This document is downloaded from DR-NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore.

Thermochromic VO2 for energy-efficient smart windows

Cui, Yuanyuan; Ke, Yujie; Liu, Chang; Chen, Zheng; Wang, Ning; Zhang, Liangmiao; Zhou, Yang; Wang, Shancheng; Gao, Yanfeng; Long, Yi

2018

Cui, Y., Ke, Y., Liu, C., Chen, Z., Wang, N., Zhang, L., . . . Long, Y. (2018). Thermochromic VO2 for energy-efficient smart windows. Joule, 2(9), 1707-1746. doi:10.1016/j.joule.2018.06.018

https://hdl.handle.net/10356/137055

https://doi.org/10.1016/j.joule.2018.06.018

© 2018 Elsevier Inc. All rights reserved. This paper was published in Joule and is made available with permission of Elsevier Inc.

Downloaded on 10 Apr 2024 02:01:03 SGT

Thermochromic VO₂ for Energy-Efficient Smart Windows

Yuanyuan Cui, ^{1,5} Yujie Ke, ^{2,5} Chang Liu, ² Zhang Chen, ¹ Ning Wang, ^{2,3} Liangmiao Zhang, ¹ Yang Zhou, ² Shancheng Wang, ² Yanfeng Gao, ^{1,*} Yi Long ^{2,4,*}

- ¹ School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- ² School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- ³ Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- ⁴ Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy-Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore
- ⁵ These authors contributed equally to this work
- * Correspondence: yfgao@shu.edu.cn (Yanfeng Gao), LongYi@ntu.edu.sg (Yi Long)

Abstract

Rapid development of the thermochromic glazing technique promises next-generation architectural windows with energy-saving characteristics by intelligently regulating indoor solar irradiation *via* modulating their optical properties in response to the surrounding temperature. Vanadium dioxide (VO₂) is a promising material for energy-saving smart windows due to its reversible metal-to-insulator transition near room temperature, accompanying with large changes in its optical properties. This review provides a comprehensive overview of the application of VO₂ to smart windows with particular emphasis on recent progress from the electronic-, atomic-, nano- and micron- perspectives. The effects of intrinsic atomic defects, elemental doping, and lattice strain on VO₂ nanocrystals are examined. Nano- and microscale morphology engineering approaches are summarized aiming to enhance the thermochromic performance and impart practical multi-functionalities. Finally, the challenges and future directions of VO₂-based smart windows are elaborated to bridge the gap between the lab research and large scale practical applications.

Key words: Smart windows; Vanadium dioxide; Thermochromics; Insulator-to-metal transition; Optical modulation; Solar energy; Energy conservation.

Abbreviations and acronyms

ARC Antireflection coating

at.% Atomic percentage

ATO Sb-doped SnO₂

AZO Al-doped ZnO

CLETS Co-based ligand exchange thermochromic system

CTAB Cetyltrimethyl ammonium bromide

CTAV Cetyltrimethylammonium vanadate

CVD Chemical vapor deposition

DFT Density functional theory

DOS Density of states

EMT Effective medium theory

FDTD Finite difference time domain

FOS Fluorooctyl triethoxysilane

FTO F-doped SnO₂

HCL Hydrochloric acid

HCP Hexagonal-close-packed

HPC Hydroxypropyl cellulose

IL-Ni-Cl Ionic liquid-nickel-chlorine

IR Infrared

LCA Life cycle assessment

LCST Lower critical solution temperature

LSPR Localized surface plasmon resonance

M/R Monoclinic/rutile

MCC Monolayer colloidal crystal

MIT Metal-to-insulator transition

N₂H₄ Hydrazine

NIR Near-infrared

NLETS Nickel-based ligand exchange thermochromic system

NP Nanoparticle

PBG Photonic band gap

PDMS Polydimethylsiloxane

PE Plasma etching

PEG Polyethylene glycol

PET Polyethylene terephthalate

PNIPAm Poly-N-isopropylacrylmide

PS Polystyrene

PU Polyurethane

PVP Polyvinylpyrrolidone

RhB Rhodamine B

RI Refractive index

SDS Sodium dodecyl sulfate

SPR Surface plasmon resonance

TEOS Tetraethyl orthosilicate

 T_{lum} Average visible transmittance

VCl₂ Vanadyl dichloride

 $\Delta T_{\rm sol}$ Solar energy modulation

 $\tau_{\rm c}$ Phase transition temperature

 $\varepsilon_{\rm T}$ Thermal emissivity

1. Introduction	5
1.1 VO ₂ and its metal-to-insulator phase transition	5
1.2 Optical performance	7
2. Electronic and atomic structure of VO ₂	10
2.1 Intrinsic point defects	10
2.2 Elemental doping	13
2.3 Impacts of strain on τ_c	17
3. Nano- and micro-structure of VO ₂	19
3.1 VO ₂ crystals	19
3.2 Nanocomposites based on VO ₂ crystals	25
3.3 Porous VO ₂ films	33
3.4 Grid VO ₂ films	37
3.5 Biomimetic VO ₂ patterning	40
3.6 Multifunctional antireflection coating	43
4. Energy efficiency	50
5. Conclusions and perspectives	54
Acknowledgments	57
Conflicts of interest.	57
Author contributions	57

1. Introduction

1.1 VO₂ and its metal-to-insulator phase transition

In recent years, both monoclinic (M) and rutile (R) phase vanadium dioxide (VO₂) have aroused great attention as a promising candidate for smart windows owing to the reversible metal-to-insulator transition (MIT) at a critical temperature of 68 °C (341 K).^{1,2} This thermally induced phase transition is reversible, accompanied by a dramatic change in the optical properties in the near-infrared region from a low-temperature transparent state to a more blocking state at high temperatures, which imbues the VO₂-based window with the ability to regulate solar heat flux by responding to temperature automatically. Comparing with other thermochromic materials, VO₂ possess a relatively "silent" way with a negligible optical property change in visible spectrum range.³ In fact, VO₂(M/R) is also a widely studied material in physical chemistry and condensed-matter physics because of its specific phase-transition features.⁴⁻⁶

The low-temperature insulating phase has a monoclinic structure (M, space group $P2_1/c$, $a_M = 5.75$ Å, $b_M = 4.52$ Å, $c_M = 5.38$ Å, $\beta = 122.6^\circ$). When the temperature is above 68 °C, this low-temperature insulating phase transforms to the high-temperature metallic phase, which displays a tetragonal structure (R, space group P4₂/nm, $a_R = b_R = 4.55 \text{ Å}$, $c_R = 2.86 \text{ Å})^9$ (Figure 1b). In VO₂(R), the vanadium atoms occupy the lattice point of the body-centered cubic structure and are located at the centers of the tilted VO₆ octahedra. ¹⁰ Four of the six oxygen atoms in the VO₆ octahedra are located closer to the vanadium atom, and the V-O bond distances are 1.92 and 1.93 Å, respectively. Chains of edge-sharing VO₆ octahedra have a corner-sharing arrangement with other VO₆ octahedra and are arranged linearly along the crystallographic c-axis, with a V-V distance of ~ 2.85 Å.¹¹ During the phase transition from VO₂(R) to VO₂(M), the vanadium atoms move along the V-V direction, resulting in the pairing and tilting of VO₆ octahedra in this direction. ¹² Two distinct sets of long and short V-V distances (3.12 Å and 2.65 Å) exist as a result of the new positions of vanadium atoms in VO₂(M). The number of atoms in one VO₂(M) unit cell is 12, which is doubled as compared with the 6 atoms in one VO₂(R) unit cell.

To fully describe the phase-transition process of $VO_2(M/R)$, a molecular picture based on relatively simple crystal-field theory is typically considered, as first proposed by Goodenough in 1971.¹³ In brief and as shown in Figure 1a, in the $VO_2(R)$, a wide π bond and a narrow π^* anti-bond are formed between the V^{4+} and O^{2-} orbitals,

and a $d_{//}$ nonbond is formed between adjacent V^{4+} orbitals along the crystallographic c-axis. Although the energy band of $VO_2(R)$ is approximately 2.5 eV, the unfilled π^* and $d_{//}$ bands partially overlap, and the Fermi level falls at the point where the π^* and $d_{//}$ bands overlap, giving it metallic characteristics. When the temperature decreases, the tilting of the VO_6 octahedra enhances the π overlap between the V^{4+} and O^{2-} orbitals, thereby elevating the anti-bonding π^* level, whereas the $d_{//}$ bonds interact strongly in V-V pairs and then split into $d_{//}$ bonding and anti-bonding components. A band gap of ~ 0.7 eV is formed between the π^* and $d_{//}$ bands, leading to the formation of an insulating phase. Although this model exhibits several discrepancies from the experimental data, it can nevertheless qualitatively explain the nature of the phase transition in VO_2 .

A fierce debate over the driving force of the VO₂ phase transition has persisted for several decades, with respect to whether the electron-electron correlation is strong enough to localize the electrons by forming a Mott-Hubbard insulator (Mott model) or whether structural distortions alone can induce the insulating phase (Peierls model). 14-18 Wentzcovitch et al. revealed a distorted monoclinic ground state to be in good agreement with the experimental findings and a nearly open gap with respect to charge excitations; thus, they believed that VO2 may be more band-like than correlated. 18 This result was supported by Cavalleri et al., who employed ultrafast spectroscopy to construct a time-domain hierarchy between the structural and electronic effects, and found that the initiation of the metallic phase formation was prompted by hole photo-doping into the valence band of the insulator phase; therefore, the phase transition could be retarded with respect to hole injection and exhibits a bottleneck time scale. 19-21 Baum et al. used four-dimensional (4D) ultrafast electron microscopy to study the phase transition of VO₂ initiated by near-infrared excitation.²² Their results suggest that the transition from the insulating phase to the metallic phase initially involves the expansion of the primary V-V bond with local displacements (on femtosecond and picosecond timescales), followed by long-range shear rearrangements (on a nanoseconds timescale and at the speed of sound), revealing a structural pathway and non-concerted transformation mechanism.

However, a number of phenomena, such as anomalously low conductivity and other unusual properties of the metallic phase, have suggested that the MIT phase transition involves strong electron-electron correlations (Mott model).²³ The fact that an intermediate monoclinic phase is insulating despite the presence of undimerized

V-V chains; and the dependence on excitation power observed experimentally indicates the sensitivity to the density of the excited carriers. The alternative Mott picture ascribes the presence of a band gap in VO₂(M) to strong electron-electron correlations, and the results of several experiments have indicated that if the thermally, optically or gate-voltage-induced excitation of carriers reaches a threshold, the metallic phase could develop even without a phase transformation.¹¹

Yuan et al. recently reported measurements and calculations of the VO₂ phase transition and suggested that it might be both electronically and structurally driven,²⁴ mechanism accordance with the stepwise non-concerted photo-excitation-induced phase transition in VO₂ (M/R) proposed by Baum et al.²² In brief, at least three distinct time scales emerge in the phase transition. The first step is the rapid dilation of the V-V bond (~307 fs); this step is followed by a slower, transverse motion of the VO6 octahedra that locally rearrange to adopt a more rutile-like geometry (~9.2 ps) and a subsequent and far slower motion (~100 ps) that is ascribed to shear movements propagating at the speed of sound. When the phase transition is approached after the three mentioned steps, a spontaneous Peierls distortion would start initially for the cation chains. Finally, the extent of the distortion increases before the Peierls distortion spreads to the orthogonal chains.

1.2 Optical performance

Among the issues concerning VO₂-based thermochromic windows, optical performance is the most important because it directly determines the energy-conservation efficiency of the windows. The optical performance of a VO₂-based thermochromic window can be mainly characterized in terms of its luminous transmittance (T_{lum} , 380-780 nm), solar energy modulation ability (defined as ΔT_{sol} , the difference in solar-energy transmittance T_{sol} before and after the phase transition, which is 240-2500 nm), These quantities are calculated as follows:

$$T_{i} = \int \phi_{i}(\lambda)T(\lambda)d\lambda / \int \phi_{i}(\lambda)d\lambda \tag{1}$$

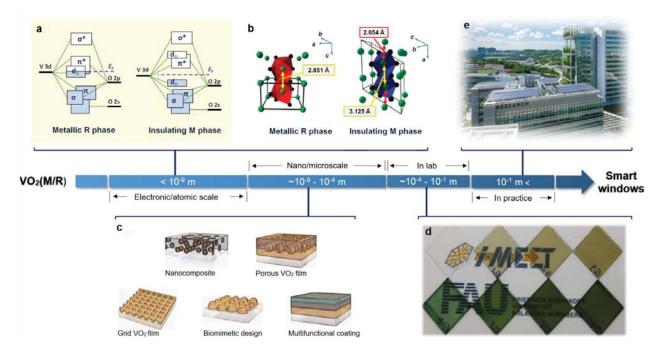
$$\Delta T_{\text{sol}} = T_{\text{sol}} (T < T_{\text{c}}) - T_{\text{sol}} (T > T_{\text{c}})$$
(2)

where $T(\lambda)$ represents the transmittance at wavelength λ , i denotes lum or sol, $\phi_{\text{lum}}(\lambda)$ is the standard luminous efficiency function for vision (380-780 nm), and $\phi_{\text{sol}}(\lambda)$ is the solar irradiance spectrum at air mass 1.5 (corresponding to the sun standing 37° above the horizon).²⁵ For simplicity, all T_{lum} values presented in this review represent the

average of the T_{lum} values at low and high temperatures.

Both high T_{lum} and ΔT_{sol} are important as the former can save lighting while the latter determines the energy-conservation efficiency of VO₂-based thermochromic windows. However they have a trade-off relationship, meaning that it is difficult to improve both to an acceptable value, therefore most studies of thermochromic devices have focused on such attempt. For a continuous VO₂ thin film, the T_{lum} and ΔT_{sol} are limited and are unsatisfactory for practical usage. Reported solutions have involved three different approaches: optimization of the optical thin films, design of the film microstructure and formation of nanocomposites.

Another important parameter to characterize the energy-conservation efficiency of VO₂-based smart windows is the thermal emissivity (ε_T), which is refferred as the ratio of energy radiated by the windows to energy radiated by a blackbody at a defined temperature.²⁶ In thermal equilibrium conditions, the absorptivity of a subjuect is equal to its emissivity. Therefore, a blackbody absorbs all electromagnetic radiation that falls on it and shows ε_T =1, whereas a perfect reflector reflects all electromagnetic radiation and presents ε_T =0. The value of ε_T lies between 0 and 1. Generally, ε_T is calculated *via* weighting the film reflectance with the black body emission spectrum from 4.5 to 25 mm as follows:


$$\varepsilon_{\rm T} = \sum_{4.5}^{2.5} G_{\rm T}(\lambda) E(\lambda) \Delta \lambda \tag{3}$$

where $G_T(\lambda)$ is the normalized relative spectral distribution of black body radiation at temperature T (T is chosen to be 20 °C according to CNS GB/T 1895.2-2002). $E(\lambda)$ refers to the emittance, *i.e.*, the fraction of the black-body radiation.

There are several recently published review papers. Gao *et al.* specifically discussed the VO₂ in thermochromic glass application *via* solution processes.² Li *et al.* concluded the hydrothermal method and the transformation of VO₂(M) from its polymorphs.²⁷ Wu and Xie *et al.* emphasized the engineering microstructures of VO₂ with control of its electrical properties.²⁸ Jiang and Yu *et al.* outlined the deposition methods and the progress in performance enhancement.²⁹ Wang *et al.* summarized the chemical vapor deposition (CVD) deposition of VO₂ in energy conservation and storage.³⁰ Granqvist's group focused on the state of the art for VO₂-based thin films and nanocomposites.³¹ Few of them focus on the theoretical simulations and experimental works regarding the structure/property relationship from atomic, nano-,

micron- perspectives, which may provide a comprehensive and insightful guidance of VO₂-based smart windows.

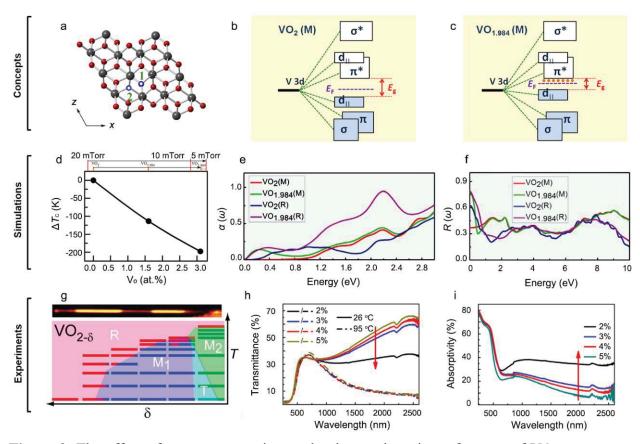
In this review, the progress in VO₂-based smart windows is overviewed, from the band structure designing at the electronic and atomic scales to morphology engineering from nano to micro-scales (Figure 1). The second section discusses the effects of intrinsic atomic defects, elemental doping, and lattice strain on the electronic and atomic structures of VO₂. Subsequently nano and microscale engineering methods to enhance the performance of smart windows are discussed, including incorporating particles, tuning the porosity, designing nanocomposites, developing biomimetic patterns, creating grids, and applying multifunctional antireflection coatings,(Figure 1c). Lastly, challenges and future directions are shared. We hope that this work may inspire more innovative progress and accelerates the development of this technique from the lab to industry (Figure 1d-e).

Figure 1. Overview of the development of VO₂ smart windows from the electronic/atomic scale to the nano/microscale, then to in-lab tests, and finally their practical application in architecture. (a) Band structures of the metallic R and insulating M phases of VO₂ depicted by molecular orbital diagrams. (b) Schematic of the atomic structures of the high-temperature metallic tetragonal phase R and the low-temperature insulating monoclinic phase M. The V-V distances in each crystal structure are highlighted. (c) Nano/microengineering toward performance enhancement. (d) Photographs of VO₂-based thermochromic samples in the lab. (e) Photographs of architectural windows in practice. Figures reproduced with permission from: **a-b**, ref.¹¹, American Chemical Society; **d**, ref.³², Wiley.

2. Electronic and atomic structure of VO₂

In this section, the intrinsic point defects, dopant and strain influence on VO₂ will be overviewed with the special focus on reducing the phase transition temperature (τ_c) of VO₂ from electronic and atomic perspectives.

2.1 Intrinsic point defects


Intrinsic point defects, such as cation nonstoichiometry or oxygen vacancies, always exist in metallic oxides and are desirable or even crucial in some cases to impact certain properties.³³ Recently, the introduction of oxygen vacancies into VO_2 presents great potential in reducing its τ_c and even alters its optical and electrical properties.^{13,34}

The underlying mechanism can be interpreted as follows: The reaction to form one oxygen vacancy can be expressed as $O_o^x \to V_o + 2e + 0.5O_2$, where the two resulting electrons are trapped by V^{4+} sites and then lead to lower valence states of V. This further induces multiple donor levels below the π^* band, resulting in narrowed band gap for $VO_2(M)$ (Figure 2a-c), which is closely correlated with the τ_c and the optical properties of VO_2 .

To probe the effect of oxygen vacancies in VO₂, Chen *et al.* conducted first-principles calculations on the VO_{2-x} crystalline models.^{37,38} Their simulations revealed that the oxygen vacancies give rise to an enhanced concentration of electrons, and the calculated τ_c of VO_{1.984} and VO_{1.969} are reduced to 226 and 142 K, respectively (Figure 2d), which are much lower than that of pure VO₂ (340 K).^{37,38} In addition, the calculated absorption coefficients ($a(\omega)$) of VO₂ and VO_{1.984} (Figure 2e) showed that after the introduction of oxygen vacancies, a new peak appeared in the low-energy region at approximately 0.4 eV in VO_{2-x}(M), which could improve the sunlight utilization in the infrared region.³⁷ The calculated reflectivity spectra of VO_{1.984} (Figure 2f) illustrates that the reflectivity ($R(\omega)$) of VO_{1.984}(M) and VO_{1.984}(R) are higher than those of pure VO₂, suggesting that the introduction of oxygen vacancies into VO₂ can improve the reflectivity in the infrared region.³⁸

Experimentally, oxygen vacancies are frequently introduced by adjusting the oxygen flow ratio during the process of preparation. For instance, Zhang *et al.* fabricated a series of VO₂ nanobeams and found that oxygen vacancies can stabilize the VO₂(R) phase at 103 K, suppressing of the phase transition by 238 K (Figure 2g).³⁹ Zhang *et al.* also reported that the presence of oxygen vacancies induced by the

oxygen pressure decreases the τ_c.⁴⁰ Jiang plotted the transmittance spectrum (Figure 2h) and absorptivity spectrum (Figure 2i) of the VO₂ thin films at different oxygen flow ratios and found that the low-temperature VO₂(M) phase showed a gradual decrease in the near-infrared (NIR) transmittance but increased absorptivity with decreasing oxygen flow ratio.⁴¹ Oxygen vacancies can also be introduced by loading an electric field on VO₂. For instance, Jeong *et al.* suppressed the phase transition below 5 K in VO₂ through the formation of electric field-induced oxygen vacancies.⁴² Later, Chen *et al.* examined the formation, diffusion, and recovery of oxygen vacancies in an electrolyte-gated VO₂ crystal lattice by temperature-dependent *in situ* resistance measurements and first-principles calculations.⁴³ Their results showed that oxygen vacancies result in the deformation of crystal structures and induce polarization charges, therefore modulating the d-orbital occupancy in VO₂.⁴³

Figure 2. The effect of oxygen vacancies on the thermochromic performace of VO₂. (a) Side view of the VO₂(M) crystal structure with oxygen vacancies, the small red spheres represent oxygen atoms, and the large gray spheres represent vanadium atoms, O1 and O2 represent two types of oxygen vacancies in VO₂(M), and O1 site is energetically favorable over the O2 site. Outline of the band scheme of (b) VO₂(M) and (c) VO_{1.984}(M). (d) Reduction of the transition temperature with an increase in the oxygen vacancy concentration. (e) The absorption coefficients ($\alpha(\omega)$) of VO₂ and VO_{1.984} given in 10⁵ cm⁻¹. (f) The reflectivity ($R(\omega)$) spectra of VO₂ and VO_{1.984}. (g)

Structural phase diagram showing the impact of annealing on the transition temperature. (h) Transmittance and (i) absorptivity spectra of VO₂ films fabricated with different oxygen flow ratios. Figures reproduced with permission from: **a**, ref.³⁶, American Institute of Physics; **d-f**, ref.³⁸, Royal Society of Chemistry; **g**, ref.³⁹, American Chemical Society; **h-i**, ref.⁴¹, Elsevier.

2.2 Elemental doping

Elemental doping is a process that intentionally introduces other element(s) into a pure material to modify its electrical or optical properties. For VO₂, elemental doping is one of the conventional strategies to tailor its τ_c and optical properties. Presently, more than 60 elements have been investigated as dopants for the VO₂ system either experimentally or theoretically.⁴⁴⁻⁹⁵ The effects of some doping elements are summarized in Table 1.

The electronic phase transition in VO_2 is proposed to be accompanied by a (nearly) simultaneous structural phase transition between the $VO_2(R)$ and $VO_2(M)$ phase.^{24,96} If the energy barrier across the phase transition could be lowered by doping, τ_c would decrease. Accordingly, the selection of the doping element is commonly based on two aspects: increasing the carrier concentration to accelerate the electronic phase transition, or introducing distortion into the atomic structure to assist the structural phase transition.

Firstly, the doping element should increase the carrier concentration of VO₂. When the doping element serves as the donor or acceptor in VO2, it injects its electrons or holes into the electronic structure of VO₂, which increases the carrier concentration in the system. Because the electronic phase transition of VO2 is a debatably typical Mott phase transition, 97 the increased carrier concentration lowers the energy barrier across the phase transition, thus decreasing the τ_c . There are two doping strategies to increase the carrier concentration. One is to insert smaller-sized doping atoms, such as H, 92 Li, 98 Na 98 and B⁷⁵ into the interstitial sites of VO₂ (Figure 3a). For instance, hydrogen is the lightest atom, which possesses one electron in its outermost orbital. When doped into VO₂, the H atoms are located at the interstitial sites and inject their electrons into the VO₂ system (Figure 3b).^{57,77,92} Gao et al. presented that H efficiently reduces the τ_c by 38 K/at% H (Figure 3c). ⁹² The other strategy to increase the carrier concentration is to substitute the V sites with high-valance element (Figure 3d) such as W, 99,100 Nb56,80 and Mo.55,101 The doped W atoms have been shown to inject some of their electrons into the V 3d valence bands and reduce the τ_c by 20-26 K/at.%, ⁹⁹ He et al. gained the results that the optical band gap can be narrowed from 0.65 to 0.54 eV by increasing the W-doping concentration (Figure 3e-f).89

Secondly, the doping element should introduce structural distortion into VO₂, especially along the V-V chains. VO₂(M) and VO₂(R) belong to the space groups

P21/c and P42/mnm respectively, and their apparent difference lies in the lengths of the V-V bonds, which are constant in VO₂(R) but alternatively varying in VO₂(M) (Figure 3g).^{7,8} If a dopant causes the V-V distances in VO₂(R) to alternatively change (Figure 3h) thereby resembling that of VO₂(M), the dopant will lower the τ_c . For instance, Zhang *et al.* reported that Be-doped VO₂(R) displays structural distortion around the Be atom, where the V-V chains present dimerization similar to those in VO₂(M).⁶⁸ Through first principles calculations, they predicted that the reduction of τ_c in the Be-doped VO₂ is as large as 58 K/at.%.⁶⁸ In addition to the V-V distance, the lattice parameters can also be modified by dopants, which will influence the τ_c . Sun *et al.* proposed that if a dopant can introduce changes in the lattice parameters of VO₂(M) to resemble those of VO₂(R), the dopant will decrease the τ_c .⁷⁸ They conducted density functional theory (DFT) calculations and found that the τ_c decreases with the expansion of the lattice and decrease in the β-angle of VO₂(M) with transition metal doping (Figure 3i).⁷⁸

Variation in the carrier concentration and structural distortion frequently occurs together, as the doping element either occupies the interstitial sites or substitutes the lattice site of V or O atoms, leading to variations in both the electronic and atomic structures of VO₂.

It was recently reported that elemental doping can also modify the emissivity, which is another important parameter to characterize the energy-conservation efficiency of VO₂.¹⁰² For instance, Liu *et al.* synthesized pure VO₂ thin film on fused quartz substrate by using the sol-gel process, finding that the emissivity of VO₂ film (thickness of 900 nm) can be changed by 0.6 in the 7.5-14 µm region across the phase transition. They then prepared W-doped VO₂ films through the same process followed by the post-annealing.¹⁰² Their results indicated that the emissivity of W-doped VO₂ thin films was decreased gradually with increasing doping amount of W, and the emissivity of VO₂ thin film (doping level of 4 at.% W) dropped to 0.4 when the temperature is high then 30 °C.¹⁰²

Table 1 Elemental doping effects on the thermochromic performance of VO_2 thin films

Group	Dopan t	Doping level	T_{lum} (%)	$\Delta T_{ m sol}$ (%)	$d\tau_c/dx$ (°C/at.%)	Ref.
TA	Н	3%	\	\	-38	Simul. ⁹²
	Li	3%	\	\	-43	Simul. ⁹⁸
IA	Na	3%	\	\	-49	Simul. ⁹⁸
	K	3%	\	\	-94	Simul. ⁹⁸
	Be	3%	\	\	-58	Simul. ⁶⁸
	Mg	5%	82.1	4.8	-3	Expt.86
TTA	Ca	1.3%	\	7.6	\	Expt.91
IIA	Sr	9.6%	54.3	5.0	\	Expt.91
	Sr	6.8%	50.3	6.5	\	Expt.91
	Ba	8.3%	\	7.5	\	Expt.91
IIIA	В	\	\	\	-83	Simul. ⁷⁵
VIIA	F	2.93%	48.7	10.7	-11.3	Expt. ⁷¹
	W	2%	45.1	6.9	-20	Expt. ¹⁰⁰
	Mo	2%	\	\	-11	Expt.55
Transitio n Metal	Nb	2%-3%	\	\	-7.8	Expt. ⁵⁶
	Zr	9.8%	60.4	14.1	-0.4	Expt. ¹⁰³
	Ti	1.1%	53	17.2	0	Expt. ⁷²
Rare Earth	Eu	4%	54	6.7	-6.5	Expt.83
	Tb	4%	65.9	4.6	-1.5	Expt. ¹⁰⁴
	La	4%	50.1	10.3	-1.1	Expt. ¹⁰⁵
Co-Dopi ng	Mg+W	4% Mg + 2% W	81.3	4.3	-5.5	Expt.86
	F+W	2.1% F + 1.8% W	\	\	-17.4	Expt. ⁵³
	Zr+W	8.5% Zr + 0.6% W	56.4	12.3	-1.3	Expt. ¹⁰³
	Mo+W	1.02% Mo + 0.36% W	\	\	-23	Expt. ⁶¹

Note: "\" means data not available.

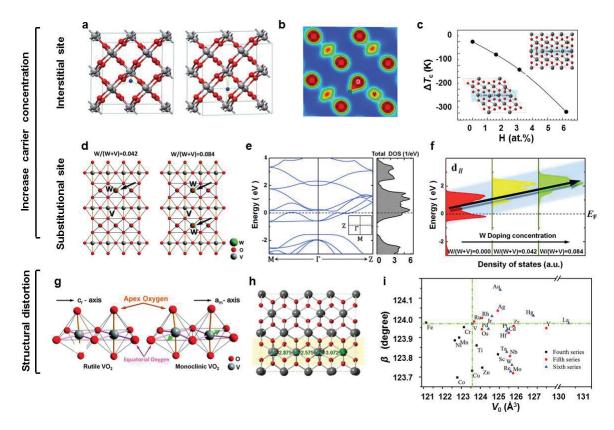
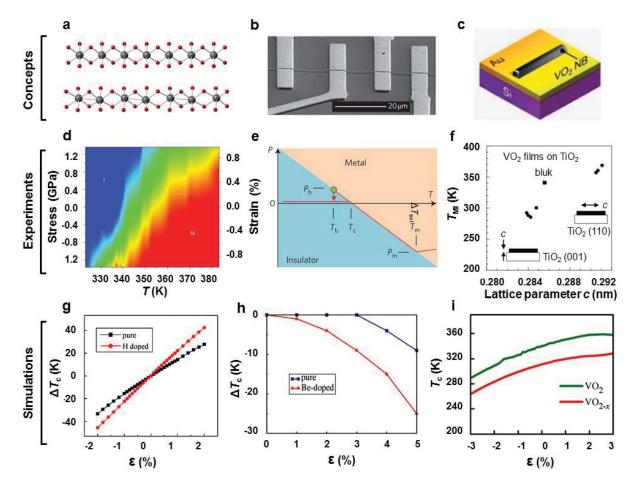


Figure 3. The effect of elemental doping on the thermochromic performace of VO₂. (a) The location of H atom at the tetrahedral (left) and octahedral (right) interstitial site in VO₂, where H, V and O atoms are indicated by blue, gray and red spheres, respectively. (b) The electron density of the (0 0 1) plane in H-doped VO₂(R). (c) The dependence of the transition temperature reduction on the H-doping concentration. (d) The location at which a W atom substitutes the V atom in VO₂, where the W, V and O atoms are indicated by green, gray and red spheres, respectively. (e) Band structure and total density of states (DOS) of pure VO₂(R). (f) Partial DOS of the d_{//} orbital in VO₂ with different W concentrations. (g) Atomic structures for VO₂(R) and VO₂(M) during phase transition, the green arrows indicate the directions in which the V atoms. (h) Sb dopant causes the V-V distances to alternatively vary in VO₂(R). (i) Distribution of transition metal doped VO₂(M) with respect to the volume and β angle. Figures reproduced with permission from: **a-c**, ref. ⁹², Royal Society of Chemistry; **d-g**, ref. ⁸⁹, Royal Society of Chemistry; **h**, ref. ¹⁰⁶, Elsevier; **i**, ref. ⁷⁸, Royal Society of Chemistry.

2.3 Impacts of strain on τ_c


In 1969, Ladd *et al.* first reported that the hydrostatic pressure only has a slight impact on the τ_c of VO₂, with a rate of $d\tau_c/dP = 0.6$ K/GPa, whereas uniaxial stress along the *c*-axis displays a noticeable effect, with a rate of $d\tau_c/dP = -12$ K/GPa.¹⁰⁷ Since then, there has been a great interest in scaling the τ_c of VO₂ by loading strain or pressure on it.^{39,108-111}

The τ_c is known to be closely correlated with the length of the *c*-axis (adjacent V-V distance) of VO₂ (Figure 4a). Loading compressive strain along the *c*-axis leads to further overlap of the d orbitals and the increasing width of the d band, thus stabilizing the VO₂(R) phase and reducing the τ_c . Two strategies are commonly used to apply strain to VO₂: bending suspended VO₂ beams along the length direction (Figure 4b)^{23,112} and depositing VO₂ thin films on certain substrates to introduce an interaction between the film and substrate (Figure 4c).¹¹³⁻¹¹⁸

Experimentally, Cao *et al.* fabricated single-crystalline VO₂ beams followed by three-point bending along the length direction of the beams.¹¹² They constructed a phase-strain diagram and found that the τ_c decreased upon loading compressive strain on the VO₂ beams and increased upon loading tensile strain (Figure 4d).¹¹² Wei *et al.* patterned a series of vanadium metal contacts onto a VO₂ nanobeam followed by removing the underlying SiO₂ to suspend the nanobeam sections between the contacts and subsequently cycled it between room temperature and 120 °C.²³ They also sketched a phase-pressure diagram of VO₂ (Figure 4e), illustrating reduced τ_c under compressive strain and enhanced τ_c under tensile strain.²³ Muraoka *et al.* prepared VO₂ thin films by pulsed laser deposition on TiO₂ (0 0 1) and (1 1 0) substrates and found that the τ_c decreased to 300 K for the VO₂ film grown on TiO₂ (0 0 1), because the *c*-axis was shortened due to the epitaxial stress, whereas the τ_c increased to 369 K for the VO₂ film grown on TiO₂ (1 1 0), because the *c*-axis was elongated, as illustrated in Figure 4f.^{115,116}

Recent computational simulations confirmed the combined impacts of strain and doping (or O-vacancies). 37,68,92 Cui *et al.* conducted first-principles calculations and identified that a 2% compressive strain on H-doped VO₂ (with a doping level of 1 at.%) would decrease the τ_c by 51 K (Figure 4g). 92 Zhang *et al.* presented that the τ_c of Be-doped VO₂ could be further reduced by uniaxial strain, which is in close correlation with the dimerization of V-V chains in rutile VO₂ (Figure 4h). 68 Chen *et al.* found that a 2% compressive strain on pure VO₂ corresponds to a reduction in τ_c of

31.16 K, whereas the reduction increased to 56.74 K when the same compressive strain was loaded on the O-deficient VO_{2-x} (Figure 4i).³⁷

Figure 4. The effect of strain on the phase transition temperature of VO₂. (a) V-V chains for pure VO₂(R) (upper) and VO₂(M) (lower), the small red spheres for oxygen atoms and the large gray spheres for vanadium atoms. (b) Scanning electron microscopy (SEM) image of the suspended VO₂ nanobeam device. (c) Schematic illustration of individual VO₂ nanobeams on a Au-coated Si substrate. (d) Phase diagram of VO₂(M) fraction with respect to temperature, uniaxial stress and strain. (e) Phase diagram of metallic and insulating VO₂ phases with respect to temperature and strain. (f) τ_c vs the lattice parameter c for VO₂ films deposited on TiO₂(110) and TiO₂(001) substrates. (g) Relationship between the strain and the reduction of τ_c in pure and H-doped VO₂. (h) Relationship between the strain and the reduction of τ_c in pure and the Be-doped VO₂. (i) Dependence of τ_c on the strain loaded on VO_{2-x}. Figures reproduced with permission from: **b**, ref.²³, Nature Publishing Group; **c**, ref.¹¹⁸, Royal Society of Chemistry; **d**, ref.¹¹², Nature Publishing Group; **e**, ref.²³, Royal Society of Chemistry; **f**, ref.¹¹⁶, Elsevier; **g**, ref.⁹², Royal Society of Chemistry; **h**, ref.⁶⁸, Royal Society of Chemistry; **i**, ref.³⁷, Royal Society of Chemistry.

3. Nano- and micro-structure of VO₂

Nano- and microscale morphology engineering approaches on VO₂ will be elaborated aiming to enhance its thermochromic properties, namely achieving large T_{lum} and ΔT_{sol} simultaneously.

3.1 VO₂ crystals

Monodisperse, nano-size, high crystallinity VO₂(M/R) particles are more favorable because these particles can be dispersed in the aqueous solvent and be cast into films with good visible transmittance and regulation ability of infrared light. A number of methods, summarized in Table 2, have been developed to obtain VO₂(M/R) particles. Gas phase reactions, such as chemical vapor deposition (CVD), ¹¹⁹ pulsed laser deposition (PLD), 120,121 and solid phase reaction, such as thermolysis, 122,123 and thermal reduction, ¹²⁴ have long been regarded as the exclusive strategy to obtain VO₂ particles. For the gas or solid phase preparation methods of VO₂ particles, the readers can be referred to the well-written review paper. 121 The experimental conditions of gas or solid phase reactions frequently require precisely scaled inert gas atmospheres, rigidly controlled temperatures, post treatment, and long synthesis time. Over the past decade, a number of liquid phase reaction approaches have been reported, such as the hydrothermal method, 125-127 seeded growth method, 128 precursors transformation method, 129,130 and direct combustion method. 131 According to the transformation path, the methods to obtain VO₂(M/R) particles are divided into intermediate phase transformations, redox reactions, and one-step reactions.

Intermediate phase transformation is the main strategy to obtain VO₂(M/R) particles before the discovery of one-step reaction. Most studies on intermediate phase transformation focus on the fabrication of VO₂(B) nanoparticles followed by thermal treatment to transform VO₂(B) to VO₂(R) at elevated temperature. For instance, Kam *et al.* first synthesized VO₂(B) nanorods through the hydrothermal method and then obtained VO₂(M) nanorods by thermal treatment of the metastable VO₂(B) at 700 °C in N₂ atmosphere. Is In addition to the transformation from VO₂(B), Zhang *et al.* reported the synthesis of belt-like VO₂(M) particles through the transformation of VO₂(A) to VO₂(M). Is Liu *et al.* discovered a new metastable phase, VO₂(D), which could guide the formation of VO₂(R/M) through a structural transition from VO₂(D) to VO₂(R). Wu *et al.* reported a novel transformation pathway from the goethite VOOH to VO₂(P) to VO₂(R), with each step taking less than one minute, realizing an alternative ultrafast transformation to VO₂(M) (Figure 5a-c). The intermediate

phase transformation method has two weaknesses. One is that the $VO_2(M/R)$ particles obtained from intermediate phase transformation usually present the belt-like or rod-like morphologies, which are unfavorable for dispersion in the aqueous solvent. The other weakness is that the transformation typically requires a high temperature (>400 °C) and a long transformation time to obtain the fully transformed $VO_2(M/R)$ phase.

Redox reaction is another strategy to prepare VO₂(M/R) particles, and V₂O₅ is usually the raw materials. V₂O₅ can be reduced to VO₂ by supplementary reducing agents (e.g., H₂C₂CO₄, amine, alcohols, and N₂H₄) in hydrothermal/solvothermal reactions ¹³⁹⁻¹⁴² or in a reductive atmosphere during high-temperature annealing. ¹²⁴ For instance, Liu et al. reported that the VO₂(M) nanosheets (Figure 5d) were obtained by the solvothermal reaction and subsequent heat treatment of a the mixture of commercial V₂O₅ powder and absolute EtOH in a high-purity N₂ atmosphere. ¹⁴⁰ Qi et al. employed the thermal reduction of V₂O₅ in ammonia gas to synthesize high-purity VO₂(M) particles (Figure 5e). 124 Chen et al. demonstrated a method to fabricate VO₂(R) particles through an electrochemical process using V₂O₅ as the cathode; after precisely controlling the electrical discharging currents, V⁵⁺ is reduced to V⁴⁺, and VO₂(R) particles are obtained. 131,143 Wu et al. obtained VO₂(M) particles by directly combusting an ethanol solution containing VO(acac)₂ (ac = acetylacetonate) in a confined space, 131 which provided not only sufficient energy but also necessary reductive atmosphere to maintain the +4 valence state of vanadium, contributing to the formation of thermodynamically stable VO₂(R) (Figure 5f). The redox reaction method has two weaknesses: the impurity of the product and the toxicity of V₂O₅.

One-step reaction is regarded as an effective strategy to fabricate VO₂(M/R) particles with high crystallinity and at low cost. In 2008, Gao's group reported for the first time the synthesis of snowflake-shaped single-crystal W-doped VO₂ nanoparticles through a one-step hydrothermal reaction (Figure 5g-h). Later, Ji *et al.* found that H₂SO₄ could serve as a morphology control agent in the same reaction system, so that VO₂ nanorods could be obtained directly from the one-step hydrothermal reaction (Figure 5i), and these nanorods presented excellent thermochromic properties with decreased τ_c and narrowed hysteresis. In 2011, Gao *et al.* extended the above research and found that the τ_c was closely correlated with the sizes of VO₂(M) nanobumps with a critical size of 13.0 nm (Figure 5j). Gao *et al.* Can developed a new approach to modulate the τ_c in VO₂ systems *via* controlling the

nanoparticle size. Although the one-step hydrothermal method proposed by Gao *et al.* was powerful and could be employed to prepare pure and thermodynamically stable VO₂(M) nanoparticles in large quantities, the prepared VO₂(M) particles displayed snowflake-like aggregation with oriented growth, hindering their dispersion in matrix materials. In 2012, Gao *et al.*¹⁴⁴ proposed a doping strategy to simultaneously control the morphologies and sizes of VO₂ nanoparticles. Using a one-step hydrothermal method, Sb-doped VO₂(M) nanoparticles with controllable sizes were prepared (Figure 5k-m). These nanoparticles exhibited obvious phase-transition characteristics when dispersed in aqueous solvent, and the foils fabricated by casting the VO₂(M) nanoparticles illustrated outstanding optical properties.¹⁴⁴ Very recently, Ji *et al.* prepared uniform VO₂ nanoparticles by the one-step hydrothermal method, finding the tunability of emissivity of VO₂ nanoparticles in both mid- and far-IR thermal atmospheric windows for the first time.¹⁴⁵

Table 2 Summary of the preparation methods of VO₂ particles

Category	Category Preparation method	Advantage	Disadvantage	Particle size	Particle size Particle shape Ref.	Ref.
;	thermal reduction	massive production	impurity of the product,	micro	rhombohedral	124
Solid		and low cost	rigid experimental conditions,			
phase			and toxicity of V ₂ O ₅			
Icaciioli	thermolysis	massive production	poor stability of the product,	micro	irregular	122
		and low cost	aggregation of particle			
Gas	pulsed laser deposition	precise control of size	rigid experimental conditions	micro/nano	rod	120
phase		and snape				110
reaction	chemical vapor	vapor high crystallinity	low yield,	nano	wire	119
Icacilon	deposition		dependence on the substrates			
	hydrothermal method	high crystallinity	difficulty in dispersing	nano	snowflake	125
		and low cost	particles in matrix materials			
Liquid	seeded growth strategy	controllability of crystal	/	nano	star	128
phase		growth				
reaction	precursor	time-saving	low yield	/	/	130
	transformation					
	direct combustion	time-saving	low yield	micron/nano irregular	irregular	131
, TA	1 1 1					

Note: "\" means data not available.

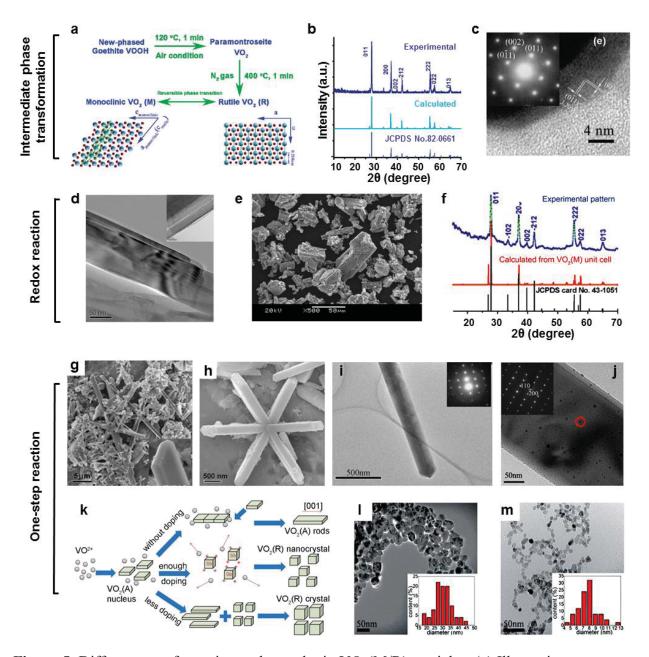


Figure 5. Different transformation paths to obtain VO₂(M/R) particles. (a) Illustration of the crystallographic transformation from the goethite VOOH to paramontroseite VO₂ to VO₂(M/R). (b) Experimental, calculated, and standard (JCPDS card No. 82-0661) XRD patterns of VO₂(M) crystals. (c) High-resolution transmission electron microscopy (HRTEM) image captured on the edge of a VO₂(M) nanoparticle and the corresponding and selected area electron diffraction (SAED) pattern (inset). (d) HRTEM image of VO₂(M) nanosheets fabricated from V₂O₅ powder and absolute EtOH in a high-purity N₂ atmosphere. (e) SEM image of the VO₂(M) particles obtained by thermal reduction of V₂O₅ in ammonia gas. (f) XRD pattern of the VO₂ particles obtained by direct confined-space combustion. (g) Field-emission SEM images of the VO₂ powders. (h) Snowflake-shaped single-crystal W-doped VO₂ nanoparticles synthesized through a one-step hydrothermal reaction. (i) Transmission electron microscopy (TEM) image of a VO₂ nanorod and the corresponding SAED pattern (inset). (j) TEM image and the SAED pattern (inset) of the VO₂ powders

produced through the hydrothermal method at 260 °C for 8 h. The nanobump is indicated by the red circle. (k) Schematic illustration of the evolution of Sb-doped VO₂ nanoparticles. (l and m) TEM images of the VO₂ nanocrystals produced through the hydrothermal method at 260 °C for 12 h with 3% (l) and 40% (m) Sb³⁺ addition, respectively. Insets of (l) and (m) show the corresponding calculated size distributions. Figures reproduced with permission from: **a-c**, ref.¹³⁰, American Chemical Society; **d**, ref.¹⁴⁰, Elsevier; **e**, ref.¹²⁴, Elsevier; **f**, ref.¹³¹, Wiley; **g-h**, ref.¹²⁵, American Chemical Society; **i**, ref.¹²⁶, Elsevier; **j**, ref.¹²⁷, Elsevier; **k**, ref.¹⁴⁴, Royal Society of Chemistry.

3.2 Nanocomposites based on VO₂ crystals

3.2.1 Simulation

In the continuous VO_2 thin films, the thickness needs to be increased to overcome the insufficient $\Delta T_{\rm sol}$, but at the cost of depressing the $T_{\rm lum}$. A promising way to tackle the trade-off between $\Delta T_{\rm sol}$ and $T_{\rm lum}$ is by fabricating nanothermochromic composite, which can be achieved by embedding VO_2 -based nanoparticles in a dielectric matrix. The reported simulated and experimental results concerning VO_2 -based nanocomposites are summarized in Table 3.

This concept was first developed by Li et al., who demonstrated via calculations based on effective medium theory (EMT) that a system composed of well-dispersed VO₂ nanoparticles (reflective index of ε_p) in a dielectric host has advantages over continuous thin films.^{147,148} Dilute composites composed of three types of VO₂ nanoparticles (spheres, ellipsoids, and core-shell) embedded in a dielectric matrix were considered (Figure 6a-c) and the aspect ratio m is defined as a/c to describe the spheroidal geometry in the calculation. The selected refractive index of the matrix (ε_m) was similar to that of glass or a polymer. The composite thickness was set to 5 µm with a filling factor f of 0.01, which means that the effective thickness (including the VO₂ nanoparticles) is 0.05 μm, identical to one of the conditions calculated for the continuous films. They demonstrated than an increase in the aspect ratio leads to the higher $T(\lambda)$. Moreover, the highest $T(\lambda)$ for randomly oriented particles occurs when m = 1, i.e., when the particles have a spherical shape. Compared with continuous thin films ($T_{\text{lum}} = 38\%$ at the same effective thickness), the T_{lum} for spheres (m = 1) increased to ~72% and ~62% for the insulating and metallic states, respectively. Meanwhile, for spheroids, the $\Delta T_{\rm sol}$ between the two phases is ~20%, while it is only ~7% for continuous films. For the core-shell structure (Figure 6c), ε_c and ε_p denote the dielectric functions of the core (with diameter x) and the VO₂ shell (with thickness t), respectively.¹⁴⁸ Calculations were done by varying the refractive indexes of the core (n_c) and changing the ratio of x/t. $T(\lambda)$ was found to decrease with an increase in x/t. The adverse effect of a high x/t ratio on T_{lum} and T_{sol} becomes more pronounced with increasing n_c . The largest ΔT_{sol} was 20.9%, observed for hollow nanospheres ($n_c = 1$) with x/t = 10, which is superior to that of solid nanospheres (~16.7%). However, T_{lum} shows a concomitant decrease from 73.5% to 59%. Moreover, they demonstrated that inverted core-shell structures constructed by an outermost shell with a refractive index ranging from 0 to 2.5 surrounding a VO₂ core without remarkable enhancement of thermochromic performance.

EMT does not consider light scattering by the nanoparticles, as the radii of the embedded nanoparticles are assumed to be substantially smaller than the wavelength, which is small enough to neglect light scattering. Hence, Laaksonen et al. further applied the four-flux method, a simplification of the multiple-scattering approach, together with EMT to determine the onset of light scattering. 149 In this approach, different fluxes in the forward and backward directions were collected to acquire the transmittance (direct and diffuse) and reflectance (specular and diffuse). The nanothermochromic properties of the VO₂-based nanocomposites were simulated for different-sized nanoparticles with radii of 5, 20, 50, and 100 nm. 149 The inference-free EMT showed good agreement with the four-flux theory when the radius of the embedded particles was less than 20 nm. As the nanoparticle size increased, the scattering was enhanced, and the difference between the four-flux theory and EMT became obvious. Such significant light scattering results in remarkable absorption and insufficient transmittance, which are not desired for applications of VO₂-based nanocomposites. Therefore, they concluded that VO₂ particles with sizes below or approximately 20 nm and fine crystallinity are crucial for applying VO₂-based nanocomposite coatings in practice.

3.2.2 Experiment

Non-responsive matrix

Over the past decade, many methods for preparing VO₂ nanoparticles with fine crystallinity have been explored and implemented, followed by dispersion in various host materials, for practical applications of nanothermochromics. These host materials are classified as non-responsive or responsive matrixes, depending on if they display distinct optical modulation during heating.

Polyurethane (PU) has been widely studied as a host material for VO₂-based thermochromic composites. The incorporation of pure VO₂ nanocrystals with PU was achieved by Chen et al., with excellent thermochromic properties observed. 150 Finely crystalline VO₂ nanoparticles with average diameters of 26 nm were prepared via a hydrothermal method based on the burst-nucleation process induced by precursor decomposition Through the assistance of at critical temperature. polyvinylpyrrolidone (PVP), VO₂ nanoparticles were well dispersed in a PU matrix to form a visible homogenous film. The composite displayed a much lower reflectance (below 8%) than the pure VO₂ coating on bare glass. The low reflectance, combined with the small size and high crystallinity of the VO₂ nanoparticles, revealed a remarkable $\Delta T_{\rm sol}$ of 22% and an acceptable $T_{\rm lum}$ of 45.6% at low temperature and 40.0% at high temperature, which is very close to the highest simulation results ($\Delta T_{\rm sol}$ = 23.7%). Shen *et al.* used a solid-state reaction to form aggregations of spherical VO₂ nanoparticles with a τ_c in the range of 43.5 to 59.3 °C.¹⁵¹ The reduction of τ_c may be due to the presence of an amorphous VO₂ phase surrounding the crystallized phases. However, their best-performing composite only showed a $\Delta T_{\rm sol}$ of 9%. Gao *et al.* introduced the VO₂-PU composite to Sb-doped SnO₂ (ATO), a typical material that can largely block transmittance in the infrared (IR) range while maintaining high transparency. By optimizing the experiment, the ATO-VO₂-PU composite achieved comparable $\Delta T_{\rm sol}$ and $T_{\rm lum}$ to the VO₂-PU foil without ATO. They further tested their applied properties in two model houses and demonstrated that the addition of ATO filler made the composite more effective at shielding IR transmittance than the VO₂-PU composite.

Embedding doped VO₂ nanoparticles into the PU matrix also achieved superior nanothermochromic properties. The primary reason for doping other elements into VO_2 nanoparticles is to reduce the τ_c from ~70 °C to around room temperature. Upon substituting V atoms with F,71 Mg,66 W or Zr atoms,103 both VO₂(M) and VO₂(R) lattice structures are distorted due to structural defects induced by the dopants. Upon increasing the doping level, the structural difference between the high-temperature and low-temperature states decreases, which in turn, leads to the reduction of the MST latent energy, therefore resulting in a decrease in the τ_c . An increase in dopant concentration usually deteriorates the solar modulation performance due to the appearance of lattice defects and morphological changes in the nanoparticles. In addition to Mg and W+Zr dopants, T_{lum} can be fairly maintained by F doping or slightly increased by introducing Zr into the VO₂ lattice. Among the dopants, F and W able to lower the τ_c to a comfortable temperature of 35 and 29 °C, respectively, but large reduction in τ_c requires a high doping level at the cost of weakening the thermochromic performance. Although Ti doping fails to reduce τ_c , 1.1 at% Ti achieves the simultaneous improvement of T_{lum} (from 46% undoped to 53%) and ΔT_{sol} (from 13% undoped to 17%).⁷² However, further increasing the Ti doping level does not further benefit the thermochromic properties. Dopant of Ti not only affects the thermochromic properties of VO₂ nanoparticles but also modifies the color of VO2-based nanocomposite foils, as it widens the band gap of VO2, inducing a blueshift in the absorption spectrum that lightens the original brownish-yellow color to a faded yellow color.

The motivation for employing core-shell structures is to protect VO₂ nanoparticles from oxidation and maintain the outstanding nanothermochromic properties. The SiO₂ shell can act as a protective layer to restrain oxygen diffusion and prevent thermodynamically unstable VO2 from being oxidized. Gao et al. successfully prepared VO₂-SiO₂ core-shell nanocrystals and integrated them in a PU matrix to produce flexible thermochromic foils. 153 The fabrication process is described in Figure 6d. VO2 nanoparticles were sequentially treated by PVP and tetraethyl orthosilicate (TEOS) to obtain silica shells. To promote the dispersion of the core-shell structures in PU, they were further treated with a trace amount of silane coupler. The composite was cast on a polyethylene terephthalate (PET) substrate. As shown in Figure 6e-f, the films with high (Sample I) and low (Sample II) VO₂ content display excellent flexibility. Jin's group further explored core-shell structures by producing VO₂@SiO₂ nanorod structures or introducing W-doped VO₂-SiO₂ core-shell nanoparticles. 154,155 Both methods achieved decent performance, including high solar modulation and luminous transmittance, as well as improved stability. They suggested that the thermochromic performance benefited from surface plasmon resonance (SPR) and calculated the tunable SPR position by varying the filling factor and aspect ratio of the VO₂@SiO₂ nanorod structure. When 3 at% W is doped into VO₂ nanoparticles with SiO₂ shells to ensure excellent weatherability, the resulting $V_xW_{1-x}O_2@SiO_2$ nanocomposites, with their near-room-temperature transition, can achieve a T_{lum} of 49% and ΔT_{sol} of 15%. They noted that based on four-flux theory, a small particle size (~ 20 nm), good crystallinity, and good dispersion of nanocrystals in the composite are essential to achieve outstanding nanothermochromic properties. Ji et al. synthesized the VO₂@ZnS core-shell nanoparticles through the homogeneous precipitation method, finding that the VO₂ nanoparticle in the center exhibited tunable emissivity in the mid-wavelength and long-wavelength thermal atmospheric windows, wheras the ZnS shell, as an infrared transparent material, not only modified the color of VO₂ nanoparticle, but also enhanced the oxidation resistance. 156

Alternatively, Long's group adopted a transparent Si-Al gel as the host material. They utilized mechanical attrition (bead-milling) to obtain VO₂ nanoparticles without using a heating source.¹⁵⁷ The nanoparticles were well dispersed in the Si-Al gel and then coated on glass. An optimized thermochromic performance was achieved with a

3 µm-thick film containing 10 wt% VO₂. Following this work, the Si-Al gel/VO₂ composite was further developed to various micropatterned structures via a facile screen-printing method. ¹⁵⁸ By optimizing the size of the mesh opening, the VO₂ load, and the film thickness, they demonstrated that the micropatterned structures simultaneously improved the ΔT_{sol} (8.8%) and T_{lum} (67%) over those of continuous films (ΔT_{sol} of 6.9% and T_{lum} of 60%) and the best preformed film has ΔT_{sol} of 14.9% combined with T_{lum} of 43.3%, An elastomeric matrix of polydimethylsiloxane (PDMS) was employed by Moot *et al.* to incorporate 10-200 nm VO₂ nanoparticles into stretchable composite films, ¹⁵⁹ In addition, the film thickness could be easily reduced by stretching the films, which induces the formation of voids at the high-stress area and thus facilitates a significant enhancement in the T_{lum} from 45.6 to 55.4% as well as a slight increase in the IR modulation from 7.6 to 8.1% (due to the blueshift of the plasmon resonance spectral position).

Inorganic host materials, such as TiO₂, were explored by Gao's group.¹⁶⁰ They successfully fabricated inorganic-inorganic composite coatings by the two-step annealing of VO₂ nanoparticles in TiO₂ sol. In addition to acceptable thermochromic effects, these coatings showed additional advantages of self-cleaning, low contact angle and photocatalytic decomposition of organic contaminants. These functions introduced by the TiO₂ matrix improved the weatherability of VO₂-based smart windows.

Responsive matrix

Though numerous advancements in VO₂-based non-responsive composites have improved the thermochromic performance, the best $T_{\rm sol}$ is still below 30%, which is limited by the spectral range that VO₂ can modulate. Solar energy is dense in the visible range, but VO₂ cannot regulate in this region due to the limited difference of the optical constants in spectrum range of 400 to 800 nm between its rutile and monoclinic phases. Incorporating a thermoresponsive host material with VO₂ has been proven to be a promising way to overcome this limitation.

Recently, Zhou *et al.* applied a thermoresponsive matrix to a VO₂-based composite for solar energy modulation. Pure poly-N-isopropylacrylamide (PNIPAm) is transparent below the lower critical solution temperature (LCST) and becomes translucent when the temperature increases, accompanied by a change in the NIR transmittance. In this research, phase separation of the PNIPAm hydrogel

controlled the luminous modulation, while the phase transition of VO₂ nanoparticles contributed to the NIR modulation, providing an extremely high $\Delta T_{\rm sol}$ of 35% and a high average T_{lum} of 60%. Figure 6g illustrates the formation of the laminated VO₂/hydrogel hybrid thin film and the mechanism to regulate the solar energy at different temperature. Compared with pure hydrogel of the same thickness, the VO₂/PNIPAm hybrid thin film had a slightly lower T_{lum} at both 20 and 90 °C due to the introduction of the VO₂ nanoparticles, but the IR modulation ability was dramatically increased, which lead to the high $\Delta T_{\rm sol}$. The large contrast in the hybrid structure occurred in both the visible and NIR range, leading to a high solar modulation which is difficult to be reached by the non-responsive matrix. Later, Yang et al. developed a hydrogel based on hydroxypropyl cellulose (HPC). 163 Similar to PNIPAm, HPC becomes translucent during heating due to its LCST behavior. In addition to excellent thermochromic performance ($\Delta T_{\rm sol}$ of 36.0% and $T_{\rm lum}$ of 56%), the prepared composite displayed a suitable τ_c of approximately 50 °C by adjusting the τ_c of W-doped VO₂ nanoparticles and HPC. They suggested that the small liquid pores and aggregated polymeric blocks at elevated temperature could scatter the incident visible light and become translucent or opaque above the LCST.

In a different work, Jin's group combined VO₂ nanoparticles with a thermochromic ionic liquid, which typically increases the absorbance during heating over the range of 650 to 750 nm rather than over the whole visible range as the hydrogel does. ¹⁶⁴ In the experiment, an ionic liquid-nickel-chlorine (IL-Ni-Cl) complex was observed to undergo a gradual color change from colorless to blue during heating. The VO₂/IL-Ni-Cl composite demonstrated outstanding optical regulation properties (ΔT_{sol} of 26.5%) and maintained good transparency (T_{lum} of 50%). More interestingly, the films exhibited a distinct color change from brown at 20 °C to green at 80 °C, which was believed to be a synergistic effect of the color variations in pure VO₂ and pure IL-Ni-Cl films (Figure 6h). This method provides an alternative way to simultaneously improve the unfavorable brownish-yellow color of VO₂ and achieve good solar energy modulation. They then applied similar methods to cobalt(II)- and nickel(II)-based ligand exchange thermochromic systems (CLETS and NCLETS^{165,166} and similar results were obtained.

Table 3 Summary of experimental and simulation results of VO₂-based thermochromic nanocomposites.

Cotocomy	Matrix		Embedded nanocrystals		T_{lum}	$\Delta T_{ m sol}$	_	Pof
Category			Types	Dopant \ structures	(%)	(%)	$ au_{ m c}$	Ref.
Simulation	Non-	\	spheroidal Vo	O ₂ particles	67.0	20.0	\	147
Simulation	responsive	\	VO ₂ -based co	VO ₂ -based core-shell structures		20.9	\	148
			VO ₂		45.6	22.3	_	150
			VO ₂ and Sb-doped SnO ₂		51.4	11.7	\	152
				F	48.7	10.7	\downarrow	71
Experiment				Mg	54.2	10.6	\downarrow	66
		PU	Doped VO ₂	Zr	60.4	14.1	\downarrow	103
	Non- responsive			W+Zr	56.4	12.3	\downarrow	103
				W	56.0	12.7	\downarrow	150
				Ti	53.0	17.2		72
			Core-shell	VO ₂ -@-SiO ₂	27.8	13.6		153,154
			structure	$V_xW_{1-x}O_2$ -@-SiO2	50.6	14.7	\downarrow	155
		Si-Al gel	VO ₂		59.1	12.0		157
		PDMS	VO_2		85	\		159
		TiO_2	VO_2		61.2	14.6		160
	Responsive	PNIPAm	VO ₂		62.6	34.7	\downarrow	161,162
		HPC	Doped VO ₂	W	56.0	36.0	↓	163
		IL-Ni-Cl	VO_2		55.2	26.5	\	164
	•	CLETS	VO_2		59.2	20.8	\	165
		NLETS	VO_2		71.0	18.2	\	166

Note: "—" means unchanged; "\" means decrease; "\" means data not available; "PNIPAm" means poly(N-isopropylacrylamide); "HPC" means hydroxypropyl cellulose; "CLETS" means Co-based ligand exchange thermochromic system; "IL-Ni-CL" means liquid-nickel-chlorine complex; "NLETS" means nickel-based ligand exchange thermochromic system.

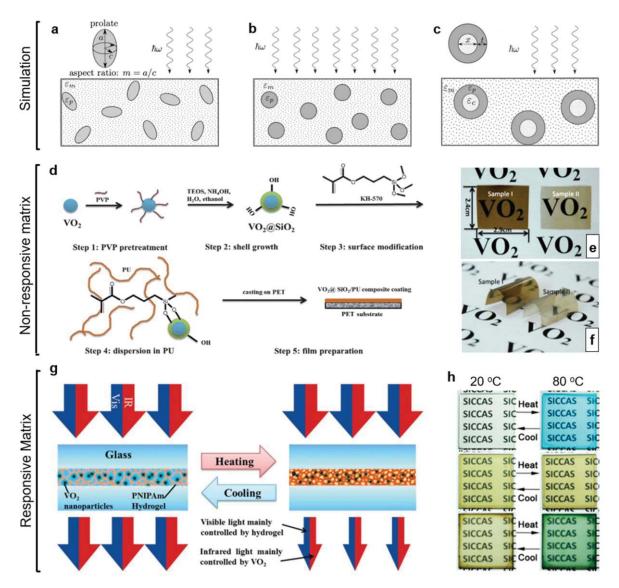


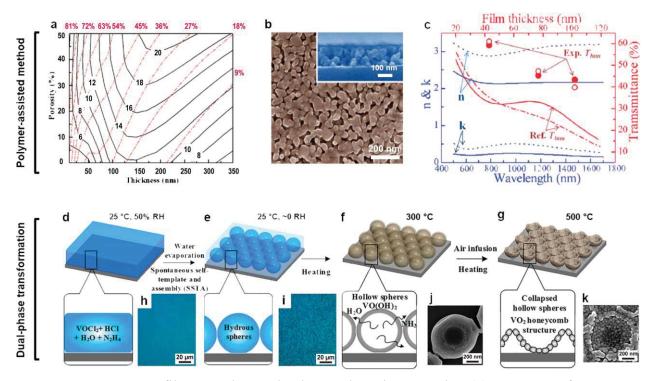
Figure 6. Nanocomposites based on VO₂ crystals to enhance the thermochromic properties. (a-c) Structural models of composites embedded with nanocrystals having three different nanostructures: (a) ellipsoids, (b) spheres, and (c) core-shell nanoparticles. The dielectric functions of the matrix, nanoparticle, and core in the core-shell structure are denoted $\varepsilon_{\rm m}$, $\varepsilon_{\rm p}$, and $\varepsilon_{\rm c}$, respectively. The aspect ratio is defined as m = a/c for ellipsoids and spheres (m = 1). The x and t indicate the core diameter and the shell thickness, respectively. The incident light is characterized as $h\omega$. (d) Scheme of the preparation procedure for the VO₂@SiO₂/PU composite, starting from VO₂ nanoparticles. (e,f) Photographs of flexible thermochromic films based on VO₂@SiO₂/PU composites with high (Sample I) and low (Sample II) VO₂ contents. (g) Illustration of the solar modulation behavior of the VO₂/PNIPAm-based composites. Both the visible and infrared light transmittance decreased when the films were heated. (h) Photographs of the films based on the pure IL-Ni-Cl complex (top row), VO₂ nanoparticles (medium row), and VO₂/IL-Ni-CL composite (medium row) at 20 (left column) and 80 °C (right column), respectively. The IL-Ni-Cl complex and VO₂/IL-Ni-CL composite have distinct temperature-responsive color changes. Figures reproduced with permission from: **a-b**, ref.¹⁴⁷, American Institute of Physics; **c**, ref.¹⁴⁸, American Institute of Physics; d-f, ref. 153, Royal Society of Chemistry; g, ref. 162, Royal Society of Chemistry; h, ref. 164, American Chemical Society.

3.3 Porous VO₂ films

The introduction of air-filled nanopores, which are considered to be a secondary component in VO₂ films, has been proven to be an effective method to improve the thermochromic performance, especially the T_{lum} . Gao *et al.* calculated the spectral transmittance of a nanoporous VO₂ film on a fused-silica-glass substrate with variable porosity and thickness by employing the optical-admittance recursive method, which is based on the optical-admittance function. ¹⁶⁷⁻¹⁷⁰ Based on the calculation, they plotted a useful diagram that correlates the thermochromic performance, including ΔT_{sol} and visible transmittance of porous VO₂ films at low temperature ($T_{\text{lum,low}}$), with the thickness and porosity of the film (Figure 7a). An optimizing thermochromic performance is demonstrated up to a ΔT_{sol} of 20% with a $T_{\text{lum,low}}$ of 45%. They suggested that ΔT_{sol} could be enhanced without a decrease in $T_{\text{lum,low}}$ because of the depression of the porosity-derived reflection. The progress of simulation and experimental of porous VO₂ films are summarized in Table 4.

Incorporating removable additives into the vanadium precursor has been demonstrated to be a facile way to fabricate porous VO₂ films. Gao *et al.* pioneered the porous films and successfully produced nanoporous thermochromic VO₂ films by a polymer-assisted deposition method.¹⁷¹ The pores in the final films are formed from PVP degradation and shrinkage of the gel films during high-temperature annealing (Figure 7b). These air-filled pores had feature sizes much smaller than the visible wavelength lower the low optical constants (Figure 7c), resulting in a high luminous transmittance, $T_{\text{lum}} = 43.3\%$, and solar modulation, $\Delta T_{\text{sol}} = 14.1\%$. A micro/nanosized (20-50 µm/100-500 µm) hierarchical porous structure was developed by Huang *et al.* through the self-assembly of cetyltrimethylammonium vanadate (CTAV), which exhibited largely enhanced visible-light transmittance.¹⁷² Later, surfactants such as cetyltrimethyl ammonium bromide (CTAB),⁶¹ polyethylene glycol (PEG),¹⁷³ and sodium dodecyl sulfate (SDS)¹⁷⁴ were reported to successfully serve as nanostructure-directing agents for VO₂ films.

Instead of incorporating removable additives into the precursor, Long's group achieved porous VO₂ films by controlling the drying procedure *via* a lyophilization method (freeze-drying).¹⁷⁵ In their experiment, the sols were frozen at low temperature and pressure, and then, the solvent was removed *via* sublimation. This procedure can easily circumvent the collapsed pores induced by evaporation under


atmospheric pressure. This group further explored the effect of gas effect during annealing. 176 When a $\rm CO_2$ atmosphere was applied during sintering, nanoporous $\rm VO_2$ films were formed, and the crystallization temperature of $\rm VO_2$ was reduced to 550 °C from 750 °C when sintering in vacuum.

A spontaneous self-templating and assembly process during dual-phase transformation was successfully applied by Liu et al. to prepare porous VO2 structures. 177 In the experiment, an aqueous vanadium precursor including vanadyl dichloride (VCl₂), hydrazine (N₂H₄), hydrochloric acid (HCl), and PVP was spin-coated on a quartz substrate and then dried under nitrogen (Figure 7d). The formation of hydrous colloids was promoted by N₂H₄ but impeded by HCl. During the evaporation process, the promotional effect of N₂H₄ was enhanced, but the quenching effect of HCl weakened, forming hydrous colloidal spheres from the homogeneous precursor. These spheres self-assembled into a close-packed structure at the colloid-substrate interface when saturation was reached in the hydrous colloids (Figure 7e). After that, the hollow sphere structures developed at 300 °C and then collapsed and crystallized to VO₂ during annealing at 500 °C (Figure 7f-g). These processes have been demonstrated experimentally (Figure 7h-k). By optimizing the experimental conditions, a high transmission (95.4% at 700 nm) was achieved, accompanied by $\Delta T_{\text{sol}} = 5.5\%$, for a honeycomb VO₂ film with a thickness of 65 nm. In contrast to the self-assembly relying on dual-phase transformation, Zhang et al. prepared self-assembled VO₂ nanonets on a (001) single-crystal sapphire substrate by synchronously controlling the growth direction and crystallographic orientation. ¹⁷⁸ The key is the lattice-matching between the low-surface-energy plane of VO₂ and the 3-fold symmetric (001) plane of sapphire, which induced the growth of (020) VO₂ on the (001) sapphire substrate followed by the growth of (001) VO₂ to suspended nanorods in three equivalent directions. The films were produced on the wafer scale and displayed dramatic fatigue endurance.

Table 4 Summary of porous VO₂ films

Categor y	Preparation r	nethod	Structure	Pore size	$\Delta T_{ m sol}$ (%)	T _{lum} (%)	Ref.
Simulati on	\		Random porosity	Nano	20	45	171
		PVP	\	Nano	14.1	43.3	171
Experim ent	Incorporati ng removable additive	CTAV	Hierarchical porous structure	Nano/ micro	\	46.5	172
		CTAB	\	Nano	\	\	61
		PEG	\	Nano	\	\	173
		SDS	\	Nano	\	\	174
	Process control	Freeze-drying	\	Nano	14.7	50.0	175
		Sintering in CO ₂ atmosphere	\	Nano	2.2	35.9	176
	Self-assem bly	Dual-phase transformation	Quasi-honey comb	Nano	5.5	\	177
		Crystallographic orientation control	Interconnecte d nanonet	Nano	\	\	178

Note: "\" means data not available.

Figure 7. Porous VO₂ films to enhance the thermochromic properties. (a) Summary of the calculated thermochromic performance as a function of porosity and film thickness. $T_{\text{lum,low}}$ (visible transmittance of the porous VO₂ film at low temperature) and ΔT_{sol} are denoted by the red dotted lines and black solid lines, respectively. (b) The porous morphology of a 147 nm-think VO₂ film, as an example, from the top and side view (inset). (c) Optical properties of porous VO₂ films comparing with reference (non-porous VO₂ film). The optical constants (n and k) in experiment and reference are indicated as the solid and dotted blue lines. Experimental T_{lum} is recorded at 20

(solid sphere) and 90 (open circle) °C. The reference of T_{lum} at 20 (solid red line) and 90 (dashed red line) °C are presented. (d-k) Schematic of the self-templating and assembly during the dual-phase transformation process, which includes four steps: (d) deposition of a homogeneous solution-based precursor on a substrate, (e) assembly of self-templated hydrous sphere arrays, (f) formation of hollow VO(OH)₃ spheres, and (g) formation of the honeycomb-nanostructured VO₂ film *via* the collapse of hollow spheres. (h) and (i) are the corresponding photographs of steps (d) and (e), respectively. (j) and (k) are the SEM images presented as demonstrations of steps (f) and (g), respectively. Figures reproduced with permission from: **a-c**, ref. ¹⁷¹, American Chemical Society; **d-k**, ref. ¹⁷⁷, American Chemical Society.

3.4 Grid VO₂ films

Films based on grid-structured VO₂ have attracted increasing interest due to the great potential of structure-induced thermochromic enhancements, including but not limited to increased transmittance, antireflection, and localized surface plasmon resonance (LSPR). Previous studies, including simulation and experimental works, are summarized and classified in Table 5.

The group of Long demonstrated that nanogrid structure is able to significantly enhance the $T_{\rm lum}$ without deteriorating $\Delta T_{\rm sol}$ and demonstrated by 3D finite difference time domain (FDTD) method to numerically optimize a number of parameters, including structural models, cavity size, periodicity, film thickness, and fill factor. ¹⁷⁹ In the simulation, three structural models are calculated: square holes in square lattices, circular holes in square lattices, and circular holes in hexagonal arrangement (Figure 8a). The thermochromic performance of square holes in square lattices is summarized in Figure 8b. Moreover, a competitive thermochromic performance ($T_{\rm lum} = 76.5\%$ and $\Delta T_{\rm sol} = 14.0\%$) was demonstrated on hexagonal-packed circular cells of VO₂ with a radius of 80 nm, periodicity of 160 nm, and thickness of 300 nm.

Grid VO₂ films with periodicity in microscale are processable and the same group has applied the electrodeposition method to successfully assemble the VO₂ NPs to electrodes by tuning the ionic strength (Figure 8c). ¹⁸⁰ Flexible thermochromic film was produced by depositing the VO₂ NPs on to grid Cu/PET substrates, in which the NPs assembled alone the grid Cu electrodes (Figure 8d). An optimized ΔT_{sol} of 13.9% and T_{lum} of 38.4% were demonstrated. Another facile method, the mesh printing method was reported by Lu *et al.* to prepare micropatterned VO₂/Si-Al gel composites by mounting a mesh above a glass substrate with controllable distance (Figure 8e). ¹⁵⁸ Films *via* the method display competitive performance which up to a ΔT_{sol} of 14.9% under a T_{lum} of 43.3%. These two fabrication methods are facile, efficient, and controllable.

Preparation of grid films with periodicxity in nanoscale is challenging. The colloidal nanolithography method was developed as a facile and productive method to prepare patterned nanostructures.¹⁸¹ Xie's group applied monolayer colloidal crystal (MCC) templates made of polystyrene (PS) nanospheres to prepare periodic porous VO₂ films.¹⁸² In their study, MCC templates consisted of closed-packed polystyrene nanospheres were sequentially immersed vanadium precursor, then removed during

annealing to leave the VO2 nanonet structures. Ke et al. modified the nanosphere lithography method and produced diverse patterned VO₂ films with tunable periodicity and nanostructures, including nanoparticle, nanonet, and nanodome arrays. 183 The fabrication process is flexible by controlling the plasma etching (PE) duration and precursor viscosity, illustrating as the synthetic routes in Figure 8f. When a short PE duration is applied, nanoparticle and nanodome arrays can be produced using low-viscosity (Route 1) and high-viscosity (Route 2) precursors, respectively. Nanonet arrays can be fabricated by prolonging the PE duration and using low-viscosity precursors (Route 3). The produced 2D patterned VO₂ arrays are highly uniform (Figure 8g). The patterned VO₂ films were further explored in thermochromic smart window and demonstrated an optimizing performance of $\Delta T_{\text{sol}} = 13.2\%$ and T_{lum} = 46%. For the first time, hexagonally patterned VO₂ nanoparticle arrays with average diameters down to 60 nm and a periodicity of 160 nm were fabricated on the centimeter scale. Interestingly, such structure gives rise to tunable peak positions and intensities of the LSPR at different temperatures. The LSPR was also found to redshift with an increase in the particle size and the reflective index of the media, and these results fit well with the trend calculated using the 3D FDTD method.

Table 5 Summary of grid-structured VO₂ films.

Category	Preparation method	Structure	$\Delta T_{\rm sol}$ (%)	T_{lum} (%)	Ref.
Simulati	1	Grid	14.0	76.5	179
on	1	Nanoparticle array	\	\	183
Experim ent	Electrodeposition	Micro-grid	13.9	38.4	180
	Mesh printing	Micro-patterned	14.9	43.3	158
	Nanosphere lithography	Nanonet	7.9	\	182
		Nanonet	\	\	183
	Modified nanosphere	Nanoparticle array	13.2	46.0	183
	lithography	Nanodome array	\	\	183

Note: "\" means data not available.

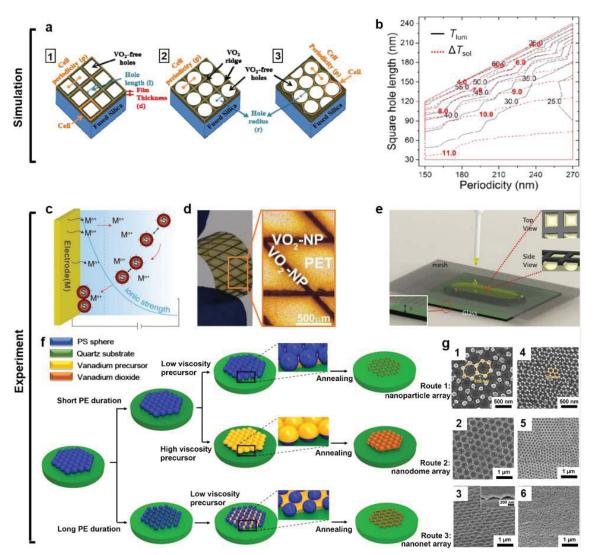


Figure 8. Films based on grid-structured VO₂ to enhance the thermochromic performace. (a) Simulation models of the grid films with square holes (a1) and circular holes (a2) in square lattices as well as the circular holes in hexagonal arrangement (a3). (b) Summary of the calculated T_{lum} and ΔT_{sol} of the model with square holes in square lattice under various periodicity and square hole length. (c) Schematic of the electrodeposition process based on ionic strength. The metal ions (M^{n+}) can reduce the interparticle repulsion among substances (S) and facilitate the S deposition. (d) Photograph of the sample which contains VO₂ NPs deposited on flexible grid Cu/PET film (left) and the optical microscopy image of the grid structure (right). (e) Illustration of the mesh printing method, in which the thickness of sample is controlled by the distance (D) between the glass substrate and the mesh mounted above. (f) Process of the template-assisted method for patterned VO₂ nanocrystals. Three types of the 2D periodic VO₂ nanocrystals, namely, nanoparticle, nanonet, and nanodome arrays, are derived from the nanosphere MCC by controlling the PE duration and the precursor viscosity through routes 1-3 in (f). (g) SEM images of periodic nanoparticle, nanonet, and nanodome VO₂ arrays with periodicities of 490 nm (g1-g3) and 160 nm (g4-g6). (g3) and (g6) are the tilted-view SEM images. The periodicity can also be controlled to be the same as the nanosphere diameter of the MCC templates. Figures reproduced with permission from: a,b, ref.¹⁷⁹, The Optical Society; **c,d**, ref.¹⁸⁰, Royal Society of Chemistry; **e**, ref.¹⁵⁸, Royal Society of Chemistry; **f,g**, ref. ¹⁸³, American Chemical Society.

3.5 Biomimetic VO₂ patterning

The usual properties of biomimetic structures have attracted great research interest, especially in light manipulation and the design of high-performance optics. Recently, the integration of a bioinspired artificial surface with VO₂-based thermochromic smart windows was shown to have great potential through the simultaneous enhancement of $\Delta T_{\rm sol}$ and $T_{\rm lum}$ as well as the efficient modification of the unfavorable brownish-yellow color of VO₂.

Moth-eye nanostructures can efficiently eliminate reflection because the sub-wavelength nipple array generates a continuous refractive index gradient between the air and the medium, effectively reducing the refractive index gap at the air-medium interface (Figure 9a-b). 185,186 Taylor et al. introduced the moth-eye structures to thermochromic VO₂-based intelligent glazing.¹⁸⁷ In their simulation, the VO₂-coated nipple arrays were designed to be hexagonal-close-packed (HCP) on a glass substrate (Figure 9c). The thermochromic performances were calculated by numerically optimizing these dimensions using the 3D FDTD method and are plotted in Figure 9d. As shown in Figure 9d, structures with heights lower than 500 nm are preferred, as these structures are reflective, especially in visible and dense solar energy regions. A decent thermochromic performance of $T_{\text{lum}} = 59.9\%$ combined with $\Delta T_{\rm sol} = 19.4\%$ was revealed at point C in Figure 9d. VO₂ films with moth-eye structures were successfully prepared by Qian et al. by coating VO2 onto fused silica substrates with moth-eye structures that were pre-fabricated via nanosphere lithography (Figure 9e-f). 188 The periodicity of the prepared films was precisely controlled to range from 210 to 1000 nm. They found that the T_{lum} increases with decreasing periodicity, and moreover, the sample with a periodicity of 210 nm simultaneously enhanced T_{lum} and ΔT_{sol} over those of the planar sample. Future research can be directed at reducing the periodicity, which may be a challenge for the fabrication of sub-100 nm patterns.

The opalescent or iridescent colors commonly observed in butterflies, ¹⁸⁸ flora, ¹⁸⁶ *etc.* are produced by "photonic crystals", a concept first proposed in the 1980s (Figure 9g-h). ¹⁸⁹ Photonic crystals are composed of periodically structured materials, generating a photonic band gap (PBG) and distinct structural colors by the coherent diffraction of visible light. ¹⁹⁰ Ke *et al.* applied photonic crystals to VO₂-based smart windows to successfully modulate the unfavorable brownish-yellow color commonly observed for VO₂ films. ¹⁹¹ They prepared 2D HCP SiO₂-VO₂ core-shell structures on

glass substrates with a fixed shell thickness of 20 nm (Figure 9i). As demonstrated by FDTD simulation, thermochromic films relaying on such photonic structures display statically diameter-dependent modulation in the visible range, while maintaining good thermochromic performance (up to $T_{\text{lum}} = 49.6\%$ and $\Delta T_{\text{sol}} = 11.0\%$) (Figure 9j). The PBG-induced transmittance peaks and troughs were further verified experimentally with a variation in diameter, and structure-induced colors were observed to change from yellow-brown to red, blue, or green. However, the optimized ΔT_{sol} is limited to 3.1% in the experiment, much lower than the simulated result (11.0%). This difference is mainly attributed to the sol-gel method employed in the experiment, which resulted in half-coated spheres (Figure 9k-1) rather than perfect core-shell structures. The coating uniformity could be improved by using vapor deposition methods with different core materials and assembly.

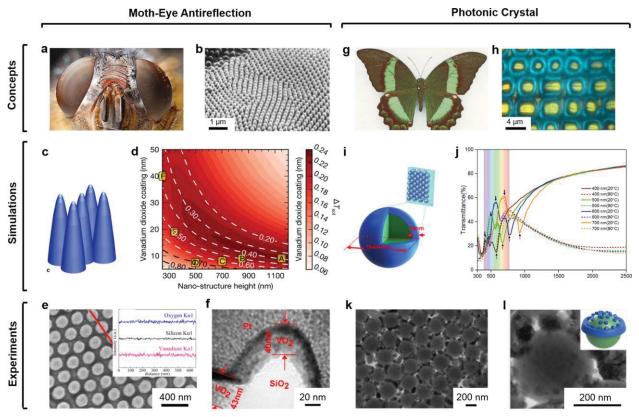


Figure 9. Integration of a bioinspired artificial surface to enhance the thermochromic performace. (a) Photograph of the compound eyes of Calliphora. (b) The antireflection structures on the surface of its ommatidium. (c) Three-dimensional illustration of the VO₂-coated nipple arrays used in the simulation and (d) the calculated $\Delta T_{\rm sol}$ map based on the FDTD parameter search. (e) Produced moth-eye nanostructured VO₂ films containing (f) the individual nipple structure of VO₂-coated silica. (g) Photograph of a butterfly and (h) the two distinct structure-induced colors simultaneously appearing on its wings. (i) Three-dimensional illustration of the 2D

SiO₂-VO₂ core-shell photonic crystals used in the simulation and (j) the calculated transmittance spectra with diameters ranging from 400 to 700 nm at 20 and 90 °C. (k-l) TEM images of the produced 2D HCP SiO₂-VO₂ core-shell photonic crystals under low and high magnification. Inset of (l) is the illustration of an individual photonic crystal. Figures reproduced with permission from: **b**, ref.¹⁸⁶, Nature Publishing Group; **c-d**, ref.¹⁸⁷, The Optical Society; g-h, ref.¹⁸⁶, Nature Publishing Group; **i-l**, ref.¹⁹¹, American Chemical Society.

3.6 Multifunctional antireflection coating

Challenges remain in the development of VO₂-based smart windows. A major issue is the low T_{lum} attributed to the strong reflection and absorption in the visible-light region ($\lambda = 380\text{-}760 \text{ nm}$).² Antireflection coatings (ARCs) have been proved to be one of the effective strategies for enhancing the low T_{lum} in the visible region without degrading the thermochromic properties of the VO₂ films.^{29,31} In addition, integrations with other cutting-edge glazing techniques can introduce some practical functions that are unable to be achieved by pure VO₂ films, such as anti-oxidation,¹⁹² hydrophobicity¹⁹³ and photocatalysis.¹⁹⁴

The selection of ARC relies on the light interference between thin-film interfaces, which is determined by the optical constants and thicknesses of the ARC. The refractive index (RI) of VO₂ is around 2.8 in the visible-light region ($\lambda = 380\text{-}760$ nm). For a VO₂ film with a thickness of 50 nm, the highest enhancement in T_{lum} occurs when the thickness of the ARC is approximately 55 nm and the RI is approximately 2.2, as shown in Figure 10a. According to this proposed refractive index criterion, a variety of materials are potential candidates for the ARCs, such as TiO_2 , TiO_2

For the VO₂-based double-layered films, TiO₂ is commonly selected as the ARC due to its refractive index of 2.2.¹⁹⁷ For instance, in the TiO₂(40 nm)/VO₂(50 nm) double-layered structure designed by Jin *et al.*, the thicknesses of the TiO₂ and VO₂ layers were optimized by calculation to improve the T_{lum} of the TiO₂/VO₂ double-layer structure (from 30% to 49%) (Figure 10b-c).¹⁹⁸ Xu *et al.* fabricated a ZrO₂(56 nm)/VO₂(50 nm) double-layer structure by sputter deposition, in which the ZrO₂ layer acted as the ARC, showing that the T_{lum} was improved (from 32.3% to 50.5%).¹⁹⁷ Koo *et al.* prepared a CeO₂(60 nm)/VO₂(39 nm) double-layered structure, where the CeO₂ layer acted as the ARC due to its high refractive index (2.3) and high transparency to visible as well as near-infrared light.¹⁹⁹ The sample exhibited an obviously enhanced T_{lum} (from 40.0% to 67.5%), and the CeO₂ layer also acted as an anti-oxidation layer for the VO₂ layer.¹⁹⁹

For the VO₂-based multilayered films, Jin *et al.* reported a TiO₂/VO₂/TiO₂ triple-layered structure with an elevated T_{lum} (from 30.9% to 57.6%) (Figure 10d-e).²⁰¹ However, this VO₂-based multilayered film exhibited a low ΔT_{sol} of 2.9%. This intrinsically low ΔT_{sol} (<16%) is due to the fact that VO₂ has a higher RI from

500 to 2200 nm wavelength below its τ_c , which causes excessive reflection at a lower temperature. Liu et al. designed an RI-tunable ARC coating to improve the antireflection effect at a lower temperature, thereby maximizing ΔT_{sol} for various VO₂ nanosubstrates, such as the continuous thin films, nanocomposites, and periodic micro-patterning films. ²⁰² The best performing coatings could maximize $\Delta T_{\rm sol}$ (from 15.7% to 18.9%) and increase T_{lum} (from 39% to 44%) simultaneously.²⁰² Chen et al. conducted a simulation to optimize the thickness of each layer in the VO₂/TiO₂/SiO₂ multilayers and then developed an all-solution method to fabricate the double-layered film consisting of a TiO2 antireflection layer on a planar VO2 film. 203 Their results showed that T_{lum} was enhanced from 40.3% to 61.5% and could be further enhanced to 84.8%, moreover, the value of $\Delta T_{\rm sol}$ could be improved to 15.1%, which is much higher than the value of the single VO₂ films of 10%.²⁰³ Other designs have also been reported, for instance, Mlyuka et al. prepared a TiO2/VO2/TiO2/VO2/TiO2 five-layered structure with T_{lum} increased by 4% (from 41% to 45%) (Figure 10f).²⁰⁴ However, the optical performances of structures with more than five layers have not been extensively investigated, probably due to the difficulties in both optical design and process control.

Some unique properties, such as anti-oxidation,^{205,206} hydrophobicity^{188,193} and self-cleaning,²⁰⁷ have been recently introduced by designing VO₂-based multilayered structures. For instance, Liu *et al.* prepared a Si-Al-based ARC with greatly enhanced T_{lum} (from 51.0% to 62.3%), hydrophobicity (contact angle of 111°) (Figure 10g), and anti-oxidation protections.¹⁹³ Zheng *et al.* reported a large-scale (400×400 mm²) TiO₂(A)/VO₂(M)/TiO₂(R) multilayered film that presented at least three functions, antifogging/self-cleaning, thermochromic, and antireflective properties attributed to the top TiO₂(A), the middle VO₂(M), and the bottom TiO₂(R) layers, respectively (Figure 10h-j).²⁰⁷

Thermal emissivity is another important property of VO₂-based smart windows. A high value of thermal emissivity implies that there is an intensive energy exchange between the window surface and its surroundings through thermal radiation and absorption, which weakens the thermal insulating ability of the window. To achieve smart functionality, a VO₂-based window should have suitable transmittance to control of heat gain as well as low emissivity to modulate the heat loss. In cold weather, the heat flux is from indoors to outdoors, therefore a smart window should have high transmittance of heat from sunshine, as well as low emissivity to prevent

the heat loss from indoors to outdoors. In hot weather, the direction of heat flux is opposite, from outdoors to indoors, therefore a smart window should transmit less possible IR light, as well as have low emissivity to prevent the heat flow from outdoors to indoors.

The thermal emissivity is 0.59 and 0.83 for typical VO₂(R) and VO₂(M) films (thickness of 68 nm), respectively.²⁰⁸ This high emissivity indicates the strong ability of the VO₂-based windows to exchange energy with its surroundings through thermal radiation processes. Recently, a number of papers have concerned the combination of the thermochromic properties of VO₂ and the low emissivity, in which transparent conductive oxides such as F-doped SnO₂ (FTO)²⁰⁰ and Al-doped ZnO (AZO)²⁰⁵ or noble metals (Ag²⁰⁹ and Pt²¹⁰) with low emissivity have been incorporated into VO₂-based multilayered films. Table 7 summarizes the emissivity of the VO₂ based multilayered structures. For instance, Zhang et al. deposited VO2 thin films on FTO glasses substrates (Figure 10k), and then incorporated a TiO₂ ARC on the VO₂ thin films to form a TiO2/VO2/FTO three-layered structure, which boosted the T_{lum} (from 34% to 44%) and elevated the reflectance in the infrared region while retaining the low-emissivity performance of the original VO₂/FTO double-layered structure (from 0.13 to 0.24) (Figure 10l-m).²⁰⁰ Kang et al. prepared SiO₂/Pt/VO₂ multilayered films, in which the Pt layer depressed the emissivity (from 0.85 to 0.56 for VO₂(M), and from 0.84 to 0.53 for $VO_2(R)$), and the SiO₂ layer acted as an ARC to enhance the T_{lum} (from 25.1% to 37.9%).²¹⁰

Table 6 The T_{lum} and ΔT_{sol} before and after the application of antireflection coatings (ARC) in different multilayered structures.

		<i>T</i> _{lum} (%)	T _{lum} (%)	$\Delta T_{\rm sol}$ (%)	$\Delta T_{\rm sol}$ (%)	
Layered Structure	ARC	(without	(with	(without	(with	Ref.
		ARC)	ARC)	ARC)	ARC)	
TiO ₂ /VO ₂	TiO ₂	32	49	4.4	7.0	198
ZrO_2/VO_2	ZrO_2	32.3	50.5	\	\	197
CeO ₂ /VO ₂	CeO_2	40	67.5	5.2	5.4	199
TEOS/VO ₂	TEOS	47.3	52.7	13.6	16.4	202
Si-Al /VO ₂ /ITO	Si-Al	51.0	62.3	3.4	4.0	193

$TiO_2/VO_2/TiO_2$	TiO_2	30.9	57.6	3.9	2.9	201
TiO ₂ /VO ₂ /SiO ₂	TiO_2	40.3	61.5	7.4	6.9	203
TiO ₂ /VO ₂ /FTO	TiO_2	34	44	4.4	8.8	200
SiO ₂ /Pt/VO ₂	SiO_2	25.1	37.9	\	\	210

Note: "\" means data not available

Table 7 The emissivity (ϵ_T) of VO₂ based multilayered structures.

Layered Structure	ε_{T} of VO ₂ (R)	ε_T of $VO_2(M)$	Thickness of VO ₂	Ref.
VO ₂ single layer	0.59	0.83	68 nm	208
TiO ₂ /VO ₂ /FTO	0.24	0.13	55 nm	200
VO ₂ /FTO	0.27	0.19	65 nm	200
VO ₂ (W and Zn doped)/FTO	0.33	0.20	/	211
VO ₂ /SiO ₂ /Au	0.71	0.22	30 nm	212
AZO/VO ₂	0.31	0.32	40 nm	205
Pt/VO ₂	0.53	0.56	40 nm	210

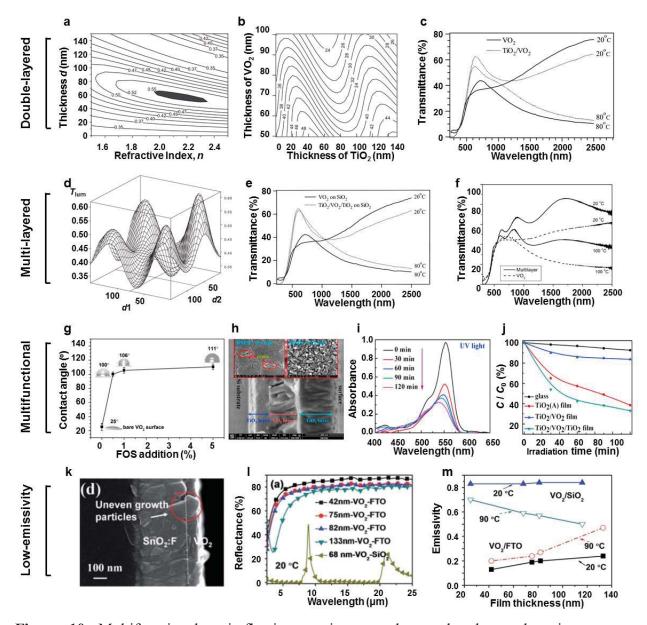


Figure 10. Multifunctional antireflection coating to enhance the thermochromic performace of VO_2 . (a) The effects of the refractive index n and thickness d of the ARC on the T_{lum} of planar 50 nm VO₂ films. The optimized n and d are presented as the dark area on the contour map. (b) The thickness effect on the T_{lum} of TiO₂ and VO₂ on fused silica glass substrates. (c) Respective transmittance spectra of 50 nm VO₂ films with or without an ARC (40 nm of TiO₂) at 20 and 80 °C. (d) Calculated T_{lum} of the TiO₂/VO₂/TiO₂ layered structure, d1 and d2 are the thicknesses of the top and bottom TiO₂ layers, respectively. (e) Transmittance spectra of a TiO₂ (20 nm)/VO₂ (50 nm)/TiO₂ (25 nm) sandwich structure at 20 and 80 °C. (f) Transmittance spectra of a TiO₂/VO₂/TiO₂/VO₂/TiO₂ multilayer film at 20 and 100 °C. The results of the VO₂ films in (e) and (f) represent control samples. (g) The effect of fluorooctyl triethoxysilane (FOS) addition on the contact angle on the VO₂ surface. (h) Cross-sectional FESEM image of the multilayer film (the insets are the surface morphology of VO₂(M) (left) and TiO₂(A) layers (right), respectively). (i) Time-resolved absorption spectra of a rhodamine B (RhB) solution, which indicates the gradual degradation of RhB on the multilayer film. (i) Photodegradation of RhB solution over the films (TiO₂(A), TiO₂(R)/VO₂(M), and TiO₂(R)/VO₂(M)/TiO₂(A))

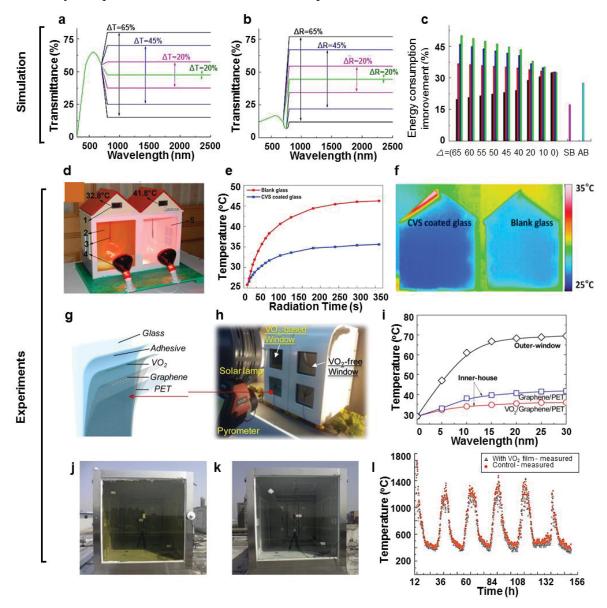
under UV light (C_0 and C represent the initial and real-time concentration of RhB during the irradiation test). (k) The cross-sectional FESEM image of a VO₂ film on a FTO (F-doped SnO₂) substrate. (l) Thickness-dependent reflectance spectra of the VO₂ film on a FTO substrates at 20 °C. The sample with a SiO₂ substrate is a reference. (m) Thickness-dependent emissivity of the VO₂ film on a FTO substrate. Figures reproduced with permission from: **a**, ref.¹⁹⁷, Elsevier; **b-c**, ref.¹⁹⁸, IOPscience; **d-f**, ref.²⁰¹, Elsevier; **g**, ref.¹⁹³, Elsevier; **h-j**, ref.²⁰⁷, Elsevier, **k-m**, ref.²⁰⁰, Royal Society of Chemistry.

4. Energy efficiency

Practical energy conservation is the ultimate purpose of developing VO₂-based thermochromic layers, and researchers have been investigating this topic from both simulations and experimental aspects.

In the simulational studies, Saeli et al. firstly used energy-modelling studies to investigate the behavior of a series of VO2 films and their associated energy consumptions (Figure 11a-b).^{213,214} They compared three different VO₂ films, one is prepared via atmospheric pressure CVD, one is the commercial product (sputtered silver-coated glass or blue body-tinted glass), and another one is thermochromic films with "ideal" optical properties based on experimentally obtainable options. Their results indicated that the ideal coatings have a clear advantage in reducing energy consumption compared with the commercial products (Figure 11c), but the best performance of a real VO₂ film was observed for the sample with the lowest phase-transition temperature, which meant that the film was always in the metallic state. These results suggested that the heat reflecting and absorbing properties of the VO₂ layers contributed more strongly to their energy-conservation performance than their thermochromic nature. Increased absorption might present an advantage for the moth-eye class of smart window, because the window's temperature will be strongly influenced by the light intensity and not merely the temperature. This behavior could endow the window with additional photochromic properties.

In the experimental studies, building the model houses is the common strategy to estimate the energy efficiency of VO₂-based smart windows is. The VO₂-based layers are coated onto the flat glass and then fixed as windows or roofs for a model house. Blank glasses of the same size are used in another model house as a control experiment. Two infrared lamps are employed as the irradiation source and placed at a certain distance from the model houses. Two thermocouples are placed at the same position in the model houses to monitor temperature changes.


For instance, Gao's *et al.* prepared a single-layer VO₂ structure (30×40 cm²) on glass using the polymer-assisted deposition method, and then built a model house to evaluate the optical properties of VO₂-based smart windows.² Their results indicated that under similar infrared irradiation, the temperature difference between the two inner rooms was approximately 9 °C(Figure 11d), suggesting that a significant amount of irradiation was blocked. Chang *et al.* recently developed a sandwich structure of Cr₂O₃/VO₂/SiO₂ multilayers.²¹⁵ For quantitative characterization of their practical

energy conservation, two pieces of flat glass (75×75 mm²) coated with Cr₂O₃/VO₂/SiO₂ multilayer were roofed for a model house.²¹⁵ The results showed that the temperature in the model house with blank glass was increased by 84.8%, wherea the temperature of house with Cr₂O₃/VO₂/SiO₂ coated glass was only increased by 29.8% (Figure 11e). The infrared thermal imaging demonstrated that after 6 min of irradiation, the glass coated by Cr₂O₃/VO₂/SiO₂ structure shows a pink hue indicating high thermal emissivity. On the contrary, relatively low thermal emissivity has been shown by the laurel green hue of the blank glass (Figure 11f). Kim *et al.* prepared a graphene-supported VO₂ flexible film, and then fabricated a model house with VO₂/graphene/PET windows to measure the inner-house temperature changes (Figure 11g-h).²¹⁶ The results showed that the temperature difference between two inner rooms (graphene/PET and VO₂/graphene/PET) was about 5.8 °C (Figure 11i), indicating that a significant amount of irradiation was blocked by the graphene/VO₂ window.

Ye, Yang and Gao *et al.* evaluated the energy-saving efficiency of VO₂ layers in both theoretical simulations and experiments. The VO₂ layers used in the experiments were VO₂ nanocomposite foils provided by Gao *et. al.* The researchers constructed a $2.9 \times 1.8 \times 1.8 \text{ m}^3$ low-mass room with a window size of $1.65 \times 1.65 \text{ m}^2$ (Figure 11j-k). The results measured by Yang *et al.* indicated that the room equipped with the VO₂ foils experienced a 10.2-19.9 % savings in cumulative cooling load compared with the room equipped with ordinary glazing. The extension of this observed performance to a conventional residential room in the hot-summer and warm-winter zone was simulated using BuildingEnergy (simulation software developed by Ye *et al.*). The simulated results indicated that the use of the VO₂ glazing could yield a $\sim 9.4\%$ savings in electricity consumption (Figure 111).

Ye *et. al* have conducted a series of comprehensive investigations on the energy savings performance of VO₂-based smart windows.²¹⁹⁻²²¹ They found that not all VO₂ glazings are "smart" due to the absorption of the coatings and concluded that the VO₂ glazing tends to exhibit smart regulation capacities if it experiences a high decrease in solar transmittance and a low increase in solar absorptivity after the VO₂ changes into its metallic state. In their other work of evaluating the energy saving performance of materials and components in passive buildings, the results showed that a representative VO₂ glazing is "energy-saving" in summer but is "energy-wasting" in winter due to its low solar transmittance. These studies reveal the importance of the

transmittance and absorption of VO₂ film/coatings in practical energy-saving efficiency and provide a direction for the development of VO₂-based smart windows.

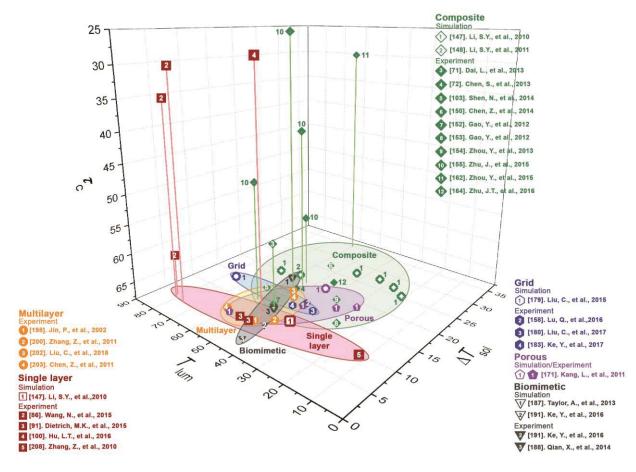


Figure 11. (a)Transmittance and (b) reflectance spectra for ideal thermochromic coatings, demonstrating cold-hot decreases of 65%, 45%, 20% or 0% and energy-consumption improvement (c) for ideal thermochromic films with various changes in transmittance and reflectance. Black: phase-transition temperature is 35 °C, red: 30 °C, blue: 25 °C, green: 20 °C, SB: sputtered silver-coated glass, AB: blue body-tinted glass. (d) Photograph of a model house (1, temperature monitor; 2, VO₂ glass; 3, temperature probe; 4, infrared lamp; 5, blank float glass). (e) Temperature curve inside the model house with Cr₂O₃/VO₂/SiO₂ coated glass (blue line) and blank glass (red line). (f) Infrared thermal images of the model house with Cr₂O₃/VO₂/SiO₂ coated glass and blank glass. (g) Structure of the graphene-supported VO₂ film. (h) Photograph of model house equipped with VO₂-based (VO₂/graphene/PET film) and VO₂-free window (graphene/PET film). (i) Temperature change of model house upon solar irradiation as a function of exposure time. (j) Photographs of Room A with VO₂ foils and (j) Room B with ordinary glazing. (l) Variations in the simulated cooling

load (Aug. 1st to Aug. 7th, 2013). Figures reproduced with permission from: a-c, ref.²¹⁴ Elsevier; Figures reproduced with permission from: d, ref.² Elsevier; Figures reproduced with permission from: e-f, ref.²¹⁵ Elsevier; Figures reproduced with permission from: g-i, ref.²¹⁶American Chemical Society; Figures reproduced with permission from: j-l, ref.²²² Elsevier.

5. Conclusions and perspectives

In conclusion, smart windows represent an important technology for increasing indoor comfort and reducing electrical consumption in the automotive and building sectors. We summarized the progress in VO₂-based thermochromic smart windows in Figure 12 by classifying different categories and distinguishing the simulation and experiment results in terms of τ_c , ΔT_{sol} and T_{lum} . Thermochromic windows are highly promising for constant T_{lum} , and smart regulation of indoor solar transmission automatically based on their achieved transmittance-modulation ranges together with the relatively simple structure, facile fabrication and low cost. Although the ΔT_{sol} of VO₂ is lower than that of a gasochromic and electrochromic window, but it can be further improved by integrating with responsive matrix and morphology engineering. Hence, VO₂ smart windows are an important category in energy saving smart windows' applications. Indeed, flexible VO₂ foils fabricated by dispersing VO₂ nanoparticles into a matrix and coating of this VO₂-incorporated matrix onto a polymer substrate have been produced on the industrial scale.

Figure 12. Summary of thermochromic performance (τ_c , ΔT_{sol} , and T_{lum}) in some of the best reported and selected works.

The application of VO₂ thermochromic smart windows is promising and just beginning. Some problems still needed to be addressed to further widen their applications.

A balance between transition temperature, visible transmittance and solar modulation ability. Based on recent studies, the simultaneous reduction of τ_c , enhancement of ΔT_{sol} and T_{lum} is rather difficult, as shown in Figure 12. Low VO₂ loading are generally favorable for increasing the T_{lum} , but jeopardizing ΔT_{sol} . Doping is undoubtedly an effective strategy to decrease the τ_c , but the other two parameters are typically degraded as well. Currently doping is limited in continuous films and nanocomposites (Figure 12); more investigation can be extended to other categories such as biomimetic, gridding, controlled porosity and multilayered structure engineering. For the practical applications, more dopants and co- or multi- doping need to be examined in atomic level *via* the combination of simulations and experiments together with more structure designs in nano or micro level.

It is worth mention that IR blocking in warm weather is an important aspect for energy-saving applications of thermochromic materials. For comparison, commercial low-emission glass with the application of three Ag layers can reach 90% blockage while VO₂ in state-of-art designs can reach less than 70%. The $\Delta T_{\rm sol}$ is another important index of energy saving which can hardly even reach up to 30%. To facilitate the commercialization of VO₂ films, ideally the IR blockage and $\Delta T_{\rm sol}$ should be largely increased to 90% and 50% respectively. However, this is a veritable challenge.

Color. Due to its strong absorption, VO₂ typically demonstrates a brownish-yellow color. The color has limited effects on the visible transmittance, and color preference is closely related to cultural background. Generally, a colorless coating or coloration with light gray/blue is most favorable (at least in China). In some areas of Southeastern Asia or Arabia, a golden color is more favorable. In this case, the brownish-yellow color of VO₂ would be acceptable. However, certain modifications are still required to tune the color. Although some simulations have suggested that doping may be an effective strategy to alter the color by shifting the adsorption edges, experimental results have shown that only limited changes can be achieved. Complexion with dyes or responsive matrix, either organic or inorganic, can modulate the original color of VO₂ at the expense of the $\Delta T_{\rm sol}$ and $T_{\rm lum}$ of VO₂ films or transparency, which may not be a good solution in some applications. Structural coloration has been proved effective to change its color but some degradation of the

thermochromic performance and the complicated fabrication approach need to be investigated further. To address this concern, more creative ideas are needed.

Emissivity. Solar heating results from the near-IR region of the solar spectrum, whereas blackbody emissivity of room temperature objects occurs in the mid-IR regions. The former contributes to heat gains from the sun, while the latter is an important way to transmit heat from hot side to cold side. To achieve smart energy-saving functionality, a coating should have switchable transmittance to control of heat gain from sun as well as low emissivity to restrict the heat exchanging between indoors and outdoors. VO₂ films, especially those porous films synthesized by solution-based process, usually demonstrate emissivity as large as 0.83, which is much larger than that of double-layered silver-based low-emission glass (0.3-0.4). This implies that glass coated with only VO₂ layers performs poorly in the management of environmental heat. Using a double-layered film composed of VO₂ and a layer of noble metals or transparent conductive oxides can decrease the emissivity, accompanying unfavorably with a large decrease in the $\Delta T_{\rm sol}$. To resolve this problem, some new structures and/or material systems together with more fundamental studies of should be developed and integrated with VO₂.

Stability. As a transition metal, vanadium is multi-valance element, which exhibits +3, +4, +5 and mixed valences. VO₂(M) can be oxidized to vanadium oxides or their hydroxides, especially in the presence of moisture. This instability results in serious durability problems in practical applications. One solution involves the formation of VO₂ in an inert oxide shell, which is used to separate VO₂ from oxygen. This method has been certified to be useful to some degree, but the process to prepare a core-shell structure is not easy to control. Furthermore, this treatment step leads to the aggregation of well-dispersed nanoparticles, making them difficult to use. Increasing the crystallinity of VO₂ is also effective, but this method cannot completely address the problem.

Toxicity. The fate of nanoparticles in a variety of environmental and manufacturing settings has attracted immense attention and is a major obstacle for practical applications, especially in applications that have close contact with people and pets. Although some VO₂ products are commercially available (such as VO₂ foils in China), thorough research into the toxicological impact and possible hazards of VO₂ materials, especially in the form of nanoparticle, to human health and the environment is still in its infancy and is an urgent task to achieve large-scale

applications of VO₂. Addressing this issue seems more meaningful when considering that some vanadium oxides known today, for example V(V) and V(III), are toxic, although the toxicity of these oxides is closely related to their quantity. Therefore, collaboration studies should be done on the mechanisms at the cellular level, entry routes into the body and possible impacts to public health. In addition, the ways life cycle assessment (LCA) studies should be applied to analyze the toxicity of VO₂ nanoparticles.

Acknowledgments

This work is supported by Singapore Minster of Education (MOE) Academic Research Fund Tier one, RG124/16 and RG200/17, the National Research Foundation, Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) program, the National Natural Science Foundation of China (51325203 and 51402182), and the Outstanding Academic Leaders program of Shanghai Municipal Science and Technology Commission (15XD1501700).

Conflicts of interest

There are no conflicts to declare.

Author contributions

Y.C. and Y.K. contributed equally to this work. Y.C. wrote Section 2.1-2.3, 3.6, 4, and 5. Y.K. wrote Section 1, 3.1-3.5, and 5. Y.L. and Y.G. designed the framework of this manuscript and draft Section 1 and 5. C.L., Z.C., N.W., L.Z., Y.Z., and S.W. collected the data, participated in drawing the figures and examining the technical details. All authors read and approved the final manuscript.

Reference

- 1 Morin, F. J. (1959). Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 3, 34-36.
- 2 Gao, Y., Luo, H., Zhang, Z., Kang, L., Chen, Z., Du, J., Kanehira, M., and Cao, C. (2012). Nanoceramic VO₂ thermochromic smart glass: A review on progress in solution processing. Nano Energy 1, 221-246.
- 3 Ke, Y., Zhou, C., Zhou, Y., Wang, S., Chan, S. H., and Long, Y. (2018).

- Emerging thermal—responsive materials and integrated techniques targeting the energy—efficient smart window application. Adv. Funct. Mater. 28, 1800113.
- 4 Cheng, Q., Paradis, S., Bui, T., and Almasri, M. (2010). Design of dual-band uncooled infrared microbolometer. IEEE Sens. J. 11, 167-175.
- Zhu, H., Xiao, C., Cheng, H., Grote, F., Zhang, X., Yao, T., Li, Z., Wang, C., Wei, S., and Lei, Y. (2014). Magnetocaloric effects in a freestanding and flexible graphene-based superlattice synthesized with a spatially confined reaction. Nat. Commun. 5, 3960.
- 6 Yoon, H., Choi, M., Lim, T. W., Kwon, H., Ihm, K., Kim, J. K., Choi, S. Y., and Son, J. (2016). Reversible phase modulation and hydrogen storage in multivalent VO₂ epitaxial thin films. Nat. Mater. 15, 1113-1119.
- Andersson, G., Paju, J., Lang, W., and Berndt, W. (1954). Studies on vanadium oxides. I. Phase analysis. Acta Chem. Scand. 8, 1599-1606.
- 8 Andersson, G., Parck, C., Ulfvarson, U., Stenhagen, E., and Thorell, B. (1956). Studies on vanadium oxides. II. The crystal structure of vanadium dioxide. Acta Chem. Scand. 10, 623-628.
- 9 Longo, J. M., and Kierkegaard, P. (1970). Studies on vanadium oxides. Acta Chem. Scand. 24, 420-426.
- Haverkort, M. W., Hu, Z., Tanaka, A., Reichelt, W., Streltsov, S. V., Korotin, M. A., Anisimov, V. I., Hsieh, H. H., Lin, H. J., Chen, C. T., Khomskii, D. I., and Tjeng, L. H. (2005). Orbital-assisted metal-insulator transition in VO₂. Phys. Rev. Lett. 95, 196404.
- 11 Whittaker, L., Patridge, C. J., and Banerjee, S. (2011). Microscopic and nanoscale perspective of the metal-insulator phase transitions of VO₂: Some new twists to an old tale. J. Phys. Chem. Lett. 2, 745-758.
- 12 Belozerov, A. S., Korotin, M. A., Anisimov, V. I., and Poteryaev, A. I. (2012). Monoclinic M1 phase of VO₂: Mott-Hubbard versus band insulator. Phys. Rev. B 85, 276-279.
- 13 Goodenough, J. B. (1971). The two components of the crystallographic transition in VO₂. J. Solid State Chem. 3, 490-500.
- 14 Eyert, V. (2011). VO₂: A novel view from band theory. Phys. Rev. Lett. 107, 016401.
- 15 Petrov, G. I., Yakovlev, V. V., and Squier, J. (2002). Raman microscopy analysis

- of phase transformation mechanisms in vanadium dioxide. Appl. Phys. Lett. 81, 1023-1025.
- 16 Ishida, H., Bihlmayer, G., and Liebsch, A. (2005). Coulomb correlations and orbital polarization in the metal-insulator transition of VO₂. Phys. Rev. B 71, 085109.
- 17 Rice, T. M., Launois, H., and Pouget, J. P. (1994). Comment on "VO₂: Peierls or Mott-Hubbard? A view from band theory". Phys. Rev. Lett. 73, 3042.
- 18 Wentzcovitch, R. M., Schulz, W. W., and Allen, P. B. (1994). VO₂: Peierls or Mott-Hubbard? A view from band theory. Phys. Rev. Lett. 72, 3389.
- 19 Dekorsy, T., Chong, H. H. W., Kieffer, J. C., Schoenlein, R. W., and Cavalleri, A. (2004). Evidence for a structurally-driven insulator-to-metal transition in VO₂: A view from the ultrafast timescale. Phys. Rev. B 70, 161102.
- 20 Cavalleri, A., Tóth, C., Siders, C. W., Squier, J. A., Ráksi, F., Forget, P., and Kieffer, J. C. (2001). Femtosecond structural dynamics in VO₂ during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 87, 237401.
- 21 Rini, M., Chong, H. H. W., Fourmaux, S., Glover, T. E., Heimann, P. A., Kieffer, J. C., Schoenlein, R. W., and Cavalleri, A. (2005). Band-selective measurements of electron dynamics in VO₂ using femtosecond near-edge X-ray absorption. Phys. Rev. Lett. 95, 067405.
- Baum, P., Yang, D. S., and Zewail, A. H. (2007). 4D visualization of transitional structures in phase transformations by electron diffraction. Science 318, 788.
- Wei, J., Wang, Z. H., Chen, W., and Cobden, D. H. (2009). New aspects of the metal-insulator transition in single-domain vanadium dioxide nanobeams. Nat. Nanotechnol. 4, 420-424.
- 24 Yuan, X., Zhang, W., and Zhang, P. (2013). Hole-lattice coupling and photoinduced insulator-metal transition in VO₂. Phys. Rev. B 88, 035119.
- 25 Standard tables of reference solar spectral irradiances: Direct normal and hemispherical on a 37° tilted surface (2012). Active Standard ASTM G173, USA.
- 26 Lang, F., Wang, H., Zhang, S., Liu, J., and Yan, H. (2018). Review on variable emissivity materials and devices based on smart chromism. Int. J. Thermophys. 39, 6.
- 27 Li, M., Magdassi, S., Gao, Y., and Long, Y. (2017). Hydrothermal synthesis of VO₂ polymorphs: Advantages, challenges and prospects for the application of

- energy efficient smart windows. Small 13, 1701147.
- Wu, C., Feng, F., and Xie, Y. (2013). Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem. Soc. Rev. 42, 5157-5183.
- 29 Wang, S., Liu, M., Kong, L., Long, Y., Jiang, X., and Yu, A. (2016). Recent progress in VO₂ smart coatings: Strategies to improve the thermochromic properties. Prog. Mater. Sci. 81, 1-54.
- 30 Wang, S., Owusu, K. A., Mai, L., Ke, Y., Zhou, Y., Hu, P., Magdassi, S., and Long, Y. (2018). Vanadium dioxide for energy conservation and energy storage applications: Synthesis and performance improvement. Appl. Energy 211, 200-217.
- 31 Granqvist, C. G., and Niklasson, G. A. (2017). Thermochromic oxide-based thin films and nanoparticle composites for energy-efficient glazings. Buildings 7, 3.
- 32 Guo, F., Chen, S., Chen, Z., Luo, H., Gao, Y., Przybilla, T., Spiecker, E., Osvet, A., Forberich, K., and Brabec, C. J. (2015). Printed smart photovoltaic window integrated with an energy-saving thermochromic layer. Adv. Opt. Mater. 3, 1524-1529.
- 33 Aschauer, U., Pfenninger, R., Selbach, S. M., Grande, T., and Spaldin, N. A. (2013). Strain-controlled oxygen vacancy formation and ordering in CaMnO₃. Phys. Rev. B 88, 054111.
- 34 Marucco, J. F., Poumellec, B., and Lagnel, F. (1986). Stoichiometry of vanadium dioxide. J Mater. Sci. Lett. 5, 99-100.
- 35 Chen, C., and Fan, Z. (2009). Changes in VO₂ band structure induced by charge localization and surface segregation. Appl. Phys. Lett. 95, 262106.
- 36 Cui, Y., Liu, B., Chen, L., Luo, H., and Gao, Y. (2016). Formation energies of intrinsic point defects in monoclinic VO₂ studied by first-principles calculations. AIP Adv. 6, 105301.
- 37 Chen, L., Cui, Y., Shi, S., Liu, B., Luo, H., and Gao, Y. (2016). First-principles study of the effect of oxygen vacancy and strain on the phase transition temperature of VO₂. RSC Adv. 6, 86872-86879.
- 38 Chen, L., Wang, X., Wan, D., Cui, Y., Liu, B., Shi, S., Luo, H., and Gao, Y. (2016). Tuning the phase transition temperature, electrical and optical properties of VO₂ by oxygen nonstoichiometry: Insights from first-principles calculations. RSC Adv. 6, 73070-73082.

- 39 Zhang, S., Kim, I. S., and Lauhon, L. J. (2011). Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams. Nano Lett. 11, 1443-1447.
- 40 Zhang, P., Jiang, K., Deng, Q., You, Q., Zhang, J., Wu, J., Hu, Z., and Chu, J. (2015). Manipulations from oxygen partial pressure on the higher energy electronic transition and dielectric function of VO₂ films during a metal-insulator transition process. J. Mater. Chem. C 3, 5033-5040.
- 41 Jiang, M., Cao, X., Bao, S., Zhou, H., and Jin, P. (2014). Regulation of the phase transition temperature of VO₂ thin films deposited by reactive magnetron sputtering without doping. Thin Solid Films 562, 314-318.
- Jeong, J., Aetukuri, N., Graf, T., Schladt, T. D., Samant, M. G., and Parkin, S. S.
 P. (2013). Suppression of metal-insulator transition in VO₂ by electric field-induced oxygen vacancy formation. Science 339, 1402-1405.
- 43 Chen, S., Wang, X. J., Fan, L., Liao, G., Chen, Y., Chu, W., Song, L., Jiang, J., and Zou, C. (2016). The dynamic phase transition modulation of ion-liquid gating VO₂ thin film: Formation, diffusion, and recovery of oxygen vacancies. Adv. Funct. Mater. 26, 3532-3541.
- 44 Marezio, M., McWhan, D. B., Remeika, J. P., and Dernier, P. D. (1972). Structural aspects of the metal-insulator transitions in Cr-doped VO₂. Phys. Rev. B 5, 2541-2551.
- 45 Goodenough, J. B., and Hong, H. Y. P. (1973). Structures and a two-band model for the system V_{1-x}Cr_xO₂. Phys. Rev. B 8, 1323-1331.
- 46 Pouget, J. P., Launois, H., Rice, T. M., Dernier, P., Gossard, A., Villeneuve, G., and Hagenmuller, P. (1974). Dimerization of a linear Heisenberg chain in the insulating phases of V_{1-x}Cr_xO₂. Phys. Rev. B 10, 1801-1815.
- 47 Bruckner, W., Gerlach, U., Bruckner, H. P., Moldenhauer, W., and Oppermann, H. (1976). Influence of nonstoichiometry on the phase transitions in Ga-, Al-, and Fe-doped VO₂. Phys. Stat. Sol. (a) 42, 295-303.
- 48 Bruckner, W., Bruckner, H. P., Gerlach, U., Thuss, B., and Forsterling, G. (1976). The phase transition M1→T in V1−xGaxO₂. Phys. Stat. Sol. (a) 38, K13-K16.
- 49 Tang, C., Georgopoulos, P., Fine, M. E., Cohen, J. B., Nygren, M., Knapp, G. S., and Aldred, A. (1985). Local atomic and electronic arrangements in W_xV_{1-x}O₂. Phys. Rev. B 31, 1000-1011.
- 50 Khan, K. A., Niklasson, G. A., and Granqvist, C. G. (1988). Optical properties at

- the metal-insulator transition in thermochromic $VO_{2-x}F_x$ thin films. J. Appl. Phys. 64, 3327.
- 51 Lee, M. H., Kim, M. G., and Song, H. K. (1996). Thermochromism of rapid thermal annealed VO₂ and Sn-doped VO₂ thin films. Thin Solid Films 290-291, 30-33.
- 52 Burkhardt, W., Christmann, T., Meyer, B. K., Niessner, W., Schalch, D., and Scharmann, A. (1999). W- and F-doped VO₂ films studied by photoelectron spectrometry. Thin Solid Films 345, 229-235.
- Burkhardt, W., Christmann, T., Franke, S., Kriegseis, W., Meister, D., Meyer, B. K., Niessner, W., Schalch, D., and Scharmann, A. (2002). Tungsten and fluorine co-doping of VO₂ films. Thin Solid Films 402, 226-231.
- 54 Pan, M., Zhong, H., Wang, S., Li, Z., Chen, X., and Lu, W. (2004). First-principle study on the chromium doping effect on the crystal structure of metallic VO₂. Chem. Phys. Lett. 398, 304-307.
- Mai, L. Q., Hu, B., Hu, T., Chen, W., and Gu, E. D. (2006). Electrical property of Mo-doped VO₂ nanowire array film by melting-quenching. J. Phys. Chem. B 110, 19083-19086.
- Piccirillo, C., Binions, R., and Parkin, I. P. (2007). Nb-doped VO₂ thin films prepared by aerosol-assisted chemical vapour deposition. Eur. J. Inorg. Chem. 2007, 4050-4055.
- 57 Andreev, V. N., Kapralova, V. M., and Klimov, V. A. (2007). Effect of hydrogenation on the metal-semiconductor phase transition in vanadium dioxide thin films. Phys. Solid State 49, 2318-2322.
- 58 Mlyuka, N. R., Niklasson, G. A., and Granqvist, C. G. (2009). Mg doping of thermochromic VO₂ films enhances the optical transmittance and decreases the metal-insulator transition temperature. Appl. Phys. Lett. 95, 171909.
- 59 Wu, C., Feng, F., Feng, J., Dai, J., Peng, L., Zhao, J., Yang, J., Si, C., Wu, Z., and Xie, Y. (2011). Hydrogen-incorporation stabilization of metallic VO₂(R) phase to room temperature, displaying promising low-temperature thermoelectric effect. J. Am. Chem. Soc. 133, 13798-13801.
- 60 Du, J., Gao, Y., Luo, H., Kang, L., Zhang, Z., Chen, Z., and Cao, C. (2011). Significant changes in phase-transition hysteresis for Ti-doped VO₂ films prepared by polymer-assisted deposition. Sol. Energy Mater. Sol. Cells 95, 469-475.

- 61 Xu, Y., Huang, W., Shi, Q., Zhang, Y., Song, L., and Zhang, Y. (2012). Synthesis and properties of Mo and W ions co-doped porous nano-structured VO₂ films by sol-gel process. J. Sol-Gel Sci. Techn. 64, 493-499.
- 62 Wei, J., Ji, H., Guo, W., Nevidomskyy, A. H., and Natelson, D. (2012). Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams. Nat. Nanotechnol. 7, 357-362.
- 63 Tan, X., Yao, T., Long, R., Sun, Z., Feng, Y., Cheng, H., Yuan, X., Zhang, W., Liu, Q., Wu, C., Xie, Y., and Wei, S. (2012). Unraveling metal-insulator transition mechanism of VO₂ triggered by tungsten doping. Sci. Rep. 2, 466.
- 64 Hu, S., Li, S. Y., Ahuja, R., Granqvist, C. G., Hermansson, K., Niklasson, G. A., and Scheicher, R. H. (2012). Optical properties of Mg-doped VO₂: Absorption measurements and hybrid functional calculations. Appl. Physi. Lett. 101, 201902.
- 65 Gao, Y., Cao, C., Dai, L., Luo, H., Kanehira, M., Ding, Y., and Wang, Z. L. (2012). Phase and shape controlled VO₂ nanostructures by antimony doping. Energy Environ. Sci. 5, 8708-8715.
- 66 Zhou, J., Gao, Y., Liu, X., Chen, Z., Dai, L., Cao, C., Luo, H., Kanahira, M., Sun, C., and Yan, L. (2013). Mg-doped VO₂ nanoparticles: Hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature. Phys. Chem. Chem. Phys. 15, 7505-7511.
- 67 Zhang, Y., Zhang, J., Zhang, X., Huang, C., Zhong, Y., and Deng, Y. (2013). The additives W, Mo, Sn and Fe for promoting the formation of VO₂(M) and its optical switching properties. Mater. Lett. 92, 61-64.
- 68 Zhang, J., He, H., Xie, Y., and Pan, B. (2013). Giant reduction of the phase transition temperature for beryllium doped VO₂. Phys. Chem. Chem. Phys. 15, 4687-4690.
- 69 Song, L., Zhang, Y., Huang, W., Shi, Q., Li, D., Zhang, Y., and Xu, Y. (2013). Preparation and thermochromic properties of Ce-doped VO₂ films. Mater. Res. Bull. 48, 2268-2271.
- 70 Li, S. Y., Mlyuka, N. R., Primetzhofer, D., Hallén, A., Possnert, G., Niklasson, G. A., and Granqvist, C. G. (2013). Bandgap widening in thermochromic Mg-doped VO₂ thin films: Quantitative data based on optical absorption. Appl. Phys. Lett. 103, 161907.
- 71 Dai, L., Chen, S., Liu, J., Gao, Y., Zhou, J., Chen, Z., Cao, C., Luo, H., and Kanehira, M. (2013). F-doped VO₂ nanoparticles for thermochromic

- energy-saving foils with modified color and enhanced solar-heat shielding ability. Phys. Chem. Phys. 15, 11723-11729.
- 72 Chen, S., Dai, L., Liu, J., Gao, Y., Liu, X., Chen, Z., Zhou, J., Cao, C., Han, P., Luo, H., and Kanahira, M. (2013). The visible transmittance and solar modulation ability of VO₂ flexible foils simultaneously improved by Ti doping: An optimization and first principle study. Phys. Chem. Chem. Phys. 15, 17537-17543.
- 73 Zhao, Y., Karaoglan, B. G., Pan, X., Holtz, M., Bernussi, A. A., and Fan, Z. (2014). Hydrogen-doping stabilized metallic VO₂(R) thin films and their application to suppress Fabry-Perot resonances in the terahertz regime. Appl. Phys. Lett. 104, 241901.
- 74 Zhang, W., Wang, K., Fan, L., Liu, L., Guo, P., Zou, C., Wang, J., Qian, H., Ibrahim, K., Yan, W., Xu, F., and Wu, Z. (2014). Hole carriers doping effect on the metal-insulator transition of N-incorporated vanadium dioxide thin films. J. Phys. Chem. C 118, 12837-12844.
- 75 Zhang, J. J., He, H. Y., Xie, Y., and Pan, B. C. (2014). Boron-tuning transition temperature of vanadium dioxide from rutile to monoclinic phase. J. Chem. Phys. 141, 194707.
- 76 Wu, Y., Fan, L., Chen, S., Chen, S., Chen, F., Zou, C., and Wu, Z. (2014). A novel route to realize controllable phases in an aluminum (Al³⁺)-doped VO₂ system and the metal-insulator transition modulation. Mater. Lett. 127, 44-47.
- Warnick, K. H., Wang, B., and Pantelides, S. T. (2014). Hydrogen dynamics and metallic phase stabilization in VO₂. Appl. Phys. Lett. 104, 101913.
- 78 Sun, C., Yan, L., Yue, B., Liu, H., and Gao, Y. (2014). The modulation of metal-insulator transition temperature of vanadium dioxide: A density functional theory study. J. Mater. Chem. C 2, 9283-9293.
- 79 Ren, Q., Wan, J., and Gao, Y. (2014). Theoretical study of electronic properties of X-doped (X = F, Cl, Br, I) VO₂ nanoparticles for thermochromic energy-saving foils. J. Phys. Chem. A 118, 11114-11118.
- 80 Miyazaki, K., Shibuya, K., Suzuki, M., Wado, H., and Sawa, A. (2014). Correlation between thermal hysteresis width and broadening of metal-insulator transition in Cr- and Nb-doped VO₂ films. Jpn. J. Appl. Phys. 53, 71102.
- 81 Li, S. Y., Niklasson, G. A., and Granqvist, C. G. (2014). Thermochromic undoped and Mg-doped VO₂ thin films and nanoparticles: Optical properties and

- performance limits for energy efficient windows. J. Appl. Phys. 115, 053513.
- 82 Hur, M. G., Masaki, T., and Yoon, D. H. (2014). Thermochromic properties of Sn, W Co-doped VO₂ nanostructured thin film deposited by pulsed laser deposition. J. Nanosci. Nanotechno. 14, 8941-8945.
- 83 Cao, X., Wang, N., Magdassi, S., Mandler, D., and Long, Y. (2014). Europium doped vanadium dioxide material: Reduced phase transition temperature, enhanced luminous transmittance and solar modulation. Sci. Adv. Mater. 6, 558-561.
- 84 Zhang, H., Wu, Z., Niu, R., Wu, X. F., He, Q., and Jiang, Y. D. (2015). Metal-insulator transition properties of sputtered silicon-doped and un-doped vanadium dioxide films at terahertz range. Appl. Surf. Sci. 331, 92-97.
- Wu, Y., Fan, L., Liu, Q., Chen, S., Huang, W., Chen, F., Liao, G., Zou, C., and Wu, Z. (2015). Decoupling the lattice distortion and charge doping effects on the phase transition behavior of VO₂ by Titanium (Ti⁴⁺) doping. Sci Rep. 5, 9328.
- 86 Wang, N., Liu, S., Zeng, X. T., Magdassi, S., and Long, Y. (2015). Mg/W-codoped vanadium dioxide thin films with enhanced visible transmittance and low phase transition temperature. J. Mater. Chem. C 3, 6771-6777.
- 87 Miller, M. J., and Wang, J. (2015). Influence of Na diffusion on thermochromism of vanadium oxide films and suppression through mixed-alkali effect. Mater. Sci. Eng. B 200, 50-58.
- 88 Li, W., Ji, S., Qian, K., and Jin, P. (2015). Preparation and characterization of VO₂(M)-SnO₂ thermochromic films for application as energy-saving smart coatings. J. Colloid. Interface Sci. 456, 166-173.
- 89 He, X., Zeng, Y., Xu, X., Gu, C., Chen, F., Wu, B., Wang, C., Xing, H., Chen, X., and Chu, J. (2015). Orbital change manipulation metal-insulator transition temperature in W-doped VO₂. Phys. Chem. Chem. Phys. 17, 11638-11646.
- 90 Gu, D., Sun, Z., Zhou, X., Guo, R., Wang, T., and Jiang, Y. D. (2015). Effect of yttrium-doping on the microstructures and semiconductor-metal phase transition characteristics of polycrystalline VO₂ thin films. Appl. Surf. Sci. 359, 819-825.
- 91 Dietrich, M. K., Kramm, B. G., Becker, M., Meyer, B. K., Polity, A., and Klar, P. J. (2015). Influence of doping with alkaline earth metals on the optical properties of thermochromic VO₂. J. Appl. Phys. 117, 185301.
- 92 Cui, Y., Shi, S., Chen, L., Luo, H., and Gao, Y. (2015). Hydrogen-doping induced reduction in the phase transition temperature of VO₂: A first-principles

- study. Phys. Chem. Chem. Phys. 17, 20998-21004.
- 93 Wu, X., Wu, Z., Ji, C., Zhang, H., Su, Y., Huang, Z., Gou, J., Wei, X., Wang, J., and Jiang, Y. (2016). THz transmittance and electrical properties tuning across IMT in vanadium dioxide films by Al doping. ACS Appl. Mater. Interfaces 8, 11842-11850.
- 94 Wu, X. F., Wu, Z. M., Liu, Z. J., Ji, C. H., Huang, Z. H., Su, Y. J., Gou, J., Wang, J., and Jiang, Y. D. (2016). Rebound effect of IMT properties by different doping form in Si-doped vanadium dioxide films. Appl. Phys. Lett. 109, 111903.
- 95 Wilkinson, M., Kafizas, A., Bawaked, S. M., Obaid, A. Y., Al-Thabaiti, S. A., Basahel, S. N., Carmalt, C. J., and Parkin, I. P. (2013). Combinatorial atmospheric pressure chemical vapor deposition of graded TiO₂-VO₂ mixed-phase composites and their dual functional property as self-cleaning and photochromic window coatings. ACS Comb. Sci. 15, 309-319.
- 96 Yuan, X., Zhang, Y., Abtew, T. A., Zhang, P., and Zhang, W. (2012). VO₂: Orbital competition, magnetism, and phase stability. Phys. Rev. B 86, 235103.
- 97 Cyrot, M. (1972). Theory of Mott transition: Applications to transition metal oxides. Journal de Physique 33, 125-134.
- 98 Cui, Y., Wang, Y., Liu, B., Luo, H., and Gao, Y. (2016). First-principles study on the phase transition temperature of X-doped (X = Li, Na or K) VO₂. RSC Adv. 6, 64394-64399.
- 99 Zhang, J., He, H., Xie, Y., and Pan, B. (2013). Theoretical study on the tungsten-induced reduction of transition temperature and the degradation of optical properties for VO₂. J. Chem. Phys. 138, 114705.
- 100 Hu, L. T., Tao, H. Z., Chen, G. H., Pan, R. K., Wan, M. N., Xiong, D. H., and Zhao, X. J. (2016). Porous W-doped VO₂ films with simultaneously enhanced visible transparency and thermochromic properties. J. Sol-Gel Sci. Techn. 77, 85-93.
- 101 Li, D., Li, M., Pan, J., Luo, Y., Wu, H., Zhang, Y., and Li, G. (2014). Hydrothermal synthesis of Mo-doped VO₂/TiO₂ composite nanocrystals with enhanced thermochromic performance. ACS Appl. Mater. Interfaces 6, 6555-6561.
- 102 Liu, D., Cheng, H., Xing, X., Zhang, C., and Zheng, W. (2016). Thermochromic properties of W-doped VO₂ thin films deposited by aqueous sol-gel method for adaptive infrared stealth application. Infrared Phys. Technol. 77, 339-343.

- 103 Shen, N., Chen, S., Chen, Z., Liu, X., Cao, C., Dong, B., Luo, H., Liu, J., and Gao, Y. (2014). The synthesis and performance of Zr-doped and W-Zr-codoped VO₂ nanoparticles and derived flexible foils. J. Mater. Chem. A 2, 15087-15093.
- 104 Wang, N., Duchamp, M., Dunin-Borkowsk, R. E., Liu, S., Zeng, X., Cao, X., and Long, Y. (2016). Terbium-doped VO₂ thin films: Reduced phase transition temperature and largely enhanced luminous transmittance. Langmuir 32, 759-764.
- 105 Wang, N., Shun, N. T. C., Duchamp, M., Dunin-Borkowski, R. E., Li, Z., and Long, Y. (2016). Effect of lanthanum doping on modulating the thermochromic properties of VO₂ thin films. RSC Adv. 6, 48455-48461.
- 106 Cui, Y., Cao, C., Chen, Z., Luo, H., and Gao, Y. (2017). Atomic and electronic structures of thermochromic VO₂ with Sb-doping. Comp. Mater. Sci. 130, 103-108.
- 107 Ladd, L. A., and Paul, W. (1969). Optical and transport properties of high quality crystals of V₂O₄ near the metallic transition temperature. Solid State Commun. 7, 425-428.
- 108 Arcangeletti, E., Baldassarre, L., Di Castro, D., Lupi, S., Malavasi, L., Marini, C., Perucchi, A., and Postorino, P. (2007). Evidence of a pressure-induced metallization process in monoclinic VO₂. Phys. Rev. Lett. 98, 196406.
- 109 Marini, C., Arcangeletti, E., Di Castro, D., Baldassarre, L., Perucchi, A., Lupi, S., Malavasi, L., Boeri, L., Pomjakushina, E., Conder, K., and Postorino, P. (2008). Optical properties of V_{1-x}Cr_xO₂ compounds under high pressure. Phys. Rev. B 77, 235111.
- 110 Marini, C., Bendele, M., Joseph, B., Kantor, I., Mitrano, M., Mathon, O., Baldini, M., Malavasi, L., Pascarelli, S., and Postorino, P. (2014). Probing the electronic and local structural changes across the pressure-induced insulator-to-metal transition in VO₂. EPL 108, 36003.
- 111 Okuyama, D., Nakano, M., Takeshita, S., Ohsumi, H., Tardif, S., Shibuya, K., Hatano, T., Yumoto, H., Koyama, T., Ohashi, H., Takata, M., Kawasaki, M., Arima, T., Tokura, Y., and Iwasa, Y. (2014). Gate-tunable gigantic lattice deformation in VO₂. Appl. Phys. Lett. 104, 023507.
- 112 Cao, J., Ertekin, E., Srinivasan, V., Fan, W., Huang, S., Zheng, H., Yim, J. W. L., Khanal, D. R., Ogletree, D. F., Grossmanan, J. C., and Wu, J. (2009). Strain engineering and one-dimensional organization of metal-insulator domains in

- single-crystal vanadium dioxide beams. Nat. Nanotechnol. 4, 732-737.
- 113 Case, F. C. (1988). The influence of substrate temperature on the optical properties of ion-assisted reactively evaporated vanadium oxide thin films. J. Vac. Sci. Technol. A. 6, 2010-2014.
- 114 Jin, P., Yoshimura, K., and Tanemura, S. (1997). Dependence of microstructure and thermochromism on substrate temperature for sputter-deposited VO₂ epitaxial films. J. Vac. Sci. Technol. A 15, 1113-1117.
- 115 Muraoka, Y., and Hiroi, Z. (2002). Metal-insulator transition of VO₂ thin films grown on TiO₂ (001) and (110) substrates. Appl. Phys. Lett. 80, 583-585.
- 116 Muraoka, Y., Ueda, Y., and Hiroi, Z. (2002). Large modification of the metal-insulator transition temperature in strained VO₂ films grown on TiO₂ substrates. J. Phys. Chem. Solids 63, 965-967.
- 117 Wu, J., Gu, Q., Guiton, B. S., de Leon, N. P., Lian, O., and Park, H. (2006). Strain-induced self organization of metal-insulator domains in single-crystalline VO₂ nanobeams. Nano Lett. 6, 2313-2317.
- 118 Chang, S., Park, J. B., Lee, G., Kim, H. J., Lee, J., Bae, T., Han, Y., Park, T. J., Huh, Y. S., and Hong, W. (2014). In situ probing of doping- and stress-mediated phase transitions in a single-crystalline VO₂ nanobeam by spatially resolved Raman spectroscopy. Nanoscale 6, 8068-8074.
- 119 Kim, M. H., Lee, B., Lee, S., Larson, C., Baik, J. M., Yavuz, C. T., Seifert, S., Vajda, S., Winans, R. E., Moskovits, M., Stucky, G. D., and Wodtke, A. M. (2009). Growth of metal oxide nanowires from supercooled liquid nanodroplets. Nano Lett. 9, 4138-4146.
- 120 Rama, N., and Ramachandra Rao, M. S. (2010). Synthesis and study of electrical and magnetic properties of vanadium oxide micro and nanosized rods grown using pulsed laser deposition technique. Solid State Commun. 150, 1041-1044.
- 121 Nag, J., and Jr. Haglund, R. F. (2008). Synthesis of vanadium dioxide thin films and nanoparticles. J. Phys.Condens. Matter 20, 264016.
- 122 Zheng, C. M., Zhang, J. L., Luo, G. B., Ye, J. Q., and Wu, M. M. (2000). Preparation of vanadium dioxide powders by thermolysis of a precursor at low temperature. J. Mater. Sci. 35, 3425-3429.
- 123 Peng, Z., Jiang, W., and Liu, H. (2007). Synthesis and electrical properties of tungsten-doped vanadium dioxide nanopowders by thermolysis. J. Phys. Chem. C 111, 1119-1122.

- 124 Qi, J., Ning, G., and Lin, Y. (2008). Synthesis, characterization, and thermodynamic parameters of vanadium dioxide. Mater. Res. Bull. 43, 2300-2307.
- 125 Cao, C., Gao, Y., and Luo, H. (2008). Pure single-crystal rutile vanadium dioxide powders: Synthesis, mechanism and phase-transformation property. J. Phys. Chem. C 112, 18810-18814.
- 126 Ji, S., Zhao, Y., Zhang, F., and Jin, P. (2010). Direct formation of single crystal VO₂(R) nanorods by one-step hydrothermal treatment. J. Cryst. Growth 312, 282-286.
- 127 Dai, L., Cao, C., Gao, Y., and Luo, H. (2011). Synthesis and phase transition behavior of undoped VO₂ with a strong nano-size effect. Sol. Energy Mater. Sol. Cells 95, 712-715.
- 128 Whittaker, L., Velazquez, J. M., and Banerjee, S. (2011). A VO-seeded approach for the growth of star-shaped VO₂ and V₂O₅ nanocrystals: Facile synthesis, structural characterization, and elucidation of electronic structure. Crystengcomm. 13, 5328-5336.
- 129 Zhou, Y., Ji, S., Li, Y., Gao, Y., Luo, H., and Jin, P. (2014). Microemulsion-based synthesis of V_{1-x}W_xO₂@SiO₂ core-shell structures for smart window applications. J. Mater. Chem. C 2, 3812-3819.
- 130 Wu, C., Feng, F., Feng, J., Dai, J., Yang, J., and Xie, Y. (2011). Ultrafast solid-state transformation pathway from new-phased goethite VOOH to paramontroseite VO₂ to rutile VO₂(R). J. Phys. Chem. C 115, 791-799.
- 131 Wu, C., Dai, J., Zhang, X., Yang, J., Qi, F., Gao, C., and Xie, Y. (2010). Direct confined-space combustion forming monoclinic vanadium dioxides. Angew. Chem. Int. Edit. 49, 134-137.
- 132 Xu, C. L., Ma, X., Liu, X., Qiu, W. Y., and Su, Z. X. (2004). A novel reduction-hydrolysis method of preparing VO₂ nanopowders. Mater. Res. Bull. 39, 881-886.
- 133 Kam, K. C., and Cheetham, A. K. (2006). Thermochromic VO₂ nanorods and other vanadium oxides nanostructures. Mater. Res. Bull. 41, 1015-1021.
- 134 Zhang, K., Liu, X., Su, Z., and Li, H. (2007). VO₂(R) nanobelts resulting from the irreversible transformation of VO₂(B) nanobelts. Mater. Lett. 61, 2644-2647.
- 135 Yamamoto, S., Kasai, N., and Shimakawa, Y. (2009). Preparation of monodisperse and spherical rutile VO₂ fine particles. Chem. Mater. 21, 198-200.

- 136 Whittaker, L., Zhang, H., and Banerjee, S. (2009). VO₂ nanosheets exhibiting a well-defined metal-insulator phase transition. J. Mater. Chem. 19, 2968-2974.
- 137 Zhang, Y., Fan, M., Niu, F., Wu, W., Huang, C., Liu, X., Li, H., and Liu, X. (2012). Belt-like VO₂(M) with a rectangular cross section: A new route to prepare, the phase transition and the optical switching properties. Curr. Appl. Phys. 12, 875-879.
- 138 Liu, L., Cao, F., Yao, T., Xu, Y., Zhou, M., Qu, B., Pan, B., Wu, C., Wei, S., and Xie, Y. (2012). New-phase VO₂ micro/nanostructures: Investigation of phase transformation and magnetic property. New J. Chem. 36, 619-625.
- 139 Zhang, S., Fu, J., Su, Q., Fu, C., and Li, X. (2015). Preparation of VO₂ superfine powders by a redox method and in situ characterization on the reversible phase transition. Rare Metal Mat. Eng. 44, 738-742.
- 140 Liu, X., Huang, C., Yi, S., Xie, G., Li, H., and Luo, Y. (2007). A new solvothermal method of preparing VO₂ nanosheets and petaloid clusters. Solid State Commun. 144, 259-263.
- 141 Ye, J., Zhou, L., Liu, F., Qi, J., Gong, W., Lin, Y., and Ning, G. (2010). Preparation, characterization and properties of thermochromic tungsten-doped vanadium dioxide by thermal reduction and annealing. J. Alloy. Compd. 504, 503-507.
- 142 Gui, Z., Fan, R., Mo, W. Q., Chen, X. H., Yang, L., Zhang, S. Y., Hu, Y., Wang, Z. Z., and Fan, W. C. (2002). Precursor morphology controlled formation of rutile VO₂ nanorods and their self-assembled structure. Chem. Mater. 14, 5053-5056.
- 143 Chen, J., Liu, X., Dai, L., Chen, L., Gao, Y., and Chen, N. (2012). Deoxidization of V₂O₅ powder into VO₂ assisted by an electrochemical lithium intercalation technique. Int. J. Appl. Ceram. Technol. 9, 942-946.
- 144 Gao, Y., Cao, C., Dai, L., Luo, H., Kanehira, M., Ding, Y., and Wang, Z. (2012). Phase and shape controlled VO₂ nanostructures by antimony doping. Energy Environ. Sci. 5, 8708-8715.
- 145 Ji, H., Liu, D., Cheng, H., Zhang, C., and Yang, L. (2018). Vanadium dioxide nanopowders with tunable emissivity for adaptive infrared camouflage in both thermal atmospheric windows. Sol. Energy Mater. Sol. Cells 175, 96-101.
- 146 Granqvist, C. G. (2007). Transparent conductors as solar energy materials: A panoramic review. Sol. Energy Mater. Sol. Cells 91, 1529-1598.

- 147 Li, S. Y., Niklasson, G. A., and Granqvist, C. G. (2010). Nanothermochromics: Calculations for VO₂ nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation. J. Appl. Phys. 108, 63525.
- 148 Li, S. Y., Niklasson, G. A., and Granqvist, C. G. (2011). Nanothermochromics with VO₂-based core-shell structures: Calculated luminous and solar optical properties. J. Appl. Phys. 109, 113515.
- 149 Laaksonen, K., Li, S. Y., Puisto, S. R., Rostedt, N. K. J., Ala-Nissila, T., Granqvist, C. G., Nieminen, R. M., and Niklasson, G. A. (2014). Nanoparticles of TiO₂ and VO₂ in dielectric media: Conditions for low optical scattering, and comparison between effective medium and four-flux theories. Sol. Energy Mater. Sol. Cells 130, 132-137.
- 150 Chen, Z., Gao, Y., Kang, L., Cao, C., Chen, S., and Luo, H. (2014). Fine crystalline VO₂ nanoparticles: Synthesis, abnormal phase transition temperatures and excellent optical properties of a derived VO₂ nanocomposite foil. J. Mater. Chem. A 2, 2718-2727.
- 151 Shen, N., Dong, B., Cao, C., Chen, Z., Luo, H., and Gao, Y. (2015). Solid-state-reaction synthesis of VO₂ nanoparticles with low phase transition temperature, enhanced chemical stability and excellent thermochromic properties. RSC Adv. 5, 108015-108022.
- 152 Gao, Y., Wang, S., Kang, L., Chen, Z., Du, J., Liu, X., Luo, H., and Kanehira, M. (2012). VO₂-Sb:SnO₂ composite thermochromic smart glass foil. Energy Environ. Sci. 5, 8234-8237.
- 153 Gao, Y., Wang, S., Luo, H., Dai, L., Cao, C., Liu, Y., Chen, Z., and Kanehira, M. (2012). Enhanced chemical stability of VO₂ nanoparticles by the formation of SiO₂/VO₂ core/shell structures and the application to transparent and flexible VO₂-based composite foils with excellent thermochromic properties for solar heat control. Energy Environ. Sci. 5, 6104-6110.
- 154 Zhou, Y., Huang, A., Li, Y., Ji, S., Gao, Y., and Jin, P. (2013). Surface plasmon resonance induced excellent solar control for VO₂@SiO₂ nanorods-based thermochromic foils. Nanoscale 5, 9208-9213.
- 155 Zhu, J., Zhou, Y., Wang, B., Zheng, J., Ji, S., Yao, H., Luo, H., and Jin, P. (2015). Vanadium dioxide nanoparticle-based thermochromic smart coating: High luminous transmittance, excellent solar regulation efficiency, and near room

- temperature phase transition. ACS Appl. Mater. Interfaces 7, 27796-27803.
- 156 Ji, H., Liu, D., Zhang, C., and Cheng, H. (2018). VO₂/ZnS core-shell nanoparticle for the adaptive infrared camouflage application with modified color and enhanced oxidation resistance. Sol. Energy Mater. Sol. Cells 176, 1-8.
- 157 Liu, C., Cao, X., Kamyshny, A., Law, J. Y., Magdassi, S., and Long, Y. (2014). VO₂/Si-Al gel nanocomposite thermochromic smart foils: Largely enhanced luminous transmittance and solar modulation. J. Colloid Interface Sci. 427, 49-53.
- 158 Lu, Q., Liu, C., Wang, N., Magdassi, S., Mandler, D., and Long, Y. (2016). Periodic micro-patterned VO₂ thermochromic films by mesh printing. J. Mater. Chem. C 4, 8385-8391.
- 159 Moot, T., Palin, C., Mitran, S., Cahoon, J. F., and Lopez, R. (2016). Designing plasmon-enhanced thermochromic films using a vanadium dioxide nanoparticle elastomeric composite. Adv. Opt. Mater. 4, 578-583.
- 160 Chen, Z., Cao, C., Chen, S., Luo, H., and Gao, Y. (2014). Crystallised mesoporous TiO₂(A)-VO₂(M/R) nanocomposite films with self-cleaning and excellent thermochromic properties. J. Mater. Chem. A 2, 11874-11884.
- 161 Zhou, Y., Cai, Y. F., Hu, X., and Long, Y. (2014). Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for "smart window" applications. J. Mater. Chem. A 2, 13550-13555.
- 162 Zhou, Y., Cai, Y. F., Hu, X., and Long, Y. (2015). VO₂/hydrogel hybrid nanothermochromic material with ultra-high solar modulation and luminous transmission. J. Mater. Chem. A 3, 1121-1126.
- 163 Yang, Y. S., Zhou, Y., Chiang, F., and Long, Y. (2017). Tungsten doped VO₂/microgels hybrid thermochromic material and its smart window application. RSC Adv. 7, 7758-7762.
- 164 Zhu, J. T., Huang, A. B., Ma, H. B., Ma, Y. N., Tong, K., Ji, S. D., Bao, S. H., Cao, X., and Jin, P. (2016). Composite film of vanadium dioxide nanoparticles and ionic liquid-nickel-chlorine complexes with excellent visible thermochromic performance. ACS Appl. Mater. Interfaces 8, 29742-29748.
- 165 Zhu, J. T., Huang, A. B., Ma, H. B., Bao, S. H., Ji, S. D., and Jin, P. (2016). Solar-thermochromism of a hybrid film of VO₂ nanoparticles and Co^{II}-Br-TMP complexes. RSC Adv. 6, 67396-67399.
- 166 Zhu, J. T., Huang, A. B., Ma, H. B., Chen, Y. X., Zhang, S. P., Ji, S. D., Bao, S.

- H., and Jin, P. (2017). Hybrid films of VO₂ nanoparticles and a nickel(II)-based ligand exchange thermochromic system: Excellent optical performance with a temperature responsive colour change. New J. Chem. 41, 830-835.
- 167 Hild, E., and Grofcsik, A. (1978). Calculation of IR reflection spectra of inhomogeneously doped semiconductors. Infrared Phys. 18, 23-33.
- 168 Hild, E., and Evans, M. W. (1986). Calculation of the infrared reflection spectra of inhomogeneously doped silicon semiconductor layers at an arbitrary angle of incidence. J. Appl. Phys. 59, 1822-1828.
- 169 Deak, A., Hild, E., Kovacs, A. L., and Horvolgyi, Z. (2007). Contact angle determination of nanoparticles: Film balance and scanning angle reflectometry studies. Phys. Chem. Chem. Phys. 9, 6359-6370.
- 170 Hild, E., and Deák, A. (2007). Use of the optical admittance function and its WKB approximation to simulate and evaluate transmittance spectra of graded-index colloidal films. J. Opt. A-Pure Appl. Opt. 9, 920.
- 171 Kang, L., Gao, Y., Luo, H., Chen, Z., Du, J., and Zhang, Z. (2011). Nanoporous thermochromic VO₂ films with low optical constants, enhanced luminous transmittance and thermochromic properties. ACS Appl. Mater. Interfaces 3, 135-138.
- 172 Ding, S., Liu, Z., Li, D., Zhao, W., Wang, Y., Wan, D., and Huang, F. (2013). Tunable assembly of vanadium dioxide nanoparticles to create porous film for energy-saving applications. ACS Appl. Mater. Interfaces 5, 1630-1635.
- 173 Xu, Y. J., Huang, W. X., Shi, Q. W., Zhang, Y. B., Wu, J., and Song, L. W. (2013). Shape-dependent thermochromic phenomenon in porous nanostructured VO₂ films. Mater. Res. Bull. 48, 4146-4149.
- 174 Xu, Y. J., Huang, W. X., Shi, Q. W., Zhang, Y. B., Wu, J., and Song, L. W. (2013). Porous nano-structured VO₂ films with different surfactants: Synthesis mechanisms, characterization, and applications. J. Mater. Sci.-Mater. Electron. 24, 3823-3829.
- 175 Cao, X., Wang, N., Law, J. Y., Loo, S., Magdassi, S., and Long, Y. (2014). Nanoporous thermochromic VO₂(M) thin films: Controlled porosity, largely enhanced luminous transmittance and solar modulating ability. Langmuir 30, 1710-1715.
- 176 Wang, N., Huang, Y. Z., Magdassi, S., Mandler, D., Liu, H., and Long, Y. (2013). Formation of VO₂ zero-dimensional/nanoporous layers with large supercooling

- effects and enhanced thermochromic properties. RSC Adv. 3, 7124-7128.
- 177 Liu, M., Su, B., Kaneti, Y., Chen, Z., Tang, Y., Yuan, Y., Gao, Y., Jiang, L., Jiang, X., and Yu, A. (2017). Dual-phase transformation: Spontaneous self-template surface-patterning strategy for ultra-transparent VO₂ solar modulating coatings. ACS Nano 11, 407-415.
- 178 Zhang, J., Jin, H., Chen, Z., Cao, M., Chen, P., Dou, Y., Zhao, Y., and Li, J. (2015). Self-assembling VO₂ nanonet with high switching performance at wafer-scale. Chem. Mater. 27, 7419-7424.
- 179 Liu, C., Balin, I., Magdassi, S., Abdulhalim, I., and Long, Y. (2015). Vanadium dioxide nanogrid films for high transparency smart architectural window applications. Opt. Express 23, A124-A132.
- 180 Liu, C., Long, Y., Magdassi, S., and Mandler, D. (2017). Ionic strength induced electrodeposition: A universal approach for nanomaterial deposition at selective areas. Nanoscale 9, 485-490.
- 181 Ye, X., and Qi, L. (2011). Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications. Nano Today 6, 608-631.
- 182 Zhou, M., Bao, J., Tao, M., Zhu, R., Lin, Y., Zhang, X., and Xie, Y. (2013). Periodic porous thermochromic VO₂(M) films with enhanced visible transmittance. Chem. Commun. 49, 6021-6023.
- 183 Ke, Y., Wen, X., Zhao, D., Che, R., Xiong, Q., and Long, Y. (2017). Controllable fabrication of two-dimensional patterned VO₂ nanoparticle, nanodome, and nanonet arrays with tunable temperature-dependent localized surface plasmon resonance. ACS Nano 11, 7542-7551.
- 184 Yu, K., Fan, T., Lou, S., and Zhang, D. (2013). Biomimetic optical materials: Integration of nature's design for manipulation of light. Prog. Mater. Sci. 58, 825-873.
- 185 Li, Y. F., Zhang, J. H., Zhu, S. J., Dong, H. P., Jia, F., Wang, Z. H., Sun, Z. Q., Zhang, L., Li, Y., Li, H. B., Xu, W. Q., and Yang, B. (2009). Biomimetic surfaces for high-performance optics. Adv. Mater. 21, 4731-4734.
- 186 Vukusic, P., and Sambles, J. R. (2003). Photonic structures in biology. Nature 424, 852-855.
- 187 Taylor, A., Parkin, I., Noor, N., Tummeltshammer, C., Brown, M. S., and Papakonstantinou, I. (2013). A bioinspired solution for spectrally selective

- thermochromic VO₂ coated intelligent glazing. Opt. Express 21, A750-A764.
- 188 Qian, X., Wang, N., Li, Y., Zhang, J., Xu, Z., and Long, Y. (2014). Bioinspired multifunctional vanadium dioxide: Improved thermochromism and hydrophobicity. Langmuir 30, 10766-10771.
- 189 Yablonovitch, E. (1987). Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059-2062.
- 190 Aguirre, C. I., Reguera, E., and Stein, A. (2010). Tunable colors in opals and inverse opal photonic crystals. Adv. Funct. Mater. 20, 2565-2578.
- 191 Ke, Y., Balin, I., Wang, N., Lu, Q., Tok, A. T. Y., White, T. J., Magdassi, S., Abdulhalim, I., and Long, Y. (2016). Two-dimensional SiO₂/VO₂ photonic crystals with statically visible and dynamically infrared modulated for smart window deployment. ACS Appl. Mater. Interfaces 8, 33112-33120.
- 192 Saitzek, S., Guinneton, F., Sauques, L., Aguir, K., and Gavarri, J. (2007). Thermochromic CeO₂-VO₂ bilayers: Role of ceria coating in optical switching properties. Opt. Mater. 30, 407-415.
- 193 Liu, C., Wang, N., and Long, Y. (2013). Multifunctional overcoats on vanadium dioxide thermochromic thin films with enhanced luminous transmission and solar modulation, hydrophobicity and anti-oxidation. Appl. Surf. Sci. 283, 222-226.
- 194 Evans, P., Pemble, M. E., Sheel, D. W., and Yates, H. M. (2007). Multi-functional self-cleaning thermochromic films by atmospheric pressure chemical vapour deposition. J. Photochem. Photobiol. A-Chem. 189, 387-397.
- 195 Raut, H. K., Ganesh, V. A., Nair, A. S., and Ramakrishna, S. (2011). Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 4, 3779-3804.
- 196 Tazawa, M., Jin, P., and Tanemura, S. (1998). Optical constants of V1-xWxO₂ films. Appl. Optics 37, 1858-1861.
- 197 Xu, G., Jin, P., Tazawa, M., and Yoshimura, K. (2004). Optimization of antireflection coating for VO₂-based energy efficient window. Sol. Energy Mater. Sol. Cells 83, 29-37.
- 198 Jin, P., Xu, G., Tazawa, M., and Yoshimura, K. (2002). A VO₂-based multifunctional window with highly improved luminous transmittance. Jpn. J. Appl. Phys. 41, L278-L280.
- 199 Koo, H., Shin, D., Bae, S., Ko, K., Chang, S., and Park, C. (2014). The effect of CeO₂ antireflection layer on the optical properties of thermochromic VO₂ film

- for smart window system. J. Mater. Eng. Perform. 23, 402-407.
- 200 Zhang, Z., Gao, Y., Luo, H., Kang, L., Chen, Z., Du, J., Kanehira, M., Zhang, Y., and Wang, Z. L. (2011). Solution-based fabrication of vanadium dioxide on F:SnO₂ substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications. Energy Environ. Sci. 4, 4290-4297.
- 201 Jin, P., Xu, G., Tazawa, M., and Yoshimura, K. (2003). Design, formation and characterization of a novel multifunctional window with VO₂ and TiO₂ coatings. Appl. Phys. A-Mater. Sci. Process 77, 455-459.
- 202 Liu, C., Wang, S., Zhou, Y., Yang, H., Lu, Q., Mandler, D., Magdassi, S., Tay, C. Y., and Long, Y. (2018). Index-tunable anti-reflection coatings: Maximizing solar modulation ability for vanadium dioxide-based smart thermochromic glazing. J. Alloy. Compd. 731, 1197-1207.
- 203 Chen, Z., Gao, Y., Kang, L., Du, J., Zhang, Z., Luo, H., Miao, H., and Tan, G. (2011). VO₂-based double-layered films for smart windows: Optical design, all-solution preparation and improved properties. Sol. Energy Mater. Sol. Cells 95, 2677-2684.
- 204 Mlyuka, N. R., Niklasson, G. A., and Granqvist, C. G. (2009). Thermochromic multilayer films of VO₂ and TiO₂ with enhanced transmittance. Sol. Energy Mater. Sol. Cells 93, 1685-1687.
- 205 Kang, L., Gao, Y., Luo, H., Wang, J., Zhu, B., Zhang, Z., Du, J., Kanehira, M., and Zhang, Y. (2011). Thermochromic properties and low emissivity of ZnO:Al/VO₂ double-layered films with a lowered phase transition temperature. Sol. Energy Mater. Sol. Cells 95, 3189-3194.
- 206 Zhang, Z., Gao, Y., Kang, L., Du, J., and Luo, H. (2010). Effects of a TiO₂ buffer layer on solution-deposited VO₂ films: Enhanced oxidization durability. J. Phys. Chem. C 114, 22214-22220.
- 207 Zheng, J., Bao, S., and Jin, P. (2015). TiO₂(R)/VO₂(M)/TiO₂(A) multilayer film as smart window: Combination of energy-saving, antifogging and self-cleaning functions. Nano Energy 11, 136-145.
- 208 Zhang, Z., Gao, Y., Chen, Z., Du, J., Cao, C., Kang, L., and Luo, H. (2010). Thermochromic VO₂ thin films: Solution-based processing, improved optical properties, and lowered phase transformation temperature. Langmuir 26, 10738-10744.
- 209 Voti, R. L., Larciprete, M. C., Leahu, G., Sibilia, C., and Bertolotti, M. (2012).

- Optical response of multilayer thermochromic VO₂-based structures. J. Nanophotonics 6, 61601.
- 210 Kang, L., Gao, Y., Chen, Z., Du, J., Zhang, Z., and Luo, H. (2010). Pt/VO₂ double-layered films combining thermochromic properties with low emissivity. Sol. Energy Mater. Sol. Cells 94, 2078-2084.
- 211 Du, J., Gao, Y., Chen, Z., Kang, L., Zhang, Z., and Luo, H. (2013). Enhancing thermochromic performance of VO₂ films *via* increased microroughness by phase separation. Sol. Energy Mater. Sol. Cells 110, 1-7.
- 212 Hendaoui, A., Emond, N., Chaker, M., and Haddad, E. (2013). Highly tunable-emittance radiator based on semiconductor-metal transition of VO₂ thin films. Appl. Phys. Lett. 102, 061107.
- 213 Saeli, M., Piccirillo, C., Parkin, I. P., Ridley, I., and Binions, R. (2010). Nano-composite thermochromic thin films and their application in energy-efficient glazing. Sol. Energy Mater. Sol. Cells 94, 141-151.
- 214 Saeli, M., Piccirillo, C., Parkin, I. P., Binions, R., and Ridley, I. (2010). Energy modelling studies of thermochromic glazing. Energy Build. 42, 1666-1673.
- 215 Chang, T., Cao, X., Dedon, L. R., Long, S., Huang, A., Shao, Z., Li, N., Luo, H., and Jin, P. (2018). Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings. Nano Energy 44, 256-264.
- 216 Kim, H., Kim, Y., Kim, K. S., Jeong, H. Y., Jang, A., Han, S. H., Yoon, D. H., Suh, K. S., Shin, H. S., Kim, T., and Yang, W. S. (2013). Flexible thermochromic window based on hybridized VO₂/graphene. ACS Nano 7, 5769-5776.
- 217 Yang, J., Xu, Z., Ye, H., Xu, X., Wu, X., and Wang, J. (2015). Performance analyses of building energy on phase transition processes of VO₂ windows with an improved model. Appl. Energy 159, 502-508.
- 218 Ye, H., Meng, X., and Xu, B. (2012). Theoretical discussions of perfect window, ideal near infrared solar spectrum regulating window and current thermochromic window. Energy Build. 49, 164-172.
- 219 Long, L. and Ye, H. (2014). How to be smart and energy efficient: A general discussion on thermochromic windows. Sci. Rep. 4, 6427.
- 220 Long, L. and Ye, H. (2014). Discussion of the performance improvement of thermochromic smart glazing applied in passive buildings. Sol. Energy 107,

- 236-244.
- 221 Ye, H. and Long, L. (2014). Smart or not? A theoretical discussion on the smart regulation capacity of vanadium dioxide glazing. Sol. Energy Mater. Sol. Cells 120, 669-674.
- 222 Ye, H., Long, L., Zhang, H., Xu, B., Gao, Y., Kang, L., and Chen, Z. (2013). The demonstration and simulation of the application performance of the vanadium dioxide single glazing. Sol. Energy Mater. Sol. Cells 117, 168-173.