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Abstract— This letter presents a finite-difference time-
domain (FDTD) formulation to model electromagnetic 
wave propagation in dispersive media using matrix 
exponential method. The Maxwell’s curl equations and the 
time domain relations between electric fields and auxiliary 
variables are formulated as a first order differential 
matrix system. The fundamental solution to such a system 
is derived in terms of matrix exponential and the update 
equations can be extracted conveniently from the solution. 
Numerical results show that this formulation yields higher 
accuracy compared to many other previous methods, 
without incurring additional auxiliary variable and  
complexity. 

 
Index Terms—Matrix exponential, Dispersive media, 
Finite-Difference Time-Domain (FDTD) 

I.  INTRODUCTION 

HE conventional Yee’s finite-difference time-domain 
(FDTD) method requires additional treatments in order to 

model electromagnetic wave propagation in dispersive media, 
due to the frequency dependent permittivity or permeability of 
the media. One popular method is based on the Auxiliary 
Differential Equation (ADE) [1],[2], which converts the 
frequency dependent equations into discretized time domain 
update equations using the central difference approximation. 
Other techniques include the Recursive Convolution (RC) 
method [3] and its improved Piecewise Linear Recursive 
Convolution (PLRC) method [4], which are obtained by 
discretizing the convolution integral between the D and E 
fields using a recursive accumulator. Another approach is the 
Z-transform method (or classical impulse invariance method) 
[5],[6], which converts the transfer function in frequency 
domain into Z domain before obtaining the actual update 
equations. The corrected impulse invariance method [7] offers 
another alternative to the classical impulse invariance method 
with a greater accuracy when the time domain susceptibility 
function of the media is discontinuous at initial time zero, 
such as in the Debye case.  

In all the above-mentioned methods, the discretizations are 
applied independently to the Maxwell’s curl equations and the 
time domain relations between E fields and auxiliary variables.  
In this letter, we present a new formulation whereby all 
equations and relations are cast in a first order differential 
matrix system. The fundamental solution to such a system is  
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derived in terms of matrix exponential and the update 
equations can be extracted conveniently from the solution. 
The matrix exponential can be derived analytically (as shown 
below), or computed numerically (as in [8]). 

II.  FORMULATION FOR DEBYE MEDIA 

For simplicity, we shall consider single-pole Debye media 
in the sequel, although the method can be extended for multi-
term, Lorentz or Drude media. The complex permittivity of a 
Debye model is known as  
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where ∞= εεε 0 ( )∞−=∆ εεεε s0 , 0ε is the permittivity in 

free space, sε  is the static relative permittivity, ∞ε is the 

relative permittivity at infinite frequency and τ  is the 
relaxation time. 

The Maxwell’s curl equations and the time domain relations 
between E fields and auxiliary variables are represented in 
compact matrix form as 
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and P  is the auxiliary polarization current. 
The above formulation can be viewed as a system of first 

order differential equations whose solution can be expressed 
as 
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where 0t is the initial time. Integrating over the interval of one 

time step t∆  and setting )'(tH×∇  to its value at mid-point, 

one can obtain 
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where n is the time index.  
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It can be shown that the matrix exponential can be 
expressed as  
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Integrating the matrix exponential from time zero to t∆  gives 
the following expression 
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Substituting (5) and (6) into (4), one arrives at 
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The update equations for E  and P  can be extracted from (7) 
as  
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To eliminate the dependency of P  on H×∇ in the second 
update equation, (8a) can be substituted into (8b) and upon 
some manipulation, the final update equation for P  reads 
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The H field is updated as in the conventional Yee’s FDTD 
scheme. 

III.  DISPERSION ANALYSIS AND NUMERICAL RESULTS 

For illustration, we consider a 1-D plane wave withxE and 

yH  components traveling in z direction. Using Fourier 

analysis in conjunction with second order spatial central 
difference on Yee’s cell, the updating procedures can be 
represented in matrix as 
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where I is the 3 by 3 identity matrix, 
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( ) ( )2/sin/ zkztWz ∆∆∆=  and 0µ  is the permeability in free 

space. For nontrivial field solution, the dispersion relation can 
be derived by setting  

0)det( =−⋅ ∆ BIeA tjω  (11) 

The complex roots of propagation constant can then be solved 
and compared to the analytical propagation constant with 

)()( 00 ωεεµωω =k . It is noted that the real part and 

(negative) imaginary part of k are associated with the phase 
constant and attenuation constant respectively. The 
normalized phase and attenuation error are defined as 
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respectively. Similarly, the normalized phase and attenuation 
constant error for other methods are obtained by performing 
the same procedure and comparison can then be made among 
them. 

Figure 1a plots the normalized phase constant error and Fig. 
1b the corresponding normalized attenuation constant error. 
The Debye medium considered is water, characterized by 

81=sε , 8.1=∞ε , and ps4.9=τ [3].  The cell size z∆ and 

time step t∆  are set at mµ5.37  and ps125.0  respectively. It 

can be seen from both figures that the RC and classical 
impulse invariance method have relatively high errors, which 
essentially put them nearly off the graphs. The ADE, PLRC 
and corrected impulse invariance method give relatively lower 
error, but it is evident that both the normalized phase and 
attenuation error of the exponential matrix method are the 
lowest throughout the whole frequency range considered. This 
indicates that this method indeed features the highest accuracy 
among all other methods. 

For further illustration, we consider 1000 cells filled with 
water. Let the plane wave propagation be initiated by a hard 
source Gaussian pulse excitation at initial point. The E field in 
space can be traced after certain time steps and the result can 
be compared to the analytical solution obtained by 
numerically integrating the exact frequency domain solution.  

 
 

 



 

Figure 2 shows the norm-infinity of absolute electric field 
error versus cell position in the Debye medium. The norm is 
computed over 6500 time steps sampled at the interval of 100 
time steps. Owing to the high phase and attenuation constant 
errors exhibited by the RC and classical impulse invariance 
method (as depicted previously from the dispersion analysis), 
their results are omitted herein. Comparison is made directly 
among the matrix exponential, ADE, PLRC and corrected 
impulse invariance methods. It can be seen again that the error 
incurred by using matrix exponential method is the lowest 
compared to others. This further reaffirms its higher accuracy 
feature, resulting from the fact that the update equations are 
derived directly from the fundamental solution to the system 
of first order differential equations. The memory storage 
requirement for this method is found to be less than the 
classical and corrected impulse invariance methods. It is the 
same as the ADE, RC and PLRC methods utilizing the same 
number of auxiliary variables, and yet retains the high 
accuracy feature of the matrix exponential.  

 

IV.  CONCLUSION 

This letter has presented the FDTD formulation for 
electromagnetic wave propagation in dispersive media using 
matrix exponential method. Dispersion analysis for the 
method is performed and numerical result has been shown. 
Compared to other previous methods, the matrix exponential 
shows a promising higher accuracy without incurring 
additional auxiliary variable. For extension to multi-term 
dispersion or higher order pole such as the Lorentz media, the 
analytical derivation of update equations herein can be 
omitted by directly computing the matrix exponential and its 
time integral numerically. The update equations can then be 
derived readily without incurring much complexity. 
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(b) 

Fig 1. Normalized phase (a) and attenuation (b) error versus frequency. 
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Fig 2. Norm-infinity of absolute electric field error versus cell position. 
 


