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Summary

Machine learning is an essential part of artificial intelligence and a useful tool

for data mining. Machine learning algorithms learn a mathematical model from

the training dataset and use the model to make predictions on the test dataset

without using the explicitly programming. The performances of machine learning

algorithms highly depend on the quality of input features, i.e., the redundant in-

formation contained in input data may affect the performance and generalization

capability of machine learning algorithms. Therefore, it is necessary to remove the

unwanted information and retain the relevant information from input data before

applying it in machine learning algorithms.

Representation learning algorithms remove the redundant information and extract

the useful features from input data automatically. For example, the auto-encoder

(AE) retains the relevant information from input data by forcing the embedded rep-

resentations to reconstruct original input data. Additionally, the extreme learn-

ing machine (ELM) was recently extended to representation learning based on

the structure of AE. Different from feature extraction algorithms, representation

learning algorithms do not require domain knowledge and can reduce human la-

bor. However, as an important property of data representations, the geometry

information has not well exploited in existing representation learning algorithms.

Therefore, this thesis investigates geometry information discovering and preserving

in the representation learning algorithm and applies it to machine fault diagnosis

application.

Firstly, I exploits the local and global geometry preserving in data representations.

Specifically, the thesis proposes a representation learning algorithm, which is named

as the Fast Auto-encoder with the Local and Global Penalties (FAE-LG). The

proposed algorithm can efficiently learn discriminative representations with the

local and global geometry of input data preserved. FAE-LG uses two cost functions

to preserve the local and global geometry of input data, and another cost function

to force the learned data representations to reconstruct the original input data. In

xv
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the thesis, I practically proves the importance of preserving both local and global

geometry in data representations, and theoretically proves that minimizing the

difference between random projected data and the representations can preserve

the global geometry of input data. Moreover, the proposed algorithm contains a

discrimination cost function based on the label information. Hence, it can use a one-

step training process and reduces training time significantly. The discrimination

cost also reduces the number of neurons required in hidden layers and decreases

the test time. Experimental studies on the benchmark dataset demonstrate that

FAE-LG is an efficient tool for machine fault diagnosis.

Secondly, the thesis proposes an algorithm that improves the training efficiency of

representation learning algorithms and studies the local geometry and local dis-

criminant information exploiting of input data. The previous study proved the

importance of preserving geometry information in data representations. However,

the AE-based representation learning method, FAE-LG, is trained iteratively by

using back-propagation (BP) that requires a significant amount of training time.

The extreme learning machine auto-encoder (ELM-AE) is an extension of ELM,

which is well-known for its fast training speed and strong generalization ability.

Based on ELM-AE, a new algorithm named as the Local Discriminant Preserving

Extreme Learning Machine Auto-encoder (LDELM-AE) is proposed. LDELM-AE

can learn data representations with the local geometry and local discriminant of

input data exploited. Specifically, LDELM-AE incorporates a graph-based penalty

in ELM-AE to enhance the within-class compactness and between-class separabil-

ity of data representations. In the representation space, the local geometry of input

data is preserved by minimizing the within-class compactness, which is achieved

by mapping the closed data points from the same class to similar representations.

Also, the local discriminant information is extracted by maximizing the distances

between the margin points and their neighbors in different classes, where the mar-

gin points are the data points located at the border of each class. The experimental

results demonstrate that LDELM-AE outperforms other related algorithms on sev-

eral benchmark datasets, and the empirical study also shows it is an efficient tool

on machine fault diagnosis.

Finally, the thesis studies the adaptable affinity matrix in representations learning

algorithms. The previously proposed algorithms, i.e., FAE-LG and LDELM-AE,

proved that preserving geometry information of input data in data representations
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can improve the performance of classification tasks. However, these algorithms

require to predefine the affinity matrix, which is used to preserve geometry infor-

mation in data representations. One of the limitations of existing algorithms is the

affinity matrix may not able to determine the real relationships between data points

precisely, since it is learned under the assumption of a fixed and assumed prior

knowledge. Also, learning affinity matrix and data representations in two separated

steps may not be optimal and universal for data classification tasks. To overcome

the limitations, a novel method, which is named as the Locality-preserving Ex-

treme Learning Machine Auto-encoder with Adaptive Neighbors (LELMAE-AN),

is proposed in this thesis to learn the data representations and the affinity matrix

simultaneously. Instead of predefining and fixing the affinity matrix, the proposed

algorithm adjusts the similarities by taking into account the capability of captur-

ing the geometry information in both original data space and non-linearly mapped

representation space. Meanwhile, the geometry information of original data can

be preserved in the embedded representations with the help of the affinity matrix.

Experimental results on several benchmark datasets demonstrate the effectiveness

of the proposed algorithm, and the empirical study also shows it is an efficient tool

on machine fault diagnosis.
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Chapter 1

Introduction

Chapter 1 introduces the background and motivations of studying representation

learning and its application to machine fault diagnosis. This chapter also defines

research objectives and highlights contributions of this thesis. The structure of this

thesis is presented at the end of this chapter.

1
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1.1 Background and Motivation

Machine learning is an essential part of artificial intelligence and a useful tool for

data mining, it aims to identify patterns and make decisions with minimum human

intervention [1]. The performances of machine learning tasks, such as the accura-

cies of classification, are affected by noises and redundant information contained

in raw data, as noises may cause overlapping classes [2]. Traditionally, features are

manually extracted from raw data to remove redundant information and retain the

relevant information. For example, in machine fault diagnosis, B. Samanta et al. [3]

extracted statistical features, e.g., root mean square, kurtosis, and skewness, from

time-domain sensory data. The machine health conditions are then monitored by

using the extracted features and an artificial neural network-based classifier. More-

over, F. Al-Badour et al. [4] used the wavelet transform to extract features from

the time-frequency domain of original data, and J.-H. Zhong et al. [5] used intrinsic

mode functions, which are extracted by using empirical mode decomposition, as

the features for further machine health conditions monitoring. However, manual

feature extraction is time-consuming, labor-intensive, and requires expert domain

knowledge [6]. Hence, the growing interest of machine learning focuses on how to

extract features with lesser human labor and time cost.

Representation learning algorithms are developed to overcome the weakness of

manual feature extraction since they are designed to learn data representations

automatically from raw data [7]. For example, Convolutional Neural Network

(CNN) [8] applies multiple learnable filters on the data points to learn data rep-

resentations. Restricted Boltzmann Machine (RBM) [9] learns representations by

approximating the probability distribution of the original inputs. Hierarchical rep-

resentations can be obtained by stacking RBMs to form a deep structure, which

is known as Deep Belief Networks (DBN) [10]. Auto-encoder (AE) [11] learns

data representations by reconstructing the original data points from its embed-

ded representation. Similar to DBN, the deep structure, Stacked AE (SAE), can

be formed by stacking multiple AEs to obtain hierarchical representations [12].

Furthermore, to improve the training efficiency, Extreme Learning Machine Auto-

encoder (ELM-AE) [13, 14] is proposed to learn data representations without iter-

ative training process. Representation learning algorithms are successfully applied

in many applications such as natural language processing [15], computer vision

[16] and speech recognition [17]. Recently, representation learning algorithms are
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employed in machine fault diagnosis tasks to reduce human labor and time cost on

features extraction [18–21].

As for the aspect of applications, machine fault diagnosis, which is a fundamen-

tal step of predictive maintenance (PdM) [22], aims to monitor machine health

conditions from collected sensor data, e.g., using vibration data collected by ac-

celerometers to determine the health condition of motors [23]. As reported by

McKinsey global institute, predictive maintenance (PdM) techniques can help fac-

tories reduce up to 40% maintenance cost, which is about $630 billion per year [24].

The machine condition monitoring system is designed to collect real-time data and

inspect the health conditions of machines. Generally, the system acquires a large

amount of data, and the data is collected much faster than it is analyzed manually

by diagnosticians. Therefore, a fault diagnosis system with the ability to adapt

various applications and operations conditions with less expert knowledge require-

ment would be highly desired. This thesis investigates how representation learning

algorithms can be applied to machine fault diagnosis. In particular, it considers

representation learning algorithms that can learn data representations efficiently

with data geometry preserved.

Recently, preserving geometry information of original data points is proved to be an

important property of data representations, since the geometry structure needs to

be unified in both original and representation space. For example, local geometry

represents the structure among partial data points. While learning representations

of data points from Swiss roll space, it is necessary to preserve the local geom-

etry from the original space to representation space. Otherwise, the data points

from different classes will be put into the same class in the representation space.

This learning process is well known as manifold learning. In another hand, global

geometry represents the relationship among the whole dataset. The global geome-

try discovers discriminative information from original data space to representation

space. While preserving local geometry minimizes the intraclass compactness, pre-

serving global geometry help to keep the interclass separation.

Local geometry is preserved by retaining the same relationship between a data

point and its neighbors before and after representation learning. For example,

local linear embedding (LLE) [25] first reconstructs each data point from a linear

combination of its neighbors and then learns representations that have the same
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linear relationship among data points. Laplacian eigenmaps (LE) [26] is a graph-

based method that preserves the distances between data points and their neighbors

while mapping them from the input data space to the representation space. Global

geometry is preserved by retaining the same relationship among all data points

before and after the representation learning. For example, linear discriminant

analysis (LDA) [27] rotates the axes to maximize the between-class variance and

minimize the within-class variance. Isomap [28] retains the geodesic distances

among all data points during the learning process.

To improve the efficiency of representation learning algorithms, extreme learning

machine (ELM) based algorithms have been proposed. ELM introduced by Huang

et. al [29–38] is a single layer feed-forward neural-network (SLFN) with randomly

generated and fixed hidden neurons. ELM is well known for its efficient learn-

ing procedure and excellent generalization capability. As an extension of ELM,

ELM-AE efficiently learns data representations from input data by utilizing the

advantages of random hidden neurons of ELM. Inspired by deep learning structure,

multiple ELM-AEs can be stacked together to learn hierarchical representations.

D. Cui et al. [39] stacked multiple ELM-AEs to build an extreme learning ma-

chine network (ELMNet) and achieved promising performance on the handwritten

dataset.

1.2 Objectives and Contributions

The objectives of this thesis are defined as follows:

• To efficiently learn data representations that can improve the performance of

supervised classification with an application for bearing fault diagnosis.

• To exploit and preserve geometry information of input data while learning

data representations.

The following part then describes the contributions of this thesis to achieve the

above objectives.

The first study proposes a representation learning algorithm to learn discriminative

representations with the local and global geometry of input data preserved. The
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proposed algorithm is named as the Fast Auto-encoder with the Local and Global

Penalties (FAE-LG). Moreover, the study proposes a stacked FAE-LGs that used

to learn hierarchical representations. The representations learned by SFAE-LG can

be used by a classifier to detect machine faults. This study theoretically proves

the global geometry of input data can be preserved by minimizing the difference

between the representations and the random projected input data points. Also, the

experiment results show that the non-linear activation can approximately preserve

the global geometry of input data. The study also experimentally demonstrates

that it is important to preserve both local and global geometry for representation

learning in machine fault diagnosis. The proposed algorithm requires fewer hidden

neurons in each layer and thus has less computational complexity compared with

SAEs. Furthermore, SFAE-LG can be trained more efficiently because it does

not require the additional fine-tuning step as existing SAEs. This work has been

published in a journal, and the details are as follows:

Yue Li, Chamara Kasun Liyanaarachchi Lekamalage, Tianchi Liu, Pinan

Chen, Guang-Bin Huang, “Learning representations with local and global

geometries preserved for machine fault diagnosis”, IEEE Transactions on

Industrial Electronics, 67(3):2360-70, 2019.

The second study proposes an ELM-based representation learning algorithm, which

is named as the Local Discriminant Preserving Extreme Learning Machine Auto-

encoder (LDELM-AE). By utilizing the advantages of ELM, the proposed algo-

rithm learns representations with an excellent generalization capability and faster

training speed than other algorithms. Moreover, the learned representations pre-

serve the local geometry and exploit the local discrimination information from

input data. The study experimentally demonstrates that LDELM-AE learns data

representations with within-class compactness and between-class separability max-

imized. This work has been submitted in a journal, and the details are as follows:

Yue Li, Yijie Zeng, Yuanyuan Qing, Guang-Bin Huang, “Learning Local

Discriminative Representations via Extreme Learning Machine for Machine

Fault Diagnosis”, Neurocomputing, minor revision.

The third study proposes a representation learning algorithm, which is named as

the Locality-preserving Extreme Learning Machine Auto-encoder with Adaptive
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Neighbors (LELMAE-AN). According to the first and second studies, the geome-

try information is exploited and preserved based on a predefined affinity matrix.

This study proposes a unified objective function that can concurrently learn data

representations and the affinity matrix. The affinity matrix is learned by utilizing

the geometry information of both original data points and their representations.

The assumption is that the pairwise data points with a smaller distance in both

original data space and embedded representation space should have a higher sim-

ilarity; thus, the geometry structure of original data can be preserved in repre-

sentations. Moreover, this study proposes a soft discriminate constraint, which is

optimized together with the objective function. The constraint utilizes the label

information to obtain the discriminate affinity matrix and representations, and the

soft constraint prevents over-fitting compared to the hard constraint used in other

affinity matrix learning methods. Additionally, the label information forces the

data points within the same class have a higher similarity than in the different

class. The proposed algorithm learns non-linear representations in fast learning

speed and excellent generalization capability. By using ELM-AE, the algorithm

can approximate non-linear functions explicitly and obtains non-linear data repre-

sentations together with the capability to learn the affinity matrix. This work has

been submitted in a journal, and the details are as follows:

Yue Li, Yijie Zeng, Tianchi Liu, Xiaofan Jia, and Guang-Bin Huang, ”Simul-

taneously learning affinity matrix and data representations for machine fault

diagnosis”, Neural Networks, 122:395-406, 2020.

1.3 Structure of Thesis

The remaining chapters of the thesis are organized as follows.

Chapter 2 reviews the two main categories of representation learning algorithms,

which are the geometrically motivated algorithms and reconstruction-based algo-

rithms. It also reviews the related works on ELM and its variants. Lastly, this

chapter reviews the applications on machine fault diagnosis.
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In Chapter 3, the study investigates the importance of preserving both local and

global geometry of input data in deep learning-based representation learning algo-

rithms. It first describes the limitations of the existing algorithms and introduces

FAE-LG algorithm and its deep structure SFAE-LG to address those limitations.

In Chapter 4, the study improves the training efficiency of representation learning

algorithms that retain the capability of preserving geometry information of input

data. It first introduces the merits of using ELM-based algorithm to learn data

representations and proposes LDELM-AE algorithm to learn data representations

with local geometry preserved and local discrimination exploited.

In Chapter 5, the proposed algorithm learns the affinity matrix and data represen-

tations simultaneously. The limitations of using the predefined and fixed affinity

matrix to preserve geometry information in representation learning are first stud-

ied, and LELMAE-AN algorithm is proposed to learn the affinity matrix that can

exploit and preserve the geometry information in both original data space and

representation space.

Chapter 6 summarizes the contributions and discoveries of this thesis and suggests

future research directions.





Chapter 2

Literature Review

Chapter 2 begins with introductions of representation learning algorithms in Sec-

tion 2.1, and followed by introductions of extreme learning machine and its variants

in Section 2.2. Lastly, a real-world application, bearing fault diagnosis, is briefly

introduced in Section 2.3.

9
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2.1 Representation Learning Algorithms

Machine learning methods are affected by redundant information contained in sen-

sor data. Hence, researchers extract features from sensor data based on domain

knowledge to remove the redundant information and retain the relevant informa-

tion. Manual feature extraction can be labor-intensive and time-consuming. The

objective of represerntation learning is to learn useful features that relative to

the machine learning tasks, e.g., classification; meanwhile, it removes the redun-

dant information contained in input data. Bengio et al. [7] categorizes represen-

tation learning to the probabilistic models, the geometrically motivated models,

and the reconstruction-based models. This thesis focus on researches of the geo-

metrically motivated and reconstruction-based representation learning algorithms.

Therefore, this section reviews: 1) global geometrically motivated algorithms,

i.e., principal component analysis (PCA) [40–42] and linear discriminant analy-

sis (LDA) [27, 43, 44]; 2) local geometrically motivated algorithms, i.e., Laplacian

eigenmaps (LE) [26, 45, 46], locally linear embedding (LLE) [25, 47, 48], and local-

ity preserving projection (LPP) [49–51]; 3) reconstruction-based algorithms related

to auto-encoders [52–61].

2.1.1 Global Geometrically Motivated Algorithms

Global geometry is preserved by retaining the same relationship among all sam-

ples before and after embedding data samples from the original data space to the

representation space.

2.1.1.1 Principal Component Analysis

PCA [40–42] embeds the dataset to a subspace with the projection directions with

minimal variance removed. The embedding is achieved by using a linear projection

matrix that seeks a direction with a maximal variance of the dataset. The pro-

jection matrix WWW is composed of eigenvectors of the covariance matrix, which are

linearly independent vectors. Each eigenvector corresponds with an eigenvalue, and

the value of each eigenvalue reflects the amount of variance. The higher eigenvalue

has a more significant amount of variance, and its corresponding eigenvector is
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the principal component contains more information (variance). By ranking eigen-

vectors according to their corresponding eigenvalues, i.e., highest to lowest, the

principal components are ranked in order of significance. Therefore, PCA embeds

the dataset by removing eigenvectors with low eigenvalue in the projection matrix.

The objective function of PCA can be formulated as:

WWW ∗ = arg min
WWW

WWW>CCCWWW

s.t. WWW>WWW = III
(2.1)

where CCC ∈ Rd×d = 1
n

∑
i

(xxxi − x̄xx)(xxxi − x̄xx)> is the covariance matrix and x̄xx is the

mean of all samples. The input data XXX can be embedded to representation space

by XXXproj = WWW>XXX.

2.1.1.2 Linear Discriminant Analysis

LDA [27, 43, 44] is a linear, supervised representation learning method that has

globality preserving properties. Compared to PCA, LDA uses label information

and learn representations that especially for supervised classification tasks. LDA

forces the data points to be closed while they belong to the same class and to be far

away while they belong to different classes in the feature space. The between-class

variance SSSB of LDA is calculated by:

SSSB =
m∑
k=1

nkSSSBk (2.2)

where m is the number of classes, and ni is the number of samples in each class.

The between class variance of each class SSSBk stands for the distance between the

mean of samples in the k-th class, x̄xxk, and the mean of all samples, x̄xx:

SSSBk = (x̄xxk − x̄xx)(x̄xxk − x̄xx)> (2.3)

The distance between different classes after projection can be calculated as:

‖WWW>x̄xxk −WWW>x̄xx‖22 = WWW>SBiWWW (2.4)
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whereWWW>x̄xx is the projection of the mean of all samples, andWWW>x̄xxk is the projection

of the mean of samples in the k-th class. WWW is the projection matrix of LDA.

Furthermore, the within-class variance SSSW of LDA is calculated by:

SSSW =
m∑
k=1

SSSWk (2.5)

The within-class variance SSSWk stands for the difference between the mean and the

samples in the k-th class, which can be calculated by:

SSSWk =

nk∑
j=1

(xkj − x̄xxk)(xkj − x̄xxk)> (2.6)

where xkj represents the j-th sample in the k-th class. The difference between

projected mean and the projected samples of each class is defined as the following:

|WWW>xxxk −WWW>x̄xxk|2 = WWW>SSSWkWWW (2.7)

Hence, LDA finds a projection matrix WWW to maximise the between-class variance

and minimise the within-class variance:

WWW ∗ = arg min
WWW

WWW>SSSBWWW

WWW>SSSWWWW
(2.8)

Similar to PCA, the input data XXX can be embedded to representation space by

XXXproj = WWW>XXX.

2.1.2 Local Geometrically Motivated Algorithms

Local geometry is preserved by retaining the same relationship between a sample

and its neighbors mapping data samples from the original data space to the data

representation space.

2.1.2.1 Locally Linear Embedding

As both PCA and LDA exploit global geometry information of input data, LLE

[25, 47, 48] learns data representation and discovers local geometry information

by assuming that if each data point and its neighbors lie on or close to a locally
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linear patch of the manifold, the high dimensional data can be considered as locally

linear. LLE first finds the neighbors of each data point xxxi ∀i = 1, ..., n, which

often achieved by using k-nearest neighbors. It then determines linear combination

weights WWW = {wij}, where i, j = 1, ..., n, to each pair of neighboring points. The

weights can be founded by:

WWW ∗ = arg min
WWW

n∑
i=1

‖xxxi −
n∑
j=1

wijxxxj‖2

s.t.
n∑
i=1

wij = 1

wij = 0, if xxxi and xxxj are not neighnors

(2.9)

The constraint enforces translation invariance of xxxi and its neighbors. To preserve

the local linear structure from data space, the weights WWW reconstructs data xxxi

from its neighbors in data space should also reconstructs its projected manifold

coordinates in the representation space. Hence, the embedded coordinates x̂xxi can

be found by the following cost function:

XXX∗proj = arg min
XXXproj

n∑
i=1

‖x̂xxi −
n∑
j=1

wijx̂xxj‖2

s.t.
1

n

n∑
i=1

x̂xxix̂xx
>
i = III

n∑
i=1

x̂xxi = 000

(2.10)

where III is an identity matrix and 000 is a zero-vector. XXXproj = [x̂xx1, ..., x̂xxn] is the

matrix of embedded data representations. The first constraint removes the rota-

tional degree of freedom and fixes the scale, and the second constraint removes the

translation degree of freedom. Therefore, it can obtain the unique solution.

2.1.2.2 Laplacian Eigenmaps

LE [26, 45, 46] is another computationally efficient algorithm for non-linear rep-

resentation learning that has locality preserving properties. Similar to LLE, LE

firstly constructs a graph by connecting samples in neighborhoods. The following

two methods can define the neighbors:



14 2.1. Representation Learning Algorithms

(a). ε-neighborhoods. The i-th and j-th samples are connected by an edge if

‖xxxi − xxxj‖2 < ε, where ε is the hyper-parameter defined by users.

(b). k-nearest neighbors. The i-th and j-th samples are connected by an edge if

sample xxxj is within k nearest neighbors of sample xxxi, where k is the hyper-

parameter defined by users.

Next, the weights of edges sij, which is also known as similarities, between two

neighbors nodes xxxi and xxxj can be determined by two methods:

(a). Heat kernel. If samples xxxi and xxxj are neighbors:

sij = e−
‖xxxi−xxxj‖

2

σ (2.11)

where σ is a hyper-parameter.

(b). Simple method. If samples xxxi and xxxj are neighbors, sij = 1. Otherwise,

sij = 0.

After the affinity matrix SSS, which is also known as similarity matrix, is formed.

The embedded data representation XXXproj = {x̂xxi}ni=1 is then determined by:

XXX∗proj = arg min
XXXproj

t∑
i=1,j=1

(x̂xxi − x̂xxj)2sij (2.12)

where t is the number of connected nodes. It can be solved by computing eigen-

values and eigenvectors of the generalized eigenvalue problem:

Lx̂xx = λDDDx̂xx (2.13)

where DDD is diagonal weight matrix with Dii =
∑

j wij, and LLL = DDD −WWW is the

Laplacian matrix.

2.1.2.3 Locality Preserving Projection

Although LLE and LE exploit local geometry information of input data, they can

only process the existing training data samples. In another words, it is hard to
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apply them on the new test samples. LPP [49–51] learns a linear projection model

to preserve local geometry in data representations. Hence, compared to LLE and

LE, LPP naturally can process the new test data samples.

LPP uses the same affinity matrix as LE in Section 2.1.2.2, and determines the

linear projection matrix WWW as:

WWW ∗ = arg min
WWW

∑
ij

(WWW>xxxi −WWW>xxxj)
2sij

= arg min
WWW

∑
i

WWW>xxxiDiixxx
>
i WWW −

∑
ij

WWW>xxxisijxxx
>
jWWW

= arg min
WWW

WWW>XXXLLLXXX>WWW

s.t. WWW>XXXDDDXXX>WWW = III l

(2.14)

where DDD is a diagonal matrix with Dii =
∑
j

sij, and LLL = DDD − SSS is the graph

Laplacian matrix [62]. III l ∈ Rl×l is an identity matrix. It can be noticed that LPP

is the linear approximation of LE.

2.1.3 General Graph Embedding

From the above discussions, the geometrically motivated representation learning

algorithms, i.e., PCA, LDA, LLE, LE, and LPP, can be summarized to a general

graph embedding formulation [63]. Preserving geometry in data representations

can be achieved by treating data sample as vertices of an undirected weighted

graph GGG = (XXX,SSS). Each column of XXX is a vertex of the graph, and each element

of SSS represents the weight between two vertices.

The graph embedding is defined under the assumption of smoothness, which as-

sumes the data samples that are closed in the original space should also be closed

in the embedded space. Yan et al. [63] summarized the graph embedding into a

generalized graph preserving criterion:

XXX∗proj = arg min
x̂̂x̂xi∈XXXproj

∑
i 6=j

‖x̂̂x̂xi − x̂̂x̂xj‖2sij

= arg min
x̂̂x̂xi∈XXXproj

XXX>projLLLXXXproj

s.t. XXX>projBBBXXXproj = C

(2.15)
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where XXXproj = {x̂̂x̂xi}ni=1 is the matrix of embedded samples. c is a constant and

LLL = DDD −SSS is the graph Laplacian matrix. BBB is the constraint matrix.

In order to process new test data samples, the Equation (2.15) is extended with a

linear projection:

WWW ∗ = arg min
WWW

WWW>XXXLLLXXX>WWW

s.t. WWW>XXXBBBXXX>WWW = C
(2.16)

Therefore, the previous geometrically motivated representation learning algorithms,

i.e., PCA, LDA, LLE, LE, and LPP, can be written as special cases of Equa-

tion (2.15) and Equation (2.16):

• PCA can be written as a special case of Equation (2.16) with BBB = III, and

sij = 1
n
, ∀i 6= j.

• LDA can be written as a special case of Equation (2.16) with BBB = III − 1
n
eeeeee>,

and sij =
δci,cj
nci

.

• LLE can be written as a special case of Equation (2.15) with BBB = III, and

SSS = WWW +WWW> −WWW>WWW , where WWW is determined by Equation (2.9).

• LE can be written as a special case of Equation (2.15) with BBB = DDD, and

sij = e−
‖xxxi−xxxj‖

2

σ as shown in Equation (2.11).

• LPP can be written as a special case of Equation (2.16) with BBB = DDD, and

sij = e−
‖xxxi−xxxj‖

2

σ as shown in Equation (2.11).

Based on the above discussions, there are two weaknesses of the existing geometri-

cally motivated representation learning algorithms. Firstly, the existing algorithms

either have no models for the incoming test data or can only embed the test data

linearly. Although the kernel trick can achieve the non-linearity, it is hard to choose

the correct kernel function for various machine learning tasks. Secondly, the affinity

matrix used in existing algorithms is predefined and fixed. However, the assumed

prior knowledge might not precisely represent the real geometry relationships be-

tween data points.
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2.1.4 Auto-encoders

The deep-learning-based algorithms have been developed to improve the capability

of learning non-linearly data representations.

AE [54] is a reconstruction-based representation learning algorithm that maps the

input data sample to itself, and it consists of two parts, which are the encoder and

decoder. The structure of AE is shown in Figure 2.1. Firstly, the encoder maps

the input data sample xxxi to a non-linear hidden representation hhhi = [h1i , ..., h
l
i]:

hhhi = g(xxxiW + bW + bW + b) (2.17)

where bbb = [b1, ..., bl] are the bias of hidden nodes, and WWW ∈ Rd×l is the projection

matrix for the encoding process. Then, the decoder reconstructs the input data xxxi

from the hidden representation hhhi:

x̃̃x̃xi = g(hhhiW
′ + cW ′ + cW ′ + c) (2.18)

where x̃̃x̃xi is the reconstructed data of i-th sample, and W ′W ′W ′ ∈ Rl×d is the projection

matrix for the decoding process. ccc = [c1, ..., cd] are biases of output nodes. g( · ) is

the activation function, which normally using sigmoid function in Equation (2.19):

g(z) =
1

1 + exp(−z)
(2.19)

For a convenient training process, the tied weights AE constrains the output weight

W ′W ′W ′ to be the transpose of the input weight: W ′W ′W ′ = W>W>W>. The tied weights of AE

can also be viewed as one kind of regularization to prevent the over-fitting issue.

The objective function of AE is to minimize the difference between original data xxx

and reconstructed data x̃̃x̃x from Equation (2.18):

J(W, b, cW, b, cW, b, c) = min
W,b,cW,b,cW,b,c

1

n

n∑
i=1

(xi − x̃ixi − x̃ixi − x̃i)2 (2.20)

Objective function Equation (2.20) can be minimized by using a gradient descent-

based optimization tool. The output of the hidden layer is the data representation

of the input data.
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Figure 2.1: Architecture of AE.

2.1.4.1 Denoising Auto-Encoder (DAE)

The denoising auto-encoder (DAE) randomly corrupt the input to zero, and learns

noise robust data representations to recover the original data [58]. In contrast with

AE, DAE attempts to reconstruct the inputs from the corrupted input data. The

encoder of DAE is shown in Equation (2.21).

hhhi = f(x′x′x′iW + bW + bW + b) (2.21)

where f is the activation function. bbb = [b1, ..., bL] are the bias of hidden nodes,

WWW ∈ Rd×L is the projection matrix for the encoding process, and x′x′x′i is the corrupted

version of input data xxxi. To reconstruct the input xxxi, the decoder of DAE is shown

in Equation (2.22).

x̃̃x̃xi = f(hhhiW
′ + cW ′ + cW ′ + c) (2.22)

where x̃̃x̃xi is the reconstructed data of the i-th sample. W ′W ′W ′ is the projection matrix

for the decoding process, and ccc = [c1, ..., cd] are biases of output nodes. Similar

to AE, the encoder maps the corrupted input data x′x′x′i to a hidden representation

hhhi. And the decoder attempts to reconstruct the input data xxxi from its hidden

representation hhhi. By reconstructing original inputs from corrupted input data,

the DAE not only learns hidden representations, but also capturing the statistical

dependencies between the input data samples.
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Figure 2.2: Architecture of SAE.

2.1.4.2 Stacked Auto-encoder (SAE)

Hierarchical representations are achieved by stacking multiple AEs, denoted as

stacked auto-encoder (SAE), which is shown in Figure 2.2. Each hidden layer of

SAE is expected to improve the representation based on the previous layer. The

output of the last hidden layer can be used for other machine learning tasks, e.g.,

classification. The weights in the SAE network are learned in two steps. In the

first step, each hidden layer is initialized with the weights trained by an AE based

on the output of the previously hidden layer. For example, the input weights of

the (p+ 1)-th hidden layer is initialized with the trained weights by the (p+ 1)-th

AE, whose input is the output of the p-th SAE hidden layer. Secondly, a softmax

classifier is stacked after the last hidden layer of SAE using the label information as

the target output. The prediction error given by the softmax classifier is propagated

back through the whole SAE network and used to tune all weights. The first step

is usually referred to as pre-training and the second step as fine-tuning. Because

the fine-tuning step makes use of the label information, the final representation

given by SAE has the discriminative capability, and it is suitable for classification.

However, it is worth noting that although reconstruction-based representation

learning algorithms can embed the input data to non-linear data representations,
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their training procedures are time-consuming. Moreover, the existing reconstruction-

based algorithms do not consider any relationship among data points. An impor-

tant property of data representations is to preserve the geometry of data points,

i.e., the local and global geometries. The first work of this thesis investigates the

geometry preserving in reconstruction-based algorithms.
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2.2 Extreme Learning Machines

This thesis has reviewed the reconstruction-based representation learning algo-

rithms, i.e., AEs, which use back-propagation (BP) to optimize their objective

functions. BP optimizes objective function iteratively based on gradient informa-

tion. Hence, the training process is time-consuming and might converge to a local

minimum. Huang et al. [29–38] developed the extreme learning machine (ELM) to

avoid using BP as the optimization algorithm. ELM is a single layer feed-forward

neural network (SLFN) with randomly generated and fixed hidden neurons. Huang

theoretically proved that the hidden neuron of SLFN can be randomly generated

without tuning. Therefore, only output weights need to be learned in ELM. The

output weights connect the hidden layer and the output layer. ELM has proved

to solve various machine learning tasks, such as regression [35], classification [35],

clustering [64], and representation learning [13]. Moreover, ELM has been ap-

plied on many real-world applications [65–71]. Figure 2.3 shows the architecture

of ELM, which is originally proposed as the generalized SLFN. Given a input data

{xxxi ∈ Rd, yyyi ∈ Rm}, ELM first randomly embeds it to ELM feature space by:

hji = g(aaaj, bj,xxx
j
i ) ∀j = 1, ..., l (2.23)
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Figure 2.3: Architecture of ELM.
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where hhhji is the embedded ELM feature, also known as the output of hidden neuron,

of the corresponding input data xxxi. g(aaaj, bj,xxx
j
i ) is a piecewise non-linear activation

function, and (aaaj ∈ Rd, bj ∈ R) are the parameters of the activation function in

the j-th hidden neuron. For example, the non-linear activation functions can be

as follows [35]:

• Sigmoid function.

g(aaa, b,xxxi) =
1

1 + exp(−(aaa ·xxxi + b))
(2.24)

• Hard-limit function.

g(aaa, b,xxxi) =

1, if aaa ·xxxi − b ≥ 0

0, otherwise.
(2.25)

• Gaussian function.

g(aaa, b,xxxi) = exp(−b‖xxxi − aaa‖2) (2.26)

• Multiquadric function.

g(aaa, b,xxxi) =
√

(‖xxxi − aaa‖2 + b2) (2.27)

Based on the embedded ELM features hhhi = [h1i , h
2
i , ..., h

l
i]
>, the ELM output can

be determined by:

fL(xxxi) = βββhhhi (2.28)

where βββ ∈ Rm×l is the output weight matrix connects the hidden layer and the

output layer.

The original ELM is proposed for regression and classification tasks. Given a

dataset {xxxi, yyyi}ni=1, the output weight matrix βββ can be found by solving the following

mathematical formulation:

arg min
βββ

‖βββHHH − YYY ‖2 (2.29)



Chapter 2. Literature Review 23

where HHH ∈ Rl×n is the hidden-layer output matrix

HHH = [hhh1,hhh2, ...,hhhn]

=


h11 h12 · · · h1n

h21 h22 · · · h2n
...

...
. . .

...

hl1 hl2 · · · hln


(2.30)

and YYY = [yyy1, yyy2, ..., yyyn], where yyyi is a m-dimensional on-hot column vector that

only one element, which corresponds to the class of i-th sample, equals to 1 and

the other elements equal to 0.

Therefore,

βββ = YYYHHH† (2.31)

where HHH† is the Moore–Penrose generalized inverse of matrix HHH.

ELM is well known for its efficient training procedure, which is an analytical solu-

tion, as shown in Equation (2.31). Furthermore, ELM has the universal approxima-

tion capability [33], which means that ELM can approximate any target functions

with its randomly generated neurons. Hence, many variants of ELM has been in-

troduced by utilizing its advantages. The following section reviews some variants

of ELM, which including the regularized extreme learning machine [35, 72, 73] for

classification and regression, the Extreme Learning Machine Auto-encoder (ELM-

AE) [13, 14] for representation learning, the semi-supervised extreme learning ma-

chine (SS-ELM) [64] that exploits geometry information, the Unsupervised Ex-

treme Learning Machine (US-ELM) [64] that uses geometry information for clus-

tering, the Generalized Extreme Learning Machine Auto-encoder (GELM-AE) [74]

that preserves geometry information in representation learning, and the Extreme

Learning Machine with Constrained Laplacian Rank (ELM-CLR) [75] that inves-

tigates using adaptive neighbors for clustering.

2.2.1 Regularized Extreme Learning Machine

Based on the original ELM, a regularization term is proposed to prevent over-

fitting [35, 72, 73]. Also, Bartlett [76] shows that minimizing the norm of the output

weights improves the generalization capability. The mathematical formulation of
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the regularized ELM can be written as:

arg min
βββ

C

2
‖βββHHH − YYY ‖2 +

1

2
‖βββ‖2 (2.32)

where C is a hyper-parameter determined by users.

While the number of samples larger than the number of hidden neurons, i.e., n > l,

the problem can be solved by letting ∇βββ = 0, where

∇βββ = C(βββHHH − YYY )HHH> + βββ

= βββ(CHHHHHH> + III)− YYYHHH>
(2.33)

While the number of samples smaller than the number of hidden neurons, i.e.,

n < l,HHH will have more rows than columns, which is the under-determined problem

of least-square methods. To solve this problem, βββ can be restricted to a linear

combination of the columns of HHH, i.e., βββ = αααHHH>, where ααα ∈ Rd×n.

Therefore, the solution of βββ is:

βββ∗ =

YYYHHH>(CHHHHHH> + III)−1, if N > l

YYY (CHHH>HHH + III)−1HHH>, otherwise.
(2.34)

2.2.2 Extreme Learning Machine Auto-encoder

Figure 2.4: The architecture of ELM-AE.

Although ELM can randomly map input data to ELM features, the data represen-

tation learning capability of it is still lacking. Kasun et al. [13, 14] investigated the
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data representation learning capability of ELM and proposed ELM-AE, which is a

representation learning algorithm.

ELM-AE is an unsupervised representation learning algorithm, which uses ran-

domly generated and fixed hidden neurons to embed input data to another space.

It learns the output weights to reconstruct the input data from the outputs of the

hidden layer.

As shown in Figure 2.4, given a sample xxxi, the output of the hidden layer hhhi can

be encoded by a randomly and non-linearly mapping function, e.g., the sigmoid

function.

hhhi =
1

1 + exp(AAAxxxi)
(2.35)

AAA ∈ Rl×d is a randomly generated weight matrix. The objective of ELM-AE is to

minimize the error between the original data and the reconstructed data:

min
βββ

1

2
‖βββ‖2F +

C

2
‖XXX − βββHHH‖2F (2.36)

whereHHH = [hhh1,hhh2, ...,hhhN ] ∈ Rl×N is the output matrix of hidden layer, and βββ is the

output weight matrix connects the hidden layer and the output layer. C > 0 is a

trade-off parameter. The first term is a regularization term to prevent over-fitting,

and the second term is the reconstruction error between the reconstructed samples

and the original samples. The output weight matrix βββ can be analytically solved:

βββ∗ =

 XXXHHH>
(
HHHHHH> + IIIl

C

)−1
if N ≥ l

XXX
(
HHH>HHH + IIIN

C

)−1
HHH> if N < l

(2.37)

where III l and IIIN is the identity matrix with dimension of l and N , respectively.

The representations of the input data XXX can be obtained by XXXproj = βββ>XXX. They

are then used for the further classification tasks.
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2.2.3 Semi-supervised Extreme Learning Machine

This thesis also reviews the ELM variants that preserves the geometry informa-

tion of input data. Huang et al. [64] proposed SS-ELM by using the manifold

regularization in the regularized ELM.

Manifold Regularization. The manifold regularization [77] is similar to LE

in Section 2.1.2.2. Under the smooth assumption of machine learning, which as-

sumes if samples xxxi and xxxj are close to each other in the input data space, the

conditional probabilities p(yyy|xxxi) and p(yyy|xxxj) should be similar as well, the loss

function of the manifold regularization can be formed as:

L =
1

2

∑
i,j

‖p(yyy|xxxi)− p(yyy|xxxj)‖2sij (2.38)

The affinity matrix SSS = {sij}ni,j=1 can be determined by using the heat kernel

method or simple method in Section 2.1.2.2. Since it is difficult to compute the

conditional probability, the manifold regularization can be simplified to its approx-

imation expression:

L̂ =
1

2

∑
i,j

‖ŷ̂ŷyi − ŷ̂ŷyj‖2sij (2.39)

where ŷ̂ŷyi and ŷ̂ŷyj are the predictions with respect to xxxi and xxxj, respectively. The

loss function can then be vectorized as:

L̂ = Tr(Ŷ̂ŶY LLLŶ̂ŶY >) (2.40)

where LLL is the graph Laplacian matrix as shown in Section 2.1.2.2.

SS-ELM. Given a dataset {XXX l,YYY l} = {xxxi, yyyi}nli=1, and unlabelled data XXXu =

{xxxi}nui=1, where nl and nu are the number of labelled and unlabelled data, respec-

tively. Based on the regularized ELM and manifold regularization, the cost function

of SS-ELM can be formulated as:

arg min
βββ

1

2
‖βββ‖2 +

1

2

nl∑
i=1

Ci‖βββhhhi − yyyi‖2 +
λ

2
Tr(FFFLLLFFF>)

s.t. fff i = βββhhhi, ∀i = 1, ..., nl + nu

(2.41)
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The cost function can be vectorized as:

arg min
βββ

1

2
‖βββ‖2 +

1

2
‖CCC

1
2 (βββHHH − Ỹ̃ỸY )‖2

+
λ

2
Tr(βββHHHLLLHHH>βββ>)

(2.42)

where Ỹ̃ỸY is the augmented training target with its first nl columns equal to YYY l

and the rest equal to 0. CCC ∈ R(nl+nu)×(nl+nu) is a diagonal matrix with its first

nl diagonal elements Cii = Ci and the rest equal to 0. The cost function can be

minimized analytically as similar as the regularized ELM in Section 2.2.1.

2.2.4 Unsupervised Extreme Learning Machine

Huang et al. [64] also proposed US-ELM to investigate the clustering capability

of ELM while the label information is lacking. Given a unlabelled dataset XXX =

{xxxi}ni=1, the task is to discover the underline clusters of all data samples. The

mathematical formulation of US-ELM is:

arg min
βββ

1

2
‖βββ‖2 + λTr(βββHHHLLLHHH>βββ>)

s.t. βββHHHHHH>βββ> = III

(2.43)

The cost function of US-ELM can be minimized by solving the generalized eigen-

value problem:

(III + λHHHLLLHHH>)vvv = γHHHHHH>vvv (2.44)

The rows of βββ∗ are the eigenvectors corresponding to the first l smallest eigenvalues.

2.2.5 Generalized Extreme Learning Machine Auto-encoder

Sun et al. [74] proposed GELM-AE to investigate the geometry preserving capa-

bility in the ELM-based representation learning algorithm. GELM-AE constraints

ELM-AE by using the manifold regularization, which describes in Section 2.2.3.

Hence, the cost function of GELM-AE can be formed as:

min
βββ

1

2
‖βββ‖2F +

C

2
‖XXX − βββHHH‖2F +

λ

2
Tr(βββHHHLLLHHH>βββ>) (2.45)
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The manifold regularization forces the data representations hhh(xxxi) and hhh(xxxj) are

similar if samples xxxi and xxxj are close to each other in the original data space.

According to Section 2.2.1, the output weights βββ can be analytically solved by:

βββ∗ =


XXXHHH>(III + CHHHHHH> + λHHHLLLHHH>)−1, if N ≥ l

XXX(III + CHHH>HHH + λHHH>HHHLLL)−1HHH>, if N < l

(2.46)

Sun et al. [74] experimentally proved that learning data representations with local

geometry preserved performs better than the original ELM-AE in various standard

benchmark datasets. Motivated by SS-ELM and GELM-AE, the second work

of this thesis investigates the ELM-based representation learning algorithm that

exploits both local geometry information and local discriminant information of

input data.

2.2.6 Extreme Learning Machine with Constrained Lapla-

cian Rank

The above SS-ELM, US-ELM, and GELM-AE investigate the local geometry pre-

serving capability of ELM and ELM-AE. However, they preserve local geometry

by using a predefined and fixed affinity matrix. Liu et al. [75] investigates to

learn the affinity matrix in the ELM-based clustering algorithm, which is named

as ELM-CLR. The cost function of ELM-CLR can be formulated as:

arg min
S

n∑
i,j=1

(d̄ij p̄ijsij + γs2ij)

s.t. ∀i, j, sij ≥ 0, sss>i 111 = 1

rank(LLL) = n− c

(2.47)

where

d̄ij =

√
dij
‖dddi‖2

· dij
‖dddj‖2

p̄ij =

√
pij
‖pppi‖2

· pij
‖pppj‖2

(2.48)



Chapter 2. Literature Review 29

and

dij = ‖xxxi − xxxj‖22
pij = ‖hhh(xxxi)βββ − hhh(xxxj)βββ‖22

(2.49)

ELM-CLR forces the similarity sij to be inversely proportional to the product of the

normalized pairwise distances in the original data space and the ELM embedded

space. The low-rank constraint forces the affinity matrix SSS to be a block diagonal

matrix; therefore, it naturally has the clustering property. According to Mohar’s

theory [78] and Fan’s theory [79], the cost function of ELM-CLR can be simplified

as:

arg min
S

n∑
i,j=1

(d̄ij p̄ijsij + γs2ij) + 2λTr(FFF>LLLFFF )

s.t. ∀i, j, sij ≥ 0, sss>i 111 = 1,FFF>FFF = III

(2.50)
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2.3 Machine Fault Diagnosis

This thesis studies the application of representation learning on machine fault di-

agnosis tasks. There is trend to provide every machine with intelligence. The

intelligent machine can monitor its operating conditions in real-time. As one of

the most common components in industrial machines, the rolling bearing is used

as the example to monitor the conditions of industrial machines. Rolling bearings,

as shown in Figure 2.5, is designed to reduce the friction between move parts.

They are widely used in industrial applications, which include power plants, tur-

bines, manufacturing, etc. Furthermore, rolling bearings are critical components

in machines, their failure can cause machine shutdown that increases safety risk

and causes economic loss. As reported in a survey conducted by electric power re-

search institute (EPRI), bearing failures account for 41% of all faults in industrial

applications, [80]. Therefore, it is necessary to develop a reliable system that can

monitor the operating conditions in real-time.

Machine fault diagnosis aims to detect and classify failures arising in machines,

which are the fundamental step of predictive maintenance (PdM) [22]. As reported

by McKinsey global institute, PdM techniques can help factories reduce up to 40%

maintenance cost, which is about $630 billion per year [24]. Fault diagnosis for

the rolling bearing is difficult because the behavior of bearings is affected by many

variables. Typically, extracting useful features from raw signal heavily depends on

expert knowledge. The designed fault diagnosis system is specifically for specific

bearing applications and the operating environments. Therefore, a fault diagno-

sis system with the ability to adapt various bearing applications and operations

conditions with less expert knowledge requirement would be highly desired.

Figure 2.5: The structure of rolling bearing.
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Figure 2.6: The structure of induction motor.

For example, the induction motor is an industrial application that is used in this

thesis. Each induction motor contains two bearings at drive-end and fan-end sep-

arately, which shows in Figure 2.6. The two bearings are located in the motor

shell, and it is non-visible if we do not open the motor shell. In this case, the only

way to monitor the operating condition of beatings is shutting down the motor

and opening the motor shell to observe bearings. However, the economy lost is

vast while devices are shutting down, and it is labor-consuming to examine the

bearings physically. In another situation, there are intelligent sensors mount on

the shell of the induction motor. The sensor can collect the signal in real-time,

and monitor the operating conditions of the bearings automatically. Furthermore,

the sensor can detect an early sign to predict bearing failures. The monitoring and

prediction results will send to the central system wirelessly. Based on the detected

and predicted results from the sensor, we can schedule and plan the maintenance

to reduce maintenance cost and machine downtime.

Bearing Faults. The faults of bearings can be categorized to distributed de-

fects and localized defects [83]. Distributed defects include bearing failures from

misaligned races, surface roughness, and waviness, which are usually caused by

installation or manufacturing error. Localized defects include cracks, pits, and

spalls on the surface of the inner race, outer race, etc. Localized defects are from

the fatigue of the rolling parts. This thesis focus on detecting and isolating the

faults occur on in-service machines, which assumes the manufacturing and the in-

stallation of the machine is correct. Therefore, we consider only localized defects

caused by fatigue of the rolling parts. Although localized defects may happen on
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Table 2.1: Localized faults of bearing.

Fault Type Details References
Inner race fault [81]

Outer race fault [81]

Rolling ball fault [82]

any rolling elements, it majority occurs on inner and outer race, and whilst on the

rolling ball [84]. The details of localized defects are shown in Table 2.1.

Signal Measurements. After a comprehensive review, it is found there are sev-

eral useful diagnostic measures for fault diagnosis, which include: 1) stator current;

2) temperature; 3) sound; 4) acoustic emissions; 5) vibration measurements. The

details of the signals for bearing fault diagnosis are shown in Table 2.2. The stator

current may not accurately reflect the bearing fault since it is not directly relative

to operating conditions of bearings. Also, the signal-to-noise ratio (SNR) of stator

current measurement is low, which is hard to extract useful information. Temper-

ature measurement requires thermal camera which is inconvenient and costly in

industrial applications. Instead, collecting vibration and acoustic emission mea-

surements are low cost, and the obtained signals are robust and directly related

to bearing conditions. Hence, the vibration and acoustic emission measurements

are the most commonly used signal to diagnose bearing faults. In this study, I

investigate the bearing fault diagnosis by using vibration signals. An example of

the vibration signal is shown in Figure 2.7.
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Figure 2.7: Vibration signal collected by accelerometer with 12kHz rate.

Table 2.2: Measurement methods for bearing fault diagnosis.

Signal Type Details References
Vibration The most common method for fault diagnosis of

rolling bearings. The vibration comes from the
friction between rolling parts, while faults occur,
the vibration signature usually change.

[85–91]

Acoustic emission The acoustic emission signal measures acoustic
wave emissions from the machine when a crack
growth in its material.

[92–94]

Sound The sound signal usually collected by micro-
phones, which record the frequencies under differ-
ent health conditions. The sound signal is similar
to vibration signal but sensitive to background
noise.

[95–98]

Temperature The temperature of bearings changes while fric-
tion rate and rolling speed are changing. Hence,
temperature measurements can be used to detect
bearing faults.

[99]

Stator current The stator current can be collected by non-
intrusive method without sensors.

[100–102]
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2.4 Summary

This chapter first introduced several geometrically motivated representation learn-

ing algorithms, including PCA, LDA, LLE, LE, and LPP. These algorithms are

then summarized into a general graph embedding formulation. From the general

graph embedding formulation, the common weaknesses of the existing geometrically

motivated representation learning algorithms can be found. Firstly, the existing

algorithms either have no models for the incoming test data or can only embed

the test data linearly. Secondly, the affinity matrix used in existing algorithms is

pre-defined and fixed.

This chapter also introduced a reconstruction-based representation learning algo-

rithm, AE. AE learns a model to embed the incoming test data linearly or non-

linearly. Furthermore, multiple AEs can be stacked together to form a deep struc-

ture, SAE, to learn hierarchical representations. But the existing reconstruction-

based algorithms do not consider any geometry relationship among data points.

Also, the training procedures of AE and SAE are time-consuming.

After that, this chapter introduced ELM, which is a neural network with an ef-

ficient training procedure. Inspired by AE, ELM-AE was introduced to investi-

gate the data representation learning capability of ELM. Similar to conventional

ELM, ELM-AE randomly generated and fixed hidden neurons, and learn the out-

put weights analytically. Therefore, the training procedure of ELM-AE is much

faster than AE, since it avoids back-propagation. Although ELM-AE reduces the

Euclidean distance between data points belonging to the same cluster in the repre-

sentation space, it doesn’t design to preserve any geometry information from input

data.

Lastly, this chapter introduced the bearing fault diagnosis as a real-world appli-

cation. The performance of proposed algorithms will be tested by using common

machine learning datasets and bearing fault diagnosis datasets in this thesis.



Chapter 3

Learning Representations with

Local and Global Geometries

Preserved

Chapter 3 introduces a representation learning method with multiple cost functions

to investigate the importance of preserving both local and global geometry of in-

put data in data representations and their application for machine fault diagnosis.

Section 3.1 describes the existing representation learning algorithms and their lim-

itations. Section 3.2 describes the detail of the proposed algorithm, and Section 3.3

evaluates the effectiveness of the proposed algorithm.

35
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3.1 Background and Motivation

Machine learning methods are affected by redundant information contained in sen-

sor data. Hence, researchers extract features from sensor data based on domain

knowledge to remove the redundant information and retain the relevant informa-

tion. The commonly used manual feature extraction methods in machine fault

diagnosis include: 1) time domain statistical methods such as mean and standard

deviation [3]; 2) wavelet transform [4]; 3) empirical model decomposition [5]. Man-

ual feature extraction can be labor-intensive and time-consuming.

To overcome the weakness of manual feature extraction, deep learning (DL) based

representational learning methods learn features automatically from raw data [18,

19, 103]. For example, restricted Boltzmann machine (RBM) learns representations

by approximating the probability distribution of the original inputs. Hierarchical

representations can be obtained by stacking RBMs to form a deep structure, which

is known as deep belief networks (DBN). Autoencoder (AE) learns representations

by forcing the reconstructed outputs equal to the original inputs [11]. Similar to

DBN, stacking AEs forms stacked autoencoder (SAE) that learns hierarchical rep-

resentations. Convolutional neural network (CNN) extracts features by applying

a set of learnable filters on the data points [8]. However, the existing DL methods

do not consider any relationship among data points. An important property of

representations is to preserve the geometry of data points, i.e., the local and global

geometries.

Local geometry is preserved by retaining the same relationship between a data point

and its neighbors before and after representation learning. For example, local linear

embedding (LLE) first reconstructs each data point from a linear combination of

its neighbors and then learns representations that have the same linear relationship

among data points [25]. Laplacian eigenmaps (LE) is a graph-based method that

preserves the distances between data points and their neighbors while mapping

them from the input data space to the representation space [26]. Although these

methods can be seen as a nonlinear shallow neural network, they fail to discover

deep representations [12]. In [77], manifold regularization was proposed to preserve

local geometry of input data. The manifold regularization can be integrated into

DL methods to learn deep representations with the local geometry preserved.
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Global geometry is preserved by retaining the same relationship among all data

points before and after the representation learning. For example, linear discrimi-

nant analysis rotates the axes to maximize the between-class variance and minimize

the within-class variance [27]. Isometric feature mapping retains the geodesic dis-

tances among all data points during the learning process [28].

In this work, we propose a representation learning method, which is named Fast

Auto-encoder with the Local and Global Penalties (FAE-LG), with the following

properties:

(a). FAE-LG learns representations directly from the un-normalized raw input

data.

(b). The learned representations preserve the local geometry of the data.

(c). The learned representations preserve the global geometry of the data.

(d). FAE-LG learns representations with discriminative capability efficiently.

Specifically, the first property is achieved by minimizing the error between the re-

constructed data and the original input data. The second property is achieved by

minimizing the distance between each data point and its nearest neighbor. The

third property is achieved by minimizing the difference between the representations

and the random projected input data points. The last property is achieved by min-

imizing the error between the predicted labels and the ground-truth. Hierarchical

representations are obtained by directly stacking multiple FAE-LGs, denoted as

Stacked FAE-LGs (SFAE-LG), without any additional tuning step.
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3.2 Proposed Method

Let XXX = [xxx1,xxx2, ...,xxxn] ∈ Rd×n be the training set, where xxxi ∈ Rd is the i-th sample

and n is the number of samples. And let YYY = [yyy1, yyy2, ..., yyyn] ∈ Rm×n be the label

set, where yyyi is the corresponding label of i-th sample. yyyi is a m-dimensional one-

hot row vector that only one element, which correspond to the class of i-th sample,

equals to 1 and the other elements equal to 0.

3.2.1 Cost Functions

We learn representations by minimizing four cost functions, which are reconstruc-

tion cost, local geometry preserving cost, global geometry preserving cost and

discrimination cost.

3.2.1.1 Reconstruction Cost

The reconstruction cost measures the capability of the learned representations to

reconstruct the input data. Inspired by tied-weight AE, the cost function is defined

as the mean squared error between input data xxxi and the reconstructed input data

x̃̃x̃xi = βββXhhhi, which is shown as following:

1

2n

n∑
i=1

‖βββXhhhi − xxxi‖2 (3.1)

The weight matrix βββX ∈ Rd×l, connects the input layer and the hidden layer.

hhhi ∈ Rl represents the output of the hidden layers with respect to sample xxxi, which

can be calculated as following:

hhhi = g(βββ>Xxxxi) (3.2)

where g( · ) is the activation function, e.g. the sigmoid function in (2.19).
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3.2.1.2 Local Geometry Preserving Cost

The local geometry preserving cost, which is shortened as the local penalty, is

defined as the mean squared error between the representations with respect to the

sample xxxi and its nearest neighbor x̂̂x̂xi, which is shown in (3.3).

1

2n

n∑
j=1

‖hhhi − ĥ̂ĥhi‖2 (3.3)

ĥ̂ĥhi, which can be calculated by (3.2), represents the output of the hidden layers

with respect to x̂̂x̂xi, and x̂̂x̂xi is the nearest neighbor of sample xxxi in terms of Eu-

clidean distance. By minimizing the local penalty, the local geometry in the input

space, as captured by the nearest neighbor relationship, is preserved in the learned

representation space.

It is worth noting the local penalty is a special case of the manifold regularization,

which aims to ensure the local smoothness of data points [77, 104]. In contrast

to the original manifold regularization, the proposed local penalty used only one

nearest neighbor of the data point to reduce the computation complexity.

3.2.1.3 Global Geometry Preserving Cost

The global geometry preserving cost is shortened as the global penalty and is de-

fined as the mean squared error between representations and the random projected

input data, which is shown in (3.4).

1

2n

n∑
i=1

‖hhhi −AAAxxxi‖2 (3.4)

AAA ∈ Rl×d represents an orthogonal random weight matrix, where AAA>AAA = III if d ≥ l

and AAAAAA> = III if d < l. III is an identity matrix. To construct the orthogonal

random matrix AAA, a singular value decomposition (SVD) is applied on a randomly

generated matrix, and the unitary matrix produced by SVD can be used as the

orthogonal random matrix AAA.

Theorem 3.2.1 proves that by minimizing the global penalty with a linear acti-

vation function, the Euclidean distances among all input data are preserved in
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representation space without distorting by more than a factor of (1 ± ε) for any

0 < ε < 1/2.

Theorem 3.2.1. The representations hhh ∈ Rl can be obtained by minimizing∑n
i=1 ‖hhhi −AAAxxxi‖2, where AAA is an orthogonal random matrix. The representations

hhh with l ≥ 24
3ε2−2ε3 ln(n) have the following property:

(1− ε)‖xxxi − xxxj‖2 ≤ ‖hhhi − hhhj‖2 ≤ (1 + ε)‖xxxi − xxxj‖2

∀ i, j = 1, ..., n s.t. i 6= j, 0 < ε < 1/2

where hhhi = g(βββ>Xxxxi) and hhhj = g(βββ>Xxxxj) are linear function with zero bias.

Proof.

min
βββX

n∑
i=1

‖hhhi −AAAxxxi‖2 (3.5)

When hhhi = g(βββXxxxi) is a linear function with zero bias, i.e., hhhi = cβββXxxxi, (3.5) can

be written as following:

min
βββX

n∑
i=1

‖cβββ>Xxxxi −AAAxxxi‖2 (3.6)

where c is a scaler. There always exists a solution βββX = c−1AAA> such that (3.6) can

achieve the minimum value of zero. Hence, the following relationship holds:

hhhi = AAAxxxi, ∀j = 1, ..., n (3.7)

The Johnson-Lindenstrauss lemma [105] proves that for any set with n samples,

the linear map function f : Rd → Rl of any pair of points u and v satisfies the

following relationship with l ≥ 24
3ε2−2ε3 ln(n), when 0 < ε < 1:

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2 (3.8)

We obtain the following relationship by substituting the paired samples xxxi and xxxj,

where j = 1, ..., n, into (3.8):

(1− ε)‖xxxi − xxxj‖2 ≤ ‖f(xxxi)− f(xxxj)‖2 ≤ (1 + ε)‖xxxi − xxxj‖2

∀ i, j = 1, ..., n s.t. i 6= j, 0 < ε < 1
(3.9)
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Furthermore, it is proved that the function f in (3.8) can be an orthogonal random

projection [106]. Therefore, (3.8) can be further simplified to:

(1− ε)‖xxxi − xxxj‖2 ≤ ‖AAAxxxi −AAAxxxj‖2 ≤ (1 + ε)‖xxxi − xxxj‖2

∀ i, j = 1, ..., n s.t. i 6= j, 0 < ε < 1/2
(3.10)

Hence, by substituting (3.7) into (3.10), we obtain that:

(1− ε)‖xxxi − xxxj‖2 ≤ ‖hhhi − hhhj‖2 ≤ (1 + ε)‖xxxi − xxxj‖2

∀ i, j = 1, ..., n s.t. i 6= j, 0 < ε < 1/2

3.2.1.4 Discrimination Cost

The discrimination cost is defined as the mean squared error between the predicted

label ỹ̃ỹyj = βββThhhj and the true label yyyj, which is shown in (3.11).

1

2n

n∑
i=1

‖βββThhhi − yyyi‖2 (3.11)

The weight matrix βββT ∈ Rm×l, where m is the number of classes, denotes the

weight between hidden layer and output layer. Because of the discrimination cost,

the proposed algorithm does not require an additional fine-tuning step to obtain

discriminative representations; therefore, the proposed method is expected to have

less computational complexity, compared with SAE, which uses two-step training

process.
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3.2.2 Fast Autoencoder with The Local and Global Penal-

ties

Based on the cost functions, we propose a fast autoencoder with local and global

penalties. The mathematical formulation is shown as the follows:

minimize
βββX ,βββT

αAE
2n
‖βββXHHH −XXX‖2F

+
αL
2n
‖HHH − Ĥ̂ĤH‖2F

+
αG
2n
‖HHH −AAAXXX‖2F

+
1

2n
‖βββTHHH − YYY ‖2F

+
CX
2
‖βββX‖2F +

CT
2
‖βββT‖2F

(3.12)

where HHH = [hhh1,hhh2, ...,hhhn] is the vectorized hidden output of input data XXX ∈ Rd×n,

and Ĥ̂ĤH = [ĥ̂ĥh1, ĥ̂ĥh2, ..., ĥ̂ĥhn] is the vectorized hidden output of nearest neighbors X̂̂X̂X ∈
Rd×n of input data samples. As described above, βββX and βββT are output weights

in reconstruction cost and discrimination cost, respectively. AAA is an orthogonal

random weight matrix that randomly mapping input samples into a random space.

YYY ∈ Rm×n is the one-hot label set that corresponds to the input data XXX. In

addition, αAE, αL, αG, CX and CT are the hyper-parameters determined by users.

The values of hyper-parameters determine the importance of each term in the

objective function.

We find the optimal solution by using alternating minimization method, which

alternatively minimizes the objective function with respect to one variable while

fixing the others.

In each iteration, we first minimize the objective function with respect to βββX .

We use the Limited memory Broyden Fletcher Goldfarb Shanno (L-BFGS) algo-

rithm1 [107] from the software package minfunc [108] to update the values of βββX .

1L-BFGS belongs to the family of quasi-Newton methods, which uses the most recent gradients
to approximate the inverse Hessian matrix.



Chapter 3. FAE-LG 43

Algorithm 1 SFAE-LG learning algorithm

Input: the training data {XXX,YYY } = {xxxi, yyyi}ni=1, the number of hidden layers q,
the size of each hidden layer {lp}qp=1, the maximum iteration number max iter
Hyper-parameters: αAE, αG, αL, CX and CT
Output: the weight of each hidden layer {βββpX}

q
p=1, the output of each hidden

layer {HHHp}qp=1, where HHHp = [(hhhp1)
>, (hhhp2)

>, ..., (hhhpn)>]>

1: for p← 1, q do
2: Construct an FAE-LG network with lp hidden neurons
3: Initiate βββpX and βββpT with random values

4: Obtain the nearest neighbors X̂̂X̂X of XXX
5: Generate an orthogonal random AAA
6: iter ← 1, where iter is the count of iterations
7: while iter < max iter do
8: Compute βββpX using L-BFGS [107]
9: Compute βββpT using (3.15)

10: iter ← iter + 1

11: end while
12: Construct the p-th hidden layer of SFAE-LG with βββpX
13: Compute HHHp using (3.2)
14: XXX ←HHHp

15: end for
16: return {βββpX}

q
p=1

The partial derivatives of ∂E
∂βββX

with respect to βββX is calculated by:

∂E

∂βββX
= αAE

(
HHH ◦ (111−HHH) ◦ (βββ>XβββXHHH − βββ>XXXX)

)
XXX>

+ αAEHHH(βββXHHH −XXX)>

+
(
HHH ◦ (111−HHH) ◦ (βββ>TβββTHHH − βββ>TYYY )

)
XXX>

+ αG

(
HHH ◦ (111−HHH) ◦ (AAAAAA>HHH −AAAXXX)

)
XXX>

+ αL

(
(HHH − ĤHH) ◦HHH ◦ (111−HHH)

)
XXX>

− αL
(

(HHH − ĤHH) ◦ ĤHH ◦ (111− ĤHH)
)
X̂XX
>

+ CXβββX

(3.13)

where “◦” means element-wise product and the matrix X̂̂X̂X = [x̂̂x̂x1, x̂̂x̂x2, ..., x̂̂x̂xn]. To

simplify the algorithm, βββX is updated once in each iteration.

Then, we minimize the objective function with respect to βββT . When βββX is fixed,

the optimization problem with respect to βββT is convex and has global optimal
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solution, which can be calculated analytically by solving ∂E
∂βββT

= 0:

∂E

∂βββT
= HHH(βββTHHH − YYY )> + CTβββ

>
T = 0 (3.14)

Hence,

CTβββ
>
T = −HHH(βββTHHH − YYY )>

HHHYYY > = (HHHHHH> + CTIII)βββ>T

βββ>T = (HHHHHH> + CTIII)−1HHHYYY >

(3.15)

Similar to SAE in Figure 2.2, SFAE-LG is trained in the greedy layer-wise approach.

The first FAE-LG learns weight matrix βββ1
X of the first hidden layer by using X as

the input. After that, the output of the first hidden layer H1 is used as the input

of the second FAE-LG to learn βββ2
X . Generally, the p-th FAE-LG uses Hp−1 as the

input to learn βββpX . The details are summarized in Algorithm 1. Moreover, a linear

regression layer is stacked after the last hidden layer to predict the label T̃.
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3.3 Experiments

The proposed representation learning method, SFAE-LG, was tested on two public

benchmark datasets to validate its effectiveness and efficiency with comparison to

the state-of-the-art related methods.

3.3.1 Datasets Descriptions

Bearing Dataset [109] The CWRU bearing dataset contains the vibrations

signal of motor bearings provided by Case Western Reserve University. As shown

in Figure 3.1,the magnetic-based accelerometer is mounted on the housing of the

test motor. The vibrations signals were collected by the accelerometer with 12

kHz sampling frequency, and under four different health conditions of the bearing:

1) normal condition (N), 2) roller fault (RF), 3) outer raceway fault (ORF), and

4) inner raceway fault (IRF). Also, each health condition of the bearing includes

three different severity levels, which are 0.18, 0.36, and 0.53 mm cracks. Hence,

there are a total of ten different classes in this dataset, and the details are shown

in Table 3.1. The load motor provides four different load conditions, which are 0,

1, 2, and 3 hp, and the vibration signals are repeatedly collected under each load

condition. In this study, to increase the generality, we used the data collected from

all load conditions to test the proposed method, i.e., the data collected under the

same health condition but different load condition is treated as the same class. In

this experiment, we created 2400 samples for each conditions, where the dimension

of each sample is 200.

IMS Bearing Dataset [110] Three run-to-failure tests produced different bear-

ing faults: 1) inner race failure; 2) outer race failure; 3) roller failure. The vibration

signals in 1-second duration were collected every 10 min with 20kHz sampling rate.

Each run-to-failure test could be divided into three stages that are the normal

stage, degraded stage, and failure stage [111]. The details of different stages are

shown in Figure 3.2. Hence, we created a classification problem with seven classes

that including normal (N), degraded roller (DR), roller failure (RF), degraded in-

ner raceway (DIR), inner race failure (IRF), degraded outer raceway (DOR), outer

raceway failure (ORF). This experiment not only defines the health conditions but
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Test Motor Load Motor

Transducer

Drive-end
Bearing

Fan-end
Bearing

Accelerometer

Figure 3.1: The test rig of CWRU bearing dataset.

Table 3.1: Descriptions of bearing conditions in CWRU dataset.

Health Conditions Description

N Normal Bearing operates in good condition
RF1 Roller fault Roller has 0.18 mm crack
RF2 Roller fault Roller has 0.36 mm crack
RF3 Roller fault Roller has 0.53 mm crack

ORF1 Outer raceway fault Outer raceway has 0.18 mm crack
ORF2 Outer raceway fault Outer raceway has 0.36 mm crack
ORF3 Outer raceway fault Outer raceway has 0.53 mm crack
IRF1 Inner raceway fault Inner raceway has 0.18 mm crack
IRF2 Inner raceway fault Inner raceway has 0.36 mm crack
IRF3 Inner raceway fault Inner raceway has 0.53 mm crack

also detects the failures in the early stage. The dataset includes 291520 samples,

and the dimension of each sample is 256. The details of each class are listed in

Table 3.2.
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Figure 3.2: Run-to-failure vibration signal with outer race failure in IMS bear-
ing dataset.

Table 3.2: Number of samples in each class in IMS bearing dataset.

Classes N DR RF DIR IRF DOR ORF

Sample # 264000 8000 8000 8000 800 1600 1120
Label 1 2 3 4 5 6 7

Table 3.3: Hyper-parameters selection range for cross-validation.

Methods Hyper-parameters Range

Neuron numbers 300 - 2000

SAE/SDA
learning rate 0.001 - 1
corrupt rate 0.05 - 0.8

sparsity 0.05 - 0.8

SFAE-LG

αAE 0 - 1e10
αG 0 - 1e10
αL 0 - 1e10
CX 1e-10 - 1e10
CT 1e-10 - 1e10

SVM
C 1e-10 - 1e10

Gamma 1e-10 - 1e10
Random Forest # of trees 50 - 1000

ELM C 1e-10 - 1e10
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3.3.2 Experimental Setups

Three experiments were designed to evaluate the proposed method. In all exper-

iments, the training and test data were divided by using 5-fold cross-validation.

Specifically, 20% of dataset is used as training data and the other 80 % is used as

test data.

Evaluation of Local and Global Penalties This experiment aimed to analyze

the effects of local and global penalties of SFAE-LG. Besides the proposed SFAE-

LG, we implemented and compared three other formulations with one or both of

the local and global penalties remove:

• SFAE without any penalties (SFAE)

• SFAE with local penalty (SFAE-L)

• SFAE with global penalty (SFAE-G)

• SFAE with both local and global penalties (SFAE-LG)

Evaluation of Computational Efficiency We hypothesized the discrimina-

tion cost (3.11) can reduce the computational complexity of the proposed method.

Hence, this experiment compared training and test time between the proposed

method and the other AE-based methods in two settings: 1) using the selected ar-

chitectures, i.e., architectures that produce the best performance in cross-validation;

2) using the same architecture with the proposed method. To elaborate the results

clearly, we also reported the ratio of other methods to SFAE-LG. The ratio (R)

was calculated by:

R =
Training/Test time of AE-based method

Training/Test time of SFAE-LG
(3.16)

Evaluation of Noise Robustness This experiment aimed to evaluate the noise

robustness of the proposed method. In [21], the noise robustness of SAE and SDA

has been proved on the machine fault diagnosis task with four health conditions.

Hence, we used SAE and SDA as the baseline to evaluate the noise robustness

of SFAE-LG with the same experiment settings. This experiment was conducted
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on noisy CWRU dataset, and the noises were injected into the test data with nine

different signal-to-noise-ratio (SNR) values. By injecting noises to test data instead

of training data, this experiment evaluated the models’ capability of adapting to

environments with changing noise levels.

Comparison with Related Methods This experiment aimed to evaluate the

effectiveness of the proposed methods for machine fault diagnosis in comparison

with the related methods on both CWRU and IMS bearing datasets. We imple-

mented three state-of-the-art DL methods that have been applied to machine fault

diagnosis, i.e., SAE [21, 54], stacked denoising autoencoder (SDA) [21, 58], and

CNN [103, 112]. Besides DL methods, we also implemented some state-of-the-art

shallow classifiers, i.e., random forest [113], support vector machine (SVM) [114]

and extreme learning machine (ELM) [35].

All DL methods were implemented with four hidden layers. The shallow classifiers

were applied on the manually extracted features, where nine statistical features

in the time domain and six features in the time-frequency domain were extracted

[90]. All of the hyper-parameters were selected by 4-fold cross-validation with grid

searching method. Specifically, we randomly divided the training data into four

parts and used each part as the training data accordingly with the other three parts

as the validation data. The final values of the hyper-parameters were selected as the

value corresponding to the highest mean accuracy as defined in the next paragraph.

The ranges of the possible values of all hyper-parameters were listed in Table 3.3.

The key parameters of the SFAE-LG are given in Table 3.4.

Table 3.4: Hyper-parameters of SFAE-LG model.

Hyper-parameters Values

Hidden neurons [700, 150, 700, 300]
αAE [0.06, 3e-4, 1.48, 1e-4]
αG [1.43, 3e-10, 0.13, 1e-4]
αL [0.02, 3e-4, 1, 1e-4]
CX [3e-4, 1e-4, 1.02e-3, 1.2e-3]
CT [1e-9, 1e-6, 1e-9, 1e-5]

Moreover, the experiments results were evaluated in terms of the following metrics:

accuracy (Acc), precision (Pre), recall (Rec) and f-score (f ). The accuracy [115] is

the standard evaluation metric for classification problem. Also, since IMS dataset



50 3.3. Experiments

is class imbalanced as shown in Table 3.2, this work also used precision (Pre),

recall (Rec) and f-score (f ) to evaluate the results. The precision [115] is related to

the correctly classified samples, i.e., true positives (TP), and samples misclassified

as positives, i.e., false positives (FP). The recall [115] is related to TP and the

misclassified samples, i.e., false negatives (FN). The details are shown as following:

Pre =
1

M

M∑
m=1

TPm
TPm + FPm

(3.17)

Rec =
1

M

M∑
m=1

TPm
TPm + FNm

(3.18)

where TPm, FPm and FNm are TP, FP and FN of class m respectively. The f-score

combines precision and recall, which is shown as following [115].

f = 2
Pre×Rec
Pre+Rec

(3.19)

3.3.3 Evaluation of Local and Global Penalties

Table 3.5 shows the classification accuracy of alternative formulations with/without

local and global penalties. By adding a local penalty, SFAE-L improved the clas-

sification accuracy from 94.61% to 95.41%. By adding a global penalty, SFAE-G

achieved 96.94% classification accuracy compared with 94.61% achieved by SFAE.

Furthermore, SFAE-LG, which includes both of the local and global penalties,

achieved 97.29% classification accuracy. Hence, we conclude that preserving both

local and global geometries in representations are beneficial for machine fault di-

agnosis.

Table 3.5: Evaluation of local and global geometries for SFAE-LG with four
hidden layers.

Settings SFAE SFAE-L SFAE-G SFAE-LG
Accuracy (%) 94.61 95.41 96.94 97.29

To investigate the effects of the local and global penalties of SFAE-LG, we re-

duced the dimensions of the learned representations using t-Distributed Stochastic
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(a) Original data

(b) SFAE

Figure 3.3: Scatter plots of the learned data representations of the CWRU
bearing dataset by using t-SNE. (a) Original data. (b) SFAE.
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Neighbor Embedding2 (t-SNE) [116] and visualized the results in Figure 3.3, Fig-

ure 3.4, and Figure 3.5. We observed that the data points of the same fault type

are closer than those of the different fault types in the input data space, as shown

in Figure 3.3a. For example, the data points of the inner race fault (IRF1, IRF2,

and IRF3) are all located on the external surface, and the data points of the roller

fault (RF1, RF2, and RF3) are concentrated in the center. It is desired to re-

main the same global distribution of data points from the input data space to the

representation space.

The representations learned by SFAE (without local and global penalties) failed

to remain the distribution of the data points. For example, the data points of

normal condition are separated to three parts in Figure 3.3b, and all classes were

mixed regardless of the fault types. On the contrary, the representations learned

by SFAE-G and SFAE-LG retained the same distribution of data points as the

input data space. For example, the representations of SFAE-G are shown in Fig-

ure 3.4b: 1) IRF1, IRF2, and IRF3 concentrated in the left, 2) RF1, RF2, and

RF3 concentrated in the reight, 3) ORF1, ORF2 and ORF3 concentrated in the

center, and 4) N concentrated in the bottom. The representations of SFAE-LG

are shown in Figure 3.5a and Figure 3.5b with two different view angles, and also

shows similar observation with Figure 3.4b. Therefore, we conclude that the global

penalty contributes to the preservation of the geometry of all data points.

Moreover, the learned representations should have small within-class variance to

improve the classification accuracy. The representations learned by SFAE-LG,

as shown in Figure 3.5a and Figure 3.5b, showed smaller within-class variance

compared to the other three formulations: 1) SFAE, as shown in Figure 3.3b, 2)

SFAE-L, as shown in Figure 3.4a, and 3) SFAE-G, as shown in Figure 3.4b. Hence,

we concluded that using both local and global penalty can reduce the within-class

variance of learned representations.

3.3.4 Evaluation of Computational Efficiency

Table 3.6 presents the number of hidden neurons selected by SAE, SDA and SFAE-

LG based on validation classification accuracy. SFAE-LG required a much smaller

2t-SNE is a non-linear dimensionality reduction method by minimizing the divergence between
two distributions: a distribution describes the similarity of points in high-dimensional space and
a distribution describes the similarity in low-dimensional space.
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(a) SFAE-L

(b) SFAE-G

Figure 3.4: Scatter plots of the learned data representations of the CWRU
bearing dataset by using t-SNE. (a) SFAE-L. (b) SFAE-G.
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(a) SFAE-LG

(b) SFAE-LG

Figure 3.5: Scatter plots of the learned data representations of the CWRU
bearing dataset by using t-SNE. (a) and (b) show representations learned by
SFAE-LG in different angles.
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number of hidden neurons than the other two methods. In the cross-validation,

SFAE-LG selected the number of neurons in each layer independently via discrimi-

nation cost. SAE and SDA selected the number of neurons of the whole network by

using fine-tuning. We hypothesize that the proposed method can select a smaller

network than SAE and SDA because of the discrimination cost used in the training

process of each hidden layer. It is worth noting that the smaller number of hidden

neurons can bring forth a faster test time. For example, the test time of SAE,

SDA and SFAE-LG are 0.6672s, 1.3349s, and 0.3256s respectively. Hence, it is

meaningful to investigate the relationship between the selected number of hidden

neurons and discrimination cost in future work. Table 3.7 shows the training time

Table 3.6: The comparison of hidden neurons used by AE-based methods.

# of neurons SAE SDA SFAE-LG

Hidden layer 1 800 300 700
Hidden layer 2 700 500 150
Hidden layer 3 400 2000 700
Hidden layer 4 400 400 300

Total # of parameters 1164000 2014000 563000

of SFAE-LG compared with the other AE-based methods. The training time of the

proposed method is 32 to 98 times shorter than SAE and SDA when all methods

used the architectures with the best performance, and 15 to 23 times shorter when

all methods used the same network architecture. FAE-LG uses a one-step training

process with shorter processing time than the two-step training process used by

SAE.
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Table 3.7: The comparison of training time on CWRU bearing dataset.

Training time
(with the best
performance)

Training time
(with the same
architecture)

Methods Second (s) Ratio Second (s) Ratio

2-layers
SAE 7576 92 1813 22
SDA 5845 71 1948 23

SFAE-LG 82 1 82 1

3-layers
SAE 10253 43 3555 15
SDA 23301 98 3883 16

SFAE-LG 237 1 237 1

4-layers
SAE 13875 32 6771 15
SDA 28595 65 7149 16

SFAE-LG 438 1 438 1

Figure 3.6: The classification accuracies of SAE, SDA and SFAE-LG with
different SNRs (in dB).



Chapter 3. FAE-LG 57

3.3.5 Evaluation of Noise Robustness

Figure 3.6 shows the classification accuracies of SAE, SDA and the proposed

method on noisy test data with nine different SNR values. The performances

of all methods decreased when the power of noise increased, i.e., the value of SNR

decreased. It is noticed that the proposed method achieved the best performance

when the noise is moderate (SNR higher than 16 dB). Therefore, the proposed

method can adapt to a moderate change of the environment, i.e., the SNR of

noises higher than 16 dB. When the noise is strong (SNR lesser than 16 dB), al-

though SFAE-LG underperformed SDA, which is a specially designed method with

de-noising capability, it still performed better than SAE. It is important to improve

the noise robustness of the proposed method in future work.

3.3.6 Comparison with Related Methods

Table 3.8: The comparison of classification accuracy (Acc), precision (Pre),
recall (Rec) and f-score (f ) on CWRU bearing dataset.

Methods Acc (%) Pre (%) Rec (%) f -score(%)

SVM 91.73 91.74 91.73 91.73
Random Forest 87.06 88.14 87.06 87.59

ELM 93.65 93.68 93.65 93.66
SAE 95.42 95.43 95.42 95.42
SDA 95.86 95.86 95.86 95.86
CNN 95.87 95.88 95.87 95.87

SFAE-LG 97.29 97.34 97.29 97.31

Table 3.9: The comparison of classification accuracy (Acc), precision (Pre),
recall (Rec) and f-score (f ) on IMS bearing dataset.

Methods Acc (%) Pre (%) Rec (%) f -score(%)

SVM 96.48 90.54 75.15 80.00
Random Forest 96.42 90.29 73.99 78.99

ELM 96.70 90.06 76.56 81.48
SAE 96.92 91.56 76.98 82.09
SDA 97.01 91.89 77.69 82.77
CNN 97.31 92.57 79.99 84.84

SFAE-LG 97.84 94.09 84.54 88.57

Table 3.8 shows a comprehensive comparison in terms of classification accuracy,

precision, recall, and f-score on CWRU bearing dataset and Table 3.9 shows the
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comparison on IMS bearing dataset. It can be observed that the DL methods,

i.e., SAE, SDA, CNN, and SFAE-LG, performed better than the shallow classi-

fiers including SVM, random forest, and ELM. Hence, the importance of deep

representations has been verified. Among the DL methods, the proposed method

achieved 97.31% f-score on CWRU dataset, and outperformed the other methods.

On IMS dataset, the proposed method also outperformed the other methods with

88.57% f-score. Therefore, the proposed method with the local and global penalty

is beneficial in machine fault diagnosis tasks.

Table 3.10: The comparison of classification accuracy among published per-
formances.

Dataset Methods
Sample

dimensions
Input

dimensions
# of traing
samples (%)

# of health
condition

Acc (%)

CWRU

[117] 2048 33 75 10 88.9
[118] 2400 5 40 11 97.91
[21] 200 200 40 4 95.58
[119] 300 300 70 4 93.07

SFAE-LG 200 200 20 10 97.29

IMS
[111] 20480 18 75 7 93

SFAE-LG 256 256 20 7 97.84

While Table 3.8 and Table 3.9 compare the performance between the proposed

method and the other benchmark methods by using the same experimental set-

tings, Table 3.10 reports the performances of the related methods published in

their original papers. In [117] and [118], SVM was used to classify machine health

conditions with different manually extracted features: the wavelet leaders multi-

fractal features [117] and the combination of permutation entropy and ensemble

empirical mode decomposition [118]. They obtained the accuracy of 88.9% and

97.91% respectively on the CWRU dataset. Furthermore, the input dimension of

the training data was decreased by using AE-based methods. SAE and SDA were

applied to CWRU dataset in [119] and [21] respectively. When the length of the

input data is 300, SAE obtained the accuracy of 93.07% in [119]. SDA obtained

the accuracy of 95.58% in [21] when the length of the input data reduces to 200.

In [111], empirical mode decomposition and artificial neural network were applied

on IMS dataset to classify seven health conditions, and obtained the accuracy of

93%. From Table 3.10, the proposed method obtained a comparable result with

the state-of-the-art methods by using lesser training samples and smaller input

dimensions of the training data.
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3.4 Summary

This chapter describes the first work that addresses the research objectives of this

thesis, i.e., to efficiently learn data representations that can improve the perfor-

mance of machine fault diagnosis tasks, and to exploit and preserve geometry

information of input data while learning data representations. Section 3.1 re-

views existing deep learning-based representation learning algorithms and other

algorithms that preserve local and global geometry. Section 3.3 introduces a rep-

resentational learning method, which is called FAE-LG, and its deep structure,

SFAE-LG. Section 3.3 analyzes the sensitivity of hyper-parameters and experi-

mentally demonstrates the effectiveness of FAE-LG on machine fault diagnosis

tasks. Specifically, Compared to other deep learning-based algorithms, the pro-

posed algorithm simultaneously preserves the local and global geometries of input

data, and the importance of preserving both geometries have been verified in Sec-

tion 3.3. Furthermore, in contrast to the two-step training process used by most

of the deep learning-based algorithms, the proposed algorithm completes training

in one step, which significantly reduces the training time. Moreover, the discrim-

ination cost of the proposed algorithm reduces the number of neurons required in

hidden layers, which reduces the test time compared to other algorithms. On two

benchmark datasets, the proposed algorithm outperforms all other comparison al-

gorithms, i.e., CNN, SAE, and SDA, in terms of both classification accuracy and

f-score. Therefore, it is proved an efficient tool to provide accurate information

about the machine conditions, which can be used to assist maintenance planning

to save maintenance costs.





Chapter 4

Learning Local Discriminative

Representations via Extreme

Learning Machine

In order to improve the efficiency of representation learning algorithms and re-

tain the performances on machine fault diagnosis tasks, Chapter 4 introduces an

ELM-based algorithm that preserves the local geometry of input data and exploits

the local discrimination information in data representations. Section 4.1 reviews

ELM and its variants, especially the ELM-based representation learning algorithms

with geometry information exploited, and Section 4.2 introduces the details of the

proposed LDELM-AE. Section 4.3 experimentally evaluates the effectiveness and

efficiency of the proposed algorithm.

61
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4.1 Background and Motivation

Extreme learning machine (ELM) [31, 32] is a efficient and effective single-hidden

layer feedforward network (SLFN). The key idea of ELM is to randomly generate

the weights between the input layer and the hidden layer, and analytically calcu-

late the output weights by using Moore-Penrose generalized inverse. In contrast

to traditional training approaches of SLFNs, ELM achieves much faster training

speed and maintains the universal approximation capability by using fixed hidden

neurons and tunable output weights [33, 120]. It is able to solve variant tasks in-

cluding regression [35], classification [121], clustering [122], and etc. ELM has been

successfully applied in many applications, e.g., facial expression [123], image classi-

fication [124], taste recognition [125], video anomaly detection [126], etc. Moreover,

ELM has been extended to learn data representations. Kasun et al. [13, 14] pro-

posed ELM autoencoder (ELM-AE) to map the input data into the representation

space. They also introduced a multilayer ELM autoencoder (ML-ELM) by stack-

ing multiple ELM-AEs to learn hierarchical representations. In contrast to other

deep learning algorithms, ML-ELM model can be trained without iterations and

fine-tuning. Hence, ML-ELM can learn hierarchical representations efficiently. D.

Cui et al. [39] proposed the extreme learning machine network (ELMNet) based

stacked ELM-AE on image patches to learn data representations and achieved a

good result on the handwritten dataset. However, the above algorithms do not

consider the geometry information of data points, which is proved an important

property of data representations in Chapter 3.

Recently, preserving the local geometry of input data points have been proved as

an essential property of representations. Preserving the local geometry aims to

retain the same relationship, e.g., the Euclidean distance, between a data point

and its neighbors before and after map them into the representation space. Hence,

it increases the within-class compactness of the learned representations. Laplacian

eigenmaps (LE) [26] is a graph-based algorithm aims to preserve local geometry by

minimizing the Euclidean distances between data points and their neighbors in the

representation space. Local linear embedding (LLE) preserves local geometry by

retaining the same linear relationships of each data point and its neighbors. More

specifically, each data point can be reconstructed by the same linear combination

of its neighbors before and after map the data point into representation space.

Although LE and LLE can preserve the local geometry in the representation space,
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they only process the training data points, and it is hard to apply them on the new

test points. Therefore, X. He et al. [49] introduced the locality preserving projection

(LPP) to preserve the local geometry, i.e., neighborhood structure, of the input

data. As similar as LE, LPP also minimizes the Euclidean distances between each

data point and its neighbors in the representation space. Furthermore, LPP maps

data points to representations by using a linear transformation matrix that can be

easily applied to the new test points, but LPP does not investigate the non-linear

representation mapping.

To efficiently learn representations that preserve the local geometry of input data,

various extensions of ELM-AE and ML-ELM were proposed. K. Sun et al. [74]

introduced the generalized extreme learning machine autoencoder (GELM-AE),

which used the manifold regularization to constrain ELM-AE to learn the local

geometry preserving representations. Moreover, they stacked several GELM-AEs

into a deep representation learning model named as multilayer generalized extreme

learning machine autoencoder (ML-GELM). Furthermore, H. Ge et al. [127] pro-

posed a graph embedded denoising extreme learning machine autoencoder (GDELM-

AE), which integrated the local Fisher discrimination analysis (LFDA) into ELM-

AE to discover both local geometry and global discriminative information in the

representation space. Similar to ML-ELM and ML-GELM, multiple GDELM-AE

can be stacked to build a deep model named as a stacked graph embedded denoising

extreme learning machine (SGD-ELM).

In this chapter, a algorithm based on ELM-AE is proposed to learn local dis-

crimination preserving representations. The proposed algorithm is named as the

Local Discriminant Preserving Extreme Learning Machine Auto-encoder (LDELM-

AE). The proposed algorithm incorporates a graph-based penalty that inspired by

marginal fisher analysis (MFA) [63] that exploits both local geometry structure

and local discriminant information of input data by maximizing the within-class

compactness and between-class separability.
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4.2 Proposed Method

Let the training dataset {xxxi, yyyi}ni=1 contains n samples, where xxxi ∈ Rd is the data

sample, and ci ∈ {1, ...,m} is the corresponding class label of the i-th sample. yyyi

is the corresponding one-hot vector, which yyyi = [yi1, yi2, ..., yim], yik = 1 only if

ci = k, otherwise, yik = 0.

4.2.1 Local discriminant preserving extreme learning ma-

chine autoencoder

ELM-AE [13] exploits the intrinsic information of unlabeled data, and GELM-

AE [74] improves ELM-AE to discover the latent manifold structure of the input

data by integrating the manifold regularization. Furthermore, GDELM-AE [127]

integrates LFDA into ELM-AE to discover both local and global structure of the

input data. However, LFDA is based on the assumption that the data is Gaussian

distributed. Hence, if the input data does not follow the Gaussian distribution

assumption, LFDA cannot well characterize the separability of different classes.

The proposed LDELM-AE preserves the local geometry and exploits the local

discriminative information of the input data. Furthermore, LDELM-AE does not

require the Gaussian distribution assumption of the input data.

The structure of LDELM-AE is same as the ELM-AE, which is shown in Figure 2.4.

Firstly, the input data is mapped to ELM feature space by an orthogonal random

matrix with a non-linear activation function. Secondly, based on the reconstruct-

ing cost together with the local discriminative penalty, LDELM-AE utilizes the

local geometry and local discriminative information to enhance representations by

maximizing the within-class compactness and between-class separability.

Inspired by MFA [63], the within-class compactness measures the sum of Euclidean

distances between each data point and the kw-nearest neighbor data points of

it within the same class. The between-class separability measures the sum of

Euclidean distances between the margin data points and their kb-nearest neighbor

data points in the different classes. The margin data points are the data points

located at the border of each class. The illustration of the within-class compactness

and the between-class separability are shown in Figure 4.1.
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Figure 4.1: The black data points belong to class 1 and white data points
belong to class 2. The left part shows the within-class compactness that is
measured by using the data points and their neighbors from the same class.
The right part shows the between-class separability that is measure by using the
margin data points and their neighbors from the different class.

In LDELM-AE, the within-class compactness is characterized as the following:

SSSw =
1

2

∑
i,j

swij‖βββhhhi − βββhhhj‖2

= Tr(βββHHHLLLwHHH>βββ>)

(4.1)

where

LLLw = DDDw −SSSw

swij =


exp(

−‖hhhi−hhhj‖2
2σ2 ), if xxxj ∈ N+

i

or xxxi ∈ N+
j

0, else

(4.2)

where σ is the parameter scaling the Euclidean distance, and the value of σ normally

uses the mean value of Euclidean distances. As similar as the manifold regulariza-

tion, DDDw is a diagonal matrix with its diagonal elements are DDDw
ii =

∑
j s

W
ij . N+

i

represents the kw nearest neighbors of the sample xxxi within the same class. hhhi is
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Figure 4.2: Architecture of ML-LDELM.

the output of the hidden layer corresponds to the i-th sample xxxi, and it can be

determined as:

hhhi =
1

1 + exp(−AAA>xxxi)
(4.3)

where I is an identity matrix, and A is a weight matrix that generated randomly

and orthogonally, i.e., AAA>AAA = III if d < l and AAAAAA> = III if d ≥ l.

Remark 4.2.1. Assume two neighbor data points from the same class form a

data pair {(xxxi,xxxj),∀xxxi ∈ N+
j ,xxxj ∈ N+

i }. SSSw weights all data pairs in the dataset,

smaller the distance between two data points, higher the weight value of the data

pair. Hence, high penalty values are assigned to those neighbor data points that

are too different in the representation space. By minimizing (4.1), the closed

data points from the same class can be mapped to similar representations and the

compactness of each class can be increased. Therefore, the representations preserve

the local geometry from the input data.
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However, preserving local geometry does not consider the separation between dif-

ferent classes. Hence, to separate data points from different classes in the repre-

sentation space, the between-class separability is characterized as the following:

SSSb =
1

2

∑
i,j

sbij‖βββhhhi − βββhhhj‖2

= Tr(βββHHHLLLbHHH>βββ>)

(4.4)

where

LLLb = DDDb −SSSb

sbij =


exp(

−‖hhhi−hhhj‖2
2σ2 ), if (xxxi,xxxj) ∈ P(ci)

or (xxxj,xxxi) ∈ P(cj)

0, else

(4.5)

where P(ci) is a set of sample pairs contains the kb shortest pairs in {(xxxi,xxxj),∀xxxi ∈
ci,xxxj 6∈ ci}.

Remark 4.2.2. Assume two data points from the different class form a data pair

{(xxxi,xxxj),∀xxxi ∈ ci,xxxj 6∈ ci}. SSSb weights kb shortest data pairs in the dataset,

smaller the distance between two data points, higher the weight value of the data

pair. By choosing kb shortest data pairs, we only consider the distances between

margin data points of different class. By maximizing (4.4), the separability between

margin points from different class is increased in the representation space. Since the

between-class separability is increased by margin points locally, the representations

exploit local discriminative information from the input data.

Combining the within-class compactness and the between-class separability, the

objective function of LDELM-AE can be formulated as the following:

arg min
βββ

1

2
‖βββ‖2F +

C

2
‖βββHHH −XXX‖2F +

λ

2
(SSSw − γSSSb)

s.t. SSSw = Tr(βββHHHLLLwHHH>βββ>)

SSSb = Tr(βββHHHLLLbHHH>βββ>)

(4.6)



68 4.2. Proposed Method

By substituting the constraints into the objective function, it can be rewritten as

the following:

arg min
βββ

1

2
‖βββ‖2F +

C

2
‖βββHHH −XXX‖2F+

λ

2
(Tr(βββHHH(LLLw − γLLLb)HHH>βββ>)

(4.7)

where C, λ and γ are the trade-off hyper-parameters determined by users.

Since the objective function (4.7) is convex, it can be minimized by solving the

equation ∇LDELM-AE = 0, where

∇LDELM-AE = βββ + C(βββHHH −XXX)HHH> + λβββHHH(LLLw − γLLLb)HHH>

= βββ(III + CHHHHHH> + λHHH(LLLw − γLLLb)HHH>)−XXXHHH>
(4.8)

Hence, βββ can be determined in closed form with two different situations. While

the number of training samples is greater than the number of hidden neurons, i.e.,

n > l, βββ is calculated as follows:

βββ∗ = XXXHHH>(III l + CHHHHHH> + λHHH(LLLw − γLLLb)HHH>)−1 (4.9)

where III l is the identity matrix of dimension l.

While the number of training samples is smaller than the number of hidden neurons,

i.e., n < l, βββ, HHH contains more columns than rows. Hence, it is beneficial to let

βββ = αααHHH>, where ααα ∈ Rn×d. Therefore, the closed form solution of βββ is calculated

as follows:

βββ∗ = XXX(IIIn + CHHH>HHH + λHHH>HHH(LLLw − γLLLb))−1HHH> (4.10)

where IIIn is the identity matrix of dimension n.

For the given training data XXX, the embedded data representations XXXproj ∈ Rl×n

can be determined by XXXproj = βββ>XXX. The learned representations can be used for

further classification tasks. The details of LDELM-AE is shown in Algorithm 2.
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Algorithm 2 LDELM-AE algorithm.

Input:

• The input data {XXX,YYY } = {xxxi, yyyi}ni=1.

• The number of hidden neurons l.

• The hyper-parameters C, λ and γ.

Output:

• The output weights βββ.

• The representations XXXproj of the input data XXX.

1: Randomly initiate the input weights AAA.
2: Apply the singular value decomposition (SVD) on AAA to generate the orthogo-

nalized AAA.
3: Compute the outputs of the hidden layer HHH using (4.3).
4: Compute the graph Laplacian matrix Lw and Lb using (4.2) and (4.5), respec-

tively.
5: if n > l then
6: Compute the output weights βββ using (4.9).
7: else
8: Compute the output weights βββ using (4.10).

9: end if
10: Compute the representations of input data by XXXproj = βββ>XXX.
11: return XXXproj, βββ



70 4.2. Proposed Method

4.2.2 Multilayer local discriminant preserving extreme learn-

ing machine autoencoder

ML-LDELM is proposed by stacking multiple LDELM-AEs to learn hierarchical

representations from the input data. As shown in Figure 4.2, ML-LDELM is trained

in the greedy layer-wise approach.

In Figure 4.2, the first LDELM-AE uses XXX as the input data to learn the output

weight matrix βββ1. Outputs of the first hidden layer can be found by the transpose

of the output weight matrix: HHH1 = βββ>1XXX. In another words, βββ>1 is used as the

input weight matrix of the first hidden layer in ML-LDELM. The input weight

matrix βββ>2 of the second hidden layer is learned by using the same approach. The

only difference is that instead of using XXX, HHH1 is used as the input data of the

second LDELM-AE. In general, the p-th LDELM-AE uses HHHp−1 as the input data

to learn βββp, and βββ>p is used as the input weight matrix of the hidden layer HHHp in

ML-LDELM.

Assume there are total q hidden layers in ML-LDELM, the output weight matrix

βββq+1 between the last hidden layer, i.e., the q-th hidden layer, and the output layer

in ML-LDELM are computed by optimizing the regularized least squares, which

can be formulated as the following:

min
βββq+1

1

2
‖βββq+1‖2F +

C

2
‖YYY − βββq+1HHHq‖2F (4.11)

where YYY = [yyy1, yyy2, ..., yyyn]> ∈ Rm×n is the label matrix consists of one-hot vectors,

and HHHq is the output of the last hidden layer in ML-LDELM. The closed-form

solution of βββq+1 can be determined as the following:

βββ∗q+1 =

 XXXHHH>q

(
HHHqHHH

>
q +

IIIlq
C

)−1
if N > l

XXX
(
HHH>qHHHq + IIIn

C

)−1
HHH>q otherwise

(4.12)

The details of using ML-LDELM for classification tasks are summarized in Algo-

rithm 3.
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Algorithm 3 ML-LDELM algorithm for classification tasks.

Input:

• The training data {XXX train,YYY train} = {xxxi, yyyi}ni=1.

• The test data {XXX test,YYY test} = {xxxi, yyyi}mi=1

• The number of hidden layers q.

• The number of neurons of each hidden layer {lp}qp=1.

• The hyper-parameters C, λ and γ.

Output:

• The input weights of each hidden layer {βββ>p }
q
p=1.

• The predicted labels of the input data.

Train:
1: Initialize HHH0 = XXX train.
2: for p = 1 : q do
3: Use HHHp−1 as the inputs of the p-th LDELM-AE to train the output weights

βββp by Algorithm 2.

4: Use βββ>p as the input weights andHHHp−1 as the inputs of the p-th hidden layer
in ML-LDELM to compute HHHp by (4.3).

5: end for
6: Compute βββq+1 using (4.12).

Test:
7: Initialize HHH0 = XXX test.
8: for p = 1 : q do
9: Use trained βββ>p as the input weights and HHHp−1 as the inputs of the p-th

hidden layer in ML-LDELM to compute HHHp by (4.3).

10: end for
11: Compute the predicted label Ỹ̃ỸY = HHHqβββq+1.

12: return Ỹ̃ỸY , {βββ>p }
q
p=1
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4.3 Experiments

The proposed representation learning algorithms, LDELM-AE and ML-LDELM,

are compared with the related algorithms on several benchmark datasets. We also

apply the proposed LDELM-AE on a bearing fault dataset to validate its effec-

tiveness on the machine fault diagnosis tasks. The performances of the proposed

algorithms are compared with state-of-the-art algorithms.

Table 4.1: Descriptions of benchmark datasets.

Type Datasets
# of

Classes
# of

Dimensions
# of

Samples

UCI

IRIS 3 4 150
WINE 3 13 178
LIVER 2 6 345

SATIMAGE 6 36 6435

Image
COIL20 20 1024 1440
USPST 10 256 2007

4.3.1 Datasets Descriptions and Experiment Setups

The summary of the benchmark datasets is shown in Table 4.1. The first four

datasets, i.e., IRIS, WINE, LIVER, SATIMAGE, are low-dimensional datasets

from UCI machine learning repository [128]. The COIL20 [129] contains 1440

gray-scale images of 20 objects. There are 72 images were taken in different poses

of each object. The USPST is a subset of USPS [130], which contains ten categories

of gray-scale handwritten digit images.

Furthermore, the CWRU bearing dataset aims to classify different machine health

conditions based on the vibration signal. The dataset was collected under four

health conditions, which were the normal condition, roller fault, outer raceway

fault, and inner raceway fault. Each health condition includes three severity lev-

els. Hence, the task is to classify the normal condition and nine different faults of

the bearing. The details of the the CWRU bearing dataset are described in Sec-

tion 3.3.1. In this experiment, since the original vibration signal is non-stationary,

we use the wavelet packet transform, with 5-level wavelet packet decomposition
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using db1, to transfer the time domain vibration signal to the time-frequency do-

main.

To evaluate the effectiveness of the proposed algorithms, we compared the pro-

posed LDELM-AE and ML-LDELM with several related algorithms on the first

six datasets of Table 4.1. The related algorithms are shown in the following:

1) ELM-AE and ML-ELM [13].

2) GELM-AE and ML-GELM [74].

3) GDELM-AE and SGD-ELM [127].

4) Autoencoder (AE) and stacked AE (SAE) [54].

5) Deep belief network (DBN) [9].

To evaluate the performance of the proposed LDELM-AE on the machine fault

diagnosis task, we compared it with the state-of-the-art algorithms that have been

applied to the same application. W. Du et al. [117] extracted multifractal fea-

tures based on the discrete wavelet transform and used the support vector machine

(SVM) to classify the ten machine conditions in CWRU dataset. X. Zhang et

al. [118] also used SVM as the classifier, but they extracted features by using

the ensemble empirical mode decomposition (EEMD). C. Lu et al. [21] used both

stacked denoising AE (SDA) and SAE to classify four machine conditions in CWRU

dataset, i.e., four types of machine conditions without the consideration of severity

levels. LDELM-AE is also compared with SFAE-LG introduced in Chapter 3 on

CWRU dataset.

In the experiments, all of the hyper-parameters were selected using cross-validation.

The number of hidden neurons is selected from 100 to 5000 with an interval of

100 for all algorithms. The trade-off hyper-parameters, e.g., C, λ and γ, were

selected from the exponential sequence [1e−5, ..., 1e10] according to the validation

performances. The ELM-based algorithms used the sigmoid nonlinear activation

function. We run each algorithm for 50 times independently to reduce the influences

of the randomness.

The classification accuracy (ACC) is used as the evaluation metric in this study

of the proposed algorithm and the other related algorithms. ACC measures the
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percentage of the correctly classified data points among all of the data points, and

it is defined as:

ACC =

∑N
i δ(yyyi − ŷyyi)

N
(4.13)

where yyyi and ŷyyi are the ground truth and predicted label of xxxi. The function δ(aaa, bbb)

is defined as:

δ(aaa, bbb) =

1, if aaa = bbb

0, otherwise
(4.14)

4.3.2 Comparison with the related methods

The comparison results of all algorithms with one, two and three hidden layers are

shown in Table 4.2, Table 4.3 and Table 4.4, respectively. We run each algorithm

for 50 times independently, and reported the average (avg.) value, the standard

deviation, and the best value among the 50 accuracies in the tables.

In Table 4.2, we observed that the proposed LDELM-AE outperformed all of the

other algorithms on the tested datasets. Besides, observing from Table 4.3 and

Table 4.4, when the number of hidden layers increased, the performances of each

algorithm are also increased. This observation verifies that the hierarchical repre-

sentations can improve the classification performances.

Moreover, we observed that the proposed ML-LDELM outperformed all of the

other algorithms with different network structures, i.e., the different number of

hidden layers, and it proved the effectiveness of preserving the local geometry and

exploiting the local discriminant information of the input data in the represen-

tations. To observe the performances on each dataset more intuitively, we plot

the average accuracies of all ELM-based algorithms with the different number of

hidden layers in Figure 4.3, Figure 4.4, and Figure 4.5.
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(a) IRIS

(b) WINE

Figure 4.3: Average accuracy of different number of hidden layers for ELM-
based algorithms on: (a) IRIS dataset and (b) WINE dataset.



78 4.3. Experiments

(a) LIVER

(b) SATIMAGE

Figure 4.4: Average accuracy of different number of hidden layers for ELM-
based algorithms on: (a) LIVER dataset and (b) SATIMAGE dataset.
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(a) COIL20

(b) USPST

Figure 4.5: Average accuracy of different number of hidden layers for ELM-
based algorithms on: (a) COIL20 dataset and (b) USPST dataset.
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4.3.3 Application on the machine fault diagnosis

To verify the capability of the proposed algorithm on solving machine fault diag-

nosis tasks, we tested LDELM-AE on CWRU bearing dataset.

Firstly, we investigate the selection of hyper-parameters in LDELM-AE, i.e., the

number of hidden numbers l, trade-off parameters C, λ and γ. It should be noted

that we run 50 trails for each experiment.

Figure 4.6: Machine fault diagnosis performances using different number of
hidden neurons.
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Selection of the number of hidden numbers In this experiment, we study

how does the number of hidden numbers l affects the accuracy of the machine

fault diagnosis. From Figure 4.6, we noticed that the proposed algorithm obtained

higher accuracy and smaller standard deviation while the number of hidden neurons

increased. Moreover, while the number of hidden neurons larger than 200, the

average accuracies are stable and between 99.88% to 100%. While the number of

hidden neurons larger than 350, the standard deviation is stably smaller than 0.05.

Therefore, we used 350 hidden neurons in the following experiments.

Selection of the trade-off parameters In this experiment, we study how

does the trade-off parameters affect the accuracy of the machine fault diagno-

sis. Figure 4.7a shows the machine fault diagnostic accuracy of LDELM-AE with

different combinations of trade-off parameters λ and γ. High diagnosis accura-

cies are observed while log10(λγ) ≤ 33. This observation shows the proposed

algorithm can produce a stable performance, i.e., diagnosis accuracies fluctuate

slightly, while trade-off parameters λ and γ are within a certain range. More-

over, Figure 4.7b shows the diagnostic accuracy with different combinations of

parameter λ and C. It can be observed the diagnostic accuracy is stable while

log10(C) ≥ 0 and log10(λ) ≤ 5. Therefore, for CWRU bearing dataset, the pro-

posed LDELM-AE is not sensitive to the values of trade-off parameters while

{C, λ, γ} ∈ log10(C) ≥ 0 ∩ log10(λ) ≤ 5 ∩ log10(λγ) ≤ 33.

Visualization of the representations To investigate the effects of the lo-

cal discriminative penalty of LDELM-AE, we visualized the original data points,

and the representations learned by LDELM-AE in Figure 4.8. In Figure 4.8a, the

data points of different health conditions are clustered together with large within-

class variance and small between-class discrimination, e.g., data points from IRF1,

IRF3, ORF1, and ORF3 are mixed in the original data space. In Figure 4.8b, we

observed that the majority of representations of the same health condition are clus-

tered together and representations of the different health conditions are separated.

Hence, compared to the original data space, the learned representations increased

the between-class discrimination and the within-class compactness. Therefore, the

proposed algorithm could learn representations that improve diagnostic accuracy.
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(a)

(b)

Figure 4.7: Machine fault diagnosis performances using different combina-
tions of trade-off parameters. (a) shows the diagnosis accuracies with different
combinations of λ and γ. (b) shows the diagnosis accuracies with different com-
binations of λ and C.
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(a) Original data

(b) Representations learned by LDELM-AE

Figure 4.8: Scatter plots of the original data points and learned data repre-
sentations of the CWRU bearing dataset.
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Comparison with state-of-the-art algorithms In Table 4.5, we report the

performance of the proposed LDELM-AE tested on CWRU bearing dataset and

compared it with the published diagnostic accuracies of state-of-the-art algorithms

on the same benchmark dataset. In [117], the wavelet leaders multifractal features

and SVM are used to classify the ten classes of the motor bearing and achieved the

accuracy of 88.9%. EEMD [118] was applied to decompose the vibration signal into

the intrinsic mode functions (IMFs) and calculate permutation entropies, which is

used as the features. The diagnostic accuracy of 97.91% was obtained by using

SVM as the classifier. SAE and SDA [21] were applied to the time-domain vibration

signal to learn representations, and the softmax layer on the top of the last hidden

layer achieved 94.4% and 95.58% diagnostic accuracy, respectively, for the four

classes of bearing health conditions. The previous algorithm SFAE-LG in Chapter 3

learns representations with local and global geometry preserved from the time-

domain vibration signal and achieved the accuracy of 97.29% of the ten machine

conditions in CWRU dataset. Compared with the above algorithms, the LDELM-

AE obtains the highest diagnostic accuracy of 99.74 ± 0.17%. The observation

proves the effectiveness of using the proposed algorithm to solve the machine fault

diagnosis tasks.

Table 4.5: The comparison of classification accuracies on CWRU bearing
dataset.

Methods
# of training
samples (%)

# of
classes

Acc (%)

Multifractal features
+ SVM [117]

75 10 88.9

EMD + SVM [118] 40 11 97.91
SAE [21] 40 4 94.4
SDA [21] 40 4 95.58
SFAE-LG 20 10 97.29

LDELM-AE 20 10 99.74
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Computational complexity To investigate the computational complexity of

using ELM-based algorithm, Table 4.6 shows the comparison on both training and

test time between FAE-LG in Chapter 3 and LDELM-AE in Chapter 4. For a

fair comparison, both algorithms used the same network structure, i.e., one hidden

layer with 1000 hidden neurons.

Table 4.6: Comparison of training and testing time on CWRU dataset.

Methods Training time (s) Test time (s)

SFAE-LG 30.88 0.017
LDELM-AE 1.26 0.016

From Table 4.6, it can be noticed that LDELM-AE introduced in this chapter

improves the training time significantly. It is because the cost function of the

ELM-based representation learning algorithm, LDELM-AE, can be minimized an-

alytically. Compared to FAE-LG introduced in Chapter 3, LDELM-AE does not

require BP technique, which is time-consuming, for the training process. Moreover,

the test time of both algorithms are comparable, which because they use the same

network structure with the same computational complexity in the test.
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4.4 Summary

This chapter aims to address both of the research objectives of the thesis, i.e.,

to efficiently learn data representations that can improve the performance of ma-

chine fault diagnosis tasks, and to exploit and preserve geometry information of

input data while learning data representations. Section 4.1 reviews the ELM-based

representation learning algorithm and its variants that exploit geometry informa-

tion of input data. Section 4.2 introduces a representation learning algorithm

LDELM-AE, and its multi-layer framework ML-LDELM to efficiently learn data

representations with two properties: 1) preserving the local geometry; 2) exploiting

the local discrimination information from the input data. The local geometry of

input data is preserved by minimizing the Euclidean distances between each data

point and its nearest neighbors within the same class. The local discrimination in-

formation is exploited by maximizing the Euclidean distances between the margin

data points and their neighbors in the different classes. Multiple LDELM-AEs are

stacked to form ML-LDELM, which is used to learn hierarchical representations

from the input data. In Section 4.3, the experimental results demonstrate that the

proposed algorithms outperformed the other related algorithms, e.g., SGD-ELM,

ML-GELM, ML-ELM, on several benchmark datasets. The observations proved

the effectiveness of the two properties exploited by the proposed algorithms. Fur-

thermore, the proposed algorithms were applied to solve machine fault diagnosis

tasks. To provide guidelines for using the proposed algorithm, we analyzed the

hyper-parameters while applying it on the bearing fault dataset. Compared to

the state-of-the-art algorithms, the proposed algorithm achieved higher diagnostic

accuracy with less training time so that it was proved a useful tool to diagnose

machine faults accurately.





Chapter 5

Simultaneously Learning Affinity

Matrix and Data Representations

Chapter 5 proposes a representation learning algorithm that learns the data repre-

sentations and affinity matrix simultaneously. Instead of predefining and fixing the

affinity matrix, it is treated as a variable and unified in the objective function of

the proposed algorithm. The proposed algorithm adjusts the similarities by taking

into account its capability of capturing the geometry information in both original

data space and non-linearly mapped representation space. Meanwhile, the geometry

information of original data can be preserved in the embedded representations with

the help of the affinity matrix. Section 5.1 reviews the existing representation learn-

ing and adaptive graph learning algorithms, and Section 5.2 describes the details of

the proposed LELMAE-AN. Section 5.3 experimentally evaluates the effectiveness

and efficiency of the proposed algorithm.

89
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5.1 Background and Motivation

The graph-based representation learning algorithm is one of the most common

algorithms that taking advantages of geometry information while learning repre-

sentations. Laplacian eigenmaps (LE) [26] firstly constructs an affinity matrix

based on the Euclidean distance between data points and their neighbors. The

affinity matrix is then used to minimize the distances between each data point

and its neighbors in the representation space.In this thesis, Chapter 3 proposed a

representation learning algorithm named as FAE-LG, which can preserve the local

and global geometries of original data points from vibration data of motors. Chap-

ter 4 proposed another representation learning algorithm named as LDELM-AE,

which preserves the local geometry of input data and exploits the local discrimina-

tion information in data representations. Although LE, FAE-LG, and LDELM-AE

preserve the geometry information in data representations, it requires a predefined

and fixed affinity matrix under an assumed prior knowledge, e.g., uses a k-nearest

neighbor graph with binary or Gaussian edge weights to represent the geometry

relationship between data points. However, the assumed prior knowledge might

not precisely represent the real geometry relationships between data points. Also,

the potential relationship between the affinity matrix and the classes are not fully

exploited since the affinity matrix is constructed independently of the following

tasks. Furthermore, the existing deep-learning-based algorithms require an itera-

tive training procedure, which is time-consuming.

One way to address the weakness of the predefined affinity matrix is to treat it as

a variable and learn it in the training process. The adaptive graph learning algo-

rithm was firstly proposed by Nie et al. [131] in a clustering algorithm. Instead of

manually constructing the affinity matrix, the clustering with adaptive neighbors

(CAN) [131] adaptively adjusts it during the clustering procedure. CAN is then ex-

tended to the projected clustering with adaptive neighbors (PCAN) [131]. PCAN

adjusts the affinity matrix based on the linearly projected data points and forces

it suitable for the clustering task. T. Liu et al. [75] adaptively adjusted the affinity

matrix based on the non-linear data embeddings obtained by an ELM-based algo-

rithm. Inspired by the adaptive neighbor techniques used in the above studies, we

can learn the affinity matrix and the non-linear data embeddings simultaneously in

representation learning algorithms. Furthermore, to reduce the training time and

improve the efficiency of representation learning algorithms, the extreme learning
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machine autoencoder (ELM-AE) [13, 14] is proposed. ELM-AE is an extension

of ELM and learns data representations based on singular values. The details of

ELM-AE is introduced in Section 2.2.2.

In this chapter, a representation learning algorithm, which is named as LELMAE-

AN, is proposed. LELMAE-AN consists of two learning parts, which are the affinity

matrix learning and representation learning. In the affinity matrix learning, it

learns an affinity matrix with its elements represents the similarities of all pairwise

data samples. It penalizes the pairwise samples with a far Euclidean distance in

both original data space and the embedded representation space. Therefore, the

value of similarities is forced to be large if two data samples are close to each other

and small if they are far away. In the representation learning, it learns the data

representation by minimizing the error between the reconstructed data and the

original input data. Since both of the affinity matrix learning and representation

learning parts are convex, they can be optimized efficiently.



92 5.2. Proposed Method

5.2 Proposed Method

Let the training set {XXX,YYY } has n samples, where XXX = [xxx1,xxx2, ...,xxxn] ∈ Rd×n is the

data matrix, and YYY = [yyy1, yyy2, ..., yyyn] ∈ Rm×n contains corresponding labels of each

sample. Specifically, yyyi is a m-dimensional one-hot column vector that only one

element, which correspond to the class of i-th sample, equals to 1 and the other

elements equal to 0.

5.2.1 Objective function

Let sij, which is an element of the affinity matrix SSS ∈ Rn×n, represents the simi-

larity between the sample xxxi and the sample xxxj. In this method, the similarity can

be treated as a probability by applying the sum-to-one constraint for each column

and the nonnegative constraint for each element:

n∑
j=1

sij = 1

0 ≤ sij ≤ 1

(5.1)

LELMAE-AN The non-linearly embedded data representations and the affinity

matrix can be simultaneously obtained by jointly minimizing the objective function

J(SSS,βββ):

J(SSS,βββ) =
1

2

n∑
i=1

‖βββhhhi − xxxi‖22 +
C

2
‖βββ‖2F

+
α1

2

n∑
i,j=1

‖xxxi − xxxj‖22sij

+
α2

2

n∑
i,j=1

‖βββhhhi − βββhhhj‖22sij

+
α3

2

n∑
i,j=1

‖yyyi − yyyj‖22sij +
γ

2
s2ij

s.t.
n∑
j=1

sij = 1, 0 ≤ sij ≤ 1

(5.2)
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where hhhi = 1/(1 + exp(−AAAxxxi)) is the output of the hidden layer corresponds to

the sample xxxi. AAA ∈ Rl×d is a randomly and orthogonally generated weight matrix,

where AAA>AAA = IIId if d < l and AAAAAA> = III l if d ≥ l. IIId and III l are the identity matrix

with dimension of d and l respectively. C, α1, α2, and α3 and γ are the trade-off

parameters.

The objective function J(SSS,βββ) consists of two learning parts, which are the affinity

matrix learning and representation learning. The objective function of affinity

matrix learning is determined by fixing the projection matrix βββ in (5.2). It aims

to learn similarities of all pairwise data samples in the dataset. The similarity

contains local geometry information and discriminative information of input data.

Similarly, the objective function of representation learning is determined by fixing

the affinity matrix SSS in (5.2). It aims to learn data representations based on the

adjusted affinity matrix.

Compared to other ELM-AE based methods [74, 127], which exploited geometry

information in data representations by using various predefined affinity matrix, the

proposed method unifies the affinity matrix in the objective function as a variable

instead of predefining it. Compared to other adaptive graph learning methods

that exploited geometry information in original data space, i.e., CAN [131], or

in linearly embedded space, i.e., PCAN [131], individually, the proposed method

jointly discovers the geometry information in both original space and non-linearly

embedded space.

Compared to ELM-CLR proposed by T. Liu et al. [75], the proposed method learns

data representations by using reconstruction-based cost function instead of the non-

linear random mapping used in ELM-CLR. The reconstruction-based cost function

minimizes the error between the original input data and the reconstructed data

that restored from data representations. Hence, it forces the embedded data rep-

resentations to contain useful information and exhibit capability on reconstructing

original data samples. Moreover, our method contains a soft discrimination con-

straint to learn representations with discrimination for classification tasks. The

soft discrimination constraint minimizes the multiplication of the similarity be-

tween two samples and the difference between the labels of these samples. Since

the labels are known, the constraint forces the similarity between two samples to

be low if they are in different classes, i.e., the labels are different.
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Affinity matrix learning In affinity matrix learning, the affinity matrix, SSS, is

a variable without any assumption of prior knowledge in LELMAE-AN, and the

projection matrix, βββ, is fixed as a constant.

The objective function JA(SSS) of affinity matrix learning is defined as:

JA(SSS) =
α1

2

n∑
i,j=1

‖xxxi − xxxj‖22sij

+
α2

2

n∑
i,j=1

‖βββhhhi − βββhhhj‖22sij

+
α3

2

n∑
i,j=1

‖yyyi − yyyj‖22sij + γs2ij

s.t.

n∑
j=1

sij = 1, 0 ≤ sij ≤ 1

(5.3)

The first term in (5.3) aims to assign a low similarity sij for the pairwise data points

xxxi and xxxj with the large Euclidean distance in the original data space. Similarly,

by fixing the projection matrix βββ, the second term assigns a low similarity sij for

xxxi and xxxj with the large Euclidean distance in the embedded space. Therefore,

the affinity matrix offers high similarities for the data samples that are close to

each other and low similarities for the data samples that are far away in both

original data space and representation space. The similarities will reduce with the

Euclidean distance between two samples increasing. The third term assigns a high

similarity sij for xxxi and xxxj in the same class and a small similarity in different

classes. The last term in (5.3) prevents the trivial solution of SSS. The constraints

force the sum of each row in SSS equals to 1 and the values of sij ∀i, j = 1, ..., n

larger than 0, which gives probability property to similarities.

Representation learning The data representations are learned by ELM-AE

based algorithm. The affinity matrix is used to constrain ELM-AE to preserve

geometry information of the original during the representation learning. Hence, in

LELMAE-AN, the objective function of the representation learning part JP (βββ) is
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defined as:

JP (βββ) =
1

2

n∑
i=1

‖βββhhhi − xxxi‖22 +
C

2
‖βββ‖2F

+
α2

2

n∑
i,j=1

‖βββhhhi − βββhhhj‖22sij
(5.4)

In (5.4), the first term of JP (βββ) aims to find a output matrix βββ, which connects the

hidden layer and the output layer, to minimize the error between the original input

data xxxi and the reconstructed data x̂xxi = βββhhhi. The second term is a regularization

term to prevent over-fitting. The third term minimizes the Euclidean distances

between data samples in the embedded representation space. The paired data

xxxi and xxxj with a higher similarity value sij should be closer, i.e., with smaller

Euclidean distances, after embedded to representations. In the affinity matrix

learning, SSS is determined under the assumption that two data points with smaller

distance should have a higher similarity. Therefore, the local geometry of input

data can be preserved in data representations, i.e., the data samples are close in

the original space should be close also in the representation space.

The transpose of the output matrix βββ is then used to calculate the data repre-

sentation xxxproji for further classification task, and the mathematical formulation

is:

xxxproji = βββ>xxxi (5.5)

5.2.2 Optimization

The objective function J(SSS,βββ) in (5.2) is minimized by using the alternating opti-

mizing technique. The technique minimizes the objective function with respect to

one variable while fixing the others.

Update affinity matrix SSS The affinity matrix SSS in (5.2) is updated with the

fixed βββ. Therefore, in this step, minimizing J(SSS,βββ) is equal to minimize JA(SSS) in
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(5.3). Firstly, we determine some constants for simplicity:

dxij = ‖xxxi − xxxj‖22
dpij = ‖βββhhhi − βββhhhj‖22
dyij = ‖yyyi − yyyj‖22
dij = α1d

x
ij + α2d

p
ij + α3d

y
ij

(5.6)

Hence, the mathematical formulation of minimizing JA(SSS) in (5.3) can be written

as:

min
SSS

n∑
i,j=1

(
dijsij + γs2ij

)
s.t.

n∑
j=1

sij = 1, 0 ≤ sij ≤ 1

(5.7)

Since the row vectors {sssi}ni=1 of the affinity matrix SSS are not correlated to each

other, they can be determined separately. Hence, (5.7) can be written as:

min
sssi

n∑
j=1

(
dijsij + γs2ij

)
= min

sssi

n∑
j=1

[
γ
(
sij +

1

2γ
dij

)2
−
d2ij
4γ

]
= min

sssi

n∑
j=1

(
sij +

1

2γ
dij

)2
s.t. sssi111 = 1, sssi ≥ 0

(5.8)

where 111 is a column vector with all elements equal to 1. For i-th row of the affinity

matrix, (5.8) can be vectorized as:

min
sssi111=1,sssi≥0

‖sssi +
1

2γ
dddi‖22 (5.9)

where sssi = [si1, si2, ..., sin] is the row vector of SSS and dddi = [di1, di2, ..., din]. Further-

more, it is easier to calculate γi for each row independently. The overall γ can be

determined by the average value of γ1, γ2, ..., γn. Hence, The Lagrangian function

of (5.9) is:

L(sssi, η,λλλ) =
1

2
‖sssi +

1

2γi
dddi‖22 − η(sssi111− 1)− λλλsss>i (5.10)



Chapter 5. LELMAE-AN 97

where η and λλλ are the Largrangian multipliers. By applying the Karush–Kuhn–Tucker

condition, the optimal solution of sssi is:

s∗ij = − dij
2γi

+ η (5.11)

In this work, to reduce the computational complexity, we learns the affinity matrix

based on the k-nearest neighbors of each data point, i.e., sssi has k nonzero elements.

Based on the constraint
∑n

j=1 sij = 1 in (5.7), we get

k∑
j=1

(
− dij

2γi
+ η
)

= 1 (5.12)

Hence, the analytical solution of η is

η =
1

k
+

1

2kγi

k∑
j=1

dij (5.13)

Additionally, assuming the distances di1, di2, ..., diN are sorted from small to large,

and we get  sssij > 0, if j ≤ k

sssij = 0, if j ≥ k + 1
(5.14)

Therefore, according to (5.11), we get−
dik
2γi

+ η > 0

−di,k+1

2γi
+ η ≤ 0

(5.15)

From (5.13) and (5.15), the lower bond and upper bound of γi exists as following:

k

2
dik −

1

2

k∑
j=1

dij < γi ≤
k

2
di,k+1 −

1

2

k∑
j=1

dij (5.16)

Hence, one possible solution for γi to obtain sssi with exact k nonzero values can be

γi =
k

2
di,k+1 −

1

2

k∑
j=1

dij (5.17)
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The optimal solution of sssi can be obtained by substituting (5.13) and (5.17) in

(5.11):

sss∗i =
di,k+1 − dddi

kdi,k+1 −
∑k

j=1 dij
(5.18)

Update output matrix βββ The output matrix βββ in (5.2) is updated with the

adjusted and fixed SSS. In this step, minimizing J(SSS,βββ) is equal to minimize JP (βββ)

in (5.4). Therefore, (5.4) can be vectorized as the following:

JP (βββ) =
1

2
‖βββHHH −XXX‖2F +

C

2
‖βββ‖2F

+
α2

2
Tr(βββHHHLLLHHH>βββ>)

(5.19)

where LLL = DDD−SSS is the graph Laplacian. DDD is a diagonal matrix with its diagonal

elements DDDii =
∑

j sij.

As (5.19) is convex, it can be minimized by solving the equation ∂JP
∂βββ

= 0. We

consider two situations for the optimization problem:

i The number of samples n is larger than the number of hidden neurons l;

ii The number of samples n is not larger than the number of hidden neurons l;

In the case of n > l, βββ can be minimized by solving ∂JP
∂βββ

= 0:

∂JP
∂βββ

= (βββHHH −XXX)HHH> + Cβββ + α2βββHHHLLLHHH
>

= βββ(CIII l +HHHHHH> + α2HHHLLLHHH
>)−XXXHHH>

(5.20)

Hence, the optimal solution of βββ is

βββ∗ = XXXHHH>(CIII l +HHHHHH> + α2HHHLLLHHH
>)−1 (5.21)

Furthermore, in the case of n ≤ l, we introduce an additional variable aaa ∈ Rd×N ,

which is smaller than βββ ∈ Rd×l, to optimize (5.19) efficiently. Specifically, we let

βββ = aaaHHH>, and solve aaa with a smaller dimensionality instead of solving βββ. Therefore,



Chapter 5. LELMAE-AN 99

(5.19) can be written as:

JP (aaa) =
1

2
‖aaaHHH>HHH −XXX‖2F +

C

2
‖aaaHHH>‖2F

+
α2

2
Tr(aaaHHH>HHHLLLHHH>HHHaaa>)

(5.22)

Next, βββ can be minimized by solving ∂JP
∂aaa

= 0:

∂JP
∂aaa

=
[
aaaHHH>HHH −XXX + Caaa+ α2aaaHHH

>HHHLLL
]
HHH>HHH

= aaaHHH>HHH −XXX + Caaa+ α2aaaHHH
>HHHLLL

= aaa(CIIIN +HHH>HHH + α2HHH
>HHHLLL)−XXX

(5.23)

Therefore, the optimal solution of aaa is

aaa∗ = XXX(CIIIN +HHH>HHH + α2HHH
>HHHLLL)−1 (5.24)

and

βββ∗ = XXX(CIIIN +HHH>HHH + α2HHH
>HHHLLL)−1HHH> (5.25)

In summary, the optimal solution of βββ is

βββ∗ =

XXXHHH>(CIII l +HHHHHH> + α2HHHLLLHHH
>)−1, if n > l

XXX(CIIIN +HHH>HHH + α2HHH
>HHHLLL)−1HHH>, if n ≤ l

(5.26)

Complete training process The complete LELMAE-AN algorithm is de-

scribed in Algorithm 4. Based on (5.18), we initialize each row of the affinity

matrix sssi as following:

sss∗i =
di,k+1 − dddxi

kdi,k+1 −
∑k

j=1 dij
(5.27)

where dddxi = [dxi1, d
x
i2, ..., d

x
in] contains the Euclidean distances between the data

point xxxi and the other data points in the original data space. After that, the

output matrix βββ and the affinity matrix are updated iteratively until they are

converged. It usually takes 2 to 5 iterations before the convergence. The learned

output matrix βββ is then used to obtain data representations by XXXproj = βββ>XXX, and

the representations XXXproj can be used for further classification tasks. In this study,

we use the linear regression to map the representations XXXproj to the predicted label
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Algorithm 4 The LELMAE-AN algorithm.

Inputs: The training data {X,Y} = {xxxi, yyyi}ni=1, the number of hidden neurons
l, the number of nearest neighbors k, the trade-off parameters C, α1, α2 and
α3.
Outputs: The affinity matrix SSS and the output matrix βββ.

1: for i=1:n do
2: Initialize the i-th row of SSS by using (5.27), where dddxi is a vector with its

j-th element dxij = ‖xxxi − xxxj‖22.
3: end for
4: Compute LLL = DDD −SSS, where DDDii =

∑
j sij.

5: Randomly initiate the input weights AAA and compute hhhi = 1
1+exp(−AAAxxxi) .

6: while not converge do
7: Update βββ by using (5.26).
8: for i=1:n do
9: Update the i-th row of SSS by using (5.18), where dddi is a vector with its

j-th element dij = α1‖xxxi − xxxj‖22 + α2‖βββhhhi − βββhhhj‖22 + α3‖yyyi − yyyj‖22.
10: end for
11: end while
12: return SSS, βββ

ỸYY . The mathematical formulation of the linear regression is:

min
βββT
‖βββTXXXproj − YYY ‖2F +

CT
2
‖βββT‖2F (5.28)

where βββT ∈ Rd×m is the output weights between the hidden layer and output layer,

and CT is the hyper-parameter. YYY = [yyy1, yyy2, ..., yyyn] ∈ Rm×n contains one-hot labels

of the input data.
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5.3 Experiments

The proposed representation learning algorithm, LELMAE-AN, is compared with

the related algorithms on several benchmark datasets. It also applied on a bearing

fault dataset to validate its effectiveness on the machine fault diagnosis tasks.

5.3.1 Datasets Descriptions

The real-world benchmark datasets used to test the proposed algorithm include

four UCI datasets, two objective recognition image datasets, and a machine fault

diagnosis dataset. In details, the four UCI datasets [128], i.e., IRIS, WINE, LIVER,

SATIMAGE, are low-dimensional datasets. The two objective recognition image

datasets are: 1) The Columbia University Image Library dataset of 20 classes

(COIL20) [129] contains 20 different objects with 72 different poses of each object;

2) The USPST dataset, which is a subset of the handwriting recognition dataset

USPS [130], contains ten classes of gray-scale handwritten digit images. Further-

more, a bearing vibration dataset, i.e., Case Western Reserve University (CWRU)

bearing dataset, is used to validate the effectiveness of LELMAE-AN on machine

fault diagnosis tasks. The details of the datasets are summarized in Table 4.1.

5.3.2 Experimental settings

The classification accuracy (ACC) is used as the evaluation metric in this study of

the proposed method and the other related methods. ACC measures the percentage

of the correctly classified data points among all of the data points, and it is defined

as:

ACC =

∑n
i δ(yyyi, ŷyyi)

n
(5.29)

where yyyi and ŷyyi are the ground truth and predicted label of xxxi. The function

δ(yyyi, ŷyyi) is defined as:

δ(yyyi, ŷyyi) =

1, if yyyi = ŷyy

0, otherwise
(5.30)

In UCI and image datasets, we compared the proposed method with the following

relative methods:



102 5.3. Experiments

1) AE and SAE [54].

2) ELM-AE and ML-ELM [13].

3) GELM-AE and ML-GELM [74].

4) GDELM-AE and SGD-ELM [127].

5) Deep belief network (DBN) [9].

To evaluate the effectiveness of LELMAE-AN on the machine fault diagnosis tasks,

this study tested the proposed method on the CWRU bearing dataset and com-

pared the performance with the state-of-the-art methods in this area, and the

methods are listed as follows:

1) Discrete wavelet transform (DWT) + SVM [117];

2) Ensemble empirical mode decomposition (EEMD) + SVM [118];

3) SAE [119];

4) SDA [21];

5) SFAE-LG [132];

For fair comparisons, all parameter settings were standardized in this study. The

training and test data were divided by using 2-fold cross-validation for UCI and

image datasets and 5-fold cross-validation, where 20% of the dataset is used for

training and the other 80% for the test, for CWRU bearing dataset. Furthermore,

all of the hyper-parameters were selected by using 4-fold cross-validation. The

ranges of the parameters are listed in Table 5.1. Specifically, for all methods, the

number of hidden neurons is selected from 100 to 5000 with an incremental of 100.

The number of neighbors used to construct and learn the affinity matrix is selected

from 1 to 15. The corrupt rate and sparsity of SAE and SDA are selected from 0.05

to 0.8 with an interval of 0.05. Moreover, all of the other hyper-parameters are

selected from the exponential sequence [1e− 10, 1e− 9, ..., 1e9, 1e10]. All methods

were tested repetitively for 50 times to reduce the influences of the randomness.
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Table 5.1: Hyper-parameters selection range for cross-validation.

Algorithms Hyper-parameters Range

# of Hidden neurons 100 - 3000
# of Neighbors 1 - 20

ELM-AE
and

ML-ELM
C 1e-10 - 1e10

AE, SAE
and SDA

Learning rate 0.001
Corrupt rate 0.05 - 0.8

Sparsity 0.05 - 0.8
GELM-AE,

GDELM-AE,
ML-GELM

and SGD-ELM

C 1e-10 - 1e10

λ 1e-10 - 1e10

SFAE-LG

αAE 0 - 1e10
αG 0 - 1e10
αL 0 - 1e10
CX 1e-10 - 1e10
CT 1e-10 - 1e10

SVM
C 1e-10 - 1e10
γ 1e-10 - 1e10

LELMAE-AN

C 1e-10 - 1e10
α1 1e-10 - 1e10
α2 1e-10 - 1e10
α3 1e-10 - 1e10

5.3.3 The convergence and effect of the affinity matrix

Convergence Firstly, we investigated the convergence of the proposed method

in all of the benchmark datasets. Figure 5.1 shows how the value of ‖SSS‖22 changing

with iterations proceeding. It is noticed that the proposed method is converged

after about 4 to 8 iterations for the different dataset. Hence, the proposed method

converges fast and will not increase much training complexity compared to con-

ventional affinity matrix constructing methods.

Comparison between the learned and manually constructed affinity ma-

trix In conventional affinity matrix constructing methods, e.g., locality preserv-

ing projection (LPP) [49], Laplacian eigenmaps (LE) [26] and GELM-AE [74], the

similarities are usually determined by a k-nearest neighbor graph with binary or
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Figure 5.1: The value changes in ‖SSS‖22 with iterations.

Gaussian edge weights. In this study, we used the CWRU dataset to demonstrate

the difference between the learned and manually constructed affinity matrix. Fig-

ure 5.2a shows the affinity matrix constructed by the heat function with k = 5,

and the mathematical formulation of the Gaussian function is:

sij = exp(−‖x
xxi − xxxj‖22

2σ2
) (5.31)

Figure 5.2b shows the affinity matrix learned by the proposed method. The red

rectangles in Figure 5.2 indicate the class of the samples, i.e., the samples in the

same rectangle belong to the same class. We noticed that the affinity matrix

learned by LELMAE-AN shows a higher discriminability than the constructed

affinity matrix. Specifically, the affinity matrix in Figure 5.2b is a block diagonal

matrix, and it shows higher similarities between the samples in the same class (in

red rectangles). Hence, the proposed method learned an affinity matrix that can

both discover geometry and discriminative information.
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(a) Constructed affinity matrix

(b) Learned affinity matrix

Figure 5.2: Comparison between the learned and manually constructed affinity
matrix.



106 5.3. Experiments

5.3.4 Experimental results on the UCI and image datasets

UCI datasets The four UCI datasets, i.e., IRIS, WINE, LIVER, SATIMAGE,

used in this study were randomly divided into two disjoint equal parts: one used as

the training data and another used as the test data. The hyper-parameters were

selected by a 4-fold cross-validation from the values listed in Table 5.1.

The columns 2 to 5 of Table 5.2 summarized experimental results on the UCI

datasets. The deep models, which include DBN, ML-ELM, SAE, SDA, ML-GELM,

and SGD-ELM, are used three hidden layers in the experiments. The other models,

including the proposed LELMAE-AN, are single hidden layer models. It can be

seen that the proposed method achieved the best results on all UCI datasets. The

average accuracy among four datasets is 91.95% compared to the second-highest

average accuracy 90.65% achieved by SGD-ELM. Moreover, the standard deviation

of the proposed method is lower than the relative methods, i.e., LELMAE-AN

achieved 0.4 standard deviation among UCI datasets compared to the second-

highest standard deviation 0.45 achieved by ELM-AE.

(a) COIL20

(b) USPST

Figure 5.3: Sample images from the image datasets.
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5.3.5 Experimental results on COIL20 dataset

We then tested the proposed algorithm on the COIL20 dataset. The COIL20 is

an objective classification dataset, which contains 1440 images from 20 different

objects. Each object of COIL20 has 72 images taken from different views. Fig-

ure 5.3a shows samples of the COIL20 dataset. For the proposed algorithm, we

set the number of hidden neurons l = 1500 and the number of neighbors k = 5.

The other hyper-parameters were chosen by cross-validation with α1 = 1, α2 = 1,

α3 = 1, and C = 1.

The classification accuracies on COIL20 dataset are listed in column 6 of Table 5.2.

We noticed that our method achieved the best performance among the single hid-

den layer methods in respect of both average accuracy and standard deviation.

While comparing to the deep structure methods, the proposed method achieved

a comparable accuracy of 99.96% compared to the best accuracy 99.9% by ML-

GELM.

Figure 5.4: Vibration signal collected in 10 seconds.



Chapter 5. LELMAE-AN 109

5.3.6 Experimental results on USPST dataset

The USPST is a handwriting recognition dataset, which contains 2007 handwriting

digit images. Each of the samples is a 16× 16 grey-scale image from ten different

handwriting digits, i.e., 0 to 9. An example of the dataset is shown in Figure 5.3b.

For the proposed algorithm, the number of hidden neurons is chosen as 2000 and

the other hyper-parameters are α1 = 0.01, α2 = 0.1, α3 = 0.1, k = 5 and C = 1.

Figure 5.5: CWRU dataset motor diagnosis results using various numbers of
hidden neurons.

The last column of Table 5.2 shows the performances on USPST dataset. It can be

observed that the proposed LELMAE-AN outperformed the other methods with

the accuracy of 94.73%. Also, it achieved a better or comparable standard deviation

of 0.37 on USPST dataset.

5.3.7 Experimental results on CWRU dataset

To evaluate the effectiveness of the proposed method on machine fault diagnosis

tasks, we evaluated it on the CWRU dataset. The samples in the CWRU dataset

are high-frequency time-series signals, as shown in Figure 5.4. For a high-frequency
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signal, both time-domain and frequency-domain information are essential. Hence,

we transformed the time-series signal into the time-frequency domain and learned

data representations from the time-frequency domain signals.

5.3.7.1 Sensitivity analysis of hyper-parameters

Firstly, we analyze the sensitivity of hyper-parameters on CWRU bearing dataset.

Number of hidden neurons l We investigated the influence of the number of

hidden neurons. Figure 5.5 shows the influence of the number of hidden neurons

on the diagnostic accuracies, and we observed that the accuracy increases with the

number of hidden neurons rises. It can also be noticed that accuracies reached sta-

bility while using 400 or more hidden neurons. In other word, the proposed method

is not sensitive to the number of hidden neurons with l ≥ 400. Hence, we used

the number of hidden neurons l = 400 in our study to reduce the computational

complexity.

Number of neighbors k From (5.17), it can be noticed that the value of

parameter γ is determined based on the number of neighbors k. Therefore, we

further investigated the effect of different values of k on the performance of the

proposed method. The diagnostic results using different number of neighbors are

plotted in Figure 5.6a, and it shows that the proposed method is not sensitive

to the number of neighbors k. In this work, we used k = 5 for the proposed

LELMAE-AN.

Trade-off parameters C, α1, α2 and α3 After fixed the number of hidden neu-

rons and neighbors, we investigated the effect of trade-off parameters. Figure 5.6b

shows the diagnostic accuracies with various values of the trade-off parameter C.

It can be observed that while the value of C is in the range from 1e − 10 to 1e2,

the diagnostic accuracies are stable, and the accuracy decreases rapidly with the

value of C larger than 1e3. It is worth noting that the accuracy achieves the peak

value from C = 1e − 3 to C = 1. Moreover, the trade-off parameters α1 and

α2 relate to two geometric information discovering terms. Hence, we investigated
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(a) Numbers of neighbors

(b) C

Figure 5.6: CWRU dataset motor diagnosis results using various values of
hyper-parameters k and C.



112 5.3. Experiments

them together in Figure 5.7a. It can be noticed that the accuracy decreases rapidly

while the value of α2 is too large, and the proposed method achieves the highest

accuracy when α2 = 100. We also observed that the diagnostic accuracies are not

sensitive to α1 while α2 = 100 and α1 > 1e−5. Similarly, the effects of the trade-off

parameter α3 on the diagnostic accuracies are shown in Figure 5.7b. We noticed

that the overall accuracies are not sensitive to α3, but there is a 0.3% improvement

while α3 is larger than 1e4.

5.3.7.2 Soft and hard discrimination constraint

We then analyzed the effect of the proposed soft discrimination constraint on ma-

chine fault diagnosis tasks. Conventionally, the discriminative information is con-

tained in the affinity matrix by using a hard constraint, which is formulated as:

sij = 0, if yyyi 6= yyyj (5.32)

In the proposed method, the discriminative information is learned by using the soft

discrimination constraint, which is unified in the objective function of LELMAE-

AN. Hence, instead of constructing the discriminative information in the affinity

matrix independently, the proposed method adjusts the affinity matrix to comprise

the discriminative information by jointly minimizing the soft discrimination con-

straint and other cost functions. We compared the performances of using the soft

and hard discrimination constraint in Figure 5.8. It can be observed that using the

soft discrimination constraint performs better than using the hard discrimination

constraint in LELMAE-AN, especially while the number of training data is small.

5.3.7.3 Data number for training

Figure 5.9 shows the diagnostic performances on CWRU dataset with various sizes

of training data. It is natural to assume that a better performance can be achieved

with more training data. In Figure 5.9, we observed that the average accuracy

increased, and the standard deviation decreased while the number of training data

increases. This observation confirms the previous assumption. Furthermore, the

proposed method can achieve a 99.88% accuracy and a 0.14 standard deviation
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(a) α1 and α2

(b) α3

Figure 5.7: CWRU dataset motor diagnosis results using various values of
hyper-parameters α1, α2 and α3.
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Figure 5.8: CWRU dataset motor diagnosis results using the soft and hard
discrimination constraint in LELMAE-AN.

with 5% of total samples for training. Hence, LELMAE-AN can perform well on

machine fault diagnosis tasks with a small number of training data.

5.3.7.4 Comparison with state-of-the-art methods

Table 5.3: The comparison of classification accuracies on CWRU bearing
dataset.

Methods
# of training
samples (%)

# of
classes

ACC (%)

DWT+SVM [117] 75 10 88.9
EEMD+SVM [118] 40 11 97.91

SAE [119] 40 4 94.4
SDA [21] 40 4 95.58
SFAE-LG 20 10 97.29

LDELM-AE 20 10 99.74
LELMAE-AN 5 10 99.88

Table 5.3 reports the comparison of the performances between the proposed method

and published state-of-the-art methods on CWRU dataset. In [117], the features

were extracted by using the discrete wavelet transform, and they were applied to
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Figure 5.9: CWRU dataset motor diagnosis results using various percentages
of samples as the training data.

SVM to classify ten machine health conditions. An accuracy of 88.9 % was achieved

by using 75% of total samples as the training data. The same classifier, i.e., SVM,

was used in [118], but the features were extracted by using the empirical mode

decomposition. By using 40% samples in the training process, [118] achieved the

accuracy of 97.91%. Other than separately extracted features and classified the

machine health conditions, end-to-end methods that learned features and classi-

fied health conditions together were applied in machine fault diagnosis tasks. For

example, SAE in [119] and SDA in [21] were used to classify four health condi-

tions, and the accuracies 94.4% and 95.58% were achieved, separately. Moreover,

in Chapter 3 of this thesis, a method named SFAE-LG, is proposed to preserve

both local and global geometries of the input data in the learned representations.

It achieved the accuracy of 97.29% by using 20% of samples in training. Also,

Chapter 4 introduces another method named LDELM-AE, which preserves the lo-

cal geometry of the input data and exploits the local discrimination information in

data representations. It achieved the accuracy of 99.74% with 20% of samples are

used for training. Compared with the above state-of-the-art methods, the proposed

LELMAE-AN achieved a higher accuracy of 99.88% by using lesser training data,

i.e., using only 5% of total samples as the training data.
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5.4 Summary

This chapter address the second objective of the thesis, to exploit and preserve

geometry information of input data while learning data representations. The rep-

resentation learning algorithms FAE-LG and LDELM-AE introduced in Chapter 3

and Chapter 4, respectively, exploit and preserve geometry information of input

data by using a predefined and fixed affinity matrix. In this chapter, an adaptable

affinity matrix without assumed prior knowledge is used to exploit geometry in-

formation in data representations. Section 5.1 introduces the necessity of using an

adaptable affinity matrix in the representation learning algorithm, and Section 5.2

describes the details of the proposed LELMAE-AN. The proposed algorithm ex-

ploits the geometry information from both data and representation space by using

an adaptable affinity matrix. The affinity matrix also obtains the discriminative in-

formation by a soft discrimination constraint. The input data is efficiently mapped

to the non-linear representation space by using ELM-AE based method that is

constrained by the learned affinity matrix. Section 5.3 experimentally evaluates

the proposed algorithm on various standard benchmark datasets, as well as on the

dataset of machine fault diagnosis task. It performs better than the other state-

of-the-art methods on these datasets. The experimental results also prove that the

proposed method can achieve high diagnostic accuracy with less training samples,

i.e., 5% of all the dataset. Hence, LELMAE-AN is an effective algorithm to solve

machine fault diagnosis tasks.



Chapter 6

Conclusions and Future Works

Chapter 6 summarizes the contributions based on Chapter 3, Chapter 4, and Chap-

ter 5, and it also draws conclusions regarding to how this thesis addresses the two

research objectives that introduced in Chapter 1. This chapter then suggests future

research directions.

117
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6.1 Conclusions

This thesis has introduced three representation learning algorithms to address two

research objective, which are

• To efficiently learn data representations that can improve the performance of

supervised classification with an application for bearing fault diagnosis.

• To exploit and preserve geometry information of input data while learning

data representations.

The details of the contributions and discoveries of this thesis are state as the

following.

(1) The local geometry can be preserved from input data space to representation

space by using the graph-based cost function.

Graph-based method treats each data sample as the vertex of the graph and con-

structs an affinity matrix consists of the weight of edges to reveal the geometry

information between each pair of data samples. In my first work, the proposed

FAE-LG exploits the local geometry by minimizing the Euclidean distance be-

tween each data point and its nearest neighbor in the representation space. This

is equivalent to use the graph-based method to preserve the local geometry from

input data to data representations, which only the weight between each data sam-

ple and the nearest neighbor of it equals 1 in the affinity matrix. In the second

work, the proposed LDELM-AE minimizes the sum of Euclidean distances between

each data point and kw-nearest neighbors of it within the same class. The affin-

ity matrix used in this algorithm is defined by applying the heat function to the

pairwise data samples. In my last work, the proposed LELMAE-AN exploits the

local geometry by using an adaptable affinity matrix. It simultaneously learns data

representations and the affinity matrix by minimizing a unified objective function.

(2) The global geometry of input data can be preserved in data representations by

minimizing the difference between the embedded representations and the random

projected input data.

In the first work, it theoretically proved that the Euclidean distances among all

input data are preserved in representation space without distorting by more than
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a factor of 1± ε for any 0 < ε < 0.5. This is achieved by minimizing the difference

between the embedded data representations and the random projected input data.

Also, it experimentally showed the non-linear activation can approximate such

preservation.

(3) Separability maximizing in the representation space is essential for classifica-

tion tasks, and it can be achieved by utilizing label information in representation

learning.

For classification tasks, such as the bearing fault diagnosis, it is necessary to learn

discriminative data representations. Therefore, this thesis investigated to maximize

the separability of data representations. In FAE-LG, the discrimination of data

representations is achieved by minimizing the error between the predicted labels

and the ground-truth while minimizing the reconstruction cost function, which is

used to learn data representations. LDELM-AE exploits the local discrimination

by maximizing the sum of Euclidean distances between the margin data points

and their kb-nearest neighbors in the different classes. Additionally, LELMAE-

AN introduces a soft discrimination constraint, which is jointly minimized with

the objective function, to obtain the discriminative affinity matrix. The affinity

matrix is then used to obtain data representations with separability maximized.

The experimental results on several benchmark datasets showed that maximizing

separability is essential for classification tasks.

(4) The objective function that unified the discrimination cost function benefit to

raise the training efficiency of the deep learning-based representation learning al-

gorithms.

In FAE-LG, the discrimination cost function is minimized together with the other

cost functions to observe the discriminative data representations with local and

global geometry preserved. It is also discovered that by using the discrimination

cost function, the proposed FAE-LG does not require an additional fine-tuning

step to obtain discriminative representations. Therefore, the proposed algorithm

reduces training time, compared with traditional deep learning-based algorithms,

e.g., SAE, which uses a two-step training process. Moreover, FAE-LG requires

fewer hidden neurons in each layer and thus has less training and test time com-

pared with SAEs. Hence, in deep learning-based representation learning algo-

rithms, it is beneficial to utilize the label information to reduce the computational
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complexity while learning representations for supervised classification tasks.

(5) ELM-based algorithms benefit the representation learning task in the aspect of

increasing training efficiency.

In order to increase the training efficiency of representation learning algorithms,

the ELM-based algorithms were investigated in this thesis. The algorithms intro-

duced in the second and third works, i.e., LDELM-AE and LELMAE-AN, utilize

the random neurons proposed by ELM. Since the hidden neurons of ELM and

ELM-based representation learning algorithms, e.g., ELM-AE, LDELM-AE, and

LELMAE-AN, are randomly generated and fixed, the training process only solves

the projection matrix. Therefore, the training time of ELM-based algorithms is

much shorter than the deep learning-based representation learning algorithms. The

experiments on multiple benchmark datasets demonstrated that LDELM-AE and

LELMAE-AN achieve comparable classification accuracies with a better training

efficiency compared to deep learning-based algorithms. Hence, the second and

third works further address the first research objective, i.e., to efficiently learn

data representations that can improve the performance of machine fault diagnosis

tasks.

6.2 Future Works

Although this thesis investigated various aspects to preserve local and geometry

information in data representations and improve the computational efficiency of

representation learning algorithms, there are still many research gaps waiting to

be filled:

i. This thesis investigated to exploit and preserve geometry information in data

representations to improve the performance of supervised classification tasks.

It is interesting to learn data representations with local and global geometry

exploited for other machine learning tasks, e.g., semi-supervised classification,

clustering, etc.

ii. Other than geometry information, this thesis also investigated to use ELM-

based algorithms to learn non-linear structure-preserving data representa-

tions for supervised classification efficiently. Hence, it is also worthwhile to
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investigate the use of ELM-based representation learning for other machine

learning tasks.

iii. Although ELM-based algorithms benefit the representation learning tasks,

it requires enough number of hidden neurons to achieve satisfying perfor-

mance. Therefore, it is natural to investigate whether using feature selection

techniques can improve the performance and reduce the computational com-

plexity of ELM-based representation learning algorithms.

iv. This thesis investigated to preserve the global geometry by keeping the consis-

tency of the pair-wise Euclidean distances of all data points in representation

space from the original data space. However, the Euclidean distance may not

be suitable for other applications. Hence, it is interesting to investigate more

generalized methods to preserve the global geometry.

v. The proposed representation learning algorithms require much time to deter-

mine hyper-parameters. Hence, it is worthwhile to investigate methods that

can select hyper-parameters efficiently.
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