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Skeleton-Based Action Recognition Using
Spatio-Temporal LSTM Network with Trust Gates

Jun Liu, Amir Shahroudy, Dong Xu, Alex C. Kot, and Gang Wang

Abstract—Skeleton-based human action recognition has at-
tracted a lot of research attention during the past few years.
Recent works attempted to utilize recurrent neural networks
to model the temporal dependencies between the 3D positional
configurations of human body joints for better analysis of
human activities in the skeletal data. The proposed work
extends this idea to spatial domain as well as temporal do-
main to better analyze the hidden sources of action-related
information within the human skeleton sequences in both of
these domains simultaneously. Based on the pictorial structure
of Kinect’s skeletal data, an effective tree-structure based
traversal framework is also proposed. In order to deal with
the noise in the skeletal data, a new gating mechanism within
LSTM module is introduced, with which the network can
learn the reliability of the sequential data and accordingly
adjust the effect of the input data on the updating procedure
of the long-term context representation stored in the unit’s
memory cell. Moreover, we introduce a novel multi-modal
feature fusion strategy within the LSTM unit in this paper.
The comprehensive experimental results on seven challenging
benchmark datasets for human action recognition demonstrate
the effectiveness of the proposed method.

Index Terms—Action Recognition, Recurrent Neural Networks,
Long Short-Term Memory, Spatio-Temporal Analysis, Tree
Traversal, Trust Gate, Skeleton Sequence.

1. Introduction

Human action recognition is a fast developing research
area due to its wide applications in intelligent surveillance,
human-computer interaction, robotics, and so on. In recent
years, human activity analysis based on human skeletal data
has attracted a lot of attention, and various methods for
feature extraction and classifier learning have been devel-
oped for skeleton-based action recognition [1], [2], [3]. A
hidden Markov model (HMM) is utilized by Xia et al. [4]
to model the temporal dynamics over a histogram-based
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representation of joint positions for action recognition. The
static postures and dynamics of the motion patterns are
represented via eigenjoints by Yang and Tian [5]. A Naive-
Bayes-Nearest-Neighbor classifier learning approach is also
used by [5]. Vemulapalli et al. [6] represent the skeleton
configurations and action patterns as points and curves in
a Lie group, and then a SVM classifier is adopted to
classify the actions. Evangelidis et al. [7] propose to learn a
GMM over the Fisher kernel representation of the skeletal
quads feature. An angular body configuration representation
over the tree-structured set of joints is proposed in [8]. A
skeleton-based dictionary learning method using geometry
constraint and group sparsity is also introduced in [9].

Recently, recurrent neural networks (RNNs) which can
handle the sequential data with variable lengths [10], [11],
have shown their strength in language modeling [12], [13],
[14], image captioning [15], [16], video analysis [17], [18],
[19], [20], [21], [22], [23], [24], [25], and RGB-based
activity recognition [26], [27], [28], [29]. Applications of
these networks have also shown promising achievements in
skeleton-based action recognition [30], [31], [32].

In the current skeleton-based action recognition litera-
ture, RNNs are mainly used to model the long-term context
information across the temporal dimension by represent-
ing motion-based dynamics. However, there is often strong
dependency relations among the skeletal joints in spatial
domain also, and the spatial dependency structure is usually
discriminative for action classification.

To model the dynamics and dependency relations in both
temporal and spatial domains, we propose a spatio-temporal
long short-term memory (ST-LSTM) network in this paper.
In our ST-LSTM network, each joint can receive context
information from its stored data from previous frames and
also from the neighboring joints at the same time frame
to represent its incoming spatio-temporal context. Feeding
a simple chain of joints to a sequence learner limits the
performance of the network, as the human skeletal joints are
not semantically arranged as a chain. Instead, the adjacency
configuration of the joints in the skeletal data can be better
represented by a tree structure. Consequently, we propose a
traversal procedure by following the tree structure of the
skeleton to exploit the kinematic relationship among the
body joints for better modeling spatial dependencies.

Since the 3D positions of skeletal joints provided by
depth sensors are not always very accurate, we further intro-
duce a new gating framework, so called “trust gate”, for our
ST-LSTM network to analyze the reliability of the input data



at each spatio-temporal step. The proposed trust gate gives
better insight to the ST-LSTM network about when and how
to update, forget, or remember the internal memory content
as the representation of the long-term context information.

In addition, we introduce a feature fusion method within
the ST-LSTM unit to better exploit the multi-modal features
extracted for each joint.

We summarize the main contributions of this paper as
follows. (1) A novel spatio-temporal LSTM (ST-LSTM) net-
work for skeleton-based action recognition is designed. (2)
A tree traversal technique is proposed to feed the structured
human skeletal data into a sequential LSTM network. (3)
The functionality of the ST-LSTM framework is further
extended by adding the proposed “trust gate”. (4) A multi-
modal feature fusion strategy within the ST-LSTM unit is
introduced. (5) The proposed method achieves state-of-the-
art performance on seven benchmark datasets.

The remainder of this paper is organized as follows. In
section 2, we introduce the related works on skeleton-based
action recognition, which used recurrent neural networks to
model the temporal dynamics. In section 3, we introduce our
end-to-end trainable spatio-temporal recurrent neural net-
work for action recognition. The experiments are presented
in section 4. Finally, the paper is concluded in section 5.

2. Related Work

Skeleton-based action recognition has been explored in
different aspects during recent years [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45], [46],
[47]. In this section, we limit our review to more recent
approaches which use RNNs or LSTMs for human activity
analysis.

Du et al. [30] proposed a Hierarchical RNN network by
utilizing multiple bidirectional RNNs in a novel hierarchical
fashion. The human skeletal structure was divided to five
major joint groups. Then each group was fed into the
corresponding bidirectional RNN. The outputs of the RNNs
were concatenated to represent the upper body and lower
body, then each was further fed into another set of RNNs.
By concatenating the outputs of two RNNs, the global body
representation was obtained, which was fed to the next
RNN layer. Finally, a softmax classifier was used in [30]
to perform action classification.

Veeriah et al. [31] proposed to add a new gating mech-
anism for LSTM to model the derivatives of the memory
states and explore the salient action patterns. In this method,
all of the input features were concatenated at each frame and
were fed to the differential LSTM at each step.

Zhu et al. [48] introduced a regularization term to the
objective function of the LSTM network to push the entire
framework towards learning co-occurrence relations among
the joints for action recognition. An internal dropout [49]
technique within the LSTM unit was also introduced in [48].

Shahroudy et al. [32] proposed to split the LSTM’s
memory cell to sub-cells to push the network towards learn-
ing the context representations for each body part separately.

The output of the network was learned by concatenating the
multiple memory sub-cells.

Harvey and Pal [50] adopted an encoder-decoder re-
current network to reconstruct the skeleton sequence and
perform action classification at the same time. Their model
showed promising results on motion capture sequences.

Mahasseni and Todorovic [51] proposed to use LSTM
to encode a skeleton sequence as a feature vector. At each
step, the input of the LSTM consists of the concatenation
of the skeletal joints’ 3D locations in a frame. They further
constructed a feature manifold by using a set of encoded
feature vectors. Finally, the manifold was used to assist
and regularize the supervised learning of another LSTM for
RGB video based action recognition.

Different from the aforementioned works, our proposed
method does not simply concatenate the joint-based in-
put features to build the body-level feature representation.
Instead, the dependencies between the skeletal joints are
explicitly modeled by applying recurrent analysis over tem-
poral and spatial dimensions concurrently. Furthermore, a
novel trust gate is introduced to make our ST-LSTM network
more reliable against the noisy input data.

This paper is an extension of our preliminary confer-
ence version [52]. In [52], we validated the effectiveness
of our model on four benchmark datasets. In this paper,
we extensively evaluate our model on seven challenging
datasets. Besides, we further propose an effective feature
fusion strategy inside the ST-LSTM unit. In order to improve
the learning ability of our ST-LSTM network, a last-to-first
link scheme is also introduced. In addition, we provide more
empirical analysis of the proposed framework.

3. Spatio-Temporal Recurrent Networks

In a generic skeleton-based action recognition problem,
the input observations are limited to the 3D locations of the
major body joints at each frame. Recurrent neural networks
have been successfully applied to this problem recently
[30], [32], [48]. LSTM networks [53] are among the most
successful extensions of recurrent neural networks. A gating
mechanism controlling the contents of an internal memory
cell is adopted by the LSTM model to learn a better and
more complex representation of long-term dependencies in
the input sequential data. Consequently, LSTM networks are
very suitable for feature learning over time series data (such
as human skeletal sequences over time).

We will briefly review the original LSTM model in
this section, and then introduce our ST-LSTM network and
the tree-structure based traversal approach. We will also
introduce a new gating mechanism for ST-LSTM to handle
the noisy measurements in the input data for better action
recognition. Finally, an internal feature fusion strategy for
ST-LSTM will be proposed.

3.1. Temporal Modeling with LSTM

In the standard LSTM model, each recurrent unit con-
tains an input gate it, a forget gate ft, an output gate ot, and



Te
m

po
ra

l

Spatial

(j,t)
hj-1,t

hj,t-1

hj,t
hj,t

Figure 1. Illustration of the spatio-temporal LSTM network. In temporal
dimension, the corresponding body joints are fed over the frames. In spatial
dimension, the skeletal joints in each frame are fed as a sequence. Each
unit receives the hidden representation of the previous joints and the same
joint from previous frames.

an internal memory cell state ct, together with a hidden state
ht. The input gate it controls the contributions of the newly
arrived input data at time step t for updating the memory
cell, while the forget gate ft determines how much the
contents of the previous state (ct−1) contribute to deriving
the current state (ct). The output gate ot learns how the
output of the LSTM unit at current time step should be
derived from the current state of the internal memory cell.
These gates and states can be obtained as follows:

 it
ft
ot
ut

 =

 σ
σ
σ

tanh

(M (
xt
ht−1

))
(1)

ct = it � ut + ft � ct−1 (2)
ht = ot � tanh(ct) (3)

where xt is the input at time step t, ut is the modulated in-
put, � denotes the element-wise product, and M : RD+d →
R4d is an affine transformation. d is the size of the internal
memory cell, and D is the dimension of xt.

3.2. Spatio-Temporal LSTM

RNNs have already shown their strengths in modeling
the complex dynamics of human activities as time series
data, and achieved promising performance in skeleton-based
human action recognition [30], [31], [32], [48]. In the exist-
ing literature, RNNs are mainly utilized in temporal domain
to discover the discriminative dynamics and motion patterns
for action recognition. However, there is also discriminative
spatial information encoded in the joints’ locations and pos-
ture configurations at each video frame, and the sequential
nature of the body joints makes it possible to apply RNN-
based modeling to spatial domain as well.

Different from the existing methods which concatenate
the joints’ information as the entire body’s representation,
we extend the recurrent analysis to spatial domain by discov-
ering the spatial dependency patterns among different body
joints. We propose a spatio-temporal LSTM (ST-LSTM)
network to simultaneously model the temporal dependencies
among different frames and also the spatial dependencies
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Figure 2. Illustration of the proposed ST-LSTM with one unit.

of different joints at the same frame. Each ST-LSTM unit,
which corresponds to one of the body joints, receives the
hidden representation of its own joint from the previous time
step and also the hidden representation of its previous joint
at the current frame. A schema of this model is illustrated
in Figure 1.

In this section, we assume the joints are arranged in a
simple chain sequence, and the order is depicted in Figure
3(a). In section 3.3, we will introduce a more advanced
traversal scheme to take advantage of the adjacency structure
among the skeletal joints.

We use j and t to respectively denote the indices of joints
and frames, where j ∈ {1, ..., J} and t ∈ {1, ..., T}. Each
ST-LSTM unit is fed with the input (xj,t, the information
of the corresponding joint at current time step), the hidden
representation of the previous joint at current time step
(hj−1,t), and the hidden representation of the same joint
at the previous time step (hj,t−1).

As depicted in Figure 2, each unit also has two forget
gates, fTj,t and fSj,t, to handle the two sources of context
information in temporal and spatial dimensions, respectively.
The transition equations of ST-LSTM are formulated as
follows:

ij,t
fSj,t
fTj,t
oj,t
uj,t

 =


σ
σ
σ
σ

tanh


M

 xj,t
hj−1,t
hj,t−1

 (4)

cj,t = ij,t � uj,t + fSj,t � cj−1,t + fTj,t � cj,t−1(5)
hj,t = oj,t � tanh(cj,t) (6)

3.3. Tree-Structure Based Traversal

Arranging the skeletal joints in a simple chain order
ignores the kinematic interdependencies among the body
joints. Moreover, several semantically false connections be-
tween the joints, which are not strongly related, are added.

The body joints are popularly represented as a tree-based
pictorial structure [54], [55] in human parsing, as shown in
Figure 3(b). It is beneficial to utilize the known interde-
pendency relations between various sets of body joints as
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Figure 3. (a) The skeleton of the human body. In the simple joint chain
model, the joint visiting order is 1-2-3-...-16. (b) The skeleton is trans-
formed to a tree structure. (c) The tree traversal scheme. The tree structure
can be unfolded to a chain with the traversal scheme, and the joint
visiting order is 1-2-3-2-4-5-6-5-4-2-7-8-9-8-7-2-1-10-11-12-13-12-11-10-
14-15-16-15-14-10-1.

an adjacency tree structure inside our ST-LSTM network
as well. For instance, the hidden representation of the neck
joint (joint 2 in Figure 3(a)) is often more informative for
the right hand joints (7, 8, and 9) compared to the joint 6,
which lies before them in the numerically ordered chain-
like model. Although using a tree structure for the skeletal
data sounds more reasonable here, tree structures cannot be
directly fed into our current form of the proposed ST-LSTM
network.

In order to mitigate the aforementioned limitation, a
bidirectional tree traversal scheme is proposed. In this
scheme, the joints are visited in a sequence, while the
adjacency information in the skeletal tree structure will be
maintained. At the first spatial step, the root node (central
spine joint in Figure 3(c)) is fed to our network. Then
the network follows the depth-first traversal order in the
spatial (skeleton tree) domain. Upon reaching a leaf node,
the traversal backtracks in the tree. Finally, the traversal goes
back to the root node.

In our traversal scheme, each connection in the tree
is met twice, thus it guarantees the transmission of the
context data in both top-down and bottom-up directions
within the adjacency tree structure. In other words, each
node (joint) can obtain the context information from both
its ancestors and descendants in the hierarchy defined by
the tree structure. Compared to the simple joint chain order

Skeletal joints ST-LSTM units (Layer 1) Softmax classifier

t1
t2

t3

ST-LSTM units (Layer 2)

Figure 4. Illustration of the deep tree-structured ST-LSTM network. For
clarity, some arrows are omitted in this figure. The hidden representation
of the first ST-LSTM layer is fed to the second ST-LSTM layer as its input.
The second ST-LSTM layer’s hidden representation is fed to the softmax
layer for classification.

described in section 3.2, this tree traversal strategy, which
takes advantage of the joints’ adjacency structure, can dis-
cover stronger long-term spatial dependency patterns in the
skeleton sequence.

Our framework’s representation capacity can be further
improved by stacking multiple layers of the tree-structured
ST-LSTMs and making the network deeper, as shown in
Figure 4.

It is worth noting that at each step of our ST-LSTM
framework, the input is limited to the information of a
single joint at a time step, and its dimension is much
smaller compared to the concatenated input features used
by other existing methods. Therefore, our network has much
fewer learning parameters. This can be regarded as a weight
sharing regularization for our learning model, which leads
to better generalization in the scenarios with relatively small
sets of training samples. This is an important advantage
for skeleton-based action recognition, since the numbers of
training samples in most existing datasets are limited.

3.4. Spatio-Temporal LSTM with Trust Gates

In our proposed tree-structured ST-LSTM network, the
inputs are the positions of body joints provided by depth
sensors (such as Kinect), which are not always accurate be-
cause of noisy measurements and occlusion. The unreliable
inputs can degrade the performance of the network.

To circumvent this difficulty, we propose to add a novel
additional gate to our ST-LSTM network to analyze the
reliability of the input measurements based on the derived
estimations of the input from the available context infor-
mation at each spatio-temporal step. Our gating scheme is
inspired by the works in natural language processing [11],
which use the LSTM representation of previous words at
each step to predict the next coming word. As there are often
high dependency relations among the words in a sentence,
this idea works decently. Similarly, in a skeletal sequence,
the neighboring body joints often move together, and this
articulated motion follows common yet complex patterns,
thus the input data xj,t is expected to be predictable by
using the contextual information (hj−1,t and hj,t−1) at each
spatio-temporal step.



Inspired by this predictability concept, we add a new
mechanism to our ST-LSTM calculating a prediction of the
input at each step and comparing it with the actual input. The
amount of estimation error is then used to learn a new “trust
gate”. The activation of this new gate can be used to assist
the ST-LSTM network to learn better decisions about when
and how to remember or forget the contents in the memory
cell. For instance, if the trust gate learns that the current
joint has wrong measurements, then this gate can block the
input gate and prevent the memory cell from being altered
by the current unreliable input data.

Concretely, we introduce a function to produce a predic-
tion of the input at step (j, t) based on the available context
information as:

pj,t = tanh

(
Mp

(
hj−1,t
hj,t−1

))
(7)

where Mp is an affine transformation mapping the data from
R2d to Rd, thus the dimension of pj,t is d. Note that the
context information at each step does not only contain the
representation of the previous temporal step, but also the
hidden state of the previous spatial step. This indicates that
the long-term context information of both the same joint at
previous frames and the other visited joints at the current
frame are seamlessly incorporated. Thus this function is
expected to be capable of generating reasonable predictions.

In our proposed network, the activation of trust gate is
a vector in Rd (similar to the activation of input gate and
forget gate). The trust gate τj,t is calculated as follows:

x′j,t = tanh (Mx (xj,t)) (8)
τj,t = G(pj,t − x′j,t) (9)

where Mx : RD → Rd is an affine transformation. The acti-
vation function G(·) is an element-wise operation calculated
as G(z) = exp(−λz2), for which λ is a parameter to control
the bandwidth of Gaussian function (λ > 0). G(z) produces
a small response if z has a large absolute value and a large
response when z is close to zero.

Adding the proposed trust gate, the cell state of ST-
LSTM will be updated as:

cj,t = τj,t � ij,t � uj,t
+(1− τj,t)� fSj,t � cj−1,t
+(1− τj,t)� fTj,t � cj,t−1 (10)

This equation can be explained as follows: (1) if the
input xj,t is not trusted (due to the noise or occlusion), then
our network relies more on its history information, and tries
to block the new input at this step; (2) on the contrary, if
the input is reliable, then our learning algorithm updates the
memory cell regarding the input data.

The proposed ST-LSTM unit equipped with trust gate is
illustrated in Figure 5. The concept of the proposed trust gate
technique is theoretically generic and can be used in other
domains to handle noisy input information for recurrent
network models.
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Figure 5. Illustration of the proposed ST-LSTM with trust gate.
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Figure 6. Illustration of the proposed structure for feature fusion inside the
ST-LSTM unit.

3.5. Feature Fusion within ST-LSTM Unit

As mentioned above, at each spatio-temporal step, the
positional information of the corresponding joint at the
current frame is fed to our ST-LSTM network. Here we call
joint position-based feature as a geometric feature. Beside
utilizing the joint position (3D coordinates), we can also
extract visual texture and motion features (e.g. HOG, HOF
[56], [57], or ConvNet-based features [58], [59]) from the
RGB frames, around each body joint as the complementary
information. This is intuitively effective for better human
action representation, especially in the human-object inter-
action scenarios.

A naive way for combining geometric and visual features
for each joint is to concatenate them in the feature level and
feed them to the corresponding ST-LSTM unit as network’s
input data. However, the dimension of the geometric feature



is very low intrinsically, while the visual features are often
in relatively higher dimensions. Due to this inconsistency,
simple concatenation of these two types of features in the
input stage of the network causes degradation in the final
performance of the entire model.

The work in [32] feeds different body parts into the
Part-aware LSTM [32] separately, and then assembles them
inside the LSTM unit. Inspired by this work, we propose
to fuse the two types of features inside the ST-LSTM unit,
rather than simply concatenating them at the input level.

We use xFj,t (F ∈ {1, 2}) to denote the geometric
feature and visual feature for a joint at the t-th time step.
As illustrated in Figure 6, at step (j, t), the two features
(x1j,t and x2j,t) are fed to the ST-LSTM unit separately
as the new input structure. Inside the recurrent unit, we
deploy two sets of gates, input gates (iFj,t), forget gates
with respect to time (fT,F

j,t ) and space (fS,Fj,t ), and also
trust gates (τFj,t), to deal with the two heterogeneous sets of
modality features. We put the two cell representations (cFj,t)
together to build up the multimodal context information of
the two sets of modality features. Finally, the output of
each ST-LSTM unit is calculated based on the multimodal
context representations, and controlled by the output gate
(oj,t) which is shared for the two sets of features.

For the features of each modality, it is efficient and
intuitive to model their context information independently.
However, we argue that the representation ability of each
modality-based sets of features can be strengthened by
borrowing information from the other set of features. Thus,
the proposed structure does not completely separate the
modeling of multimodal features.

Let us take the geometric feature as an example. Its
input gate, forget gates, and trust gate are all calculated
from the new input (x1j,t) and hidden representations (hj,t−1
and hj−1,t), whereas each hidden representation is an as-
sociate representation of two features’ context information
from previous steps. Assisted by visual features’ context
information, the input gate, forget gates, and also trust gate
for geometric feature can effectively learn how to update its
current cell state (c1j,t). Specifically, for the new geometric
feature input (x1j,t), we expect the network to produce a
better prediction when it is not only based on the context
of the geometric features, but also assisted by the context
of visual features. Therefore, the trust gate (τ1j,t) will have
stronger ability to assess the reliability of the new input data
(x1j,t).

The proposed ST-LSTM with integrated multimodal fea-
ture fusion is formulated as:
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c2j,t

)
(17)

3.6. Learning the Classifier

As the labels are given at video level, we feed them as
the training outputs of our network at each spatio-temporal
step. A softmax layer is used by the network to predict the
action class ŷ among the given class set Y . The prediction of
the whole video can be obtained by averaging the prediction
scores of all steps. The objective function of our ST-LSTM
network is as follows:

L =

J∑
j=1

T∑
t=1

l(ŷj,t, y) (18)

where l(ŷj,t, y) is the negative log-likelihood loss [60] that
measures the difference between the prediction result ŷj,t at
step (j, t) and the true label y.

The back-propagation through time (BPTT) algorithm
[60] is often effective for minimizing the objective function
for the RNN/LSTM models. As our ST-LSTM model in-
volves both spatial and temporal steps, we adopt a modified
version of BPTT for training. The back-propagation runs
over spatial and temporal steps simultaneously by starting
at the last joint at the last frame. To clarify the error
accumulation in this procedure, we use eTj,t and eSj,t to
denote the error back-propagated from step (j, t + 1) to
(j, t) and the error back-propagated from step (j + 1, t)
to (j, t), respectively. Then the errors accumulated at step
(j, t) can be calculated as eTj,t + eSj,t. Consequently, before
back-propagating the error at each step, we should guarantee
both its subsequent joint step and subsequent time step have
already been computed.

The left-most units in our ST-LSTM network do not have
preceding spatial units, as shown in Figure 1. To update the
cell states of these units in the feed-forward stage, a popular
strategy is to input zero values into these nodes to substitute



the hidden representations from the preceding nodes. In our
implementation, we link the last unit at the last time step
to the first unit at the current time step. We call the new
connection as last-to-first link. In the tree traversal, the first
and last nodes refer to the same joint (root node of the
tree), however the last node contains holistic information
of the human skeleton in the corresponding frame. Linking
the last node to the starting node at the next time step
provides the starting node with the whole body structure
configuration, rather than initializing it with less effective
zero values. Thus, the network has better ability to learn
the action patterns in the skeleton sequence.

4. Experiments

The proposed method is evaluated and empirically ana-
lyzed on seven benchmark datasets for which the coordinates
of skeletal joints are provided. These datasets are NTU
RGB+D, UT-Kinect, SBU Interaction, SYSU-3D, ChaLearn
Gesture, MSR Action3D, and Berkeley MHAD. We conduct
extensive experiments with different models to verify the
effectiveness of individual technical contributions proposed,
as follows:

(1) “ST-LSTM (Joint Chain)”. In this model, the joints
are visited in a simple chain order, as shown in Figure 3(a);

(2) “ST-LSTM (Tree)”. In this model, the tree traversal
scheme illustrated in Figure 3(c) is used to take advantage
of the tree-based spatial structure of skeletal joints;

(3) “ST-LSTM (Tree) + Trust Gate”. This model uses
the trust gate to handle the noisy input.

The input to every unit of of our network at each spatio-
temporal step is the location of the corresponding skeletal
joint (i.e., geometric features) at the current time step. We
also use two of the datasets (NTU RGB+D dataset and UT-
Kinect dataset) as examples to evaluate the performance of
our fusion model within the ST-LSTM unit by fusing the
geometric and visual features. These two datasets include
human-object interactions (such as making a phone call and
picking up something) and the visual information around the
major joints can be complementary to the geometric features
for action recognition.

4.1. Evaluation Datasets

NTU RGB+D dataset [32] was captured with Kinect
(v2). It is currently the largest publicly available dataset
for depth-based action recognition, which contains more
than 56,000 video sequences and 4 million video frames.
The samples in this dataset were collected from 80 dis-
tinct viewpoints. A total of 60 action classes (including
daily actions, medical conditions, and pair actions) were
performed by 40 different persons aged between 10 and 35.
This dataset is very challenging due to the large intra-class
and viewpoint variations. With a large number of samples,
this dataset is highly suitable for deep learning based activity
analysis. The parameters learned on this dataset can also be
used to initialize the models for smaller datasets to improve

and speed up the training process of the network. The 3D
coordinates of 25 body joints are provided in this dataset.

UT-Kinect dataset [4] was captured with a stationary
Kinect sensor. It contains 10 action classes. Each action was
performed twice by every subject. The 3D locations of 20
skeletal joints are provided. The significant intra-class and
viewpoint variations make this dataset very challenging.

SBU Interaction dataset [61] was collected with
Kinect. It contains 8 classes of two-person interactions, and
includes 282 skeleton sequences with 6822 frames. Each
body skeleton consists of 15 joints. The major challenges
of this dataset are: (1) in most interactions, one subject is
acting, while the other subject is reacting; and (2) the 3D
measurement accuracies of the joint coordinates are low in
many sequences.

SYSU-3D dataset [62] contains 480 sequences and was
collected with Kinect. In this dataset, 12 different activities
were performed by 40 persons. The 3D coordinates of 20
joints are provided in this dataset. The SYSU-3D dataset
is a very challenging benchmark because: (1) the motion
patterns are highly similar among different activities, and
(2) there are various viewpoints in this dataset.

ChaLearn Gesture dataset [63] consists of 23 hours
of videos captured with Kinect. A total of 20 Italian ges-
tures were performed by 27 different subjects. This dataset
contains 955 long-duration videos and has predefined splits
of samples as training, validation and testing sets. Each
skeleton in this dataset has 20 joints.

MSR Action3D dataset [64] is widely used for depth-
based action recognition. It contains a total of 10 subjects
and 20 actions. Each action was performed by the same
subject two or three times. Each frame in this dataset
contains 20 skeletal joints.

Berkeley MHAD dataset [65] was collected by using
a motion capture network of sensors. It contains 659 se-
quences and about 82 minutes of recording time. Eleven
action classes were performed by five female and seven
male subjects. The 3D coordinates of 35 skeletal joints are
provided in each frame.

4.2. Implementation Details

In our experiments, each video sequence is divided to
T sub-sequences with the same length, and one frame is
randomly selected from each sub-sequence. This sampling
strategy has the following advantages: (1) Randomly select-
ing a frame from each sub-sequence can add variation to the
input data, and improves the generalization strengths of our
trained network. (2) Assume each sub-sequence contains n
frames, so we have n choices to sample a frame from each
sub-sequence. Accordingly, for the whole video, we can
obtain a total number of nT sampling combinations. This
indicates that the training data can be greatly augmented.
We use different frame sampling combinations for each
video over different training epochs. This strategy is useful
for handling the over-fitting issues, as most datasets have
limited numbers of training samples. We observe this strat-
egy achieves better performance in contrast with uniformly



sampling frames. We cross-validated the performance based
on the leave-one-subject-out protocol on the large scale NTU
RGB+D dataset, and found T = 20 as the optimum value.

We use Torch7 [66] as the deep learning platform to
perform our experiments. We train the network with stochas-
tic gradient descent, and set the learning rate, momentum,
and decay rate to 2×10−3, 0.9, and 0.95, respectively. We
set the unit size d to 128, and the parameter λ used in
G(·) to 0.5. Two ST-LSTM layers are used in our stacked
network. Although there are variations in terms of joint
number, sequence length, and data acquisition equipment
for different datasets, we adopt the same parameter settings
mentioned above for all datasets. Our method achieves
promising results on all the benchmark datasets with these
parameter settings untouched, which shows the robustness
of our method.

An NVIDIA TitanX GPU is used to perform our ex-
periments. We evaluate the computational efficiency of our
method on the NTU RGB+D dataset and set the batch size
to 100. On average, within one second, 210, 100, and 70
videos can be processed by using “ST-LSTM (Joint Chain)”,
“ST-LSTM (Tree)”, and “ST-LSTM (Tree) + Trust Gate”,
respectively.

4.3. Experiments on the NTU RGB+D Dataset

The NTU RGB+D dataset has two standard evaluation
protocols [32]. The first protocol is the cross-subject (X-
Subject) evaluation protocol, in which half of the subjects
are used for training and the remaining subjects are kept for
testing. The second is the cross-view (X-View) evaluation
protocol, in which 2/3 of the viewpoints are used for
training, and 1/3 unseen viewpoints are left out for testing.
We evaluate the performance of our method on both of these
protocols. The results are shown in TABLE 1.

TABLE 1. EXPERIMENTAL RESULTS ON THE NTU RGB+D DATASET

Method Feature X-Subject X-View
Lie Group [6] Geometric 50.1% 52.8%
Cippitelli et al. [67] Geometric 48.9% 57.7%
Dynamic Skeletons [62] Geometric 60.2% 65.2%
FTP [68] Geometric 61.1% 72.6%
Hierarchical RNN [30] Geometric 59.1% 64.0%
Deep RNN [32] Geometric 56.3% 64.1%
Part-aware LSTM [32] Geometric 62.9% 70.3%
ST-LSTM (Joint Chain) Geometric 61.7% 75.5%
ST-LSTM (Tree) Geometric 65.2% 76.1%
ST-LSTM (Tree) + Trust Gate Geometric 69.2% 77.7%

In TABLE 1, the deep RNN model concatenates the joint
features at each frame and then feeds them to the network to
model the temporal kinetics, and ignores the spatial dynam-
ics. As can be seen, both “ST-LSTM (Joint Chain)” and “ST-
LSTM (Tree)” models outperform this method by a notable
margin. It can also be observed that our approach utilizing
the trust gate brings significant performance improvement,
because the data provided by Kinect is often noisy and
multiple joints are frequently occluded in this dataset. Note
that our proposed models (such as “ST-LSTM (Tree) + Trust
Gate”) reported in this table only use skeletal data as input.

We compare the class specific recognition accuracies of
“ST-LSTM (Tree)” and “ST-LSTM (Tree) + Trust Gate”,
as shown in Figure 7. We observe that “ST-LSTM (Tree)
+ Trust Gate” significantly outperforms “ST-LSTM (Tree)”
for most of the action classes, which demonstrates our
proposed trust gate can effectively improve the human action
recognition accuracy by learning the degrees of reliability
over the input data at each time step.

As shown in Figure 8, a notable portion of videos in
the NTU RGB+D dataset were collected in side views. Due
to the design of Kinect’s body tracking mechanism, skeletal
data is less accurate in side view compared to the front view.
To further investigate the effectiveness of the proposed trust
gate, we analyze the performance of the network by feeding
the side views samples only. The accuracy of “ST-LSTM
(Tree)” is 76.5%, while “ST-LSTM (Tree) + Trust Gate”
yields 81.6%. This shows how trust gate can effectively deal
with the noise in the input data.

To verify the performance boost by stacking layers, we
limit the depth of the network by using only one ST-LSTM
layer, and the accuracies drop to 65.5% and 77.0% based
on the cross-subject and cross-view protocol, respectively.
This indicates our two-layer stacked network has better
representation power than the single-layer network.

To evaluate the performance of our feature fusion
scheme, we extract visual features from several regions
based on the joint positions and use them in addition to
the geometric features (3D coordinates of the joints). We
extract HOG and HOF [56], [57] features from a 80 × 80
RGB patch centered at each joint location. For each joint,
this produces a 300D visual descriptor, and we apply PCA to
reduce the dimension to 20. The results are shown in TABLE
2. We observe that our method using the visual features
together with the joint positions improves the performance.
Besides, we compare our newly proposed feature fusion
strategy within the ST-LSTM unit with two other feature
fusion methods: (1) early fusion which simply concatenates
two types of features as the input of the ST-LSTM unit; (2)
late fusion which uses two ST-LSTMs to deal with two types
of features respectively, then concatenates the outputs of the
two ST-LSTMs at each step, and feeds the concatenated
result to a softmax classifier. We observe that our proposed
feature fusion strategy is superior to other baselines.

TABLE 2. EVALUATION OF DIFFERENT FEATURE FUSION STRATEGIES
ON THE NTU RGB+D DATASET. “GEOMETRIC + VISUAL (1)”

INDICATES THE EARLY FUSION SCHEME. “GEOMETRIC + VISUAL (2)”
INDICATES THE LATE FUSION SCHEME. “GEOMETRIC

⊕
VISUAL”

MEANS OUR NEWLY PROPOSED FEATURE FUSION SCHEME WITHIN THE
ST-LSTM UNIT.

Feature Fusion Method X-Subject X-View
Geometric Only 69.2% 77.7%
Geometric + Visual (1) 70.8% 78.6%
Geometric + Visual (2) 71.0% 78.7%
Geometric

⊕
Visual 73.2% 80.6%

We also evaluate the sensitivity of the proposed network
with respect to the variation of neuron unit size and λ values.
The results are shown in Figure 9. When trust gate is added,
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Figure 7. Recognition accuracy per class on the NTU RGB+D dataset

Figure 8. Examples of the noisy skeletons from the NTU RGB+D dataset.
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Figure 9. (a) Performance comparison of our approach using different
values of neuron size (d) on the NTU RGB+D dataset (X-subject). (b)
Performance comparison of our method using different λ values on the
NTU RGB+D dataset (X-subject). The blue line represents our results when
different λ values are used for trust gate, while the red dashed line indicates
the performance of our method when trust gate is not added.

our network obtains better performance for all the λ values
compared to the network without the trust gate.

Finally, we investigate the recognition performance with
early stopping conditions by feeding the first p portion of
the testing video to the trained network based on the cross-
subject protocol (p ∈ {0.1, 0.2, ..., 1.0}). The results are
shown in Figure 10. We can observe that the results are
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Figure 10. Experimental results of our method by early stopping the
network evolution at different time steps.

improved when a larger portion of the video is fed to our
network.

4.4. Experiments on the UT-Kinect Dataset

There are two evaluation protocols for the UT-Kinect
dataset in the literature. The first is the leave-one-out-cross-
validation (LOOCV) protocol [4]. The second protocol is
suggested by [69], for which half of the subjects are used for
training, and the remaining are used for testing. We evaluate
our approach using both protocols on this dataset.

Using the LOOCV protocol, our method achieves better
performance than other skeleton-based methods, as shown in
TABLE 3. Using the second protocol (see TABLE 4), our
method achieves competitive result (95.0%) to the Elastic
functional coding method [70] (94.9%), which is an exten-
sion of the Lie Group model [6].

Some actions in the UT-Kinect dataset involve human-
object interactions, thus appearance based features repre-
senting visual information of the objects can be comple-
mentary to the geometric features. Thus we can evaluate
our proposed feature fusion approach within the ST-LSTM
unit on this dataset. The results are shown in TABLE 5.



TABLE 3. EXPERIMENTAL RESULTS ON THE UT-KINECT DATASET
(LOOCV PROTOCOL [4])

Method Feature Acc.
Grassmann Manifold [71] Geometric 88.5%
Jetley et al. [72] Geometric 90.0%
Histogram of 3D Joints [4] Geometric 90.9%
Space Time Pose [73] Geometric 91.5%
Riemannian Manifold [74] Geometric 91.5%
SCs (Informative Joints) [75] Geometric 91.9%
Chrungoo et al. [76] Geometric 92.0%
Key-Pose-Motifs Mining [77] Geometric 93.5%
ST-LSTM (Joint Chain) Geometric 91.0%
ST-LSTM (Tree) Geometric 92.4%
ST-LSTM (Tree) + Trust Gate Geometric 97.0%

TABLE 4. RESULTS ON THE UT-KINECT DATASET (HALF-VS-HALF
PROTOCOL [69])

Method Feature Acc.
Skeleton Joint Features [69] Geometric 87.9%
Chrungoo et al. [76] Geometric 89.5%
Lie Group [6] (reported by [70]) Geometric 93.6%
Elastic functional coding [70] Geometric 94.9%
ST-LSTM (Tree) + Trust Gate Geometric 95.0%

Using geometric features only, the accuracy is 97%. By
simply concatenating the geometric and visual features, the
accuracy improves slightly. However, the accuracy of our
approach can reach 98% when the proposed feature fusion
method is adopted.

TABLE 5. EVALUATION OF OUR APPROACH FOR FEATURE FUSION ON
THE UT-KINECT DATASET (LOOCV PROTOCOL [4]). “GEOMETRIC +
VISUAL” INDICATES WE SIMPLY CONCATENATE THE TWO TYPES OF

FEATURES AS THE INPUT. “GEOMETRIC
⊕

VISUAL” MEANS WE USE
THE NEWLY PROPOSED FEATURE FUSION SCHEME WITHIN THE

ST-LSTM UNIT.

Feature Fusion Method Acc.
Geometric Only 97.0%
Geometric + Visual 97.5%
Geometric

⊕
Visual 98.0%

4.5. Experiments on the SBU Interaction Dataset

We follow the standard evaluation protocol in [61] and
perform 5-fold cross validation on the SBU Interaction
dataset. As two human skeletons are provided in each frame
of this dataset, our traversal scheme visits the joints through-
out the two skeletons over the spatial steps.

We report the results in terms of average classification
accuracy in TABLE 6. The methods in [48] and [30] are
both LSTM-based approaches, which are more relevant to
our method.

The results show that the proposed “ST-LSTM (Tree)
+ Trust Gate” model outperforms all other skeleton-based
methods. “ST-LSTM (Tree)” achieves higher accuracy than
“ST-LSTM (Joint Chain)”, as the latter adds some false links
between less related joints.

Both Co-occurrence LSTM [48] and Hierarchical RNN
[30] adopt the Svaitzky-Golay filter [80] in the temporal

TABLE 6. EXPERIMENTAL RESULTS ON THE SBU INTERACTION
DATASET

Method Feature Acc.
Yun et al. [61] Geometric 80.3%
Ji et al. [78] Geometric 86.9%
CHARM [79] Geometric 83.9%
Hierarchical RNN [30] Geometric 80.4%
Co-occurrence LSTM [48] Geometric 90.4%
Deep LSTM [48] Geometric 86.0%
ST-LSTM (Joint Chain) Geometric 84.7%
ST-LSTM (Tree) Geometric 88.6%
ST-LSTM (Tree) + Trust Gate Geometric 93.3%

domain to smooth the skeletal joint positions and reduce
the influence of noise in the data collected by Kinect.

The proposed “ST-LSTM (Tree)” model without the
trust gate mechanism outperforms Hierarchical RNN, and
achieves comparable result (88.6%) to Co-occurrence
LSTM. When the trust gate is used, the accuracy of our
method jumps to 93.3%.

4.6. Experiments on the SYSU-3D Dataset

We follow the standard evaluation protocol in [62] on the
SYSU-3D dataset. The samples from 20 subjects are used to
train the model parameters, and the samples of the remaining
20 subjects are used for testing. We perform 30-fold cross
validation and report the mean accuracy in TABLE 7.

TABLE 7. EXPERIMENTAL RESULTS ON THE SYSU-3D DATASET

Method Feature Acc.
LAFF (SKL) [81] Geometric 54.2%
Dynamic Skeletons [62] Geometric 75.5%
ST-LSTM (Joint Chain) Geometric 72.1%
ST-LSTM (Tree) Geometric 73.4%
ST-LSTM (Tree) + Trust Gate Geometric 76.5%

The results in TABLE 7 show that our proposed “ST-
LSTM (Tree) + Trust Gate” method outperforms all the
baseline methods on this dataset. We can also find that the
tree traversal strategy can help to improve the classification
accuracy of our model. As the skeletal joints provided
by Kinect are noisy in this dataset, the trust gate, which
aims at handling noisy data, brings significant performance
improvement (about 3% improvement).

There are large viewpoint variations in this dataset.
To make our model reliable against viewpoint variations,
we adopt a similar skeleton normalization procedure as
suggested by [32] on this dataset. In this preprocessing
step, we perform a rotation transformation on each skeleton,
such that all the normalized skeletons face to the same
direction. Specifically, after rotation, the 3D vector from
“right shoulder” to “left shoulder” will be parallel to the
X axis, and the vector from “hip center” to “spine” will be
aligned to the Y axis (please see [32] for more details about
the normalization procedure).

We evaluate our “ST-LSTM (Tree) + Trust Gate” method
by respectively using the original skeletons without rotation
and the transformed skeletons, and report the results in



TABLE 8. The results show that it is beneficial to use the
transformed skeletons as the input for action recognition.

TABLE 8. EVALUATION FOR SKELETON ROTATION ON THE SYSU-3D
DATASET

Method Acc.
With Skeleton Rotation 76.5%
Without Skeleton Rotation 73.0%

4.7. Experiments on the ChaLearn Gesture Dataset

We follow the evaluation protocol adopted in [82], [83]
and report the F1-score measures on the validation set of
the ChaLearn Gesture dataset.

TABLE 9. EXPERIMENTAL RESULTS ON THE CHALEARN GESTURE
DATASET

Method Feature F1-Score
Portfolios [84] Geometric 56.0%
Wu et al. [85] Geometric 59.6%
Pfister et al. [86] Geometric 61.7%
HiVideoDarwin [82] Geometric 74.6%
VideoDarwin [83] Geometric 75.2%
Deep LSTM [32] Geometric 87.1%
ST-LSTM (Joint Chain) Geometric 89.1%
ST-LSTM (Tree) Geometric 89.9%
ST-LSTM (Tree) + Trust Gate Geometric 92.0%

As shown in TABLE 9, our method surpasses the state-
of-the-art methods [32], [82], [83], [84], [85], [86], which
demonstrates the effectiveness of our method in dealing with
skeleton-based action recognition problem.

Compared to other methods, our method focuses on
modeling both temporal and spatial dependency patterns in
skeleton sequences. Moreover, the proposed trust gate is also
incorporated to our method to handle the noisy skeleton data
captured by Kinect, which can further improve the results.

4.8. Experiments on the MSR Action3D Dataset

We follow the experimental protocol in [30] on the MSR
Action3D dataset, and show the results in TABLE 10.

On the MSR Action3D dataset, our proposed method,
“ST-LSTM (Tree) + Trust Gate”, achieves 94.8% of classi-
fication accuracy, which is superior to the Hierarchical RNN
model [30] and other baseline methods.

TABLE 10. EXPERIMENTAL RESULTS ON THE MSR ACTION3D
DATASET

Method Feature Acc.
Histogram of 3D Joints [4] Geometric 79.0%
Joint Angles Similarities [8] Geometric 83.5%
SCs (Informative Joints) [75] Geometric 88.3%
Oriented Displacements [87] Geometric 91.3%
Lie Group [6] Geometric 92.5%
Space Time Pose [73] Geometric 92.8%
Lillo et al. [88] Geometric 93.0%
Hierarchical RNN [30] Geometric 94.5%
ST-LSTM (Tree) + Trust Gate Geometric 94.8%

4.9. Experiments on the Berkeley MHAD Dataset

TABLE 11. EXPERIMENTAL RESULTS ON THE BERKELEY MHAD
DATASET

Method Feature Acc.
Ofli et al. [89] Geometric 95.4%
Vantigodi et al. [90] Geometric 96.1%
Vantigodi et al. [91] Geometric 97.6%
Kapsouras et al. [92] Geometric 98.2%
Hierarchical RNN [30] Geometric 100%
Co-occurrence LSTM [48] Geometric 100%
ST-LSTM (Tree) + Trust Gate Geometric 100%

We adopt the experimental protocol in [30] on the Berke-
ley MHAD dataset. 384 video sequences corresponding to
the first seven persons are used for training, and the 275
sequences of the remaining five persons are held out for
testing. The experimental results in TABLE 11 show that
our method achieves very high accuracy (100%) on this
dataset. Unlike [30] and [48], our method does not use any
preliminary manual smoothing procedures.

4.10. Visualization of Trust Gates

In this section, to better investigate the effectiveness of
the proposed trust gate scheme, we study the behavior of the
proposed framework against the presence of noise in skeletal
data from the MSR Action3D dataset. We manually rectify
some noisy joints of the samples by referring to the corre-
sponding depth images. We then compare the activations of
trust gates on the noisy and rectified inputs. As illustrated in
Figure 11(a), the magnitude of trust gate’s output (l2 norm
of the activations of the trust gate) is smaller when a noisy
joint is fed, compared to the corresponding rectified joint.
This demonstrates how the network controls the impact of
noisy input on its stored representation of the observed data.

In our next experiment, we manually add noise to one
joint for all testing samples on the Berkeley MHAD dataset,
in order to further analyze the behavior of our proposed trust
gate. Note that the Berkeley MHAD dataset was collected
with motion capture system, thus the skeletal joint coor-
dinates in this dataset are much more accurate than those
captured with Kinect sensors.

We add noise to the right foot joint by moving the
joint away from its original location. The direction of the
translation vector is randomly chosen and the norm is a
random value around 30cm, which is a significant noise
in the scale of human body. We measure the difference
in the magnitudes of trust gates’ activations between the
noisy data and the original ones. For all testing samples,
we carry out the same operations and then calculate the
average difference. The results in Figure 11(b) show that
the magnitude of trust gate is reduced when the noisy data
is fed to the network. This shows that our network tries to
block the flow of noisy input and stop it from affecting the
memory. We also observe that the overall accuracy of our
network does not drop after adding the above-mentioned
noise to the input data.



TABLE 12. PERFORMANCE COMPARISON OF DIFFERENT SPATIAL SEQUENCE MODELS

Dataset NTU (X-Subject) NTU (X-View) UT-Kinect SBU Interaction ChaLearn Gesture
ST-LSTM (Joint Chain) 61.7% 75.5% 91.0% 84.7% 89.1%

ST-LSTM (Double Joint Chain) 63.5% 75.6% 91.5% 85.9% 89.2%
ST-LSTM (Tree) 65.2% 76.1% 92.4% 88.6% 89.9%

TABLE 13. PERFORMANCE COMPARISON OF TEMPORAL AVERAGE, LSTM, AND OUR PROPOSED ST-LSTM

Dataset NTU (X-Subject) NTU (X-View) UT-Kinect SBU Interaction ChaLearn Gesture
Temporal Average 47.6% 52.6% 81.9% 71.5% 77.9%

LSTM 62.0% 70.7% 90.5% 86.0% 87.1%
LSTM + Trust Gate 62.9% 71.7% 92.0% 86.6% 87.6%

ST-LSTM 65.2% 76.1% 92.4% 88.6% 89.9%
ST-LSTM + Trust Gate 69.2% 77.7% 97.0% 93.3% 92.0%

TABLE 14. EVALUATION OF THE LAST-TO-FIRST LINK IN OUR PROPOSED NETWORK

Dataset NTU (X-Subject) NTU (X-View) UT-Kinect SBU Interaction ChaLearn Gesture
Without last-to-first link 68.5% 76.9% 96.5% 92.1% 90.9 %

With last-to-first link 69.2% 77.7% 97.0% 93.3% 92.0 %
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Figure 11. Visualization of the trust gate’s behavior when inputting noisy
data. (a) j3′ is a noisy joint position, and j3 is the corresponding rectified
joint location. In the histogram, the blue bar indicates the magnitude of
trust gate when inputting the noisy joint j3′ . The red bar indicates the
magnitude of the corresponding trust gate when j3′ is rectified to j3. (b)
Visualization of the difference between the trust gate calculated when the
noise is imposed at the step (jN , tN ) and that calculated when inputting
the original data.

4.11. Evaluation of Different Spatial Joint Se-
quence Models

The previous experiments showed how “ST-LSTM
(Tree)” outperforms “ST-LSTM (Joint Chain)”, because
“ST-LSTM (Tree)” models the kinematic dependency struc-
tures of human skeletal sequences. In this section, we further
analyze the effectiveness of our “ST-LSTM (Tree)” model
and compare it with a “ST-LSTM (Double Joint Chain)”
model.

The “ST-LSTM (Joint Chain)” has fewer steps in the
spatial dimension than the “ST-LSTM (Tree)”. One ques-
tion that may rise here is if the advantage of “ST-LSTM
(Tree)” model could be only due to the higher length and
redundant sequence of the joints fed to the network, and
not because of the proposed semantic relations between the
joints. To answer this question, we evaluate the effect of
using a double chain scheme to increase the spatial steps

of the “ST-LSTM (Joint Chain)” model. Specifically, we
use the joint visiting order of 1-2-3-...-16-1-2-3-...-16, and
we call this model as “ST-LSTM (Double Joint Chain)”.
The results in TABLE 12 show that the performance of
“ST-LSTM (Double Joint Chain)” is better than “ST-LSTM
(Joint Chain)”, yet inferior to “ST-LSTM (Tree)”.

This experiment indicates that it is beneficial to intro-
duce more passes in the spatial dimension to the ST-LSTM
for performance improvement. A possible explanation is that
the units visited in the second round can obtain the global
level context representation from the previous pass, thus they
can generate better representations of the action patterns by
using the context information. However, the performance of
“ST-LSTM (Double Joint Chain)” is still weaker than “ST-
LSTM (Tree)”, though the numbers of their spatial steps are
almost equal.

The proposed tree traversal scheme is superior because
it connects the most semantically related joints and avoids
false connections between the less-related joints (unlike the
other two compared models).

4.12. Evaluation of Temporal Average, LSTM and
ST-LSTM

To further investigate the effect of simultaneous mod-
eling of dependencies in spatial and temporal domains, in
this experiment, we replace our ST-LSTM with the original
LSTM which only models the temporal dynamics among the
frames without explicitly considering spatial dependencies.
We report the results of this experiment in TABLE 13. As
can be seen, our “ST-LSTM + Trust Gate” significantly
outperforms “LSTM + Trust Gate”. This demonstrates that
the proposed modeling of the dependencies in both temporal
and spatial dimensions provides much richer representations
than the original LSTM.

The second observation of this experiment is that if we
add our trust gate to the original LSTM, the performance
of LSTM can also be improved, but its performance gain



is less than the performance gain on ST-LSTM. A possible
explanation is that we have both spatial and temporal context
information at each step of ST-LSTM to generate a good
prediction of the input at the current step ((see Eq. (7)), thus
our trust gate can achieve a good estimation of the reliability
of the input at each step by using the prediction (see Eq. (9)).
However, in the original LSTM, the available context at each
step is from the previous temporal step, i.e., the prediction
can only be based on the context in the temporal dimension,
thus the effectiveness of the trust gate is limited when it
is added to the original LSTM. This further demonstrates
the effectiveness of our ST-LSTM framework for spatio-
temporal modeling of the skeleton sequences.

In addition, we investigate the effectiveness of the LSTM
structure for handling the sequential data. We evaluate a
baseline method (called “Temporal Average”) by averag-
ing the features from all frames instead of using LSTM.
Specifically, the geometric features are averaged over all the
frames of the input sequence (i.e., the temporal ordering in-
formation in the sequence is ignored), and then the resultant
averaged feature is fed to a two-layer network, followed by a
softmax classifier. The performance of this scheme is much
weaker than our proposed ST-LSTM with trust gate, and also
weaker than the original LSTM, as shown in TABLE 13.
The results demonstrate the representation strengths of the
LSTM networks for modeling the dependencies and dynam-
ics in sequential data, when compared to traditional temporal
aggregation methods of input sequences.

4.13. Evaluation of the Last-to-first Link Scheme

In this section, we evaluate the effectiveness of the last-
to-first link in our model (see section 3.6). The results in
TABLE 14 show the advantages of using the last-to-first link
in improving the final action recognition performance.

5. Conclusion

In this paper, we have extended the RNN-based action
recognition method to both spatial and temporal domains.
Specifically, we have proposed a novel ST-LSTM network
which analyzes the 3D locations of skeletal joints at each
frame and at each processing step. A skeleton tree traversal
method based on the adjacency graph of body joints is
also proposed to better represent the structure of the input
sequences and to improve the performance of our network
by connecting the most related joints together in the input
sequence. In addition, a new gating mechanism is introduced
to improve the robustness of our network against the noise
in input sequences. A multi-modal feature fusion method is
also proposed for our ST-LSTM framework. The experimen-
tal results have validated the contributions and demonstrated
the effectiveness of our approach which achieves better
performance over the existing state-of-the-art methods on
seven challenging benchmark datasets.
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