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FDTD Modeling for Dispersive Media Using
Matrix Exponential Method

Ding Yu Heh and Eng Leong Ta&nior Member, |IEEE

Abstract— This letter presents a finite-difference time-
domain (FDTD) formulation to model electromagnetic
wave propagation in dispersive media using matrix
exponential method. The Maxwell's curl equations ad the
time domain relations between electric fields andwiliary
variables are formulated as a first order differenial
matrix system. The fundamental solution to such aystem
is derived in terms of matrix exponential and the pdate
equations can be extracted conveniently from the &dion.
Numerical results show that this formulation yieldshigher
accuracy compared to many other previous methods,
without incurring additional auxiliary variable and
complexity.

Index Terms—Matrix exponential, Dispersive media,
Finite-Difference Time-Domain (FDTD)

I.  INTRODUCTION

HE conventional

(FDTD) method requires additional treatments ineori
model electromagnetic wave propagation in dispersiedia,
due to the frequency dependent permittivity or peahility of
the media. One popular method is based on the auil
Differential Equation (ADE) [1],[2], which convertshe
frequency dependent equations into discretized timmain
update equations using the central difference amation.
Other techniques include the Recursive Convolut{Rc)
method [3] and its improved Piecewise Linear Rewars
Convolution (PLRC) method [4], which are obtainegl b
discretizing the convolution integral between theand E
fields using a recursive accumulator. Another apphois the
Z-transform method (or classical impulse invarianeethod)
[5],[6], which converts the transfer function inefuency
domain into Z domain before obtaining the actuatlatp
equations. The corrected impulse invariance mefipdffers
another alternative to the classical impulse irarsseé method
with a greater accuracy when the time domain sy
function of the media is discontinuous at initiah¢ zero,
such as in the Debye case.

In all the above-mentioned methods, the discretinatare
applied independently to the Maxwell’s curl equasi@and the
time domain relations betweé&fields and auxiliary variables.
In this letter, we present a new formulation whereddl
equations and relations are cast in a first ordf#erdntial
matrix system. The fundamental solution to suchistem is
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Yee's finite-difference time-domain

derived in terms of matrix exponential and the uepda
equations can be extracted conveniently from tHetiso.
The matrix exponential can be derived analyticély shown
below), or computed numerically (as in [8]).

Il.  FORMULATION FORDEBYE MEDIA

For simplicity, we shall consider single-pole Debyedia
in the sequel, although the method can be extefateulti-
term, Lorentz or Drude media. The complex permititiof a
Debye model is known as

Ae

elw)=e+— 1)
1+ jor

wheree = £,¢,, A€ = &, (ss - 500) , & is the permittivity in

free spaceg, is the static relative permittivityg, is the

relative permittivity at infinite frequency and
relaxation time.

The Maxwell’s curl equations and the time domalatiens
betweenE fields and auxiliary variables are represented in
compact matrix form as

oE E] [1/¢]

—| “|=A + OxH

atl P = 0

where

A 2| elED) 1/(e1) |
- AelT -1/ T |

and P is the auxiliary polarization current.

The above formulation can be viewed as a systeffirgif
order differential equations whose solution canekpressed
as

E@M)|_ _ E(ty)
{P(t)} = exp(/\(t tO))EEP(to)}
+ fexplA(t —t'))[ﬁllﬂu X H (t')dt
to

wheret,is the initial time.Integrating over the interval of one

is the

(2)

®3)

time stepAt and settingdx H (t') to its value at mid-point,
one can obtain

[ETH = exp(/\At)[E'Fjn

At e
+ Jexp(/\t)dt[ﬁ 0 }Dx H ™2
0

wheren is the time index.

(4)



It can be shown that the matrix exponential can
expressed as

1-A
exp{Ant) =[ gAg}S/y 1_‘;}/} (5)
where
_ 1- exp(— (e +Asg)At /(£r))

(e +Ag)
Integrating the matrix exponential from time zepo/tt gives
the following expression

At 1
expAtdt = ———
c{ p( )d (e +A¢g)
(6)
« it + Asery At -ery
a\e(At - e1y) Aaht + %1y
Substituting (5) and (6) into (4), one arrives at
P - ey l-¢y| | P
(7
+ 1 At +Aety OxH n+1/2
(e +Ag) | As(At - Tp)

The update equations fd& and P can be extracted from (7)
as

+
At A“:TyD x H n+1/2

E™ =(1-aey)E" + )p" +
( ) (e +A¢g)

(8a)
P™ = (1-gy)P" + srg)E"
L Dadt - aheyr Ox g ™Y/2
(e +A¢g)
To eliminate the dependency &f on O x H in the second

update equation, (8a) can be substituted into &la) upon
some manipulation, the final update equationForeads

P = P" +c,EM +c,E"
where
_Deyr + (1-¢ey - Dey) At
- Agyr + At
_Adht - eheyr

(8b)

9)

Asyr + At
_aheyr + Ae(L- ey - Aey) At
s Agyr + At

be Ex Ex
AR OH, [=BOH, (10)
P P
wherel is the 3 by 3 identity matrix,
1 00
A= -2jW,/u, 1 0],
. G 01
1- Ay % At +Agy
At (g+Ae)
B= 0 1 0,
C; 0

W, = (At/Az)sin(kAz/ 2) and 4, is the permeability in free

space. For nontrivial field solution, the dispenrsielation can
be derived by setting

def( AR -B) =0 (11)
The complex roots of propagation constant can beesolved
and compared to the analytical propagation consttti

k(w) = an tp&pé(w) . It is noted that the real part and

(negative) imaginary part df are associated with the phase
constant and attenuation constant respectiveljhe
normalized phase and attenuation error are defiasd

|Reaes) ~ ReKarayica)| [ 1M(Kyet) = 1M (K|

‘ ReKanayicar ) ‘ ‘ IM(Kanaytica ) ‘

respectively Similarly, the normalized phase and attenuation
constant error for other methods are obtained fopring
the same procedure and comparison can then be anacieg
them.

Figure 1a plots the normalized phase constant anmdiFig.
1b the corresponding normalized attenuation cohstaior.
The Debye medium considered is water, charactertzaed

£,=81, £,=18, andr = 94ps[3]. The cell sizeAzand
time stepAt are set aB7.5um and 0.125ps respectively. It

can be seen from both figures that the RC and icklss
impulse invariance method have relatively high esrevhich
essentially put them nearly off the graphs. The APERC
and corrected impulse invariance method give redétilower
error, but it is evident that both the normalizeltage and
attenuation error of the exponential matrix metteod the

and

The H field is updated as in the conventional Yee’s FDTDlowest throughout the whole frequency range comsieT his

scheme.

I1l.  DISPERSIONANALYSIS AND NUMERICAL RESULTS

For illustration, we consider a 1-D plane wave véfand

H

y
analysis in conjunction with second order spatiahtral
difference on Yee’s cell, the updating proceduras be

represented in matrix as

components traveling in z direction. Using Fourier

indicates that this method indeed features thedsighccuracy
among all other methods.

For further illustration, we consider 1000 cellBefl with
water. Let the plane wave propagation be initiated by &l ha
source Gaussian pulse excitation at initial pofitte E field in
space can be traced after certain time steps @nckult can

compared to the analytical solution obtained by
numerically integrating the exact frequency donsailution.
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Fig 1. Normalized phase (a) and attenuation (loremrsus frequency.

Norm-infinity of Absolute Electric Field Error, V/m

-4

x 10
T
—e— matrix exponential
——ADE
--=-PLRC
no corrected i.i.m
3 |- .
2 .
1 |
0 | ’ » ==——————-}
0 100 200 300 400 500
Cell Position

Fig 2. Norm-infinity of absolute electric field emversus cell position.

Figure 2 shows the norm-infinity of absolute elmcfreld
error versus cell position in the Debye medium. hbem is
computed over 6500 time steps sampled at the altefv100
time steps. Owing to the high phase and attenuatimstant
errors exhibited by the RC and classical impulsaiimnce
method (as depicted previously from the dispersioalysis),
their results are omitted herein. Comparison is endidectly
among the matrix exponential, ADE, PLRC and cogéct
impulse invariance methods. It can be seen agairtlile error
incurred by using matrix exponential method is tbeest
compared to others. This further reaffirms its lighccuracy
feature, resulting from the fact that the updataatigns are
derived directly from the fundamental solution ke tsystem
of first order differential equations. The memoriorage
requirement for this method is found to be lessntlilae
classical and corrected impulse invariance methtids. the
same as the ADE, RC and PLRC methods utilizingstrae
number of auxiliary variables, and yet retains thigh
accuracy feature of the matrix exponential.

IV. CONCLUSION

This letter has presented the FDTD formulation for
electromagnetic wave propagation in dispersive mering
matrix exponential method. Dispersion analysis the
method is performed and numerical result has bé&emvis.
Compared to other previous methods, the matrix esptal
shows a promising higher accuracy without incurring
additional auxiliary variable. For extension to titdrm
dispersion or higher order pole such as the Loremgdia, the
analytical derivation of update equations hereim dze
omitted by directly computing the matrix exponehtiad its
time integral numerically. The update equations tteen be
derived readily without incurring much complexity.
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