
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function. The model produces poor results for logsig-logsig, logsig-tansig, and
tansig-logsig. Other two combinations (tansig-linear and logsig-linear) produced
satisfactory coefficients of correlation and error rates. However, the results are not
as optimal as those when tansig-tansig combination was used for hidden and output

layer.

—
[=]

Error rate for testing set (mm)

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Momentum term

Figure 6.2: Effect of various momentum terms on ANN performance (L.R = 0.2)

16

14 S —
12 P //

Error rate for testing set (mm)

o N A O O

0 0.1 02 03 04 05 06 07 08 09 1

Learning rate

Figure 6.3: Effect of various learning rates on ANN performance (Momentum = 0.9)
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For subsequent analysis, the ANN model NN 6 used learning rate of 0.2,
momentum of 0.9 and tan-sigmoid transfer function for both hidden layer and

output layer.
6.5 Comparison of training algorithms

In the previous analysis, the network models used back-propagation training
algorithm: gradient descent with momentum to adjust the weights. In Chapter 2,
several faster algorithms are discussed. This section investigates the effect of their
use on the network performance. These algorithms with their acronym are listed in
Table 6.11. The results of all the algorithms training including gradient descent
method are tabulated in Table 6.12. The model used was NN 6 with 8 hidden
neurons.

Table 6.11: Back-propagation Training Algorithms

-

LM trainlm - Levenberg-Marquardt
GDM traingdm - Gradient Descent Method
BFG trainbfg - BFGS Quasi-Newton
RP trainrp - Resilient Backpropagation
SCG trainscg - Scaled Conjugate Gradient
CGB traincgb - Conjugate Gradient with Powell/Beale Restarts
CGF traincgf - Fletcher-Powell Conjugate Gradient
CGP traincgp - Polak-Ribiére Conjugate Gradient
0SS trainoss - One-Step Secant
GDX traingdx - Variable Learning Rate Backpropagation

Table 6.12: Performance of ANN model NN 6 using various training algorithms

‘No:ob | "No. of eura T - — —

input | hidden ] - Network Noof |
I Algorithm =

Cycles

unit rons. - In t’ g ; C
s | newrons pul | raiving | Testing [

| Parameters | E
LM 123 0.87
8 8 H,EP,AR, | GDM 3709 77
S1,82,E, BFG 3376 0.91 0.88 0.77 5.66 5.97 8.94

MC,GP RP 20 0.83 0.87 0.81 7.50 7.01 9.72
SCG 21 0.82 0.88 0.83 7.72 6.47 8.85
CGB 3280 0.80 0.86 0.85 7.40 8.75 7.97
CGF 1459 0.85 0.88 0.84 7.29 6.99 8.10
CGP 27 0.86 0.88 0.83 6.31 6.49 8.06
0SS 35 0.81 0.87 0.88 7.03 8.60 7.78
GDX 535 0.87 0.88 0.84 .22 8.04 7.31
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Figure 6.4 shows graphically the comparison of all training algorithms with respect
to the testing set. It can be seen that Gradient Descent Method (GDM) gives the
lowest error rate compared to other algorithms. Thus, its use for network analysis in
this project is appropriate. Other algorithms, which give low error rates as well,
include One-Step Secant method (OSS) and Variable Learning Rate Back
propagation (GDX). As expected, the GDM method requires the most number of

cycles compare to other faster algorithms to reach the minimum error.

.8 [&LM
£, @ GDM
3 6 ABFG
- X RP
£5° XSCG
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84 ®CGB
2 3 +CGF
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S 1 =088
w © GDX

0

Training Algorithm

Figure 6.4: Comparison of ANN model performance using various training algorithms

6.6 Data Division for ANN Models

Recent studies indicate that the way the data are divided can have a significant
impact on the performance of network model (Tokar and Johnson 1999). ANN
models are developed for its interpolation ability, and not extrapolation ability.
Consequently, the training set should contain all maximum and minimum data
points in order to perform well. If early-stopping is used as the stopping criterion,
the testing set should be representative of the training set, as the testing set is used
to decide when to stop training and obtain optimal model architecture. Validation
set is used to test the generalization ability of the model, thus it should be
representative of the training set as well. For these reasons, the statistical properties

of the various data subsets (training, testing and validation) need to be similar to
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ensure that each subset represents the same statistical population (Masters 1993). In
this section, the effect of data division on ANN model performance is investigated.
Three data division methods are tested: (i) data division to ensure statistical
consistency; (i) data division using self-organizing maps (SOMs); and (iii) data
division using fuzzy clustering. To examine how representative the training, testing
and validation scts are with respect to each other, t- and F-tests are carried out. The
t-test checks the null hypothesis of no difference in the means of two data sets and
the F-test investigates the null hypothesis of no difference in the standard deviations
of the two sets. For a given level of significance, test statistics can be calculated to
test the null hypotheses for the t- and F-tests, respectively. Traditionally, a level of
significance equal to 0.05 is selected (Levine et al. 1999). This means that there is a
confidence level of 95% that the training, testing and validation sets are statistically

consistent.

¢ Approach 1: Statistically Consistent

This method of data division has been adopted for analysis of ANN in the previous
sections. In this approach, the input data are divided into their subsets in such a way
that the statistical properties of the training, testing and validation are as close to
each other as possible. Hence, the three data sets represent the same statistical
population. The available 158 patterns are divided into three statistically consistent
subsets as shown in Table 6.13. Tt can be seen that, for each input variable, the
statistical properties of training, testing and validation sets are very close to each
other. This is also confirmed by the results of null hypothesis tests in Table 6.14,
which show that the hypotheses of testing and validation sets for all input

parameters passed the t-test and the F-test.
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Table 6.13: Input and output statistics obtained using data division to ensure statistical
consistenc

Training set 16.9 3.9 8.5 30.0 215

Testing set 18.7 4.9 11.0 29.0 18.0

Validation set 17.1 4.5 11.0 29.0 18.0

AdvanceT?ate, Aﬁ(mmlmin)

Training set 30.6 10.4 9.5 52.1 42.7

Testing set 29.4 124 10.5 50.0 39.5

Validation set 30.7 10.5 10.4 47.5 37.1

[Earth Pressure, E'Fm’a)

Training set 189.0 83.6 11.0 370.0 359.0
Testing set 187.4 73.6 62.0 347.0 285.0
Validation set 520.8 70.9 90.0 3400 | 250.0
SPT1,N

Training set 26.6 28.8 0.7 80.3 79.7

Testing set 29.6 271 2.6 75.6 73.0

Validation set 21.0 26.5 0.8 78.0 77.2

SPT2,N

ﬁaining set 54.3 42.2 0.0 100.0 100.0
Testing set 58.5 42.9 0.0 100.0 100.0
Validation set 46.4 41.7 0.0 100.0 100.0
Moisture content, MC(%)

Training set 27.5 18.2 6.0 66.5 60.5
Testing set 28.4 20.7 9.5 65.8 56.3
Validation set 30.7 18.9 10.6 63.3 52.7
Stiffiness, E(MPa)

Training set 70.6 51.3 5.0 120.0 115.0
Testing set 73.5 51.9 53 120.0 114.7
Validation set 60.1 50.0 5.0 120.0 115.0
Grout Pressure, GT’(kPa)

Training set 247.2 166.1 1.8 700.0 698.2
Testing set 243.2 144.5 35.0 500.0 465.0
Validation set 245.4 158.0 30.0 500.0 470.0
Measured settlement, S(mm)

Training set 16.8 22.9 0.2 112.9 112.7
Testing set 15.6 20.2 0.3 94.4 941

Validation set 17.0 19.5 0.9 79.9 79.0
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Table 6.14: Null hypothesis tests for data division to ensure statistical consistency

Variable Lower Upper Lower Upper
and t-value critical critical t-test F-value critical critical F-test
data sets value value value value
Testing -2.0 2.0 2.0 Accept 0.7 0.6 1.8 Accept
Validation -0.3 -2.0 2.0 Accept 0.8 0.5 1.9 Accept
' Testing 0.5 -2.0 2.0 Accept 0.7 0.6 1.8 Accept
Validation 0.5 -2.0 2.0 Accept 1.0 0.5 1.9 Accept

" Testing | 0.1 5.0 20 | Accept | 1.3 06 T8 | Accept

Validation -2.0 -2.0 2.0 Accept 1.4 0.5 1.9 Accept
| Testing : -2.0 2.0 Accept 1.1 0.6 1.8 Accept
Validation 1.0 -2.0 2.0 Accept 1.2 0.5 1.9 Accept

Testing -0.5 -2.0 2.0 Accept 1.0 0.6 1.8 Accept
Validation 0.9 -2.0 2.0 Accept 1.0 0.5 1.9 Accept

Testing -0.2 -2.0 2.0 Accept 0.8 0.6 1.8 Accept
Validation -0.8 -2.0 2.0 Accept 0.9 0.5 1.9 Accept
Tsting -0.3 -2.0 2.0 Accept 1.0 0.6 1.8 Accept
Validation 1.0 -2.0 2.0 Accept 1.1 0.5 1.9 Accept
Testig 0.1 -2.0 2.0 Accept 1.3 0.6 1.8 Accept
Validation 0.1 -2.0 2.0 Accept 1.1 0.5 1.9 Accept
Testing 0.3 -2.0 2.0 Accept 1.3 0.6 1.8 Accept
Validation 0.0 -2.0 2.0 Accept 1.4 0.5 1.9 Accept

¢ Approach 2: Self-Organizing Map (SOM)

Teuvo Kohonen introduced the Self-Organizing Map (SOM) in 1982. The SOM
algorithm is based on unsupervised, competitive learning which means that no
human intervention is needed during the learning. Self-organizing feature maps
(SOFM) learn to classify input vectors according to how they are grouped in the
input space. In this section, SOM is used to organize the data into clusters. Once
clustering has been successfully accomplished, samples are chosen from each
cluster to form the training, testing and validation sets. The method proposed by
Bowden et al. (2002) is followed whereby three samples are selected randomly
from each cluster; one for each of the training, testing, and validation sets. If a

cluster contains two data, one is chosen for training and the other for testing. If a
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cluster contains only one data, it is included in the training set. SOM is a convenient
method for data division as it eliminates the need to decide which proportion of the
data to use for training, testing and validation sets. Furthermore, the statistical
properties of the training, testing and validation sets are nearly similar. However,
this method requires the controlling parameters in learning process (i.e. learning
rate, neighbourhood size, size and shape of the map) to be selected in advance. To
obtain optimum combinations of these parameters, a trial-and-error approach should
be used. As part of this approach, SOM function in MatLab’s Neural Network
toolbox is used to cluster the data. The available input variables (i.e. H, EP, AR,
SPT1, SPT2, MC, E, GP) and output variable (S) are presented to the SOM as
inputs (Figure 6.5). As there is no precise rule to determine the optimum size of the
map, three map sizes, 5x5, 8x8, and 10x10 are investigated. Training is carried out
for 10000 iterations using the default parameters recommended in the Network/Data
Manager (neighbourhood distance :1, Ordering phase learning rate:0.9, Tuning

phase learning rate:0.02).

Map size 5x5

From the clusters of data, 119 patterns are selected for training set, 22 patterns for
testing set and 20 patterns for validation set. The statistics of the training, testing
and validation sets for map size 5x5 are shown in Table 6.15. It can be seen that the
statistical properties of the three subsets are quite similar as expected. This is further
verified by the results of t- and F-tests (Table 6.16), whereby hypothesis of all input

parameters for both testing and validation sets are acceptable.

Kohonen Layer

Input Layer

H EP AR SPT1SPT2MC
Figure 6.5: SOM for settlement data clustering
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Table 6.15: Input and output statistics obtained using SOM for 5x5 map si

Cover,
Training set 17.1 4.3 8.5 30.0 21.5
Testing set 18.0 4.3 11.0 29.0 18.0
Validation set 18.7 3.6 13.0 25.0 12.0
Advance I-Rate, Aﬁ(mm/min)
Training set 312 10.8 9.5 52.1 42.7
Testing set 27.5 11.3 10.5 51.0 40.5
Validation set 28.2 10.5 104 50.0 39.6
Earth Pressure, EP(T’a)
'-I'raining set 199.4 82.0 11.0 370.0 359.0
ﬁ"esting-set 194.6 80.5 62.0 347.0 285.0
Validation set 193.6 77.1 90.0 342.0 252.0
SPT1, N
[Training set 25.0 28.2 0.7 80.3 79.7
Testing set 28.1 26.1 0.9 70.4 69.5
Validation set 30.8 28.4 2.4 80.3 77.9
SPT 2, N
Training set 52.2 424 0.0 100.0 100.0
Testing set 62.8 40.7 0.0 100.0 100.0
Validation set 62.6 39.7 4.7 100.0 95.3
Moisture content, Mé(%)
Training set 29.0 19.3 6.0 66.5 60.5
Testing set 24.8 17.7 10.2 63.3 53.1
Validation set 242 15.4 6.1 58.7 52.6
Stiffness, E(MPa)
Training set 67.4 51.4 5.0 120.0 115.0
Testing set 80.7 50.7 5.3 120.0 114.7
Validation set 79.6 47.0 5.3 120.0 114.7 |
Grout Pressure, GI-’(kPa)
Training set 240.0 163.3 1.8 700.0 698.2
lE'Festing set 277.3 144.0 13.5 500.0 486.5
Validation set 283.6 133.8 32.0 500.0 468.0
Measured settlement, S(mm)
Training set 16.6 21.4 0.2 112.9 112.7
Testing set 16.3 23.7 0.5 94.4 93.9
Validation set 14.1 20.2 0.3 79.9 79.6
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Table 6.16: Null hypothesis tests for data subsets obtained using SOM 5x5 map size

Variable Lower Upper Lower Upper
and t-value critical critical t-test F-value critical critical F-test

data sets value value value value
Testing -0.9 -2.0 2.0 Accept 1.0 0.5 2.1 Accept
Validation -1.5 -2.0 2.0 Accept 1.5 0.5 2.2 Accept
Testing 1.5 -2.0 2.0 Accept 0.9 0.5 2.1 Accept

Validation| 1.1 a0 2.0 Accept K 0.5 2.0 Accept
Testing' 0.3 -2.0 2.0 Accept 1.0 0.5 2.1 Accept

Validation I 0.3 -2.0 2.0 Accept 15 0.5 2.2 Accept

Testing 0.5 2.0 2.0 Accept 13 0.5 2.1 Accept
Validation -0.8 -2.0 2.0 Accept 1.0 0.5 2.2 Accept
""" Testing | 1.1 2.0 20 | Accept | 1.1 05 21 | Accept
Validation -1.0 -2.0 2.0 Accept 1.1 0.5 2.2 Accept
Testing 0.9 -2.0 2.0 Accept 1.2 0.5 2.1 Accept
Validation 1.0 -2.0 2.0 Accept 1.6 0.5 2.2 Accept
Testing -1.1 2.0 2.0 Accept 1.0 0.5 2.1 Accept
Validation -1.0 -2.0 2.0 Accept 1.2 0.5 2.2 Accept
Testing -1.0 -2.0 2.0 Accept 1.3 0.5 2.1 Accept
Validation -1.1 -2.0 2.0 Accept 1.5 0.5 2.2 Accept
Testing | 0.1 -2.0 2.0 Accept 0.8 0.5 2.1 Accept
Validation 0.5 -2.0 2.0 Accept 1.1 0.5 2.2 Accept
Map size 8x8

The numbers of patterns for training, testing and validation sets are 98, 36 and 27
respectively. The statistical properties of the training, testing and validation sets for
map size 8x8 are shown in Table 6.17. The statistics of the three subsets are

consistent and this is confirmed by the outcomes of the t- and P-tests (Table 6.18).
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Table 6.17: Input and output statistics obtained using SOM for 8x8 map

Training set 17.6 46 30.0 8.5 215
Testing set 17.4 3.7 25.0 11.0 14.0
Validation set 17.1 4.0 25.0 11.2 13.8
Advance Rate, AR(mm/min)
Training set 30.4 10.8 52.1 95 42.7
Testing set 29.7 11.2 50.0 705 | 395
Validation set 30.9 11.0 50.0 10.4 39.6
Ea?h—ﬁressure, EP(kPj?)
Training set 197.7 81.8 370.0 11.0 359.0
Testing set 194.6 83.9 347.0 52.0 295.0
Validation set 203.7 75.0 350.0 90.0 260.0
SPT1, N
Training set 26.0 28.6 80.3 0.7 797 |
Testing set 25.9 25.7 70.3 0.9 69.5
Validation set 27.8 28.8 80.3 0.8 79.4
[SPT2,N
Training set 52.2 425 100.0 0.0 100.0
Testing set 60.1 40.8 100.0 0.0 100.0
Validation set 57.9 41.8 100.0 0.0 100.0
Moisture content, MC(%)
Training set 29.3 19.3 66.5 6.0 60.5
Testing set 251 17.3 63.3 9.5 53.8
Validation set 26.1 18.2 63.3 6.1 57.2
Stiffness, E(MPa)
Training set 67.0 51.3 120.0 5.0 115.0
Testing set 78.0 50.4 120.0 5.1 114.9
Validation set 74.4 498 120.0 5.3 114.7
Grout Pressure, GP(kPa)
ﬁ@’\ing set 2428 | 161.7 | 700.0 1.8 698.2
Testing set 2593 150.7 500.0 135 4865
Validation set 266.5 155.3 500.0 30.0 470.0
Measured settlement, S(mm)
Training set 16.7 22.2 112.9 0.2 112.7
Testing set 15.4 21.5 94.4 0.5 93.9
Validation set 16.1 19.3 79.9 0.8 79.1
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Table 6.18: Null hypothesis tests for data subsets obtained using SOM 8x8 map size

Variable Lower Upper Lower Upper
and t-value critical critical t-test F-value | critical critical F-test
data sets value value value value
Testing 0.3 -2.0 2.0 Accept 1.5 0.6 1.8 Accept
Validation 0.5 -2.0 2.0 Accept 1.3 0.5 2.0 Accept
Testing 0.3 2.0 2.0 Accept 0.9 0.6 1.8 Accept
Validation -0.2 -2.0 2.0 Accept 1.0 0.5 2.0 Accept
Testing 0.2 -2.0 2.0 Accept ) 0.6 1.8 Accept
Validation] -0.3 -2.0 2.0 Accept 1.2 0.5 2.0 Accept
Testing 0.0 -2.0 2.0 Accept 1.2 0.6 1.8 Accept
Validation -0.3 -2.0 2.0 Accept 1.0 0.5 2.0 Accept
" Testing | -1.0 -2.0 2.0 Accept 1.1 0.6 18 Accept
Validation -0.6 -2.0 2.0 Accept 1.0 0.5 2.0 Accept
" Testing | 1.1 5.0 50 | Accept | 12 06 T8 | Acoept
Validation 0.8 -2.0 2.0 Accept 1.1 0.5 2.0 Accept
" Testing | 1.1 2.0 20 | Accept | 1.0 06 18 | Accept
Validation -0.7 -2.0 2.0 Accept 1.1 0.5 2.0 Accept
Testing -0.5 -2.0 2.0 Accept 1.2 0.6 1.8 Accept
Validation -0.7 -2.0 2.0 Accept 1:1 0.5 2.0 Accept
Testing 0.3 -2.0 2.0 Accept 1.1 0.6 1.8 Accept
Validation 0.1 -2.0 2.0 Accept 1.3 0.5 2.0 Accept
Map size 10x10

Since its size is the largest, this map has the most clusters of data. Therefore, more
data can be included in the testing set. The numbers of patterns for training, testing
and validation sets are 91, 46 and 24. Table 6.19 shows the statistical properties of
the three subsets while its consistency is verified from the t- and F-tests results

(Table 6.20).
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Table 6.19: Input and output statistics obtained usin SOM for 10x10 map size

Cover, H(m)

Training set 17.1 4.3 8.5 30.0 21.5
[Testing set 17.7 4.2 11.0 29.0 18.0
Validation set 18.3 4.3 11.2 29.0 17.8
Advance I-Rate, Aﬁ(mm/min)

Training set 31.0 10.6 9.5 52.1 42.7
Testing set 29.1 11.8 10.5 51.0 40.5
Validation set 30.2 10.2 10.4 47.5 37.1
Earth Pressure, EP(kPa)

Training set 199.2 83.2 11.0 370.0 359.0
Testing set 191.8 77.2 52.0 347.0 295.0
Validation set 206.0 80.5 70.0 350.0 280.0
SPT1, N

Training set 24.5 27.2 0.7 80.3 79.7
Testing set 27.8 27.8 0.8 80.3 795
Validation set 30.2 31.0 2.7 80.3 77.6
SPT2,N

Training set 52.4 41.7 0.0 100.0 100.0
Testing set 59.0 42.8 0.0 100.0 100.0
[Validation set 56.8 41.8 0.0 100.0 100.0
Moisture content, MC(%)

@ning set 29.0 19.0 6.0 66.5 60.5
Testing set 26.6 18.3 7.8 63.3 55.5
Validation set 25,5 18.6 6.1 63.3 57.2
Stiffness, E(MPa)

Training set 68.5 50.4 5.0 120.0 115.0
Testing set 75.0 52.0 5.0 120.0 115.0
Validation set 71.1 51.3 52 120.0 114.8
Groﬁressure, GP(kPa)

Training set 247.9 162.2 1.8 700.0 698.2
Testing set 248.7 151.6 13.5 500.0 486.5
Validation set 264.2 156.7 31.2 500.0 468.8
Measured settlement, S(mm)

Training set 16.7 22.3 0.2 112.9 112.7
Testing set 16.4 21.4 0.5 94.4 93.9
Validation set 14.3 18.6 0.8 79.9 79.1
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Table 6.20: Null hypothesis tests for data subsets obtained using SOM 10x10 map size

Variable Lower Upper Lower Upper
and t-value critical critical t-test F-value critical critical F-test

data sets value value value value
Testing -0.7 -2.0 2.0 Accept 1.0 0.6 1.7 Accept
Validation -1.2 -2.0 2.0 Accept 1.0 0.5 2.1 Accept
Testing 0.9 -2.0 2.0 Accept 0.8 0.6 1.7 Accept
Validation 0.3 -2.0 2.0 Accept 1.1 0.5 2.1 Accept
Testing 0.5 -2.0 2.0 Accept 1.2 0.6 1.7 Accept
Validation -0.4 -2.0 2.0 Accept 1.1 0.5 2.1 Accept
Testing 0.7 -2.0 2.0 Accept 1.0 0.6 17 Accept
Validation -0.9 -2.0 2.0 Accept 0.8 0.5 2.1 Accept
Testing -0.9 -2.0 2.0 Accept 0.9 0.6 17 Accept
Validation -0.4 -2.0 2.0 Accept 1.0 0.5 2.1 Accept
Testing 0.7 -2.0 2.0 Accept 1.1 0.6 1.7 Accept
Validation 0.8 -2.0 2.0 Accept 1.0 0.5 2.1 Accept
Testing -0.7 -2.0 2.0 Accept 0.9 0.6 1.7 Accept
Validation -0.2 -2.0 2.0 Accept 1.0 0.5 2 Accept
Testing 0.0 -2.0 2.0 Accept 1.1 0.6 1.7 Accept

Validation -0.4 -2.0 2.0 Accept 1.1 0.5 2.1 Accept

Testing | 0.1 2.0 20 | Accept | 1.1 0.6 7.7 | Accept
Validation 0.5 -2.0 2.0 Accept 1.4 0.5 2.1 Accept

e Approach 3: Fuzzy Clustering

In normal partitioning methods, each object of the data set is assigned to one and
only one cluster. As a result, each object has a membership of 1 in some cluster and
a zero membership in all other clusters. Frequently, we have intermediate data
objects which lie approximately the same distance from some clusters. In this case,
it would be very difficult to decide in which cluster to put the objects. Normally, the
partitioning method would assign the objects arbitrarily to one of the clusters from
which the objects have the same distance. A fuzzy clustering technique is much
better equipped to handle such situations. This method assigns membership
coefficients (range from O to 1) to all data objects which indicate the degree of
belonging of each object to all the clusters. For instance, if object 1 belongs for 87%

to cluster 1, for 6% to cluster 2, and for 7% to cluster 3, then object 1 belong mainly
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to the first cluster. In the case of intermediate objects, the membership coefficients
will be approximately equal with respect to several clusters. The object is then

grouped to the cluster to which it has the largest membership coefficient.

The fuzzy clustering algorithm attempts to minimize the following objective

function (Kaufman and Rousseeuw 1990):

2 2
Czi Z:Fluivu J'vdij

6.4)
4 2
v=1 22 j=1 u v
where :
k  =number of clusters;
d; = given distance between data point i and j
u;y = unknown membership of object i to cluster v
The membership functions are subject to the constraints:
uy>0fori=1,....n;v=1,...k (6.5)
> wy=1fori=1,..n (6.6)

The constraints imply that memberships cannot be negative and that each object has

a constant total membership of 1, distributed over the different clusters.

The procedure for fuzzy clustering adopted in this research is as follows:

1. The optimum number of clusters is determined by using subtractive
clustering method provided in MatLab’s Fuzzy Logic ToolBox.

2. For the optimum number of clusters, the data records included in each
cluster are ranked according to their membership values in incremental
intervals of 0.1 between 0.0 and 1.0 (i.e. 0.0-0.1, 0.1-0.2,..., 0.9-1.0).

3. For each cluster and membership interval (e.g. cluster 1 and membership
interval 0.0-0.1), two samples are chosen, one for the testing set and one for
the validation set, and the remaining data samples are chosen for the training

set. In the case where two records are obtained, one record is chosen for
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training and the other is chosen for testing. If only one record is obtained,

this record is included in the training set.

From step no. 1, the optimum number of clusters was found to be 8. The
membership values obtained for all data records are shown in Appendix C. From
step no. 3, 98 patterns are used for training set, 38 patterns for testing set and 25
patterns for validation set. Table 6.22 shows the statistics of the data in the training,
testing and validation sets obtained using fuzzy clustering. The results of t- and F-

tests verify the statistical consistency of the three subsets as shown in Table 6.23.
6.7 Results and Discussion

Performance of ANN model NN6 using data subsets obtained from different
approaches of data division is shown in Table 6.21. It can be seen that the results
obtained for the statistically consistent data division method are better than the
results obtained for SOM and fuzzy clustering data division methods. The testing
set has a high correlation coefficient coupled with low error rate. In addition, the
generalization ability of the model is satisfactory, as shown by high correlation
coefficient and low error rate of the validation set. Consequently, ANN model NN6
developed using statistically consistent data division will be used for the subsequent

analysis and will be referred to as the ANN model.

Table 6.21: Performance of ANN models using data subsets obtained for different

proaches of data division
T

Training

Correlation coefficient, r 0.91 0.96 0.97 0.85 0.84
Error rate (mm) 5.37 4.02 3.46 6.99 6.61
Testing

Correlation coefficient, r 0.95 0.89 0.81 0.86 0.90
Error rate (mm) 4.38 6.57 7.48 7.83 5.48
Validation

Correlation coefficient, r 0.92 0.70 0.89 0.92 0.94
[Error rate (mm) 477 10.94 8.73 6.22 4.75
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Table 6.22: Input and output statistics for data sets obtained using fuzzy clustering

Cover, H(m)

Training set 17.4 4.3 8.5 30.0 21.5
Testing set 17.8 4.4 11.2 20.0 17.8
Validation set 17.0 4.0 11.0 25.0 14.0
Advance Rate, Aﬁ(mm/min)

Training set 30.2 11.0 9.5 521 42.7
Testing set 29.6 10.6 9.8 50.0 40.2
Validation set 32.0 11.0 11.0 51.0 40.0
Earth I-’ressure, E’W’a)

Training set 202.7 86.8 11.0 370.0 359.0
Testing set 190.8 67.4 52.0 350.0 298.0
Validation set 190.8 76.0 70.0 350.0 280.0
SPT1, N

Training set 25.8 27.9 0.7 80.3 79.7
Testing set 30.7 29.7 0.8 761 | 753
Validation set 215 24.5 1.4 80.3 79.0
SPT 2, N

Training set 53.7 42.0 0.0 100.0 100.0
Testing set 57.2 43.5 0.0 100.0 100.0
[Validation set 56.3 40.5 0.0 700.0 100.0
Moisture content, MC(%)

Training set 28.0 18.7 6.0 66.5 60.5
Testing set 27.9 19.3 6.8 66.5 59.7
Validation set 27.0 18.3 7.8 63.3 55.5
Stiffness, E(M'ﬁ;)

ITraining set 69.4 50.1 5.0 120.0 115.0
Testing set 721 535 5.1 120.0 114.9
Validation set 73.5 51.1 5.0 120.0 115.0
Grout Pressure, GP(kPa)

Training set 258.2 158.8 1.8 700.0 698.2
Testing set 226.9 159.0 30.0 500.0 470.0
Validation set 255.9 153.5 32.5 400.0 367.5
Measured settlement, S(mm)

Training set 16.3 22.6 0.2 112.9 112.7
Testing set 16.2 19.1 0.3 79.9 79.6
Validation set 16.2 20.9 0.6 94.4 93.8
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Table 6.23: Null hypothesis tests for data subsets obtained using fuzzy clustering

Variable Lower Upper Lower Upper
and t-value critical critical t-test F-value critical critical F-test

data sets value value value value
Testing -0.4 2.0 2.0 Accept 1.0 0.6 1.8 Accept
Validation 0.5 -2.0 2.0 Accept 1.2 0.5 2.0 Accept
Testing 0.3 -2.0 2.0 Accept 1.1 0.6 1.8 Accept

Validation -0.7 -2.0 2.0 Accept 1.0 0.5 2.0 Accept

Testing T o8 -2.0 2.0 Accept 1.7 0.6 1.8 Accept

Validation 0.6 2.0 20 Accept 1.3 0.5 2.0 Accept

Testing | -0.9 2.0 20 | Accept | 09 06 18 | Accept

Validation 0.7 -2.0 2.0 Accept 1.3 0.5 2.0 Accept

Tsmg [ 04 2.0 2.0 Accept 0.9 0.6 1.8 Accept

Validation -0.3 -2.0 2.0 Accept 1.1 0.5 2.0 Accept

Testing 0.0 -2.0 2.0 Accept 0.9 0.6 1.8 Accept

Validation 0.2 -2.0 2.0 Accept 1.0 0.5 2.0 Accept

esting | -0.3 2.0 20 | Accept | 09 0.6 T8 | Accept

Validation -0.4 -2.0 2.0 Accept 1.0 0.5 2.0 Accept

Tting 1.0 -2.0 2.0 Accept 1.0 0.6 1.8 Accept

Validation 0.1 -2.0 2.0 Accept 1.1 0.5 2.0 Accept

Testing | 0.0 2.0 2.0 Accept 14 06 1.8 Accept

Validation 0.0 -2.0 2.0 Accept 1.2 0.5 2.0 Accept

6.8 Sensitivity Analysis of the ANN Model Inputs

The purpose of sensitivity analysis is to identify which of the input variables have
the most significant impact on settlement predictions. The relative importance of the
input variables is obtained from the connection weights of the trained network using
a simple and innovative technique proposed by Garson (1991). The optimum ANN
model presented in the first year report of this project was used to illustrate the
technique. The optimum ANN model had four input nodes, six hidden nodes and

one output node with connection weights as shown in Table 6.24.
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Table 6.24: Connection weights of a network with four inputs and six hidden nodes

srrenmionShapter o Predictio

DL%’;J;, ap

idden 1

-0.622740

0.382930

0.416470

-0.345010

-1.094900

Hidden 2

-0.333050

-0.157240

-3.320500

1.535800

2.282600

Hidden 3

1.102200

-0.731470

-0.292180

-0.105380

1.577700

Hidden 4

0.632980

0.275680

-1.634400

0.269070

-3.362100

Hidden 5

-1.294700

0.681890

0.130640

-1.014300

~-1.399800

Hidden 6

0.918280

0.674620

0.582060

0.227410

-0.494610

The computational process proposed by Garson (1991) is as follows:

1. For each hidden node i, multiply the absolute value of the hidden-output
layer connection weight by the absolute value of the hidden-input layer
connection weight of each input variable j to obtain the products Py (j
represents the column number of the weights mentioned above). As an
example: Py = 0.622740 x 1.094900 = 0.681838. The results are tabulated
in Table 6.25.

Table 6.25: Products P;

Hidden 1

0.681838

0.419270

0.455993

0.377751

Hidden 2

0.760220

0.358916

7.579373

3.505617

Hidden 3

1.738941

1.154040

0.460972

0.166258

Hidden 4
Hidden 5
Hidden 6

2.128142
1.812321
0.454190

0.904640
1.419817
0.112479

0.926864
0.954510
0.333674

5.495016
0.182870
0.287893

2. For each hidden node, divide P;; by the sum of all input variables to obtain Qj;
(Table 6.26). As an example :
Q11 =0.681838 /(0.681838+0.419270+0.0.455993+0.377751) = 0.352398

Table 6.26: Products Q;

Hidden 1

[ 0.352308

0.216694

0.235673

0.195235

Hidden 2

0.062292

0.029409

0.621050

0.287249

Hidden 3

0.493988

0.327833

0.130950

0.047230

Hidden 4

0.225089

0.098032

0.581196

0.095682

Hidden 5

0.414765

0.218447

0.041851

0.324937

Hidden 6

0.382239

0.280814

0.242286

0.094661
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3. For each input node, sum Qij to obtain Sj (Table 6.27). As an example:
$1=0.352398+0.062292+0.493988+0.225089+0.414765+0.382239=1.93077

Table 6.27: Products Sj

1.930771

Sum 1.17123 | 1.853007 | 1.044993

4. Divide Sj by the sum for all input variables to get the relative importance of
all output weights attributed to the given input variable (Table 6.28). As an
example, the relative importance for input node 1 is equal to

(1.930771x100)/6 =32.2 %

Table 6.28: Relative importance (%)

By using Garson method above, the relative importance of input parameters for the
thirty two networks analyzed in section 6.3 are given in Table 6.29. The most
important input for each network is indicated by the shaded box. It is observed that
every network assigned relatively different relative importance with respect to an
input parameter. What could be an important input for a particular network might be
less important for other networks. Table 6.30 shows the relative importance of input
variables for NN1, NN6, NN7, NN16, and NN26. The shaded box indicates the
most important input for the network while the yellow box denotes the least
important input. From the analysis in section 6.3, the last four networks are
considered optimum out of the thirty two networks while NN1 is the network using
the eleven parameters as input. NN1 put the highest importance on bulk density,
whereas the most important input for NN6, NN7, NN16 and NN26 are earth
pressure, advance rate, stiffness, and moisture content. Advance rate, which is an
input of highest importance for NN7, is the least important for NN6. Similarly,
stiffness is the least important for NN7, whereas it is the most important input for
NN16. Overall, moisture content is considered very essential as it displays

relatively high importance whenever it is used as input of the network.
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Table 6.29: Relative 1mportance (%) of inputs for 32 networks in Section 6.3

Moo T G Relatlvelmportance

Model | input | R -

| units E SPT1 | SPT2

W1 10.87 8.81

M2 | 10 8.71 10.45

N3 |9 11.51 14.16

N4 | 9 6.59 11.21

M5 | 8 9.56 11.03

NG | 8 1023 [ 10.13 15.54 13.03 13.20

W7 | 8 11.20 12.11 10.23 10.07

N | 8 14.08 9.92 13.55

Mg | 7 12.26 13.68

Wi | 7 13.57 13.88 17.38

Wi 7 14.48 13.18 11.81

W2 | 7 17.45 12.95 9.38

W3 | 6 17.38 11.94

W4 | 6 18.53 18.60 [ 10.61 14.18

W5 | 6 13.69 : : 20.99 11.08
M6 | 6 15.22 20.11 - 8.91
MW7 | 6 16.10 19.71 10.62 11.00
A8 | 6 14.10 18.37 16.68 12.75

W9 | 5 15.50 18.06 22.27

W | 5 | 1687 677 | 19.44 .

WA 16.62 16.91 2113 | 17.55
1W2 | 5 1509 | 2 21.65 20.78
LZRE 18.04 19.00 22.69 15.61

N4 | 5 20.79 | 20.75

W5 | 4 12.54 20.04 }

15 | 4 26.37 20.91 21.93
W7l o4 27.56 18.42 22.75
1 1473 | 2273

19§ 4 | 2033 1863 [ 16.25
I | 3 25.90 31.98
o | 3 3.13
S@ 3 269 | .78
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Table 6.29: Relative importance (%) of inputs for 32 networks in Section 6.3

| N()Of . o =
Modet - inp,ut«:} TR e e o

| units | Cover | Adv.Rt. GWL
W | 11| 726 [ 891 6.97
N2 | 10 | 747 1063 | 9.84
W3 | 9 [ 1103 | 1143 9.79
We | 9 [ 628 | 1004 15 10.83
N5 | 8 1431 13.81
N6 | 8 | 1220 | 994 1303 | 13.20
W | 8 [ 1345 [ HB9E 1023 | 10.07
We | 8 | 1495 | 10.90 992 | 1355
W | 7 12.75 13.68
Wo | 7 | 1141 1388 | 17.38
Wi | 7 1318 | 11.81
W2 | 7 12.95 9.38
Wis | 6 11.94
Wie | 6 | 1853 : : 14.18
W5 | 6 13.69 | 2041 11.04 2099 | 11.08
Wis | 6 15.02 19.24 2011 | 1478
Wi7 | 6 | 16.10 %5 1971 | 1600 | 1062
Wig | 6 | 14.10 18.37 | 1668 12.75
Wis | 5 1550 | 18.06 2227 | 1958 =
W | 5 | 1697 16.77 | 19.44 23.02
et | 5 1662 | 2719 16.91 2113 | 17.55
W2 | 5 16.82 1509 | 251 21.65 20.78
W3 | 5 =5k6 1804 | 19.00 22.69 15.61
Wet | 5 1653 | 2380 2079 | 2075
W5 | 4 2020 | 1254 29.04
Wes | 4 | 2637 20,91 21.93
W7 | 4 27.56 18.42 22.75
Wes | 4 3164 | 3090 | 1473 | 273
W | 4 | 29.33 1863 | 16.25
W0 | 3 | 590 31.98
| 3 27.34 3313 |
W2 | 3 | 3654 2569 | 3578
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6.9 Empirical method for settlement calculation

In this section, the empirical method described in Chapter 4 is used to obtain the
predicted settlements for the same validation set used in ANN method. Since all the
level instruments used in this research were positioned right above the tunnels, the
maximum settlement over crown (Wp,y) calculated from empirical method, will

serve as estimated settlement value.

The process to obtain the maximum ground surface settlements (Wpax) above each

tunnel is as follows (Gunn 1992):

1. The figure for volume loss is estimated and in this case it is assumed to be 3 %.
This value is selected since 93 % of the sections along the North East Line
tunnels show a volume loss of 2 % or less (Shirlaw et al. 2001). In contract
C825, settlements predictions have been carried out based on equivalent face
loss between 0.5 to 2 % (Osborne et al. 2004); while field observations
indicated volume loss between 2-2.5 % for contract C823. Hence, the 3%
volume loss will be on the conservative side with respect to the three contracts.

2. Point of inflection i is estimated from Equation 4.7 in Chapter 4 using the K
and n values recommended by Attewell (1981).

3. Equation 4.6 in Chapter 4 is used to obtain maximum surface settlement
(Winax).

Details of the above calculations are shown in Appendix D.

Table 6.31 presents the maximum surface settlements of the validation set with

their corresponding K, n and 7 values.
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Table 6.31: Maximum surface settlement (W ,,,), K, n and i values obtained using empirical

method
3023 0.63 0.97 17.29 20.29 6.16 1.95
2315 0.65 0.97 19.35 22.35 6.99 1.72
2111 0.80 0.08 17.70 20.70 8.09 1.48
3033 0.63 0.97 17.22 20.02 6.14 1.95
2101 0.90 0.99 14.93 17.93 8.01 7.50
2291 0.63 0.97 17.85 20.85 6.33 7.90
2071 0.77 0.98 14.37 17.37 6.54 1.83
2281 0.63 0.97 17.74 20.74 6.29 1.01
2087 0.63 0.97 17.81 20.81 6.32 1.90
3025 0.63 0.97 15.17 18.17 5.54 2.17
2052 0.63 0.97 13.03 16.03 4.90 2.45
8077R 0.85 0.99 12.00 15.00 6.27 7.01
8083R 0.82 0.99 12.00 15.00 6.03 1.99
8086 0.87 0.99 11.00 14.00 6.00 2.00
8025 0.87 0.99 20.00 23.00 9.87 1.22
8031 0.82 0.99 21.00 24.00 9.69 1.24
8015 0.88 0.99 21.00 24.00 10.38 7.16
9804 0.76 0.98 25.00 28.00 10.37 1.16
5069 0.91 0.46 29.00 32.00 5.86 2.05
5078 0.91 0.46 28.00 31.00 5.81 2.06
1115 0.83 0.99 11.20 1420 | 5.81 2.07
7103/50 0.91 0.99 16.40 19.40 8.75 1.37
1103/31 0.89 0.99 17.20 20.20 8.87 1.35
1101/06 0.93 0.99 16.00 19.00 8.74 1.37
1094702 0.90 0.99 12.80 15.80 7.02 1.71
1099 0.87 0.99 15.20 18.20 7.86 1.53
1100 0.91 0.99 15.60 18.60 8.44 1.42
1101/08 0.93 0.99 16.00 19.00 8.74 T.37
7108/01 0.89 0.99 14.80 17.80 7.84 153

6.10 Comparison of ANN Model with Empirical method

Results of the validation set obtained using the optimum ANN model NN6 and the
empirical method are compared in Figure 6.6. It is observed that ANN model
predicts closely the measured settlements, whereas the empirical method under
predicts the settlements for all the case record in validation set. Figure 6.7 shows the
predicted results from ANN model against the measured settlements for all data
obtained from contract C705. The figure shows that there is good agreement
between the measured and the predicted settlemnts from ANN approach. Figures
6.8 to 6.10 show the separate comparisons of measured and predicted settlements

obtained using optimum ANN model (a) and empirical method (b) for the training,
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testing and validation sets. As shown in the figures, the superiority of ANN method
over empirical one is clearly demonstrated as well for the data in the training and

testing sets.

Validation Set

100
90
80
70
60
50
40
30
20
10

Record no.

L—O— Measured Settlement —#— Predicted Settlement(ANN Model) ~—#&— Predicted Settiement (Empirical methodﬂ

Figure 6.6: Comparison of measured settlements and the predicted settlements obtained
using ANN and Empirical method

a0

80 —— Measured

o & ¥ ANN Predicted (Training)
£ X ANN Predicted (Testing)
£ 601 X ANN Predicted (Validation)
5
5 50 1
=]
[
@ 40

600 800 1000 1200 1400
Chainage (m)

Figure 6.7: Comparison of measured and predicted settlements obtained using ANN for all
data from contract C705
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Figure 6.8: Comparison of measured and predicted maximum settlements for training set
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Figure 6.9: Comparison of measured and predicted maximum settlements for testing set
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Figure 6.10: Comparison of measured and predicted maximum settlements for

validation set
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6.11 Alternative ANN model for initial prediction of maximum settlement

From section 6.3 onwards, neural network model NN6 has been employed to
predict the surface settlements induced by tunneling and the results mapped the
field settlements quiet accurately. However, this network model might not be
effective for quick initial prediction of surface settlements as it involves many input
parameters i.e. 8 inputs. Furthermore, the input parameters such as earth pressure,
advance rate, and grout pressure may not be available at the beginning of
construction period. Hence, only soil related input parameters can be used to
calculate the initial settlement predictions. In such circumstances, alternative
network NN29 can be utilized as it requires only four inputs which are readily
available from the site, namely cover (H), SPT1, SPT2, and moisture content (MC).
Table 6.5 indicated that model NN29 generate results with high correlation
coefficients for training, testing, and validation sets and relatively low error rates for
testing and validation sets. Therefore, this model is acceptable for the initial
predictions of surface settlement. The comparisons of measured and predicted
settlements obtained using NN29 for training, testing and validation set are shown
in Figures 6.11 to 6.13. The final weights and bias terms of model NN29 are
presented in Table 6.32 and Table 6.33 respectively.

Table 6.32:

Hidden 1| -1.552

3.268
Hidden 2 | -0.943 0.785
Hidden 3] -0.162 -1.124
Hidden 4| 0.473 0.738

Hidden5{ -0.110 -0.037 -1.798 2.192 -1.251
Hidden 6§ -1.030 1.458 -0.141 -1.401 -2.263
Hidden 7| -0.030 2.396 0.701 4.206 -3.496
Hidden 8| 1.285 -0.036 -0.286 -0.138 1.108
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Table

Hidden 1
Hidden 2 -1.038

Hidden 3 -0.436
Hidden 4 0.568
Hidden 5 -1.002
Hidden 6 1.128
Hidden 7 1.363
Hidden 8 -0.992
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Figure 6.11: Comparison of measured and predicted maximum settlements for training set
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Figure 6.12: Comparison of measured and predicted maximum settlements for testing set
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Figure 6.13: Comparison of measured and predicted maximum settlements for validation set
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Chapter 7

Prediction of Maximum Surface Settlement (S,,.;) and Trough Width
(i) by Multi Layer Perceptron

As explained in Chapter 4, settlement trough is characterized by two important
parameters: the maximum surface settlement at the point above the tunnel centerline
(Smax) and the width parameter (i) which is defined as the distance from the tunnel
centerline to the inflection point of the trough. This chapter presents the development
of neural network models to estimate both the maximum surface settlement and width
parameter (i). In Chapter 6, the data set used to develop the networks is derived from
the field reports database. However, the field reports did not provide information of
volume loss which is an influential parameter for the prediction of both maximum
surface settlement (Smax) and the trough width (i). Hence, for analysis in this chapter,
the finite element software PLAXIS is utilized to generate the relevant input data for

the training of the neural network model.

¢ Overview of PLAXIS

PLAXIS is a finite element program for geotechnical applications in which soil models
are used to simulate the soil behavior. Its development started in 1987 at the Technical
University of Delft as an initiative of the Dutch Department of Public Works and Water
Management. Initially, it was developed to create an easy-to-use 2D finite element code
for the analysis of river embankments on the soft soils of the lowlands of Holland. In
later years, PLAXIS was extended to cover most other areas of geotechnical
engineering. PLAXIS is used specifically for the analysis of deformation and stability
in geotechnical engineering projects. It finds the applications in several studies such as
submerged construction of an excavation, undrained river embankment, dry excavation
using a tie back wall, settlement of circular footing on sand, and settlements due to

tunnel construction. For the last application, PLAXIS requires a number of input
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parameters which varies according to material model and material behavior. For the
analysis of settlement, Mohr-Coulomb model is used to simulate the behavior of soil.
This model involves five parameters, namely Young’s modulus, E, Poisson’s ratio, v,
cohesion, c, the friction angle, ¢, and the dilatancy angle, y. PLAXIS provides a choice
of three types of behavior for each soil model which incorporate the effect of pore
water in the soil response: drained, undrained, and non-porous. Since we are interested
in the short term settlements (settlements induced immediately after the passing of
TBM machine), it is appropriate to set the material behavior to undrained. However,
this setting requires that the effective model parameters should be entered, i.e. E’ etc
and not E, etc. However, the field data, which is used to validate the neural network
model, mostly provide the undrained parameters. Hence it is decided to use the Non-
porous option instead to simulate the undrained behavior. In this setting, we can
directly enter the undrained elastic properties E = E, and v = v, = 0.495 in combination
with the undrained strength properties ¢ = ¢, and ¢ = ¢, = 0°. In this case a total stress

analysis is performed and all pore pressures are set to zero.

There are two methods for numerical simulation using Plaxis namely method by
relaxation factor and method by volume loss. For the simulation in this project, the
method by volume loss has been adopted for the calculation of surface settlement
trough. The input parameters used for PLAXIS in this project are presented in Table
1.1. For each parameter, several values are selected and they are used to generate the

combinations comprising the six input parameters. The values are listed in Table 7.2.

Table 7.1: Input Parameters

e =

1 ]| Coefficient of lateral earth pressure Ko

2 Bulk unit weight Y kN/m®
3 Cohesion c kN/m?
4 Ratio of stiffness over cohesion E/c

5 Ratio of depth over diameter H/D

6 Volume Loss VL %
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Table 7.2: Selected values for each input parameter

| IO

1 Ko 0.5,1,2

2 y 15,19,22

3 c 15,50,100,250,500
4 Elc 100,300,500

5 H/D 05,135

6 VL 0.1,1,3,10

The output of PLAXIS generation is the surface settlement curve from which the
magnitude of horizontal and vertical settlements at each point on the surface can be
obtained. However, the trough width parameter (i) of the settlement curve is not
provided in the output report. In this case, Least-Square regression analysis was
performed on the settlements measurements in order to obtain the width parameter (i)
assuming Gauss settlement distribution. The tunnel diameter considered in the analysis
is 6.0 m. The soil layer surrounding the tunnel is considered to have uniform properties
described by the four input parameters (Ko, v, ¢, £/c). From the initial mesh analysis
carried out using the sample from field data, it is concluded that the adopted mesh in
the numerical simulation is considered reasonable for shallow tunnels. The depth of 1D
from tunnel invert is considered appropriate based on the result of sensitivity analysis

carried out with different bottom boundary conditions. Figure 7.1 shows the geometry
of the tunnel used in PLAXIS.

The total combinations which can be generated from parameter values in Table 7.2
amount to 2161. However, a large number of combinations can not be used since they
produced either a collapsed soil body or bad surface settlement graph. This reduces the
number of input combinations further to 1836. In the first analysis, network models are
developed using three data sets i.e. training, testing and validation. In the second
analysis, the input data is divided into training and testing sets only. The field data set
is used as the validation set to examine the predictive capability of the optimum

networks obtained in the first and second analysis.
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&D

A
v

Tunnel

Soil Layer

Figure 7.1: Geometry of the tunnel with indications of depth (H), diameter (D) and soil layer

7.1 Analysis using three sets of data: Training, Testing, and Validation

The input patterns are divided into three sets: training, testing and validation. 1031
patterns are used for training set, 441 patterns for testing set and 364 patterns for
validation set. The three sets are divided in such a way that they are statistically
consistent and thus represent the same statistical population. In order to achieve this,
several random combinations of the training, testing and validation sets are tested until
three statistically consistent data sets are obtained. The statistical properties of the
training, testing and validation sets are shown in Table 7.3. It can be seen that, for each
input variable, the statistical properties of the three sets are similar to each other. This

is also confirmed by the results of null hypothesis tests in Table 7.4, which show that
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he hypotheses of testing and validation sets for all input parameters passed the t-test
and the F-test.

The neural network tool available in MatLab is employed to develop the neural
aetwork models. Training is carried out using backpropagation algorithm and optimum
yarameters obtained from the analysis in section 6.4. One hidden layer is used for all

the models.

Table 7.3: Input and output statistics for data sets

Ko

Training set 1.1 0.6 0.5 2.0 1.5
Testing set 1.1 0.6 0.5 2.0 1.5
Validation set 1.1 0.6 0.5 2.0 1.5
Bulk Density ~
#raining set 18.6 2.9 15.0 22.0 7.0
Testing set 18.7 2.8 15.0 22.0 7.0
Validation set 18.8 2.9 15.0 22.0 7.0
Cohesion

Training set 202.4 183.2 15.0 500.0 485.0
TestingTset 193.4 172.2 15.0 500.0 485.0
Validation set 185.1 173.8 15.0 500.0 485.0
E/c

Training set 295.3 164.3 100.0 500.0 400.0
[Testing set 298.2 162.4 100.0 500.0 400.0
Validation set 297.3 | 163.6 1000 | 500.0 | 400.0
H/D

Training set 2.5 1.8 0.5 5.0 4.5
Testing set 2.5 1.7 0.5 5.0 4.5
Validation set 2.4 1.8 0.5 5.0 4.5
Volume Loss (%)

Training set 3.4 3.9 0.1 10.0 9.9
Testing set 3.5 4.0 0.1 10.0 9.9
Validation set 3.3 3.8 0.1 10.0 9.9
FMaximum Settlement (mm)

Training set 16.4 27.2 0.3 212.6 212.2
Testing set 17.2 28.4 0.4 175.5 175.1
Validation set 17.6 29.3 0.5 211.0 2105
Inflection point, i (m)

Training set 15.4 7.9 4.6 66.9 62.3
Testing set 15.9 8.1 5.1 62.5 57.4
Validation set 15.3 7.7 5.1 59.6 54.5
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Testing -1.4 -2.0 2.0 Accept 1.0 0.9 1.2 Accept

Validation -1.3 -2.0 2.0 Accept 1.1 0.8 1.2 Accept
Bulk Dens ty

Testing -0.8 -2.0 2.0 Accept 1.0 0.9 1.2 Accept
Validation -1.3 -2.0 2.0 Accept 1.0 0.8 1.2 Accept
Cohesion

Testing 0.9 -2.0 2.0 Accept 1.1 0.9 1.2 Accept
Validation 1.6 -2.0 2.0 Accept 1.1 0.8 1.2 Accept
Elc

Testing -0.3 -2.0 2.0 Accept 1.0 0.9 1.2 Accept
Validation -0.2 -2.0 2.0 Accept 1.0 0.8 1.2 Accept
H/D

Testing 0.1 -2.0 2.0 Accept 1.0 0.9 1.2 Accept
Validation 0.6 -2.0 2.0 Accept 1.0 0.8 1.2 Accept

FVT’Iume Loss (%)

Testing -0.5 -2.0 2.0 Accept 0.9 0.9 1.2 Accept
Validation 0.6 -2.0 2.0 Accept 1.0 0.8 1.2 Accept
Maximum Settlement (mm)

Testing -0.6 -2.0 2.0 Accept 0.9 0.9 1.2 Accept
Validation -0.7 -2.0 2.0 Accept 0.9 0.8 1.2 Accept
Inflection point, | (m)

Testing -1.1 -2.0 2.0 Accept 0.9 0.9 1.2 Accept
Validation 0.2 -2.0 2.0 Accept 1.1 0.8 1.2 Accept

7.1.1. Networks with two output neurons

In this analysis, a neural network model with two output neurouns is trained to yield the
predictions of maximum surface settlement (Spax) and trough width (i) simultaneously.
Network of different hidden neurons are tested and the results in term of correlations
coefficients and error rate are displayed in Table 7.5 and Table 7.6. Neural network
model with 12 hidden neurons is considered optimal as it exhibits lowest error rate

coupled with high correlation coefficient for both testing and validation sets.
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Table 7.5: Performance of ANN model with two output neurons for S,,,x prediction

. ~ No.of
Model " ‘Hldden
{ Neurodes

—— >

Table 7.6: Performance of ANN model with two output neurons for (i) prediction

No.of |

Hidden ’ Correlation Qgéfﬁc1¢nt | ; Error Ratg (upscaled)

- | Neurodes | Training

2 0.92 0.87 0.91 1.99 2.26 2.04

4 0.94 0.88 0.93 1.63 2.13 1.92
NN3 6 0.96 0.91 0.94 1.36 1.75 1.74
8 0.96 0.90 0.92 1.35 1.86 1.94
10 0.96 0.88 0.93 1.48 2.11 2.04
12 0.97 0.92 0.94 1.33 1.71 1.73
7] —— e

16 0.97 0.88 0.94 120 | 208 174

o Comparison of training algorithms

In this section, faster training algorithms discussed in Chapter 2 are used to develop the
network. The networks are trained using the same data sets as in the gradient descent
method. The results of all the training algorithms including gradient descent method are
tabulated in Table 7.7 and Table 7.8. Twelve neurons are used in the hidden layer as it
is the optimum number in the case of the gradient descent method. The network has

two neurons in the output layer meant for the simultaneous prediction of maximum
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settlement (Sp,x) and inflection point (i). Table 7.7 and Table 7.8 show that the results
of all faster training algorithms are better than the result of gradient descent method.
The trained network produces more accurate predictions as indicated by higher
correlation coefficient and lower error rate for the training, testing, and validation sets.
This applies for both predictions of maximum settlement (Sy.x) and inflection point (i).
Among the improved networks, the network trained using the One-Step Secant method
(OSS) is considered to be optimum as its overall result is better than those of other
networks. Figures 7.2 to 7.7 present the comparisons of measured against predicted
Smax and (i) obtained using the OSS network with respect to the training, testing and

validation set.

Table 7.7: Performance of ANN model using various training algorithms for Spmax prediction

B T No.of — T

Algorithm] ™ L

: Neurodes | Traini el

I LM 14 0.96
GDM 0.96 0.93 0.93 4.50 5.76 5.27
BFG 0.99 0.96 0.96 2.94 4.18 4.33
RP 0.98 0.95 0.94 3.65 5.40 5.18
SCG 0.99 0.98 0.96 2.79 3.39 4.16
CGB 0.99 0.96 0.97 2.75 4.12 4.04
CGF 0.98 0.96 0.96 2.74 3.91 3.70
CGP 0.99 0.97 0.98 2.36 3.43 2.94
0SS
GDX
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Table 7.8: Performance of ANN model using various training algorithms for (i) prediction

| No.of
o .Hidden 1

0.99 0.97 1.04 0.94
0.99 0.95 0.98 0.83 1.26 1.06
0.99 0.95 0.98 0.87 1.31 1.06
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Figure 7.2: Predicted vs. FEM maximuom settlements for training set
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Figure 7.3: Predicted vs. FEM maximum settlements for testing set
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Figure 7.4: Predicted vs. FEM maximum settlements for validation set

107



ATTENTION: Th

Chapter 7 Prediction of Maximum Surface Settlement (Sy,,) and Trough Width (i) by MLP

Predicted trough width (m)

70 T

R =0.987

60

40+

30+

20

Q

20 30 40
FEM trough width (m)

50

60

70

G Data Points

—— Predicted = FEM

Figure 7.5: Predicted vs. FEM trough width for training set
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Figure 7.7: Predicted vs. FEM trough width for validation set

7.1.2. Networks with one output neuron

Two separate networks are developed whereby one network is used to predict S,x and
the other to predict trough width (i). The results for the two networks tested with
different hidden neurons are shown in Table 7.9 and 7.10. Network used for Smax
prediction is labeled as ANNS followed by the hidden neuron number while that used
for trough width (i) prediction is labeled as ANNi. Networks with 12 hidden neurons
give optimal predictions of Syax as indicated by the maximum correlation coefficients
and minimum error rates for both testing and validation sets. Network for (i) prediction
is optimum when it used 6 neurons in the hidden layer. It is also observed that the two
separate networks perform better than the single network used to predict Syax and (i)
simultaneously. This is pointed out by higher correlation coefficients and lower error

rates when the two separate networks are used. In this case, one network is independent
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of another network. It can freely develop itself to higher degree of accuracy without
having to take into account the conditions of another output. In a single network with
combined Spax and (i) outputs, this is not the case as the training is carried out to

produce a set of weights which will give optimal results for both outputs at once.

Table 7.9: Performance of ANN models for Sy prediction

Table 7.10: Performance of ANN models for trough width (i) prediction

L a dOf Correlation Coefﬁcier@h
Model eden | e

| Neurodes | dati
ANNi 2 1.90
ANNi 4 1.97
ANNi 8 0.97 0.93 0.94 ’ 131 1.73 1.80‘ ‘
ANNi 10 0.96 0.89 0.92 143 1.95 2.02
ANNi 12 0.98 0.94 0.95 1.15 1.59 1.62

¢ Comparison of training algorithms
The two optimum networks for the predictions of Sy and (i) are improved further
using the faster training algorithms. The results of all the training algorithms including

gradient descent method are tabulated in Table 7.11 and Table 7.12. For speed
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comparison, number of cycles required to reach the minimum error for each training
algorithm is listed in the Tables as well. The network trained using the Polak-Ribiére
Conjugate Gradient (CGP) is considered to be optimum for the prediction of Sy, while
network trained using Fletcher-Powell Conjugate Gradient (CGF) is optimal for trough
width (i) prediction. Thus the two optimum networks are labeled as ANNS12CGP and
ANNi6CGF. From the comparison of results, it is shown that the networks
ANNS12CGP and ANNi6CGF performed relatively better than the improved OSS
network used for simultaneous prediction of Sp.x and (i). This is indicated by higher
coefficients of correlation and lower error rates for the training, testing, and validation
sets when the two improved networks are used to predict Sp.x and (i) separately. Hence
these two networks will be used in section 7.3 to provide the predictions of the field
data. From the comparison of speed, it is deduced that training algorithm Levenberg-
Marquardt exhibits the fastest convergence for both predictions of Sy and (i) as
indicated by the lowest number of cycles required to reach minimum error. As
expected, training algorithm Gradient-Descent with Momentum (GDM) requires the
most number of cycles to reach minimum error. The optimum networks, ANNS12CGP
and ANNi6CGF, also display fast convergence for the respective prediction. The
variable learning rate algorithm (GDX) is usually much slower than the other faster
methods as shown in the prediction of Sp,c. However for (i) prediction, it is faster than
training algorithms Resilient Backpropagation (RP) and Scaled Conjugate Gradient
(SCG). Figures 7.8 to 7.10 present the comparison of measured against predicted
maximum settlements of the training, testing and validation set for ANNS12CGP,
while the comparison of measured against predicted trough width (i) for ANNi6CGF

are shown in Figures 7.11 to 7.13 .
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Table 7.11: Performance of ANNS12 model using various training algorithms

S max
| Noof. | Correlatio
Algorithm} Model | T
~ - cycles | Training | Te
LM ANNS12 23 0.98 0.95
GDM 204245 0.97 0.92 0.94 4.21 5.85 5.44
BFG 2800 0.99 0.95 0.96 2.06 3.69 3.35
RP 4172 0.99 0.95 0.93 3.05 5.01 5.65
SCG 6887 0.99 0.96 0.97 1.94 3.69 3.56
CGB 3509 0.99 0.97 0.96 2.06 3.38 4.16
CGF 5627 0.99 0.95
CGP 1279
0SS 2350
GDX 68904 0.98 0.97 0.94 3.26 4.18 5.19

Table 7.12: Performance of ANNi6 model using various training algorithms

Trough width (i)
| Noof |

Algorithm} - Model: |- :

LM ANNi6 34

GDM 89571
BFG 1895
RP 31982
SCG 17402 0.98 0.96 0.98 1.34 1.18
CGB 1869
CGF 2893
CGP 1129
0SS 3713
GDX 15391 0.98 0.97 0.98 1.22 1.18
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Figure 7.8: Predicted vs. FEM maximum settlements for training set (ANNS12CGP)
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Figure 7.9: Predicted vs. FEM maximum settlements for testing set (ANNS12CGP)
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Figure 7.10: Predicted vs. FEM maximum settlements for validation set (ANNS12CGP)
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Figure 7.11: Predicted vs. FEM trough widths for training set (ANNi6CGF)
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Figure 7.12: Predicted vs. FEM trough widths for testing set (ANNi6CGF)
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Figure 7.13: Predicted vs. FEM trough widths for validation set (ANNi6CGF)
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7.2 Analysis using two sets of data: Training and Testing

The input patterns are divided into two sets: training and testing. 1395 patterns are used
for training set and 441 patterns for testing set. The two sets are divided in such a way
-that they are statistically consistent and thus represent the same statistical population.
In order to achieve this, several random combinations of the training and testing sets
are tested until two statistically consistent data sets are obtained. The statistical
properties of the training and testing sets are shown in Table 7.13. It can be seen that,
for each input variable, the statistical properties of training and testing sets are similar
to each other. This is also confirmed by the results of null hypothesis tests in Table
7.14, which show that the hypotheses of testing set for all input parameters passed the
t-test and the F-test.

Table 7.13: Input and output statistics for data sets

Ko

Training set 1.07 0.58 0.50 2.00 1.5
Testing set 1.10 0.60 0.50 2.00 1.5
Bulk Unit Weight (kN\/m?)

Training set 18.64 2.92 15.00 22.00 7.0
Testing set 18.72 2.85 15.00 22.00 7.0
Cohesion (kN/m?)

Training set 197.87 180.87 15.00 500.00 485.0
Testing set 193.37 172.15 15,00 500.00 485.0
E/c

Training set 295.84 164.09 100.00 500.00 400.0
Testing set 298.19 162.36 100.00 500.00 400.0
H/D |

Training set 2.49 1.78 0.50 5.00 4.5
Testing set 2.49 1.75 0.50 5.00 4.5
Volume Loss (%)

Training set 3.36 3.89 0.10 10.00 9.9
Testing set 3.51 4.05 0.10 10.00 9.9
Maximum Settiement (mm)

Training set 16.67 27.77 0.35 212.58 212.2
Testing set 17.23 28.37 0.37 175.50 175.1
Inflection point, i (m)

Training set 15.42 7.84 4.62 66.91 62.3
Testing set 15.94 8.14 5.1 62.55 657.4
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Table 7.14: Null hypothesis tests for testing set

Testing | -1.06 | -1.96 | 196 | Accept | 093 ] 086 | 1.17 | Accept
Bulk Density

[ Testing | 048 ]| -196 | 1.96 ] Accept | 1.06 | 086 | 1.17 ] Accept
Cohesion

Testing | 046 | -196 ]| 196 | Accept | 110 | 086 | 117 | Accept
E/c

[Testing | -026 | -1.96 [ 1.6 [ Accept | 1.02 | 086 | 1.7 | Accept
H/D

[Testing | -0.06 | -1.96 | 1.96 | Accept | 1.04 | 086 | 117 [ Accept
Volume Loss (%)

[Testing | -0.71 ]| -1.96 | 1.96 | Accept | 092 | 086 | 117 | Accept
Maximum Settlement (mm)

Testing | -036 | -196 | 196 | Accept | 096 | 086 | 117 '} Accept
Inflection point, I (m)

Testing | -1.22 | -1.96 | 1.6 | Accept | 093 | 086 ] 117 | Accept

7.2.1. Networks with two output neurons

In this analysis, a neural network model with two output neurons is trained to yield the
predictions of maximum surface settlement (S;,x) and trough width (1) simultaneously.
Network of different hidden neurons are tested and the results in term of correlations
coefficients and error rate are displayed in Tables 7.15 and 7.16. Neural network model
with 12 hidden neurons is considered optimal as it exhibits lowest error rate coupled

with high correlation coefficient for both training and testing sets.
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Table 7.15: Performance of ANN model with two output neurons for S,,x prediction

- No. of i
| Hidden |
; Neurodes

Correlatlon =

Correlatlen
Coefﬁment

¢ Comparison of training algorithms

As in the analysis of 3 data sets, the above optimum networks for the simultaneous
predictions of Sp,x and (i) are improved further using the faster training algorithms.
The results of all the algorithms training including gradient descent method are
tabulated in Tables 7.17 and 7.18. The network trained using the BFGS Quasi Newton
(BFG) method is considered to be optimum as its error rates for testing set are the
lowest. Figures 7.14 to 7.17 present the comparisons of measured against predicted

Smax and (i) obtained using the BFG network for the training and testing set.
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Table 7.17: Performance of ANN model using various training algorithms for S, prediction

Algorithm} Hidden
- Neurqdesi
LM 12
GDM
BFG

SCG
CGB
CGF
CGP
0SS
GDX

Table 7.18: Performance of ANN model using various training algorithms for (i) prediction

l*-‘,z;l;gorithm  Hidd

LM

GDM

BFG

RP . .

SCG 0.98 0.96 1.02 1.20
CGB 0.98 0.97 0.95 1.18
CGF 0.98 0.96 1.13 1.33
CcGP 0.98 0.96 1.06 1.21
0SS 0.98 0.97 1.08 1.29
GDX 0.98 0.96 1.10 1.33
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Figure 7.14: Predicted vs. FEM maximum settlements for training set
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Figure 7.15: Predicted vs. FEM maximum settlements for testing set
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Figure 7.16: Predicted vs. FEM trough widths for training set
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Figure 7.17: Predicted vs. FEM trough widths for testing set
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7.2.2. Networks with one output neuron

Two separate networks are developed whereby one network is used to predict Syax and

the other to predict trough width (i). The results for the two networks tested with

different hidden neurons are shown in Table 7.19 and 7.20. Network used for S«

prediction is labeled as ANNS followed by the hidden neuron number while that used

for (i) prediction is labeled as ANNi. Networks with 12 hidden neurons give optimal

predictions of Syax as indicated by the maximum correlation coefficients and minimum

error rates for both training and testing. Network for (i) prediction is optimum when it

used 8 neurons in the hidden layer. From the comparison of results, it is also observed

that the two separate networks perform better than the single network used to predict

Smax and (i) simultaneously, as indicated by higher correlation coefficients and lower

error rates when the two separate networks are used.

Table 7.19: Performance of ANN models for S;,,x prediction

1 No. of Correlation Error Rate
Model | Hidden |  Coefficient
” | Traming | Testiog |
ANNS 2 0.90 0.93 7.69 6.85
ANNS 4 0.93 0.95 5.65 4.94
ANNS 6 0.95 0.96 4.89 4.77
ANNS 8 0.96 0.97 4.56 4.56
ANNS 0.95 0.96
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Table 7.20: Performance of ANN models for trough width (i) prediction

Model | Hidden ‘

L Neurodes Tram

ANNi

e Comparison of training algorithms

The two optimum networks for the predictions of Smax and (i) are improved further
using the faster training algorithms. The results of all the algorithms training including
gradient descent method are tabulated in Table 7.21 and Table 7.22. The network
trained using Fletcher-Powell Conjugate Gradient (CGF) is considered to be optimum
for the prediction of Syax while the network trained using Levenberg-Marquardt (LM)
algorithm is optimal for trough width (i) prediction. Thus the two optimum networks
are labeled as ANNS12CGF and ANNi8LM. From the comparison of results, it is
shown that the networks ANNS12CGF and ANNi8LM performed relatively better than
the improved BFG network used for simultaneous prediction of Sy and (i). This is
indicated by higher coefficients of correlation and lower error rates for the training and
testing sets when the two improved networks are used to predict Sy, and (i) separately.
Hence these two networks will be validated in section 7.3 using the field data set.
Figures 7.18 and 7.19 present the comparison of measured against predicted maximum
settlements of the training and testing set for ANNS12CGF, while the comparison of
measured against predicted trough width (i) for ANNi8LM are shown in Figures 7.20
and 7.21 .
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Table 7.21: Performance of ANNS 12 model using various training algorithms for S,

prediction

Algorithm.

- Corre

Model |

LM

ANNS12

lation

s |

GDM

BFG

RP

SCG

CGB

CGF

CGp

0SS

GDX

Table 7.22: Performance of ANNi8 model using various training algorithms for (i) prediction

= = C:(;rrelation
Algorithm| Model | Coeffici

IM | ANNi8 0.7

GDM 0.98 0.96 1.25 1.40
BFG 0.99 0.98 0.69 0.94
RP 0.99 0.97 0.86 1.05
SCG 0.98 0.97 0.95 1.08
CGB 0.99 0.97 0.77 1.03
CGF 0.99 0.97 0.92 1.06
CGP 0.99 0.97 0.80 0.97
0SS 0.99 0.97 0.87 112
GDX 0.98 0.96 1.13 1.30
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Figure 7.18: Predicted vs. FEM maximum settlements for training set (ANNS 12CGF)
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Figure 7.19: Predicted vs. FEM maximum settlements for testing set (ANNS 12CGF)
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Figure 7.20: Predicted vs. FEM trough widths for training set (ANNiS8LM)
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Figure 7.21: Predicted vs. FEM trough widths for testing set (ANNi8LM)
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7.3 Validation of the optimum networks using the field data

The predictive ability of optimum neural models, obtained from analysis in section
7.1.2 and 7.2.2, is validated using a set of field data. The optimum networks are
ANNS12CGP, ANNi6CGF, ANNS12CGF, and ANNi8LM. The optimum networks,
trained using the gradient-descent method, in section 7.2.2 (ANNS12GDM and
ANNi8GDM) are tested as well in this analysis for the purpose of comparison with the
above networks. The field set comprises 15 patterns of input variables and the
corresponding two outputs compiled from contracts C823 and C825 Circle Line project
(Table 7.23). The limited number of patterns in the field set is due to insufficient good
settlement troughs profile from the field data. The values of input variables are
obtained from properties of the soil layer at the tunnel level. The field input and output
variables lie within the range specified by the maximum and minimum values for the
respective input and output given in Table 7.3. This ensures that the model performs
correctly as neural network is designed specifically for interpolation purpose. The field
input data is fed to ANNS12CGP, ANNSI12CGF and ANNSI2GDM to obtain
predicted maximum settlements. Whereas the predicted trough widths (i) are obtained
using networks ANNi6CGF, ANNi8LM, and ANNi8GDM. Table 7.24 and Table 7.25
show the correlation coefficients and error rates of the validation set for the prediction
of Siax and (i) with respect to each network. The comparison of predicted settlements
and measured settlements for ANNS12GDM, ANNS12CGP, and ANNS12CGF are
shown in Figures 7.22 to 7.24. The comparison of predicted trough widths and
measured trough widths for ANNi12GDM, ANNi6CGF, and ANNi8LM are shown in
Figures 7.25 to 7.27.
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Table 7.23: Field data set for validation of optimum networks

1 | 1.1094/01-05 | 0.69 18.22 89.27 | 144.84 2.13 9.71 137.84 7.90
2 | L1095/01-13 | 0.89 18.54 | 134.62 | 103.55 2.13 6.19 53.36 13.02
3 | L1101/01-13 | 0.63 15.54 32.25 191.01 2.67 2.73 26.67 11.49
4 | 1.1107/01-05 | 0.63 17.82 35.00 | 147.71 2.53 2.11 20.78 11.41
5 | L1109/01-12 | 0.70 16.86 2620 | 201.53 2.40 2.74 2391 12.87
6 | L1111/01-05 | 0.63 15.73 18.53 | 300.05 2.20 1.78 2153 | 9.28
7 | L1103/02-82 | 0.63 16.10 4320 | 187.27 2.73 2.30 21.87 10.56
8 | L1103/07-87 | 0.63 17.10 44.73 196.51 2.87 1.98 23.24 9.57
9 | L1097/01-13 | 0.75 18.42 61.58 | 353.69 2.27 3.73 39.71 10.52
10| L1113/01-05 } 0.63 15.80 19.00 | 318.95 2.00 0.78 741 11.35
11 |1 L1100/01-05 | 0.80 17.38 37.00 | 175.14 2.60 3.02 18.21 18.62
12 | GSM/01-30 0.63 16.94 39.60 [ 13535 2.73 2.70 20.06 11.26
13 ) 1L8037-1.8048 | 0.90 20.77 ] 620.00 | 193.55 3.83 0.98 5.14 21.17
14 | 1.9817-1L.9823| 0.80 19.27 45.00 | 453.33 4.33 2.02 16.59 24.16
15| L8114-L.8121| 0.75 21.38. | 454.23 | 194.06 3.33 0.14 1.60 17.50

Table 7.24: Performance of ANNS12GDM, ANNS12CGP and ANNS12CGF

ANNSI2GDM| 12 0.98 6.82

ANNS12CGP 12 0.96 7.14
ANNS12CGF 12 0.95 3.11

Table 7.25: Performance of ANNi8GDM, ANNi6CGF and ANNiSLM

Validation Set
Model e T
Cot :
ANNiSGDM+ 8 0.82
ANNiIGCGF 6 0.87
ANNiSLM 8 0.82
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Figure 7.22: Measured vs. predicted maximum settlements for field data set (ANN S12GDM)
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Figure 7.23: Measured vs. predicted maximum settlements for field data set (ANNS12CGP)
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Figure 7.24: Measured vs. predicted maximum settlements for field data set (ANNS12CGF)
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Figure 7.25: Measured vs. predicted trough widths for field data set (ANNi12GDM)
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Figure 7.27: Measured vs. predicted trough widths for field data set (ANNi8LM)
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The following conclusions can be drawn from the comparison of the networks’ results.

For the prediction of field maximum settlements, network trained using the gradient-

descent algorithm ANNSI12GDM perform comparatively better than the other two
optimum networks ANNS12CGP and ANNS12CGF. This is indicated in Table 7.24

whereby the results of GDM network produced the highest correlation coefficient and

lowest error rate with respect to field data set. For the prediction of field trough width,

the results of network ANNi6CGF display the highest correlation coefficient, while the

lowest error rate was obtained from the predictions of network ANNiSLM. Overall,

network ANNi6CGF is considered optimum for the prediction of trough width. The final
weights and bias terms of optimum models ANNS12GDM and ANNi6CGF are listed in

Appendix E.

7.4 Sensitivity Analysis of the ANN Model Inputs

The neural models considered in this analysis are ANNS12CGP, ANNi6CGF,
ANNSI12CGF, and ANNi8LM. These are the optimum networks obtained previously in

section 7.1.2 and 7.2.2 for the separate predictions of maximum settlement (Sy,y) and

trough width (i). The relative importance of the six input variables is obtained from the

connection weights of the network. By using Garson (1991) method, the relative

importances of input parameters with respect to each optimum network are given in

Table 7.26.

Table 7.26: Relative importance (%) of inputs for ANNS12CGP, ANNi6CGF, ANNS12CGF

and ANNiSLM
ANNS12CGP
ANNSI2CGE | 342 287
ANNIGCGF 2197 | 2.15
ANNISLM 2782 | 077

11.11 13.00 20.49
1.25 28.24 5.86
2.83 16.75 14.85
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Table 7.26 shows that cohesion (¢) is the most important input variable for all the four
networks. Its relative importance is significantly higher than those of other five inputs.
Overall, volume loss (VL) is considered the second important output followed by the
depth over diameter ratio (H/D), coefficient of earth pressure (Ko), ratio of stiffness

over cohesion (E/c), and bulk density (y).

It is observed that the comparison graphs for Sy.x and (i) in section 7.1 and 7.2 display
similar trend, whereby the data points concentrated more on the lower region of
settlement values (approximately 50 mm and below). This is perhaps contrary to the
common expectation that small maximum settlement will correspond to large trough
width and vice versa. This occurrence is related to the result of the sensitivity analysis

above and is explained below.

Using the total 1836 patterns as the data, graphs were plotted with a particular input
variable on the x-axis and the resulting maximum settlement and trough width on the y-
axis. For each input variable, the graph with respect to maximum settlements is plotted
separately from the graph corresponding to trough widths. These graphs are shown in

Figures 7.28 to 7.33 for all the six input variables.

Coefficient of lateral earth pressure (Ko) Coefficient of lateral earth pressure (Ko)
_ n.=468
£ 250 REE63 80
2 200 , =705 - £ 60 $
§ 150 * g n=705
e 5 40 +—
2 100 =468 < n =663
5 3
g 50 ~r— 2 20 +—
.5 ja
s 0 0 ‘
0 1 z 2 0 15 2 25
Ky Ko

Figure 7.28: Coefficient of lateral earth pressure (Ko) vs. Spax and (1)
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Figure 7.29: Bulk unit weight (y) vs. Sy, and (i)
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Figure 7.30: Cohesion (¢) vs. Sy and (i)
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Figure 7.31: Ratio of stiffness over cohesion (E/c) vs. Sy and (i)
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Figure 7.32: Ratio of depth over diameter (H/D) vs. Sy and (i)
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Figure 7.33: Volume loss (VL) vs. S,.x and (i)

It is observed from the graphs above that, for some input variables, a trend exists which
describe the relationship between maximum settlement (Sp,x) and the corresponding
trough width (i). For coefficient of lateral earth pressure (Kj), the maximum settlement
decreases and the corresponding trough width increases as Ky value increases. The
same trend is observed as well in the graphs of input variable ratio of depth over
diameter (H/D). However the graphs of input variable volume loss display the opposite
trend whereby the maximum settlement increase and the corresponding trough width
decrease as volume loss increases. For input variables bulk unit weight and ratio of

stiffiness over cohesion (E/c), such distinct pattern is not observed in the graphs. In the
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;ase of input variable cohesion, both the maximum settlement and the corresponding
rough width decrease as cohesion values increases. Based on this pattern, it can be
stated as well that the trough with large maximum settlement has large trough width

ind vice versa.

[he optimum networks consider cohesion (c¢) as the most important input, and this will
nfluence the process of predictions and the results. Consequently it is observed that the
;omparison graphs of both Sp,x and trough width (i) display similar pattern following
he trend for input variable cohesion explained above. The settlement data points in the
omparison graphs of both S« and trough width (i) concentrate on the lower region of

settlement values (approximately 50 mm and below).

]
1
i
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‘hapter 8

'onclusions and Recommendations

1 Conclusions

. this research, the feasibility of using artificial neural networks (ANN) as an alternative
ethod to predict the maximum ground surface settlement and settlement trough width
1e to tunneling was investigated. MatLab software was utilized for the network

1alyses.

wo main analyses were carried out:
Prediction of maximum surface settlement by ANN using the field data.
Prediction of maximum surface settlement and settlement trough width by ANN using

e finite element data.

. the first main analysis, a total of 158 case records of actual field measurements
stained from contracts NEL C7035, Circle Line C823 and Marina Line C825 were used
-develop and verify the ANN models. Eleven input units considered to be influential on
ttlement value were investigated. From the combinations of these input units, 32
stwork models were developed and tested to obtain the optimal combination of input
wrameters. The value of several network parameters including learning rates, momentum
rms, transfer functions and initial weights were varied in order to study their effect on
e network performance and obtain the optimum architecture of the network model. The
Tect of using other training algorithms on the performance of ANN model was also
camined. Four data division methods namely random, statistical consistent, Self-
rganizing Map and fuzzy clustering were used to obtain optimal data sets for the
aining, testing and validation. A sensitivity analysis was carried out on the ANN model
v study the relative importance of the factors that affect settlement. Finally, the
ttlement predictions obtained using ANN model were compared with those obtained

sing empirical method.

137



ATTENTION: The

nent. Nanyang Tech

University Library

Chapter 8 Conclusions

rom the analysis performed, the following conclusions can be made.

1. From 32 network models, ANN model with eight input parameters namely soil
cover, advance rate, earth pressure, SPT1, SPT2, moisture content, stiffness and
grout pressure is considered optimal.

2. It appears that the number of hidden nodes does not affect significantly the
performance of ANN models. This can be attributed to the early-stopping method
which was used as the stopping criterion. The initial set of weights used to train
the network is important as well since the favorable initial weights will produce
optimum final weights and vice versa. The ANN model with eight hidden neurons
yielded optimum results for the prediction of ground surface settlements, and thus
it was used in the network parameter analysis.

3. The study of various momentum terms and learning rates showed that the
minimum error rate for testing set was achieved when the momentum and
learning rate were 0.9 and 0.2. Consequently, the remaining analysis was carried
out using 0.9 and 0.2 as the momentum and learning rate. These results also
support the argument that in the initial phase of network analysis, it is
recommended to set momentum and learning rate to these two values.

4. The results obtained using Backpropagation with gradient descent method was
slightly better than those obtained using other algorithms. The major shortcoming
of gradient descent method is its convergence which is much slower than the
other algorithms. However, when early stopping is used as the stopping criterion,
it is better to use algorithm that converges more slowly. If the algorithm which
converges too quickly is used, there is a possibility that we may overshoot the
point at which the error on the validation set is minimized.

5. It is essential to maintain the consistency of the statistics between the training,
testing and validation sets in order to produce results which are representative of
the available data set. This can be achieved by using one of the three approaches
namely statistical consistent method, Self-Organizing Map and fuzzy clustering.
In this project, it appears that the ANN model performed relatively better when it

used data subsets obtained using statistical consistent method.
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6. The sensitivity analysis indicated that every network assigns relatively different
relative importance with respect to an input parameter. The most important input
for a particular network might be the least important for other network and vice
versa. Overall, moisture content is considered an essential input parameter as it
displays relatively high importance whenever it is used as input of the network.

7. Optimum ANN model NN6 performed significantly better than the empirical
method considered for the same validation set. The predictions obtained by ANN
model NN6, were quite close to the measured maximum settlements; whilst the
empirical method underpredicted the measured settlements. Hence, it is evident
that ANN model provide more accurate settlement predictions than the empirical
method. This confirms the feasibility of using artificial neural networks as an
alternative method to predict the maximum settlements due to tunneling.

8. ANN model NN6 might not be effective for quick initial prediction of maximum
surface settlements. This is because it requires complete data of the eight input
parameters from the project, whereas some input such as earth pressure, advance
rate, and grout pressure may not be available at the beginning of construction
period. Hence it is proposed to use another model NN29 which requires only four
inputs readily available from the site, namely cover (H), SPT1, SPT2, and
moisture content (MC). The reliability of this alternative network is substantiated
by high correlation coefficients for training, testing, and validation sets and

relatively low error rates for testing and validation sets.

.the second main analysis, neural network models were developed for the prediction of
aximum settlements and trough width using the data generated from the finite element
ftware PLAXIS. PLAXIS is commonly used for geotechnical applications in which soil
odels are used to simulate the soil behavior. A total of 2161 patterns were generated
om the combinations of six input parameters, namely coeflicient of earth pressure (Ko),
ilk density (), cohesion (c), ration of stiffness over cohesion (E/c), ratio of depth over
ameter (H/D), and volume loss (VL). The main output of the program is the settlement
irve from which the settlement of the points along the soil surface can be obtained. The

aussian distribution was fitted to the settlement points and the standard deviation of the
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quation was used as the corresponding trough width (i). Patterns which produce failed
ssults or bad settlement graphs were discarded; hence leaving 1836 patterns for the
nalysis. Two cases of network training are considered in the analysis. In the first case,
etwork models are developed using three statistically consistent data sets i.e. training,
ssting and validation. In the second case, the input data is divided into training and
ssting sets only. For each case, two types of network models were developed. The first
10del has two output neurons where the predictions of Sy, and trough width (i) can be
arried out simultaneously. The second model is the networks with one output neuron
vhich predict Syax and (i) separately. The use of faster training algorithms to improve the
ccuracy of the network is investigated and the results are compared with the result of
tandard gradient descent method. The optimum network models from the two cases of
-aining and the optimum network trained using gradient descent method are retained and
alidated using a set of field data to examine the generalization ability. The field data
vere collected from contracts C823 and C825 Circle Line project. From the network

nalysis, the following conclusions can be drawn:

1. Two separate networks performed better than the single network used to predict
S,.. and (i) simultaneously as shown by higher correlation coefficients and lower
error rates when the two networks are used. As discussed earlier, the main reason
for this is that each of the two independent networks has more freedom to
improve its degree of accuracy without having to take into account the conditions
of another output.

2. For the case of training with three data sets, the network of 12 hidden neuron
trained using the Polak-Ribiére Conjugate Gradient (CGP) is considered to be
optimum for the prediction of Sy, For trough width (i) prediction, network of six
hidden neurons trained using Fletcher-Powell Conjugate Gradient (CGF) is the
best. The two optimum networks are labeled as ANNS12CGP and ANNi6CGF. In
case of training with two data sets, the network of 12 hidden neuron trained using
Fletcher-Powell Conjugate Gradient (CGF) is considered to be optimum for the

prediction of Sy while the network of 8 hidden neuron trained using Levenberg-
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Marquardt (LM) algorithm is optimal for trough width (i) prediction. The two
optimum networks are labeled as ANNS12CGF and ANNiSLM.

3. For the prediction of field maximum settlements, network trained using the
Gradient-Descent Method (GDM) ANNS12GDM perform relatively better than
the other two optimum networks ANNS12CGP and ANNS12CGF. The prediction
results of GDM network showed the highest correlation coefficient and lowest
error rate with respect to field data set. For the prediction of field trough width,
the results of network ANNi6CGF display highest correlation coefficient, while
the lowest error rate was obtained from the predictions of network ANNi8LM.
Overall, the performance of network ANNi6CGF is considered better than the
other two optimum networks ANNil2GDM and ANNi8LM. Hence, it is
concluded that ANN models ANNS12GDM and ANNi6CGF are optimal and they
can be used for the prediction of maximum settlements and trough widths
respectively.

4. The sensitivity analysis indicated that the four optimum networks ANNS12CGP,
ANNi6CGF, ANNS12CGF, and ANNi8LM consider cohesion (¢) as the most
important input. Its relative importance is significantly higher than those of
remaining five inputs. In general, volume loss (VL) is the second important output
followed by the depth over diameter ratio (H/D), coefficient of earth pressure
(Ko), ratio of stiffness over cohesion (E/c), and bulk density (7y).

.2 Recommendations for Future Works

or the first main analysis, more case records are required in the network analysis to
nprove the reliability of network model. Thus, it is recommended to collect more data in
a¢ future from various tunneling projects not only in Singapore but also in other parts of
ne world. Networks with different input parameters which showed satisfactory
erformance in the testing of neural network models can be further investigated in order

5 assess their actual predictive capability. Other factors related to Shield operation such
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s pitching angle, thrust force, cutter torque, and shield position can be added in the list

f input parameters and their effect on the network performance should be examined.

or the second main analysis, more field data are required to verify the predictive ability
f the optimum networks. In this project, the limited amount of field data for validation
et is due to shortage of good settlement trough curves from the site offices. Hence, good
ettlement curves should be collected as many as possible from other tunneling projects
urrently going on in Singapore. The good settlement troughs from other projects
rovided in the literature can added to the field data set as well. The validation of
\WNS12GDM network performance using the field data indicated underestimation for
wrge maximum settlements around 120mm and above. The large maximum settlements
re by and large associated with high volume loss. Among the volume losses used in
LAXIS to generate the input data, only 10% volume loss is considered high. The
:maining volume losses are below 5%. This means lack of input data for the large
1aximum settlements. Hence, other volume loss from 5% to 10% should be included in
1e input data generation as well in order to get better estimation of large maximum
ettlements. In this project, the field measurements indicated small volume losses (around
.1% to 3%) for most of the field data. Therefore, the values of volume losses selected

or input data generation are within this range.
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Pile driving data (Goh, 1995) for testing the accuracy of various softwares
% |
Training Data Testing Data
26 96 27 9 27 9
15 102 26 29 52 18
23 54 14 29 67 16
23 87 26 27 57 18
17 49 12 15 42 13

13 37 11 31 147 28.8
15 32 9 28.2 149.6 30.5
10 33 12 60 223 31.2
12 39 10 21 44 13.4
15 19 8 52 91 27
19 146 29 21 27 13
57 109 24 185 244 88.8
19 38 17 53 66 27.6
36 82 28 33 51 32
22 89 22 64 152 37.8
45 60 23 115 141 59.8
30 44 38 22 81 20
31 142 30.7 19 147 30
104 448 109.2 72 80 35
162 718 162 96 110 54,7
38 162 30
80 354 44
67 273 47.6
170 651 192.1
45 153 29.3
52 148 21.8
45 112 42.3
129.5 51.6 76.7
39 105 39.8
16 33 9.9
30 59 23.4
165 297 80.9
52 91 30.7
61 99 34.2
110 80 53.9
208 105 91.5
144 54 73.4
100 87 55
137 112 64.4
335 115 154.1
120.5 43 84.6
35.4 121.4 30.4
48.8 108 27.1
112.8 158.2 53
24.4 102.8 23.5
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lix B

Used for ANN Models

Set

Adv.Rt. | EP | SPT1 | SPi2 | SPi3 BD MC | GWL | E [ GrPress [Stimnt(mm)
32.0 179.0 52.24 88.93 100.00 19.56 13.90 2.30 120.00 400.0 1.1
29.0 208.0 56.55 89.78 100.00 20.33 13.90 2.30 120.00 300.0 2.3
39.0 196.0 53.21 91.02 100.00 19.69 13.83 2.88 120.00 300.0 2.6
29.0 146.0 61.32 100.00 100.00 20.56 13.54 4.55 120.00 400.0 2.8
30.0 357.0 1.31 6.56 26.51 15.50 24.40 3.78 17.27 400.0 11.8
34.0 170.0 1.36 71.21 100.00 17.21 13.60 5.10 100.65 400.0 12
34.0 323.0 2.67 20.97 55.72 16.44 19.53 3.91 35.83 198.8 10
33.0 344.0 2.36 11.03 29.79 15.50 24.40 4.07 22.46 400.0 10.9
40.4 199.2 2.93 3.79 3.21 16.31 60.77 1.37 8.79 38.1 23.3
13.0 196.0 0.88 4.20 12.00 15.71 48.71 0.52 12.75 13.5 46.2
26.0 233.7 1.04 6.14 14.00 15.64 40.20 0.43 13.94 34.0 53.2
27.0 242.3 2.38 9.42 24.50 16.37 40.70 1.08 17.68 32.0 7.2
30.0 147.0 49,24 88.33 100.00 19.56 13.90 2.30 120.00 400.0 1.5
28.0 131.0 59.05 100.00 100.00 20.56 13.70 4.90 120.00 400.0 1.6
18.0 166.0 24,29 94.29 97.17 19.57 15.27 2.94 120.00 400.0 4.3
23.0 70.0 8.44 67.50 79.07 19.14 15.93 3.37 98.77 190.0 7
27.0 52.0 7.14 82.00 83.00 18.60 16.00 2.40 120.00 150.0 3.7
26.0 61.0 6.96 82.71 93.96 19.17 16.97 1.88 120.00 50.0 1.5
25.0 60.0 10.18 66.58 73.92 19.14 16.51 2.94 98.30 200.0 6.6
39.0 360.0 2.35 23.17 52.29 16.42 18.09 3.38 36.76 400.0 8
24.0 244.0 3.65 16.18 99.95 15.50 58.75 2.35 35.89 200.0 52.9
25.0 265.0 3.63 16.16 99.93 16.30 58.73 2.33 35.87 200.0 16.9
26.0 162.0 57.91 100.00 100.00 20.56 13.67 4.90 120.00 400.0 4.1
28.0 157.0 65.48 100.00 100.00 20.78 13.25 3.90 120.00 400.0 2.4




25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

35.0 227.3 3.78 12.11 33.18 17.11 41.84 1.93 20.21 33.0 47
41.0 249.3 3.33 6.76 16.27 16.74 45.36 2.69 10.79 31.5 25.6
35.0 217.0 2.56 4.39 11.00 16.24 51.77 3.05 6.48 33.0 36.4
39.0 341.0 2.78 6.06 0.54 16.35 61.35 1.00 7.44 51.0 44.7
43.0 237.0 2.93 10.40 1.36 16.46 50.78 2.67 5.26 46.0 39.1
43.0 225.3 3.25 11.36 2.29 16.54 44.47 3.82 5.17 39.0 33.3
37.1 217.2 2.78 6.06 0.54 16.35 61.35 1.00 7.44 37.8 15.6
15.3 93.6 80.27 100.00 100.00 20.73 6.08 2.56 120.00 350.0 2.1
9.8 109.7 76.13 100.00 100.00 20.63 6.81 2.80 120.00 351.0 6.5
41.0 228.7 3.25 11.36 2.29 16.54 44.47 3.82 5.17 35.0 21.2
40.0 214.2 3.45 11.42 2.83 16.60 41.17 4.56 5.13 38.2 19.9
47.9 235.6 52.51 100.00 100.00 19.88 17.82 3.40 120.00 300.0 4.8
30.0 152.0 40.24 88.33 100.00 19.56 13.90 2.30 120.00 300.0 3
30.0 70.0 9.72 66.83 75.29 19.14 16.35 3.05 98.43 300.0 1.8
46.5 99.2 25.67 91.98 100.00 18.77 14.94 3.55 120.00 350.0 3.6
46.4 98.6 23.76 91.92 100.00 18.81 16.15 3.37 120.00 321.0 5.5
51.0 83.5 22.28 91.88 100.00 18.83 17.09 3.23 120.00 320.0 6.4
29.0 235.0 3.26 26.62 100.00 15.50 50.26 2.91 48.16 400.0 20.9
45.0 252.0 3.23 0.00 0.00 16.64 65.80 2.83 6.06 38.0 15.4
22.0 320.0 2.50 44.33 100.00 16.72 35.70 3.78 69.01 400.0 76.4
31.0 350.0 3.40 28.67 32.00 16.83 18.70 2.93 38.40 500.0 13.9
38.0 350.0 1.85 20.54 62.00 16.44 17.80 3.60 35.98 400.0 8.2
20.0 177.0 66.45 100.00 100.00 20.67 13.60 4.80 120.00 400.0 0.7
27.0 227.0 62.58 99.41 100.00 20.44 15.18 2.39 120.00 400.0 0.8
31.0 139.0 64.44 94.32 100.00 20.56 13.45 2.55 120.00 400.0 2.6
45.0 223.7 3.24 8.45 2.09 16.58 47.89 3.95 5.28 45.0 29.4
29.0 193.0 61.60 99.57 100.00 20.44 14.76 2.23 120.00 400.0 0.8
26.0 188.0 73.69 100.00 100.00 20.44 15.76 3.24 120.00 400.0 0.8
25.0 191.1 2.38 9.42 24.50 16.37 40.70 1.08 17.68 37.3 31.7
26.3 217.4 3.78 12.11 33.18 17.11 41.84 1.93 20.21 34.4 42.9
27.7 216.6 3.33 6.76 16.27 16.74 45.36 2.69 10.79 33.0 27.9




56

57

58

59

60

61

62

63

65

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

29.0 187.0 64.10 100.00 100.00 20.67 13.60 3.87 120.00 350.0 2.4
49.7 162.0 46.94 100.00 100.00 19.65 12.33 3.23 120.00 290.0 6.5
50.0 164.3 49.45 100.00 100.00 19.80 12.33 3.13 120.00 300.0 9.8
26.0 178.0 62.21 100.00 100.00 20.44 13.60 3.12 120.00 400.0 1.3
47.8 88.3 21.22 01.84 100.00 18.85 17.76 3.13 120.00 354.0 9.9
17.8 120.4 74.93 100.00 100.00 20.59 7.36 2.83 120.00 318.0 9.8
21.2 96.7 70.33 100.00 100.00 20.44 9.51 2.95 120.00 300.0 4.1
20.5 100.4 65.90 100.00 100.00 20.30 11.58 3.06 120.00 323.0 3.5
15.0 117.4 61.89 100.00 100.00 20.18 13.45 3.16 120.00 319.0 3
43.1 220.2 3.24 8.45 2.09 16.58 47.89 3.95 5.28 33.1 22.7
45.4 241.1 3.05 5.71 1.42 16.56 54.09 3.38 5.42 31.2 15.9
28.0 168.0 51.07 100.00 100.00 20.56 13.49 4.90 120.00 300.0 1.3
22.0 210.0 32.87 97.36 100.00 19.63 14.38 3.72 120.00 400.0 3.3
46.1 88.5 18.54 88.51 100.00 18.57 17.61 2.93 115.40 323.0 2.9
17.9 123.0 80.33 100.00 100.00 20.68 7.79 2.36 120.00 370.0 2.7
23.1 173.9 0.84 4.70 12.00 15.63 45.48 0.44 12.93 28.0 112.9
25.0 203.0 65.20 99.00 100.00 20.11 16.30 2.80 120.00 400.0 0.2
29.0 152.0 69.41 98.11 100.00 20.78 13.02 2.78 120.00 400.0 2.2
37.0 370.0 4.35 17.41 8.92 15.40 19.85 2.52 20.10 500.0 11.5
9.5 108.7 6.86 23.97 30.78 17.86 19.47 2.76 35.46 158.0 98.5
17.0 11.0 10.61 72.41 79.32 19.00 17.50 1.95 106.70 100.0 0.4
15.0 99.2 80.33 100.00 100.00 20.68 7.79 2.36 120.00 335.0 3.4
43.0 244.0 2.66 0.23 0.06 16.53 66.48 2.25 5.69 38.5 28.8
29.0 348.0 0.66 3.83 24.50 15.50 24.40 3.60 14.10 400.0 12
27.0 315.0 4.59 14.59 3.15 15.40 20.14 2.42 15.53 370.0 12
38.0 334.7 2.92 3.50 6.50 16.43 48.72 3.16 5.00 30.5 39
18.1 200.9 0.88 4.20 12.00 15.71 48.71 0.52 12.75 1.8 110.4
47.6 225.4 2.66 0.23 0.06 16.53 66.48 2.25 5.69 38.3 15.6
52.1 240.6 2.83 2.74 0.68 16.55 60.80 2.77 5.56 34.7 20.2
23.0 73.7 3.22 0.40 4.00 16.20 57.00 5.25 8.46 35.0 9.7
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ATTENTION: The

cal University Library

Appendix C

Membership Values of Fuzzy Clustering

Number of clusters: 8

Patterns 1 through 8

1 2 3 4 5 6 7 8
1 0.0008 0.0089 0.004 0.0032 0.0038 0.0055 0.0137 0.1386
2 00138 0.0848 0.047 0.0847  0.1092 0.0093 0.1627 0.0628
3 0.0021 0.024 0.012 0.009 0.0111 0.0059  0.0365 0.0721
4 0.0008 0.009 0.0041 0.0032 0.0039 0.0052 0.0139 0.1179
5 0.003 0.029 0.012 0.0098 0.0113 0.0984 0.0544 0.3305
6 0.0031 0.0191 0.0081 0.01 0.0116 0.8481 0.0574 0.1088
7 0.0129 0.75 0.877 0.048 0.0571 0.013 0.1644 0.1071
8 0.9635 0.0752 0.0359 0.8321 0.7921 0.0145 0.497 0.0622

Patterns 9 through 16
9 10 11 12 13 14 15 16

0.0026 0.0276 0.2197 0.2364 0.2889  0.4003 0.6372 0.0039
0.0047 0.0737  0.0032 0.0069 0.005 0.0043 0.005 0.1059
0.0029 0.0372  0.0077 0.0166 0.0113 0.0092 0.0106 0.0116
0.0024 0.0264 0.7564  0.7126 0.6735 0.5677 0.3253 0.004

0.0506 0.2292 0.004 0.0083 0.0067 0.006 0.0071 0.0123
0.9226 0.3524  0.0024 0.0052 0.0041 0.0036  0.0042 0.0125
0.0067 0.1141 0.0041 0.0087 0.0065 0.0056  0.0066 0.0599
0.0075 0.1394 0.0024 0.0053 0.004 0.0034 0.004 0.7899

N BERWN -

Patterns 17 through 24
17 18 19 20 21 22 23 24
0.0232 0.0066 0.0055 0.0023 0.0521 0.0302 0.136 0.0075
0.1339 0.222 0.1006 0.006 0.1751 0.0518 0.0853 0.0226
0.0429 0.0205 0.0155 0.9775 0.0949 0.7734 0.3821 0.9203
0.0231 0.0068 0.0056 0.0027 0.053 0.0359 0.1703 0.0087
0.0927 0.0184 0.0195 0.0018 0.1107 0.0182 0.0475 0.0061
0.1432 0.0186 0.0203 0.0012 0.1434 0.0129 0.0334 0.0043
0.1301 0.0919 0.0834 0.0058 0.1415 0.0513 0.0925 0.0206
0.4109 0.6153 0.7496 0.0027 0.2293 0.0261 0.053 0.0098
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Patterns 25
25
0.0042
0.0076
0.0046
0.0039
0.076
0.8802
0.011
0.0124

Patterns 33
33
0.3284
0.003
0.0067
0.6492
0.004
0.0024
0.0039
0.0023

Patterns 41
41
0.409
0.0017
0.0038
0.5782
0.0023
0.0014
0.0022
0.0013

Patterns 49
49
0.0009
0.0211
0.0025
0.0009
0.003
0.0031
0.0145
0.954

through 32
26
0.025
0.0967
0.0428
0.0246
0.2162
0.2807
0.1296
0.1844

through 40
34
0.8391
0.0018
0.0037
0.1472
0.0027
0.0016
0.0024
0.0015

through 48
42
0.3639
0.0026
0.0059
0.6167
0.0034
0.0021
0.0034
0.002

through 56
50
0.002
0.0504
0.0056
0.002
0.0063
0.0065
0.0312
0.8958

27
0.1623
0.0818
0.1192
0.1556
0.1955
0.0814

0.135
0.0692

35
0.4919
0.027
0.0431
0.294
0.0526
0.0309
0.0367
0.0238

43
0.4741
0.0018

0.004
0.5122
0.0025
0.0015
0.0024
0.0014

51
0.0049
0.0625
0.0115

0.005
0.0204
0.0219
0.0725
0.8013

mght Act applies to the use of this

28
0.1599
0.0752
0.1007
0.1436
0.2373

0.088
0.1285
0.0668

36
0.09
0.0005
0.0012
0.9059
0.0007
0.0004
0.0007
0.0004

44
0.2877
0.0017
0.004
0.6993
0.0023
0.0014
0.0023
0.0013

52
0.9313
0.0008
0.0016

0.063
0.0011
0.0007

0.001
0.0006

29
0.0058
0.0122

0.007
0.0055
0.1164
0.8158
0.0172
0.0202

37
0.2115
0.0047

0.011
0.7538
0.0059
0.0036
0.0059
0.0036

45
0.7199
0.0016
0.0035
0.2678
0.0023
0.0014
0.0021
0.0013

53
0.8748
0.0017
0.0035
0.1121
0.0026
0.0016
0.0023
0.0014

ment. Nanyang Techr

30
0.0091
0.01
0.0078
0.0083
0.8778
0.058
0.0164
0.0126

38
0.4642
0.031
0.0479
0.2837
0.0653
0.0373
0.0428
0.0277

46
0.0132
0.5218
0.0609

0.014
0.0272
0.0243

0.166
0.1725

54
0.2352
0.0567
0.1866
0.3434
0.0455
0.0312
0.0621
0.0392

31
0.0066
0.3524
0.0216
0.0068
0.0189
0.0162
0.2682
0.3093

39
0.5701
0.0033
0.0073

0.405
0.0046
0.0027
0.0044
0.0026

47
0.006
0.0703
0.0174
0.0061
0.0178
0.0121
0.8165
0.0539

55
0.2351
0.0575
0.1896
0.3378
0.0458
0.0315

0.063
0.0397

ical University Library

32
0.0011
0.0269
0.0032
0.0012
0.0037
0.0039
0.0181
0.9419

40
0.7226
0.0019

0.004
0.263
0.0028
0.0016
0.0025
0.0015

48
0.0007
0.0148
0.0019
0.0007
0.0023
0.0024
0.0109
0.9663

56
0.4185
0.0045
0.0097

0.548
0.0062
0.0037
0.0059
0.0035
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Patterns 57
57
0.5824
0.0066
0.0133
0.3677
0.01
0.0059
0.0087
0.0054

Patterns 65
65
0.113
0.0971
0.3693
0.1396
0.0667
0.0416
0.1128
0.0598

Patterns 73
73
0.1338
0.001
0.0024
0.8586
0.0013
0.0008
0.0013
0.0008

Patterns 81
81
0.2733
0.0024
0.0055
0.7088
0.0031
0.0019
0.0031
0.0018

through 64
58
0.0038
0.7658
0.0152
0.004
0.0088
0.0072
0.123
0.0722

through 72
66
0.1258
0.0981
0.326
0.1563
0.0714
0.0448
0.1152
0.0624

through 80
74
0.1833
0.0015
0.0034
0.8057
0.0019
0.0012
0.0019
0.0011

through 88
82
0.0204
0.1162
0.0438
0.0202
0.0776
0.0494
0.5385
0.134

59
0.0063
0.5916
0.0255
0.0066
0.0141
0.0111
0.2568

0.088

67
0.1248
0.0931
0.3553
0.1593

0.063
0.0407
0.1055
0.0583

75
0.3304
0.0026

0.006
0.65
0.0034
0.0021
0.0034
0.002

83
0.0038
0.0444
0.0136
0.0039
0.0092
0.0062
0.8943
0.0246

60
0.0034
0.8222
0.0145
0.0036
0.0073
0.0059

0.093
0.05

68
0.3328
0.0234
0.0513
0.4992
0.0281
0.0182
0.0287
0.0183

76
0.2151
0.0013

0.003
0.7751
0.0017

0.001
0.0017

0.001

84
0.0054
0.1279
0.0175
0.0056

0.017
0.0132
0.6963
0.1171

61
0.0066
0.7339
0.0324

0.007
0.0122
0.0096
0.1382
0.0601

69
0.2978
0.0285
0.0686
0.4967
0.0317
0.0204
0.0346
0.0216

77
0.4586
0.0026
0.0059
0.5218
0.0035
0.0021
0.0034

0.002

85
0.0042
0.0518
0.0154
0.0043

0.01
0.0066
0.8808
0.0269

62
0.0129
0.2039
0.0409
0.0131
0.0447

0.036
0.4087
0.24

70

0.184
0.0061
0.0154
0.771

0.007
0.0044
0.0076
0.0046

78
0.2498
0.0025

0.006
0.7313
0.0033

0.002
0.0033

0.002

86
0.0053
0.1001

0.022
0.0055
0.0117
0.0082
0.8077
0.0395

63
0.014
0.1789
0.0461
0.0143
0.0466
0.0342
0.5072
0.1588

71
0.1607
0.0044
0.0113
0.8064
0.0051
0.0031
0.0056
0.0033

79
0.2257
0.002
0.0046
0.7595
0.0026
0.0015
0.0026
0.0015

87
0.004
0.0872
0.0153
0.0041
0.0093
0.0067
0.8365
0.0369
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64
0.0155
0.2216
0.0551

0.016
0.0486
0.0364
0.4353
0.1715

72
0.1723
0.0022

0.005
0.8117
0.0028
0.0017
0.0028
0.0017

80
0.6009
0.0019
0.0042
0.3846
0.0027
0.0016
0.0025
0.0015

88

0.0112
0.1591
0.0515
0.0117
0.0212
0.0145
0.6725
0.0583
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Patterns 89
89
0.003
0.0362
0.0097
0.0031
0.0083
0.0056
0.91
0.0241

Patterns 97 through 104

97
0.0042
0.802
0.017
0.0044
0.0092
0.0081
0.0696
0.0854

through 96
90
0.0099
0.133
0.0444
0.0103
0.0193
0.013
0.719
0.0511

98
0.0023
0.9
0.0108
0.0024
0.0045
0.0037
0.0492
0.0272

Patterns 105 through 112

105
0.0152
0.5213
0.0905
0.0162
0.0267
0.0221
0.1904
0.1177

106
0.9189
0.0009
0.0018
0.0743
0.0013
0.0008
0.0012
0.0007

Patterns 113 through 120

113
0.0053
0.1636
0.0159
0.0054
0.0154
0.0156
0.0765
0.7023

114
0.0107
0.0119
0.0093
0.0098
0.8559
0.0677
0.0197
0.0151

91
0.0122
0.1838
0.0615
0.0129
0.0227
0.0154
0.6304
0.0611

99
0.0012
0.9445
0.0055
0.0012
0.0024

0.002
0.0271
0.0161

107
0.8631
0.0023
0.0045
0.1196
0.0035
0.0021

0.003
0.0019

115
0.0089
0.0253
0.9048
0.0102
0.0074

0.005
0.0273
0.0111

92
0.0392
0.193
0.2604
0.043
0.0587
0.0368
0.2809
0.088

100
0.0023
0.8845
0.0098
0.0024
0.0051
0.0044
0.0442
0.0472

108
0.0207
0.0489
0.0267
0.0199
0.2469
0.4811
0.0712
0.0846

116
0.0055
0.1976
0.0243
0.0057
0.0123

0.009
0.6937
0.0519

93
0.0691
0.0953
0.4996
0.0821
0.0479
0.0293
0.1252
0.0514

101
0.012
0.1389
0.0315
0.0122
0.0426
0.0322
0.5517
0.1789

109
0.0216
0.05
0.0272
0.0208
0.1469
0.5837
0.0606
0.0893

117
0.0243
0.381
0.1954
0.0264
0.0377
0.0299
0.1926
0.1127

94
0.0236
0.3263
0.1022
0.0251
0.0554
0.0418
0.2692
0.1563

102
0.01
0.5666
0.0475
0.0105
0.0217
0.0182
0.1954
0.1302

110
0.0024
0.0046
0.0027
0.0023
0.0465
0.9275
0.0066
0.0075

118
0.0011
0.0201
0.0028
0.0011
0.0038
0.0039
0.0166
0.9507

95
0.004
0.8436
0.0182
0.0043
0.0079
0.0068
0.0617
0.0535

103
0.0105
0.5683
0.0479
0.0111
0.0225
0.0198
0.1626
0.1574

11
0.0237
0.0484
0.0281
0.0227
0.1562
0.5806
0.0589
0.0814

119
0.0024
0.0595
0.0093
0.0025

0.006
0.0043
0.8917
0.0243

96

0.0061

0.762
0.0258
0.0064
0.0123
0.0109
0.0814

0.095

104
0.0117
0.5639

0.066
0.0124
0.0222
0.0182
0.1975
0.1079

112
0.0112
0.1011
0.0235
0.0111
0.0531
0.0592
0.1411
0.5997

120
0.0084
0.0893
0.0194
0.0084
0.0387
0.0423
0.1185
0.675
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Patterns 121 through 128 |

121 122 123 124 125 126 127 128
0.0144 0.007 0.0059  0.0033 0.0085 0.0022 0.0017 0.3899
0.5251 0.5547 0.6601 0.8448 0.7105 0.9137 0.9185 0.0018
0.084 0.0243 0.0216 0.0151 0.0504 0.011 0.0081 0.004
0.0154 0.0073 0.0062 0.0035 0.0091 0.0023 0.0018 0.5967
0.0265 0.0171 0.014 0.0066 0.0142 0.0041 0.0034 0.0024
0.022 0.0158 0.0126 0.0053 0.0113 0.0034 0.0027 0.0014
0.1926 0.1152 0.1031 0.0816 0.1335 0.0388 0.043 0.0023

0.12 0.2587 0.1765 0.0399  0.0624 0.0245 0.0207 0.0014

ONOD A WN -

Patterns 129 through 136

oO~NOOT A WN =

129 130 131 132 133 134 135 136
0.8733 0.8847 0.6931 0.78 0.8208 0.7697 0.8345 0.0108
0.0013 0.0013 0.0027 0.005 0.0035 0.0057 0.0009  0.0203
0.0027 0.0027 0.0058 0.0096  0.0069 0.0108 0.0019  0.0125
0.1169 0.1055 0.2869  0.1821 0.1523 0.1868 0.1587 0.0103
0.0019 0.0019 0.0037 0.0079  0.0056 0.0093 0.0013 0.4005
0.0011 0.0011 0.0022 0.0046  0.0033 0.0054 0.0008 0.4842
0.0017 0.0017 0.0035 0.0067  0.0047 0.0077 0.0012 0.0303
0.0011 0.001 0.0021 0.0041 0.0029  0.0047 0.0007 0.031
Patterns 137 through 144
137 138 139 140 141 142 143 144
1 0.0185 0.0247 0.027 0.0025 0.0029 0.0005 0.0091 0.0081
2 0.0406 0.0614 0.0731 0.0364  0.0459 0.009 0.1581 0.1799
3 0.0212 0.0321 0.0364  0.0061 0.0072 0.0013 0.0242  0.0226
4 00157 0.0234 0.0258 0.0025 0.0029 0.0005 0.0092  0.0082
5 0.2205 0.2769 0.229 0.0097 0.0108 0.0017 0.0333  0.0276
6 0.5475 0.3696 0.3555 0.0103 0.0114 0.0018  0.0281 0.0233
7 0.0625 0.1009 01134  0.0388  0.0441 0.0078  0.3708 0.358
8 0.0755 0.1109 0.1398 0.8936 0.8748 0.9774 0.3672 0.3723

Patterns 145 through 152

145 146 147 148 149 150 151 152
1 0.0089 0.0082 0.0117  0.0055  0.0019  0.0817 0.007 0.0236
2 0.1509 0.0138 0.2137 0.0095 0.0039 0.0889 0.0133 0.1282
3  0.024 0.0088 0.0356  0.0059  0.0023 0.5263 0.0079  0.0428
4  0.009 0.0077 0.012 0.0052  0.0018 01 0.0066  0.0234
5 0.0343 0.6729 0.0373 0.0999 0.0393 0.0389 0.1293  0.0997
6 0.0285 0.246 0.0381  0.8462 0.9387 0.0285 0.7954  0.1618
7 0.3904 0.0221 0.1439 0.0132 0.0056  0.0852  0.0188 0.13
8 0.3541 0.0205 0.5077 0.0147 0.0065 0.0506 0.0216  0.3905

Tt
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Patterns 153 through 160
153 154 155 156 157 158 159 160

0.0019 0.0225 0.0222 0.0077 0.0212 0.0032 0.0198 0.0091
0.0298 0.0503 0.4083 0.0229 0.1357 0.0061 0.1192 0.0107
0.0048 0.0281 0.1761 0.919 0.0415 0.0036 0.045 0.0083
0.002 0.0217 0.0239 0.0089 0.0212 0.003 0.0198 0.0083
0.0075 0.1509 0.0341 0.0062 0.0839 0.0646 0.0785 0.8775
0.0079 0.5797 0.0273 0.0044 0.1287 0.901 0.0487 0.055
0.0303 0.0599 0.1958 0.021 0.1235 0.0086 0.5356 0.0177
0.9157 0.0869 0.1123 0.01 0.4444 0.0098 0.1335 0.0134
Pattern 161
161

0.0032

0.8498

0.0131

0.0033

0.0069

0.006

0.0543

0.0633
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Appendix D

Calculation of settlement using empirical method

1) Tunnel geometry

Excavated tunnel diameter D= 6
Excavated tunnel radius r= 3
Depth of tunnel axis zZ= " 18.94
Cover to tunnel crown C= 15.94
Volume excavated per metre r = 28.28

2) Subsurface soil conditions

Using the values reccomended by Attewell (1981)

'Depth from ground {(m)liLayer =

from to thickness (m jl‘;}asgriptlor‘\;’l_ ' " Sl ;nv

0 2 2 fill; debris  Sand 0.63 0.97

2 8 6 fine silty Sand 0.63 097 ||

8 12 4 soft marine Clay 1 1 It

12 18.94 6.94  lfinesity  Sand 0.63 0.97 i
total 18.94 T

Representative K:
Representative n:

3) Settlement trough prediction

Volume Loss

0.71
0.98

Assumed volume loss, Vs(%) =

where, by linear interpolation,
K=(CK;+SK) / (C+S)
n={(Ch.+Sng)/(C+8)

K. = K of Clay
n; = n of Clay

K = K of Sand
ne = n of Sand

C = total thickness of Clay layer
S = total thickness of Sand layer

Estimation of Point of Inflection, i Attewell (1977)

(i/r)y=K(z/2r)"

Locationofi= 6.527 m

Estimation of Maximum Settlement over crown, W,
Vg(%) = {[i * (2m}0.5 "Wyl / V} x 100

Maximum settlement (over crown of each tunnel), Wy = 51.84 mm
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Final weights and bias terms for optimum ANN models ANNS12GDM and

ANNi6CGF

Final weights of ANNS12GDM

Ky | oy | e | Ee | HD | VL | Spu
Hidden 1 0.866 0.392 0.647 -0.104 0.150 0.894
Hidden 2| -0.405 -0.268 3.868 0.184 -1.083 1.239 -2.495
Hidden 3| -0.400 -0.176 3.481 0.174 -1.255 1.552 1.914
Hidden 4{ -0.750 0.372 -0.213 0.094 1.036 0.220 0.317
Hidden 5| -0.079 0.147 -1.418 1.143 0.376 -0.131 -0.606
Hidden 6| 0.608 0.173 0.441 -0.081 -0.309 0.095 -1.763
Hidden7 | -0.812 -0.195 0.686 0.312 1.261 -0.827 -0.3N
Hidden 8| 0.064 -0.058 0.313 0.048 -0.494 2.049 1.331"
Hidden 9| -1.031 0.571 0.122 0.638 -0.752 0.416 0.103
Hidden 10| -0.675 0.521 0.220 0.066 0.443 0.384 -0.254
Hidden 11] 0.788 1.143 -0.482 -0.275 -0.194 -0.649 0.005
Hidden 12) 0.521 -0.479 -1.024 -0.141 1.103 -0.659 -0.046
Bias terms of ANNS12GDM
Hidden 1 0.474
Hidden 2 0.441
Hidden 3 0.399
Hidden 4 1.029
Hidden 5 0.984
Hidden 6 0.571
Hidden 7 0.443
Hidden 8 1.908
Hidden 9 0.453
Hidden 10 0.574
Hidden 11 -0.619
Hidden 12 -0.298
Qutput 1 -1.872
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» v : X
Hidden 1 1.894 0.074 -2.293 0.715 -2.117
Hidden 2 0.006 0.002 0.016 0.000 0.539 0.006 3.951
Hidden 3| -2.240 0.123 -2.470 0.244 0.306 0.923 -0.188
Hidden 4] -1.258 -0.095 2.024 0.024 -1.102 -0.118 -4.997
Hidden 5| -1.605 -0.181 2.586 0.110 -1.363 0.152 1.755
Hidden 6| -0.472 -0.239 4,169 0.046 0.567 -0.109 -2.245
3ias terms of ANNi6CGF

Hidden 1

Hidden 2 1.292
Hidden 3 -4,158
Hidden 4 4.267
Hidden 5 4.701
Hidden 6 5.518
Qutput 1 -0.938
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Appendix F

MatLab Neural Network Program Code

Training_Input = xlsread('Data.xls','trainI");
Training_Target = xlsread('Data.xls','trainT");

Testing_Input = xlsread('Data.xls', 'testI");

Testing_Target = xlsread('Data.xls','testT");

Valid_Input = xlsread('Data.xls','validl');

Valid_Target = xlsread('Data.xls','validT");

al University Library

[Training Inputn,minTraining Input,maxTraining Input,Training_Targetn,minTrainin

g Target,maxTraining Target] = premnmx(Training Input,Training Target);

val.P =Testing_Input ;
val.T = Testing_Target;
test.P = Valid_Input ;
test. T = Valid_Target ;

net=newff(minmax(Training_Inputn),[2,1], {'tansig','tansig'},'traingdm");

net.initFen = 'initlay’;
net.layers{1}.initFen = 'initwb';
net.Jayers{2}.initFen = 'initwb';
net.biases{1}.initFcn = 'rands';
net.inputWeights{1,1}.initFcn = 'rands";
net.biases{2}.initFcn = 'rands’;
net.layerWeights{2,1}.initFcn = 'rands";
net = init(net);

wtsl = net.IW{1,1};

wis2 = net. LW{2,1};

biasl = net.b{1};

bias2 = net.b{2};

net.trainParam.show = 1000;
net.trainParam.lr = 0.2;
net.trainParam.mc = 0.9;
net.trainParam.epochs = 40000;
net.trainParam.goal = le-4;
net.trainParam.max_fail = 30000;
net.adaptParam.passes = 100;


Nurashikin
Rectangle


ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technologica

University Library

[net,tr]=train(net, Training_Inputn, Training_Targetn,[],[],val,test);

network 1_outputs = sim(net, Training_Inputn);
network1_outputsTe = sim(net, Testing_Input);
network1_outputsV = sim(net,Valid_Input);

Training_Output = postmnmx(network1_outputs,minTraining_Target, maxTrammg_Target)
Error_Training = Training_Target-Training_Output;
perf = mae(Error_Training)

Testing_Output = postmnmx(network!l_outputsTe,minTraining Target,maxTraining Target);
Testing_Targetn = postmnmx(Testing_Target,minTraining_Target,maxTraining_Target);
Error_Testing =Testing_Targetn-Testing_Output;

perf=mae(Error_Testing)

Valid_Output = postmnmx(network1_outputsV,minTraining Target,maxTraining Target);
Valid_Targetn = postmnmx(Valid_Target,minTraining_Target,maxTraining Target);
Error_Valid = Valid_Targetn-Valid_Output;

perf=mae(Error_Valid)

[m,b,r] = postreg(Training_Output,Training_Target)
[m,b,r] = postreg(Testing_Output, Testing Targetn)
[m,b,r] = postreg(Valid_Output,Valid_Targetn)

Fwitsl =net.IW{1,1};
Fwts2 = net. LW {2,1};
Fbiasl = net.b{l};
Fbias2 = net.b{2};
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