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1 INTRODUCTION

Singapore is a data center (DC) hub in Southeast Asia [1]. However, Singapore’s year-round high
temperatures and humidity levels introduce signi�cant challenges for the local DC operators in
improving the energy e�ciency of their infrastructures. As Singapore’s DCs spendmore energy in
cooling, their average power usage e�ectiveness (PUE), which is 2.07 [15], is higher than the global
average of 1.7 [9]. In the United States, the DC sector accounted for 1.8% of the country’s total elec-
tricity consumption in 2014 [16]. In Singapore, this percentage is up to 7% [1]. Thus, technologies
that can improve DC energy e�ciency in the tropics will further enhance Singapore’s attractive-
ness as a regional data center hub. They are also important to Singapore’s energy sustainability
and commitment to Paris Agreement.
Air-side free cooling that utilizes outside cold air to cool the information technology (IT) equip-

ment has been increasingly used to improve the energy e�ciency of DCs [7]. However, air-side
free cooling in the tropics has been long thought infeasible from the intuition that the high tem-
perature and relative humidity (RH) of the air supplied to the servers will undermine their per-
formance and reliability. On the other hand, the American Society of Heating, Refrigeration and
Air-Conditioning Engineers (ASHRAE) has been working for years on expanding its suggested
allowable temperature and RH ranges for IT equipment. For instance, the servers compliant with
ASHRAE’s Class A3 can operate continuously and reliably when the temperature and RH of the
supply air are up to 40°C and 90%. This sheds light on the possibility of air-side free-cooled DCs
in Singapore, since the record temperature in Singapore is 37°C only and the ambient RH is in
general lower than 90%.
To investigate the feasibility of air-side free cooling in Singapore, together with multiple part-

ners in DC industry and research, we designed, constructed, and experimented with an air-side
free-cooledDC testbed consisting of three server rooms located in two localDC operators’ premises.
The testbed hosts 12 server racks with 60 kW total power rating. This technical report holistically
introduces this project, presents the measurement results, discusses the experiences and learned
lessons obtained from the project. Speci�cally, the main results of this project are summarized as
follows.

• We perform 18-month microbenchmark tests to investigate the performance of the servers
under di�erent partially controlled environmental conditions. Themeasurement results show
that the servers can operate without computing performance degradation when the supply
air temperature is up to 37°C.
• The total energy consumed by cooling and IT equipment is decreased by about 45% when
the supply air temperature setpoint is increased from 25°C to 33°C. Moreover, the adaptive
ventilation using fans only to cool the IT equipment can reduce the PUE down to 1.05.
• We build and evaluate various analytical and neural network models based on meta informa-
tion and real sensor data collected from the testbed to characterize the dynamic state of the
temperature, RH, and power consumption of the IT equipment and the testbed’s supporting
infrastructure for cooling, ventilation, and heating.
• We develop a deep reinforcement learning (DRL)-based advanced control algorithm that can
maintain the supply air temperature and RH below respective speci�ed thresholds for the
sake of IT hardware reliability. Extensive simulations are performed to evaluate the perfor-
mance of the control algorithm.
• We detail our investigation on the reasons of the server failures occurred during the 18
months’ tests. We recommend several mitigation approaches to the designs and operations
of similar air-side free-cooled DCs in Singapore’s tropical environments.
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The rest of this technical report is organized as follows. Section 2 presents the design of the
testbed and the benchmark tests on the IT equipment. Section 3 presents the sensor data analytics.
Section 4 presents the mathematical modeling on the power consumption and thermal aspects
of the testbed. Section 5 presents various operating procedures for air-side free-cooled DCs and
the related cost saving quanti�cation based on the successful IT equipment tests on our testbed.
Section 6 presents the IT equipment failures we encountered on the testbed during the project and
proposes mitigation approaches. Section 7 discusses several issues and provides the conclusion
remarks. Section 8 discusses future research.
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2 TESTBED DESIGN AND BENCHMARK TESTS

2.1 Design and Construction of Testbed

2.1.1 Design of Testbed. We design the testbed with three objectives.

(1) On the testbed, we should be able tomaintain the condition of the air supplied to the IT equip-
ment at a certain setpoint for a period of time (e.g., several days). The condition includes
three aspects that are often considered important for IT equipment performance and relia-
bility, i.e., temperature, RH, and air volume �ow rate. The setpoint can be adjusted within a
wide range, such that we can evaluate the performance of the IT equipment under various
conditions. In other words, we can run the testbed in a controlled mode. However, we later
found that RH control in a wide range is di�cult, which will be discussed shortly.

(2) We can run the testbed in an uncontrolled mode, in that we just use the outside air without
adjusting its condition to take away the heat generated by the IT equipment. We aim to run
the testbed in this uncontrolledmode for an extended period of time to understand the direct
impact of the outside air on the IT equipment and the achievable energy saving.

(3) The testbed should include a standard server room with well controlled conditions to gen-
erate the baseline results.

To meet the above three objectives, we design a testbed consisting of three server rooms, de-
noted by Room-A, Room-B, and Room-C. Room-A and Room-B are two side-by-side purposely
built server rooms to support the aforementioned controlled and uncontrolled experiments. The
side-by-side arrangement makes sure that they will inhale outside air with the same condition,
enabling comparative experiments. We planed to build these two server rooms in the premise of
a commercial colocation DC operator that is referred to as Operator-A. As such, we may leverage
the domain expertise of Operator-A in facility management, 24/7 monitoring, security assurance,
emergency response, and etc. Room-C is a standard server room operated by another commercial
colocation DC operator that is referred to as Operator-B.
The original testbed design objectives include RH control capability. However, from the discus-

sions with facility suppliers and our study, we found that for Room-A and Room-B, implementing
RH setpoints in a wide range in Singapore’s tropical condition is costly and technically challenging.
First, as Room-A and Room-Bwill continuously inhale outside air, from our industrial partner with
DC facility expertise, the commercially available dehumidi�er and humidi�er cannot sustain the
RH and air volume �ow rate setpoints speci�ed in the experiment plan (cf. Section 2.2). Note that

Fig. 1. Feasibility of temperature/RH setpoints during Jul and Aug 2018 in Singapore.
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Fig. 2. Design of Room-A/B. Room-B does not have heater. Arrows represent the air flows.

typical data centers often have enclosed environment, in that the air is circulated within the data
center building. As they inhale a limited amount of air from the outside, they have low dehumid-
i�cation demands. Second, we have also studied a possible energy-e�cient cooling-then-mixing

dehumidi�cation approach. Speci�cally, it uses a cooling coil to condense and remove the water
vapor contained in the air entering the server room and then mixes the dried cold air with a con-
trolled portion of the hot air generated by the IT equipment to maintain the temperature of the
air supplied to the IT equipment at the setpoint. However, for a total IT load of 20 kW in a server
room, our simulation studies show that the ability of this dehumidi�cation approach in maintain-
ing the temperature and RH setpoints highly depends on the temperature and RH of the outside
air. The gray scale in Fig. 1 shows the percentage of time in July and August 2018 in Singapore,
during which the corresponding temperature and RH setpoints on the x- and y-axis, respectively,
can be maintained by the cooling-then-mixing approach. We can see that it is di�cult to maintain
low temperature and RH setpoints simultaneously for long periods of time.
Given the challenges in controlling RH in a wide range, we focus on maintaining the temper-

ature and air volume �ow rate setpoints in the design of Room-A and Room-B. Our design is as
follows. Each of Room-A and Room-B is equipped with a cooling coil and multiple fans to move
the air through the room. Fig. 2 shows the design of Room-A. Figs. 2a and 2b show the 3D and top
views of Room-A. The room has two layers, where each layer is divided into four chambers. The
outside air is continuously inhaled into the mixing chamber on the top layer. A cooling coil and
an air heater are installed in the mixing chamber to process the outside air before supplying it to
the servers. Two fans (i.e., supply air fan and exhaust fan) are installed on the top layer to move
air. Moreover, there are three dampers (i.e., supply damper, exhaust damper, and mixing damper)
as shown in Fig. 2. By setting their openness, we can control the air �ow paths. After the supply
air fan, the air enters a chamber and then goes down to the cold aisle chamber on the bottom layer
through four vents. This design improves the evenness of the cold air volumes passing through
the vents. Four 42U server racks are installed on the bottom layer, sitting between the cold aisle
and hot aisle chambers. Our design well separates the cold air supplied to the servers and the
hot air generated by them. This enables the precise control of the condition of the air supplied
to the servers. The hot air from the servers goes to a chamber across the bottom and top layers
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and is then moved by the exhaust air fan into a bu�er chamber. Depending on the settings of the
three dampers, the hot air is exhausted and/or recirculated to the mixing chamber. By setting the
openness of the three dampers, we can control the percentage of the hot air generated by the IT
equipment that will be mixed with the cold, relatively humid outside air to form warm, relatively
dry air for the IT equipment. This design gives a certain level of RH control capability that can be
used to reduce the negative impact of airborne contaminants on the reliability of the IT equipment.
The details of this RH control will be presented in Section 5.2.

The design of Room-B is almost same as that of Room-A. The only di�erence between Room-B
and Room-A is that, Room-B does not have a heater. This reduces the equipment cost and does not
impede our experiments, because we can assign the controlled experiments with high temperature
setpoints to Room-A. After the designs of Room-A/B are generated, we contract a third-party
company to build a computational �uid dynamics (CFD) model based on our designs and perform
extensive simulations to check whether the thermal properties of the two server rooms meet our
requirements. Note that after the testbed is commissioned, the CFD model is improved by another
third-party company based on the data traces generated by the testbed to achieve a root mean
square error (RMSE) of about 1.2°C in predicting temperatures in the server rooms.

Fig. 3. Design of Room-C and cold air containment.

Room-C is a standard private vault in the premise of Operator-B. It follows the typical raised
�oor design and has two computer room air conditioning (CRAC) units that duty-cycle to provide
cooling. We purposely improve its energy e�ciency to make it an optimistic baseline by adding a
cold air containment design as illustrated in Fig. 3. The �gure also illustrates the layout of the four
IT racks and the air �ows.

2.1.2 Construction of Testbed. The construction of Room-A/B undertaken by a contractor took
about four months. Fig. 4(a) shows the two side-by-side storage rooms located within the premise
of Operator-A that were later retro�tted into Room-A and Room-B. Figs. 4(b) and (c) show the ex-
terior of Room-A and Room-B during and after the construction, respectively. As seen in Fig. 4(c),
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Fig. 4. Construction and configuration of Room-A, Room-B, and Room-C.

two supply air ducts were constructed such that there is su�cient space separation between the
air inhaled and exhausted by Room-A/B. Air �lters of Class MERV-6 were installed in the air ducts
to prevent PM10 and larger particles from entering the server rooms. The red pipelines shown
in Fig. 4(c) belong to a �re protection system. Note that, as Room-A and Room-B would experi-
ence high temperatures at their hot aisles, the testbed must has a �re protection system with 24/7
monitoring. Fig. 4(d) shows the outdoor condensers for the cooling coils installed in Room-A/B.
The distance from these condensers to Room-A/B is about 30 meters to reduce the heat recircu-
lation from the condensers to the two rooms. Fig. 4(e) and (f) show the power and Supervisory
Control and Data Acquisition (SCADA) panels for Room-A/B. Each branch in the power panel has
a smart meter for branch-level monitoring. All sensors and actuators deployed in Room-A/B are
SCADA slaves communicating with a SCADA master using Modbus TCP protocol. The SCADA
master runs on a workstation computer that is located within a conditioned room. Fig. 4(g)-(j)
show various sensors deployed in Room-A and Room-B. Note that understanding the air �ow
�eld is important for DC monitoring. However, air �ow �eld can only be measured using indirect
methods. We deployed air velocity sensors at the vents that supply air to the cold aisle. The air
velocity measurements in m/s can be converted to air volume �ow rate in m3/h based on the cross
section area of the vents. On the IT racks, we deployed di�erential pressure sensors to measure
the pressure drop across the racks. The pressure drop measurements help understand the spatial
distribution of the air volume �ows over the cross section of the racks. We also deployed sensors
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to monitor the concentration of S2O, H2S, and NO2, that are often considered the major corro-
sive gases threatening server hardware. A total of 85 sensors in various modalities were deployed
on the testbed. Fig. 4(k) shows an empty private vault provided by Operator-B to be retro�tted
as Room-C. Fig. 4(l) shows the four racks we deployed in Room-C with the constructed cold air
containment.
In each server room, we deployed four 42U IT racks. Thus, our testbed of three server rooms

hosts a total of 12 racks. The planed power rating for each rack is 5 kW. If all the racks are fully
populatedwith servers, the capital expenditure (Capex) for IT equipmentwill be twice of the Capex
for constructing all the supporting facilities shown in Fig. 4. We received a total of 33 on-loan IT
devices from fourmajor IT equipmentmanufacturers as their contributions to this research project.
We deployed the same set of 11 IT devices in each server room, as shown in Figs. 4(n) and 4(o).
As the racks are not fully populated, to increase cooling e�ciency, we applied blinds as shown in
Fig. 4(o) on the empty rack slots. Moreover, to increase the power consumption of the IT racks
for realism of the experiments, we deployed four in-rack thermo-�uid simulators in each of Room-
A and Room-B, and eight in Room-C, as shown in Fig. 4(n). The thermo-�uid simulator can be
con�gured manually to consume a certain power among multiple discrete levels up to 5 kW. With
the thermo-�uid simulators, we can reduce the Capex of the testbed, while maintain its realism
in terms of power consumption and heat generation. Thanks to Operator-A’s and Operator-B’s
provision of the spaces as their contributions to the project, the operating expenditure (Opex) of
the testbed is mainly the energy charge. The Opex of the testbed over about 1.5 years is about 10%
of the Capex for constructing the testbed.

2.1.3 Configuration of Testbed. We con�gured all servers and network switches/routers so that
we can easily control their operations for experiments. Moreover, as all the three server rooms
are located in the premises of Operator-A and Operator-B, it is desirable that we can access all IT
equipment and the supporting facilities remotely from our university campus. The remote access
should be con�gured prudentlywith cybersecurity always in themind. Although the IT equipment
on the testbed will not be used for production, we have a major concern regarding cyber-attacks
that take over the SCADA system to damage the costly supporting facilities and/or use the facilities
to create safety incidents (e.g., �res by the heater).
We installed the unmodi�ed CentOS v6.9 GNU/Linux on all the servers and con�gured the

switches to form an Intranet in a fat tree topology. We con�gured three routers on our testbed
to use three public IPv4 addresses. Once we made our routers publicly accessible, we observed
multiple rounds of port scanning from the Internet, which is often the �rst step of cyber-attacks.
We applied a whitelist of accessible ports and remote host IP addresses to restrict the access. The
SCADA master provides a password-protected web interface to access real-time or historical sen-
sor data and adjust the setpoints of actuators (heater, supply/exhaust fans, air dampers, and cool-
ing coils). The SCADA master was con�gured to use HTTPS for the web interface to ensure the
integrity and con�dentiality of the communications between the testbed and our campus.
We developed a set of BASH scripts to control and monitor servers’ running status. The details

are as follows.

(1) For CPU status control, we use cpulimit v0.2 to maintain the utilization of each physical
core of a CPU at a speci�ed level. Then, we use a customized LINPACK benchmark provided
by the CPU vendor to measure the CPU performance.

(2) For hard disk drive (HDD) status control, we use the cgroups to maintain the read/write
throughput of the HDDs con�gured to operate in the RAID0 mode. Then, we use fio to
generate HDD read/write requests.

(3) For memory status control, we use memtester to generate test tra�c and �nd memory faults.
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Fig. 5. The planed experiments.

(4) For server status monitoring, we use nine tools: cpupower, edas-utils, impitool, sar,
rsyslog, smartmontools, lm_sensor, bmc, and foo.

Note that many of server-level parameters (e.g., inlet temperature, server errors and server power)
are based on the Intelligent Platform Management Interface (IPMI). The collected data traces are
uploaded periodically to Google Cloud Storage. During the combined tests of all the scripts we
developed, we found that when we tried to maintain the CPU utilization at 100%, IMPI’s sam-
pling experienced signi�cant jitters, degrading the quality of the server status monitoring. Thus,
in our planed experiments (cf. Section 2.2), the highest CPU utilization that will be maintained
for extended period of time is 90%. We only conducted short-period experiments for 100% CPU
utilization.
On the SCADA master, our contractor used a script language to implement the following algo-

rithms. First, they implemented the proportional-integral-derivative (PID) control for the supply
and exhaust fans to maintain the air volume �ow rate setpoint based on the measurements of the
air velocity sensors shown in Fig. 4(i). The control error is within 5%. Second, they implemented the
bang-bang control for the coiling coil and heater to maintain the temperature of the air supplied
to the IT racks at a setpoint. The control error is about 1°C.
In the planned experiments (cf. Section 2.2), the operations of the servers and the supporting

facility need to be coordinated. Thus, we con�gured the NTP clients of the servers and the SCADA
master on our testbed to synchronize their clocks with the NTP servers in Singapore’s NTP pool.
The second-accurate clock synchronization of NTP over Internet su�ces for the needed coordina-
tion.

2.2 Design of Experiments on the Testbed

We planed to conduct two groups of experiments: controlled tests and uncontrolled tests. Fig. 5
shows the planed experiments. The time periods shown in Fig. 5 are net test times. From our
experience, there were also various overheads that consumed the project time, such as preparation
of the test scripts, repair of faulty devices, additional tests to verify results, facility maintenance,
and etc. We planed to complete all tests in Fig. 5 in a duration of 20 months.
A controlled test focuses on a key component of the server, i.e., CPU, hard disk drive (HDD),

andmemory. Speci�cally, during a unit test of a controlled test, the ambient condition (temperature
and air volume �ow rate) and the operating status of the tested component are maintained at a
certain level for one hour. A controlled test consists of hundreds of unit tests with all combinations
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Table 1. Experiment se�ings for controlled experiments.

Parameters Minimum Maximum Step Size

Inlet air temperature 25°C 37°C† 1°C

Air �ow rate* 2500m3/h 12500m3/h 2500m3/h

Servers’ CPU utilization(U)♯ 10% 90% 20%

Hard disk read/write speed 10 MB/sec 100 MB/sec 20 MB/sec

Memory block size 8 kB, 16 kB, 32 kB, 64 kB, 128 kB, 256 kB

*Applicable for Room-A and Room-B only.
♯U = 10% or U = 80%, Step size = 10%, 10% is reserved for OS and benchmark tools.
†The highest temperature record of our city is 36.7°C.

Fig. 6. Outside temperature and dew point in Jul, Aug, and Sep of 2018, in Singapore.

of the server room ambient condition and server component status each swiping the respective
range summarized in Table 1. Note that the maximum temperature setpoint of 37 °C is the record
maximum ambient temperature in Singapore. During the controlled node test, we simultaneously
vary the operating status of CPU, HDD, and memory. For the �rst four controlled tests in Room-C,
the temperature setpoint for the return hot air is set to be 20°C as suggested by Operator-B. The
CRAC unit controls the volume �ow rate of the cold air supplied to the four racks. In the last
controlled test in Room-C, we vary the temperature setpoint from 21°C to 35°C with step size of
1°C and the total power of eight thermo-�uid simulators within [10 kW,20 kW,30 kW,35 kW]. The
controlled tests allow us to understand the performance and thermal safety of the IT equipment
under various conditions.
There are two uncontrolled tests in which the air inhaled by Room-A and Room-B are not con-

ditioned by cooling coils and heater. Thus, the servers experience the ambient temperature and
RH. In the uncontrolled test in Room-A, we �x the air volume �ow rate to a setting that ensures
no overheating on the IT racks. This setting is determined from the test results obtained in the
controlled tests with the most extreme condition (i.e., 37°C and full utilization of servers). In the
uncontrolled test in Room-B, we adapt the air volume �ow rate to the outside temperature. The
adaptation logic is designed based on the controlled test results. The uncontrolled tests allow us
to assess the energy saving that can be achieved by the air-side free cooling design in Singapore’s
tropical condition. The results of the �xed ventilation and adaptive ventilation experiments are
presented in Section 5.

Dew point prevention. During the controlled experiments, the cooling coils are used to maintain
the temperature at the cold aisle at the setpoint. When the outside air is hot and humid (e.g., be-
fore an afternoon rainfall), the temperature of the cooled air leaving the cooling coil may reach
the dew point. As such, the saturated cold air may condense on a colder surface. If such conden-
sation occurs on the printed circuit boards (PCBs) of the IT equipment, the resulted short circuits
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may damage the IT equipment. Although this concern can be mitigated by the fact that the heat
generated by the IT equipment will increase the temperature and thus decrease the RH of the air
passing through the IT equipment, for the safety of the IT equipment, we implemented a dew
point prevention mechanism in the control algorithms for the cooling coils. Speci�cally, if the
temperature setpoint is more than 3°C lower than the outside air dew point that can be calculated
based on outside air temperature and RH, we stop conditioning the inhaled air. Fig. 6 shows the
outside temperature and dew point in about two months. We can see that the dew point �uctuates
at around 25°C, which is the minimum temperature setpoint during our tests (cf. Table 1). Thus,
this mechanism only disallowed the tests with low temperature setpoints for limited time dura-
tion. With this mechanism and the heat generated by the IT equipment, the RH at the cold aisle is
capped at 90%.
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3 SENSOR DATA ANALYTICS

This section presents the analysis of the sensor data obtained from the testbed during the con-
trolled experiments.

3.1 Benchmark Tests and Collected Data

We perform microbenchmarks to investigate the performance of the servers under di�erent en-
vironmental conditions. We separately test the CPUs, main memories, and HDDs, which are the
main components related to servers’ computing performance. For each component, we vary the
cold aisle temperature, the room air �ow rate, and a certain operating setpoint of the computing
component in their respective ranges as shown in Table 1.We use the CPU tests to illustrate. There
are a total of 13 temperature levels (from 25°C to 37°C), 5 room air �ow speed levels (from 2500 to
12500m2/h), and 7 CPU utilization levels (from 10% to 100%). Thus, there are 13× 5× 7 = 455 unit
tests for CPU. Each unit test lasts for one hour. For comparison, we conduct the same number of
unit tests in the baseline room, in which the cold aisle temperature is �xed at 21°C.
We have developed various shell scripts that control the facility and the servers to automate the

execution of the unit tests. In each unit test, we collect data from the deployed sensors and various
monitoring software tools installed on the servers. The sensors are sampled every �ve seconds.
All sensors are wired to an embedded Supervisory Control and Data Acquisition (SCADA) master
deployed within the chamber beneath the mixing chamber. Each sensor reading is timestamped
using the SCADAmaster’s globally synchronized clock upon its arrival at the SCADAmaster. Since
the SCADA system uses a dedicated wired network, the communication delay from a sensor to the
SCADAmaster is negligible. We install a number of software packages including PMI, SAR, syslog
and lm-sensor to access the servers’ built-in sensors and performance counters. All servers are
synchronized to three time servers in our city’s NTP pool.
We collected the following datasets during the project period:

(1) CPU test dataset: This dataset was collected during the CPU test in which we varied the
supply air temperature, air volume �ow rate, and CPU utilization. Main purpose of this
dataset is to investigate how the temperature and air �ow rate a�ect the CPU’s computing
performance and thermal safety.

(2) HDD test dataset: This dataset was collected during the HDD test in which we varied
the supply air temperature, air volume �ow rate, and HDD random read/write speed. Main
purpose of this dataset is to investigate how the temperature and air �ow rate a�ect the
HDD’s performance in terms of IOPS and response time.

(3) Memory test dataset: This dataset was collected during the memory test in which we
varied the supply air temperature, air volume �ow rate, and the block size setting in copying
data from one memory area to another memory area of the tested memory. Main purpose
of this dataset is to investigate how the temperature and air �ow rate a�ect the memory’s
performance in terms of data copying bandwidth.

(4) Node test dataset: This dataset was collected during the node test in which we varied
the supply air temperature, air volume �ow rate, CPU utilization, HDD random read/write
speed, and block size setting in copying data in thememory.Main purpose of this dataset is to
investigate how the temperature and air �ow rate a�ect the server’s computing performance
when the CPU, memory, and HDD are in use simultaneously.

(5) Fixed ventilation test dataset:This dataset was collected in the uncontrolled test adopting
�xed air volume �ow rate, while the cooling coil is not used. Main purpose of this dataset is
to investigate the energy saving when a simple air �ow rate control (i.e., �xed �ow rate) is
used.
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(6) Adaptive ventilation test dataset: This dataset was collected in the uncontrolled test
adapting adaptive air volume �ow rate, while the cooling coil is not used. Main purpose
of this dataset is to investigate the energy saving when an advanced air �ow rate control
(i.e., adaptive �ow rate) is used.

The collected measurement data in each dataset can be divided into four domains as follows.

(1) Performance:The performancedata includes server computing throughput, CPU andmem-
ory utilization, core frequency, HDD read/write throughput, and etc.

(2) Reliability: The reliability data includes correctable and un-correctable memory errors,
HDDs’ latent sector errors and self-monitoring, analysis, and reporting technology (SMART)
records.

(3) Environment: The environmental data relate to the conditions of the test room, servers
and outdoor weather. Examples include room/rack temperature and RH, air velocity, servers’
inlet/outlet temperatures, processor core and disk temperatures, etc.

(4) Energy: The energy data includes power measurements of cooing coils, room fans, heater,
server racks and other IT equipment.

3.2 Summary of Test Results

Now, we provide a high-level summary of the controlled test results on the servers’ performance in
Room-A/B. The detailed analysis on the measurements is presented in the following subsections.

(1) CPU test results.Wemeasured giga �oating point operations per second (GFLOPS) to char-
acterize the CPU performance. We also monitored the CPU core frequency to pinpoint per-
formance degradation caused by frequency throttling. The tests show that, for all CPUs in
Room-A and Room-B, the temperature setpoint has little/no impact on GFLOPS and core
frequency when (1) the temperature setpoint is from 25°C and 37°C, (2) the CPU utilization
is from 10% to 90%, and (3) the air volume �ow rate is 2500m3/h and above. We also inves-
tigated the thermal safety of the tested CPUs. The vendor of the tested CPUs speci�es T̄case
for each CPUmodel, which is the upper limit of the CPU case temperature for thermal safety.
However, each CPU only has a built-in digital thermal sensor to measureTcore, which is the
core temperature on the die. During the tests, the measured Tcore was always below T̄case.
As the case temperature is always lower than the core temperature, the case temperature,
although inaccessible, must be lower than T̄case. Thus, all the tested CPUs were thermally
safe during the CPU tests in Room-A and Room-B. This also explains the absence of core
frequency throttling in the tests. An expert representative from the CPU vendor agreed the
above results.

(2) HDD test results. We measured the input/output operations per second (IOPS) and re-
sponse time during random read and write accesses to characterize the HDD performance.
The tests show that, for all HDDs in Room-A and Room-B, the temperature setpoint has lit-
tle/no impact on IOPS and response time when (1) the temperature setpoint is from 25°C to
37°C, (2) the HDD random read/write speed is from 10MB/s to 100MB/s, and (3) the air vol-
ume �ow rate is from 2500m3/h to 12500m3/h. The results also show that the HDD random
read/write speed has little impact on the server energy consumption.

(3) Memory test results. We measured the speed of copying a large amount of data from a
user space memory area to another area using various block sizes to characterize the mem-
ory performance. We use cyclic redundancy check (CRC) to verify the integrity of the data
copying. The tests show that, for all memories in Room-A and Room-B, the temperature
setpoint has little/no impact on memory speed when (1) the temperature setpoint is from
25°C to 37°C, (2) the block size setting is from 8 kB to 256 kB, and (3) the air volume �ow rate

16



Table 2. Specification of tested CPU models (64-bit instruction set).

Model fbase fturbo Tjmax Tcmax Cores L3 cache TDP
(GHz) (GHz) (°C) (°C) (MB) (W)

Model1 2.2 2.6 89 78 10 13.75 85
Model2 2.3 2.6 90 78.9 10 25 105
Model3 3.8 4.0 100 n.a. 4 8 72
Model4 2.2 2.5 95 80 12 30 105

fbase : base frequency; fturbo : turbo frequency for all cores; TDP: thermal design power

Tcmax is from CPU datasheet; Tjmax is from the coretemp Linux kernel driver.

is from 2500m3/h to 12500m3/h. No CRC veri�cation errors occurred during the tests. The
results also show that the memory speed has little impact on the server energy consumption.

(4) Node test results. We tested the CPU, HDD, and memory simultaneously under a total of
six server status levels. At the �rst level where the server has light workload and the sixth
level where the server is stressed, the CPU utilization, HDD read/write speed, and memory
block size in data copying are {10%,10MB/s,8 kB} and {90%,100MB/s,256 kB}, respectively.
The test results show that the performance metrics of CPU, HDD, and memory are similar to
those tested separately, except that the memory speed is a�ected by CPU utilization setpoint.
This is because CPU cycles are needed to copy data for testing the memory. In contrast, the
HDD performance is not a�ected by CPU utilization setpoint, because HDD is a low-speed
apparatus comparedwith CPU andmemory. All the CPUswere also thermally safe, although
CPU, HDD, and memory generate heat simultaneously.

3.3 CPU Performance

3.3.1 Se�ings. The six servers in each test room are equipped with twelve CPUs in four models
as shown in Table 2. The models of these CPUs were launched between 2014 and 2017. We use
cpulimit v0.2 to set a usage percentage for a process and maintain the utilization of each physical
core of a CPU at the levels shown in Table 1. Then, we run a customized LINPACK benchmark
provided by the CPU vendor. Note that LINPACK is a widely adopted �oating point computation
benchmark.
Moreover, it is threaded to e�ectively leveragemultiple CPU cores. To faithfullymeasure the per-

formance of the physical cores, we disable the hyper threading feature of all CPUs in the servers’
basic input/output system (BIOS) settings. The LINPACK reports the GFLOPS as the CPU com-
puting throughput. We also use the cpupower v3.10.0 and coretemp v2.6.32 to monitor the core
frequencies and temperatures that are measured by a digital temperature sensor embedded in each
core.

3.3.2 Analysis. The performance of CPUs is evaluated under various cold aisle temperatures and
CPU utilization levels using three metrics, including CPU computing throughout (i.e., GFLOPS),
core frequency and temperature.
Fig. 7 shows the GFLOPS of four tested CPU models under various cold aisle temperatures and

CPU utilization levels. Under the same temperature and CPU utilization, each result is the average
GFLOPS of �ve unit tests, each of which is conducted using a di�erent air �ow rate from 2500m3/h
to 12500m3/h. The relative standard deviation (RSD) of each GFLOPS result is also included to
show the e�ect of the air �ow rate on the CPU throughput. As shown in Fig. 7, the GFLOPS of
all tested CPUs remain stable across di�erent cold aisle temperatures. These results imply that
the cold aisle temperature from 21°C to 37°C has little impact on the GFLOPS of all tested CPU
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Fig. 7. GFLOPS under various cold aisle temperatures and CPU utilization levels. Each error bars represent

the relative standard deviation (RSD).

models. In other words, increasing the cold aisle temperature from 21°C up to 37°C does not cause
signi�cant degradation of CPU computing performance.
From Fig. 7, the CPU utilization is the main factor a�ecting the GFLOPS. The GFLOPS of four

CPU models consistently increases with the CPU utilization as shown in Fig. 8. This is because a
higher CPU utilization level allows a higher amount of CPU’s resource for the computing task.
Fig. 9 shows the core frequencies of the four CPU models under various cold aisle temperatures

from 21°C to 37°C. The core frequencies of tested CPU models do not change over di�erent tem-
peratures up to 37°C. Under each temperature, the variation of the core frequency represented by
the error bars as shown Fig. 9 are caused by the transient phases the beginning and end of the
LINPACK benchmark processes. From Table 2 and Fig. 9, we can see that Model 2 and Model 4 run
at their turbo frequencies, whereas Model 3 runs at its base frequency. To perform an intensive
computing task, the CPU can normally run its cores at clock rates (i.e., the core frequency) from
the base frequency up to the turbo frequency, provided that the power and temperature do not
exceed the design limits.
Fig. 10 shows the average temperature of cores in four CPU models under various cold aisle

temperature in cases that the CPU utilization is 10% and 90%. The horizontal lines in Fig. 10 repre-
sent theTjmax andTcmax of the CPUmodels as shown in Table 2. From Fig. 10, the core temperature
increases with the increase of the cold aisle temperature and the CPU utilization. Moreover, the
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Fig. 10. Core temperature under various cold aisle temperature and CPU utilization. Each result is the aver-

age core temperature of five unit tests. The error bars represent the RSD.

core temperatures of each CPU model is always less than than the Tjmax and Tcmax, which are rep-
resented by the horizontal lines when the cold aisle temperature and the CPU utilization level are
up to 37°C and 90%, respectively.
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Note that theTcmax is the upper limit of the CPU case temperature speci�ed by the manufactur-
ers, whereas theTjmax is the upper limit of the CPU junction temperature derived by the coretemp
Linux kernel driver. If these upper limits are exceeded for extended periods of time, the reliability
of the CPU will be compromised. The core temperature measured by a digital temperature sensor
embedded in the CPU die is normally higher than the temperatures at the junction between the
die and CPU’s PCB and the case. Therefore, the CPU is thermally safe if the core temperature is
lower than Tjmax or Tcmax. As shown in Fig. 10, except for Model 4, there are considerable gaps
between the core temperatures and Tjmax or Tcmax. The core temperatures of Model 4 at 90% are
close to the Tcmax. However, they are still about 17°C lower than the Tjmax.
In summary, the core temperatures of all CPU models are within the safe range when the cold

aisle temperature is from 25°C to 37°C and the CPU utilization is from 10% to 90%. This is the main
reason why the CPU computing performance in terms of GFLOPS and core frequency does not
signi�cantly drop when the temperature and the CPU utilization are up to 37°C and 90%, respec-
tively.

3.4 HDD Performance

Table 3. Specification of tested HDD models.

Model
Operating
temperature
(°C)

Rotation
speed
(RPM)

Max
throughput∗

(MB/s)

Capacity
(GB)

HDD1 [5, 55] 10,520 129 to 224 600
HDD2 [5, 55] 15,000 151 to 202 300
HDD3 [5, 55] 15,030 175 to 250 300
∗The maximum throughput of single disk in the sequential read mode.

3.4.1 Se�ings. The six servers in each test room are equippedwith twelve HDDs in three di�erent
models as shown in Table 3. To test the HDDs, we �rst specify the read/write throughput of the
HDD (i.e., the maximum read/write speed) using the cgroups, a Linux kernel feature that can limit
the resource usage of a collection of processes. Then, under a certain read/write throughput level,
the performance of HDDs is evaluated using a random access method which access the locations
on the HDDs in a non-contiguous manner. The random access method is adopted because (1) it
stresses the HDDs by a lot of movements of the disk’s header to write/read data in di�erent loca-
tions, (2) it is a common method widely used by many block-based applications such as database,
mail and �le servers.
To implement the random access method for controlling the HDD activity, we use the fio tool

with the random and mixed read and write mode. The input/output operations per second (IOPS)
reported by the fio tool is recorded as one of the HDD performance metrics. The relationship
between the IOPS and the write/read throughput is:

IOPS =
throughput

ΦIO
,

where ΦIO is the size of an input/output request. In our tests, we �x the ΦIO at 16KB and vary the
throughput from 10 MB/s to 100 MB/s as shown in Table 1. In addition, we also use the sar tool to
monitor the average response time for completing the read/write requests generated by the fio.
Note that the response time is the end-to-end latency from the time when the read/write request is
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Fig. 11. KIOPS under various cold aisle temperatures.
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Fig. 12. Response time under various cold aisle temperatures.

generated to the time when the request is completed. It consists of latency of the HDD’s hardware
and system’s software operations.

3.4.2 Analysis. We use the IOPS and response time as two metrics to evaluate the performance
of the tested HDDs under various cold aisle temperatures and write/read speeds.
Fig. 11 shows the kilo IOPS (KIOPS) of three tested HDD models under various cold aisle tem-

peratures from 21°C to 37°C and write/read speed from 10 MB/s to 100 MB/s. From Fig. 11, the
KIPOS of all tested HDDs remains stable when the cold aisle temperature changes from 21°C to
37°C. In other words, the cold aisle temperature up to 37°C does not cause signi�cant e�ect on the
maximum sustained bandwidth that the HDD can handle. In addition, the KIOPS only depends
on the write/read speeds of the HDDs. Speci�cally, over all HDD models, the KIOPS consistently
increases with the increase of the HDD’s speed.
Fig. 12 shows the response time of three HDD models over the variation of the cold aisle tem-

perature and write/read speed. The response time is the total latency from the time that the I/O
request is generated and placed at the I/O queue to the time that it is completed. From Fig. 12, we
can see that the cold aisle temperature also does not cause signi�cant e�ect on the response time
of the HDDs. Moreover, the response time greatly decreases with the increase of the write/read
speed from 10 MB/s to 20 MB/s. Then, the response time remains mostly the same when the speed
is from 60 MB/s to 100 MB/s.

3.5 Main Memory Performance

3.5.1 Se�ings. Our servers are installed with two di�erent memory models as shown in Table 4.
To test the performance of the memory, we developed a shell script program that combines two
memory test toolsmemtester and ubw to copy data from a location to another location in the main
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Table 4. The tested memory models (64-bit instruction set).

Model
DIMM
Type

Size
(GB)

Operating
Frequency
(MHz)

Num. of
DIMM

Num. of
CPU

Arch.

MEM1 DDR-4 16 2,400 1 1 NUMA
MEM2 DDR-4 64 2,400 2 2 NUMA

1 DIMM: Dual In-line Memory Module.
2 NUMA: Non-uniform memory Access.
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Fig. 13. Memory speed under various cold aisle temperatures and memory block sizes.
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Fig. 14. GFLOPS under various cold aisle temperatures and CPU utilization levels in the node test.

memory. Speci�cally, a chunk of data with a size of Φ = n×B is �rst generated at a random location
in the memory. Then, the data chunk is copied to another random location for n times, each of
which moves a data block with a size of B bytes to the destination location. During a memory unit
test, multiple data chunks are moved between random locations in the main memory. We use the
memory speed, denoted and calculated byv = Φ

T , as a metric to evaluate the memory performance
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Fig. 15. HDD IOPS under various cold aisle temperatures and throughout in the node test.

under various cold aisle temperatures and values of block size B, whereT is the latency for copying
a data chunk from the source position to the destination position.

3.5.2 Analysis. Similarly, we test the performance of the main memory under various cold aisle
temperatures from 21°C to 37°C. Under each temperature, we vary the block size B from 8 kB to
256 kB as shown in Table 1.
Fig. 13 shows the average memory speed of two memory models, MEM1 and MEM2 under vari-

ous cold aisle temperatures and memory block sizes. With the same block size, the memory speed
of MEM1 and MEM2 is slightly varied over di�erent temperatures. However, the e�ect of temper-
ature on the variation is inconsistent. This is because during the test, the memory resource is not
dedicated only to the memory test. Operating system scheduler and other server components such
as CPU, caches, and system bus can randomly occupy the memory resource for their operations.
As a result, the speed of data copying may vary over time, depending on the available of the mem-
ory resource. In other words, the increased cold aisle temperature does not cause the variation of
the memory speed. The temperatures 21°C to 37°C have little impact on the memory speed.

3.6 Node Performance

We also perform the node test that stresses CPU, HDD and main memory simultaneously under
di�erent environmental conditions. A total of 330 unit tests were conducted,where CPU utilization,
HDD speed and memory block size are simultaneously varied in their respective ranges as shown
in Table 1. The e�ects of cold aisle temperature on CPUGFLOPS, HDD IOPS and response time, and
memory speed are presented in Figs. 14, 15, 16 and 17, respectively. The node tests show similar
CPU, HDD and memory performance results to those of tests which stress the CPU, HDD and
memory of the server separately. The cold aisle temperature up to 37°C does not cause signi�cant
e�ect on performance of CPU, HDD and memory.

3.7 Energy profiles

We conducted a set of experiments to understand the energy consumption pro�le of Room-A/B.
Fig. 18(a) shows the energy consumption of cooling coil, heater, and server racks in Room-Awhen
the temperature setpoint was varied from 25°C to 37°C during a 13-hour experiment. Each data
point in the �gure is the energy consumption during one hour. When the temperature setpoint
was greater than 33°C, the outside temperature was lower than the setpoint. Thus, the cooling coil
stopped working and the heater started operation. The energy consumption of the server racks
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Fig. 16. HDD response time under various cold aisle temperatures and throughout in the node test.
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Fig. 17. Memory Speed under various cold aisle temperatures and block sizes in the node test.

increased by 6% when the temperature setpoint was varied from 25°C to 37°C. This is because the
server enclosure’s built-in fans rotate faster when the inlet temperature increases. Fig. 18(b) shows
the total energy drop of Room-A by about 45% when the temperature setpoint was increased from
25°C to 33°C. This suggests that a signi�cant energy saving can be achieved by air-side free cooling.
The curve in Fig. 18(b) raises when the temperature setpoint is greater than 29 °C. This is because
there was an outside temperature increase after we completed the test with the temperature set-
point of 28 °C.
Fig. 18(c) shows the total server energy consumption in Room-A when the CPU utilization was

varied from 10% to 90% and the temperature setpoint was increased from 25°C to 32°C. Each point
is the energy measurement over one hour. We can see that, although the server energy in general
increases with the temperature setpoint due to the faster server fan rotation, CPU utilization is a
major factor a�ecting the server energy in a linear manner.
Fig. 18(d) shows the energy consumption of the fans in Room-A when the air volume �ow rate

setpoint was increased from 2500m3/h to 12500m3/h and the temperature setpoint was �xed at
26 °C. The fans consumed 5.4% to 22.6% of the total energy consumption of Room-A. Our con-
trolled experiments over eight months show that air volume �ow rate of 2500m3/h su�ces for
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each of Room-A and Room-B to prevent overheating. This implies that if the air-side free cooling
design using fans only is successful, the PUE can be reduced to about 1.05. Our adaptive ventilation
uncontrolled test results reported in Section 5.1 echo this result.

Fig. 18. Energy profile of Room-A. The measurements in (a) and (b) were collected during a 13-hour experi-

ment.
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4 THERMAL AND POWER MODELING

This section develops various mathematical models to characterize the relationships between var-
ious computing and thermal quantities on the testbed.

4.1 Psychrometric Modeling

In this section, we perform psychrometric analysis for the four steps of the air processing in the
air-side free-cooled DC, i.e., heating in the server room, bu�ering in the bu�er chamber, cooling by
the cooling coil, and mixing by the damper system. Time is divided into intervals with identical
duration of τ seconds. The system state, denoted by x , is a vector x = [ts ,ϕs ,pIT,to ,ϕo], where
t and ϕ respectively represent temperature and RH, the subscripts s and o respectively represent
supply air and outside air, and pIT represents the total power consumption of all IT equipment in
the server room. The pIT determines the amount of heat generated in the server room. The supply
and exhaust fans admit air volume �ow rate setpoints. To achieve steady state without control
errors, the setpoints for the two fans should be identical; otherwise, the server room will be in
the dynamic process of pressurization/depressurization or a steady state with control errors. Let
v̇s ∈ [0,v̇max] denote the air volume �ow rate setpoint for the two fans, where v̇max is themaximum
achievable air volume �ow rate. The cooling coil admits a setpoint ∆t that represents the reduction
of temperature, i.e., ∆t = to − tp , where tp represents the temperature of the processed air leaving
the cooling coil. Let ∆tmax represent the maximum temperature reduction that can be achieved by
the cooling coil. Thus, ∆t ∈ [0,∆tmax]. Let α ∈ [0,1] denote the setpoint for the damper system,
which is the fraction of the recirculated hot air in the supply air. Thus, 1 − α is the fraction of
the outside air in the supply air. A setpoint α can be achieved by controlling the openness of
the three dampers. For example, to achieve α = 0, the supply and exhaust dampers should be
completely open and the mixing damper should be completely closed; to achieve α = 1, the supply
and exhaust dampers should be completely closed and the mixing damper should be completely
open. The control action, denoted by a, is a vector a = [v̇s ,∆t ,α]. We aim to construct a Markovian
computational model to characterize the psychrometric dynamics of the testbed given the control
action a:

ts [k + 1],ϕs[k + 1] = f (ts [k],ϕs[k],to[k],ϕo[k],v̇s[k],∆t ,pIT[k],α ),

where k ∈ Z represents the index of time step.
We de�ne the following notation: ṁ is mass �ow rate, h is enthalpy, w is moisture content; for

the above psychrometric variables, we use the subscripts ·s , ·h , ·r , ·p , ·o to refer to the supply air in
the cold aisle, the hot air generated by the servers, the recirculated hot air from the bu�er chamber
to the mixing chamber, the processed air leaving cooling coil, and the outside air provided to the
cooling coil, respectively. The four steps are as follows:

(1) Heating: Servers generate heat and introduce no extra moisture. Thus, the air enthalpy at
the hot aisle is higher than that at the cold aisle, while the moisture contents at the two aisles
are identical. Denoting by η the servers’ heat rate transfer coe�cient, the psychrometics of
the server room is





ṁshs + ηpIT = ṁhhh ,

ṁs = ṁh ,

ws = wh .

(1)

(2) Bu�ering: The hot aisle air is transported into the bu�er chamber by the exhaust fan. Under
the setpoint α for the damper system, the bu�er chamber is characterized by

ṁr = αṁh . (2)
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Fig. 19. Prediction results by the psychrometric model (RMSEs for ts and ϕs are 0.83°C and 5.3%, respec-

tively).

(3) Cooling: The total energy of ideal gas is the sum of dry air’s energy and water vapor’s en-
ergy.Without condensation, the cooling coil does not changemoisture content of air passing
through. Moreover, it does not change mass �ow rate. Thus, the condition of the air leaving
the cooling coil is given by





hp = cp (to − ∆t ) +wp (cpw (to − ∆t ) + l ),

wp = wo ,

ṁp = ṁo ,

(3)

where cp and cpw respectively represent the speci�c heat of dry air and water vapor which
are constants; another constant l represents the evaporation heat. Note that cp (to − ∆t ) is
the enthalpy of the dry air leaving the cooling coil; wp (cpw (to − ∆t ) + l ) is the enthalpy of
the water vapor leaving the cooling coil.

(4) Mixing: The air leaving the cooling coil and the recirculated hot air are mixed in the mix-
ing chamber. Governed by the conservation of mass and energy, the psychrometrics of the
mixing process can be characterized by





(1 − α )hp + αhr = hs ,
(1 − α )wp + αwr = ws ,

ṁp + ṁr = ṁs .

(4)

Taking the moisture contents of the two in�uxes as boundaries, Eq. (4) suggests that the
out�ow’s moisture content will be in between, which is the basis of the RH control through
adjusting α .

The above models in Eqs. (1)-(4) are for enthalphy, moisture content, and mass �ow rate. These
quantities can be converted to temperature, RH, and volume �ow rate according to the equations
presented in [4]. The aforementionedMarkovian computational model is as follows. By initializing
the hs andws in Eq. (1) with the current state of the supply air condition (i.e., ts [k] and ϕs [k]), we
use the remaining equations in Eqs. (2)-(4) to update hs andws . The updated values are then used
to initialize the hs andws in Eq. (1) again and then solve Eqs. (2)-(4). This process is iterated until
hs and ws converge; the converged values are converted to ts [k + 1] and ϕs [k + 1]. Thus, the
Markovian computational model has no closed-form expression.
We use data traces collected during the controlled experiments on the testbed to evaluate the

psychrometric models presented. The inputs to the model are to , ϕo , pIT, v̇s , ∆t , and α ; the outputs
are the predicted ts andϕs . We use root mean squared error (RMSE) between the prediction and the
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Fig. 20. Impact of hyperparameters on MLPs’ performance.

ground truth as the evaluation metric. Fig. 19 shows the prediction results over a time duration
of 24 hours. We can see that the prediction by the psychrometric model well tracks the ground
truth. The RMSEs for ts and ϕs are just 0.83°C and 5.3%, respectively, over an evaluated period of
24 hours.

4.2 Power Consumption Models

We design three multi-layer perceptrons (MLPs) to model the following powers averaged over the
next period of τ seconds: (1) IT powerpIT[k+1], (2) total power of supply and exhaust fanspf [k+1],
and (3) cooling coil power pc [k + 1]. The average non-IT power consumed in the next time period
is p[k + 1] = pf [k + 1]+pc [k + 1]. The MLPs use the respective power measurements in the past K
time periods as a part of the input to address the autocorrelation of power consumption. Moreover,
the MLPs use additional inputs that will be discussed below. Note that the hyperparameters of the
MLPs (e.g., the number of layers and neurons) are designed based on real traces collected from the
testbed.
The �rst MLP (MLP1) modeling pIT[k + 1] additionally takes ts [k] and v̇s[k] as inputs. This is

because (1) higher temperatures lead to higher rotation speeds of server fans and CPU fans, (2) air
�ow generates forces on the fan blades. The second MLP (MLP2) modeling pf [k + 1] additionally
takes v̇[k] and ts [k] as inputs. This is because (1) fan power increases with fan speed, (2) with
a higher temperature, materials exhibit higher strength, resulting in the increase of stresses on
rotating components. The third MLP (MLP3) modeling pc [k+1] additionally takes ∆t[k] and v̇s [k]
as inputs. This is because (1) the setpoint ∆t determines the cooling capacity needed, (2) the cooling
coil consumes more power when it processes a larger volume of air.
We evaluate the three MLP models for predicting IT power, cooling power, and fan power. Each

MLP is trained, validated and tested using 1375, 700 and 1080 data samples, respectively. The set-
tings of K (i.e., the respective power measurements in the past K periods used for prediction) for
the three MLPs are 5, 1, and 1. For all MLPs, the training batch size is set to 128; the training time
is 3,000 epochs. The Adam optimizer with a learning rate of 0.001 is used for training. Moreover,
we use the recti�ed linear units (ReLUs) as the activation function for input and hidden layers; we
use linear units for output layer. We conduct extensive evaluation to choose the number of hidden
layers and neurons for each MLP to minimize the prediction RMSEs. The evaluation for a certain
combination of hyperparameter settings is repeated 5 times to account for the randomness of the
training.
Fig. 20 shows the error bars for testing RMSEs with various hyperparameter settings of the

number of hidden layers and the number of neurons. MPL1 achieves the smallest RMSE of 0.10 ±
0.07 kWwith 5 hidden layers, each of which has 20 neurons. MPL2 achieves the smallest RMSE of
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Fig. 21. Prediction results of MLPs. Top: IT power; middle: fan power; bo�om: cooling coil power.

0.07 ± 0.002 kW with 60 layers, each of which has 40 neurons. MLP3 achieves the smallest RMSE
of 2.73± 0.03 kWwith 5 layers, each of which has 30 neurons. Fig. 21 shows the ground truth and
the prediction by the three MLPs with the chosen hyperameters over a time duration of 18 hours.
Overall, the predictions well track the ground truths.

4.3 Server Outlet Temperature Model

We investigated all of the servers used in the tests and found they are almost sharing the same
abstract architecture as shown in Fig. 22a. According to the path of the air�ow passed through a
server, we could divide temperatures into �ve points from server front to rear: 1)Tinlet , the point
is closed to the cold aisle; 2)T ′

inlet
, the point is at the position where air�ow enters into the server

fan areas; 3) TLA, the point that is closed to processors; 4) T ′
outlet

, the point locates at the back
in which air�ow leaves through the CPU, and Toutlet that is closed to hot aisle. We evaluate the
temperature distribution on a real server as shown in Fig. 22b. In the �gure, we can see: 1) although
there are 3°C to 4°C di�erences among the temperature points that are classi�ed, the measured
temperatures are in accord with the hypothesis of air�ow path; 2) there are 5 °C variations in
di�erent positions. The following discussion will be based on the abstract server model and the
observations of temperature distribution.

4.3.1 Modeling. Before starting the thermal activity description, we suppose that the air�ow
through one server is an aggregate of the �ows generated by all of the fans. Thus, a steady-state
description (Eq. (5)-(12)) of the relationship between a server and its running environment inside
the TDC can be represented by many compiled e�ects factors (e.g., CPU core temperature, server
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Fig. 22. An abstract rack-oriented servermodel that is widely used in amodern data center that has hot-aisle

and cold-aisle. (a) Top view of heat transferring through a rack server. The airflow blowing from cold aisle

enters into the server front and then is absorbed by server fans. (b) A snapshot of the heat distribution graph

of HPE server [10] when the server is idle, and the inlet temperature is 33°C in our test bed.
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fan speed, server power consumption and CPU power consumption). The steady state can be de-
scribed by the following equations.

V̇total = K

N
∑

j=1

Vj,req (5)

Tj,outlet = TLA + δ (6)

TLA = Tcore − Ψj,iQcpuj,i (7)

Qcpuj,i = c3
Uj

N
+ c4 (8)

Ψj,i = c5

(

1

Fj

)β

+ c6 (9)

Q j = c1Uj + c2 f
(

αTj,inlet
)

+ c0 (10)

QFj = a3F
3
j + a2F

2
j + a1Fj + a0 (11)

Q j = QFj +QCPUj
(12)

The equations listed in Eq. (5) to Eq. (12) are brie�y described as following:

• Eq. (5) is used to assess the total air�ow volume rate V̇total supplied to a room in which there
are N servers installed. It could be calculated by the sum of the air�ow rate required to cool
heat load generated by each server j .
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• Eq. (6) is that we used to estimation the outlet temperature of a j server. In view of the
complex situation in a server (Figs. 22a and 23), a penalty δ is introduced to compensate
for the prediction errors between T ′

j,outlet
and Tj,outlet . A rack server that is small in size

and low in cost has a relatively small number of components than high-end servers. In this
case, CPU is the dominant heat source in a server, hence,TLA can be a proxy ofTj,outlet , i.e.,
δ → 0.
• As shown in previous sections, the server power consumption is not only depended on CPU
usages but also on the inlet temperature that has a relationship with server fans. Thus, we
modeled the server power consumption with Eq. (10), where Q j is the total heat load of a
server j when the CPU utilization is at Uj ; c0 could be considered as the power consump-
tion when the server is idle; c1 and c2 are constant coe�cients; Therefore, considering inlet
temperature that contributes to server power (in essence, it is related to server fan power),
we introduce inlet temperature a�ecting function f (αTj,idle ), where α is de�ned as a curve
shape like previous research [22]. This change causes a little di�erence from the model,
which only correlates the server power to CPU utilization in the earlier studies [6, 8, 17, 22].
• Eq. (8) is the model of CPU power consumption, in which Qcpuj,i is the utilization of a CPU
i in a server j; scope c3 is a constant coe�cient, and c4 is the consumption when a CPU is
idle.
• Eq. (7) is employed to estimate the server outlet temperature, where Ψi is the case-to-local
ambient thermal characterization parameter1(ATCP) of the ith CPU with a heat sink within
a server j; TLA is the average ambient temperature entering the processor heat sink �n sec-
tion, and Qcpuj,i is the heat transferred per unit of time between a single CPU and the local
ambient air.
• In Eq. (9), ATCP Ψi is related to server fan speeds. c5 and c6 are constants related to the �uid
and material properties of the air, the CPU package and the heat sink. The parameter β also
de�nes the shape of the ATCP curve that is a function of the air�ow rate [22]. Referring
to ASHRAE [3], heat sink convective thermal performance is proportional to the inverse of
air�ow, thus, the β is set to −1 in this paper.
• Fan power consumption (Eq. (11)) is approximately a cubic function of the rotational speed
of the rotor given in revolutions per minute (RPM) [22] . Therefore, parameters a0, a1 and
a2 can be identi�ed by curve �tting using data samples.

Eq. (7) to Eq. (9) are for servers in which CPU power is measurable while Eq. (10) to Eq. (12) are
for those that CPU power cannot be measured. Thus, applications could be divide into two models:
MA and MB , as seen in Fig. 23. In MA, intuitively, it is simple to work out Tj,outlet using Qcpuj,i ,
Tcore and server fan. In these three variables,Qcpuj,i is not always available to measure fro all CPU
models. However only CPUs (e.g., Intel Sandy Bridge and later series processors) that implement
the RAPL (Running Average Power Limit) interface can directly get power readings with �ner
time resolution and higher accuracy. Thus,MB is considered as a solution to the conditions when
CPU power cannot bemeasured. Therefore, Eq. (10), Eq. (11) and Eq. (12) are introduced and jointly
combined to estimationQcpuj,i . In fact, the process ofMB reveals the physical relationship between
the Tj,outlet and CPU power consumption, which re�ects the thermal change due to workloads
[11]. It also show the server fan activities correlated to the inlet temperature via Ψ, as show in the
equation system Eq. (5) to Eq. (12).

4.3.2 Parameters identification. In this part, we describe the details of how the parameters were
identi�ed and also demonstrate how to employ the servers sensors to collect necessary data to

1https://www.intel.com/content/dam/www/public/us/en/documents/guides/xeon-scalable-thermal-guide.pdf
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determine the parameters. Some methods of parameters identi�cation are similar to that used in
[22]. For comparison and validation, two types of models are employed. Model1 (M1) stand for
relatively cheaper in the market, and Model2 (M2) represents a high-end server. In our model, all
the parameters and coe�cients mentioned above are divided into two categories: 1) the ones that
can be directly measured, and 2) the other ones that could be only calculated by curve �tting.
The measurable parameters including:

• CPU temperatureTcore : Due to the widespread availability of on-die temperature sensors,
CPU core temperature can be obtained with no additional instrumentation. On-die counters
are exposed exclusively throughModel-Speci�c Registers (MSRs) that are only readable from
kernel space. Nevertheless, many tools can be used to read the MSR in the kernel and make
the values accessible to applications, such as msr-tools in Linux, which can read the MSR
in a million seconds.
• CPU utilization Uj : As OS provides a dynamic real-time view of a running system, such
that it is easier to collectUj with no additional drivers, for example, on Linux platform, OS
comes with various utilities to report CPU utilization, such as top and sar.
• Server inlet temperatureTj,inlet : The inlet temperature of servers is one of the most crit-
ical parameters in the operation of a data center. It should e�ectively and consistently meet
the manufacturers’ server inlet temperature requirements. For the sake of safety, in modern
rack-based servers, vendors are commonlyprovided inlet thermal sensors to collect real-time
state, and also o�er accessibility services by implementing IPMI interface. Previous research
has shown the variation of temperature could incur the reliability problems of server compo-
nents [5]. Therefore, based on their observations, we suppose that to operating a data center
in a normal way, the inlet temperature of a server should not be changed frequently, then,
the query response time and time resolution of this value via IPMITools is accurate and �ne
enough for our models.
• Server power consumptionQ j and fan speed Fj : Since these two variables are available in
modern rack-oriented servers, we �rstly use the tools like IPMITools to obtain sample data.
When we work out the coe�cients of the corresponding models discussed in Section 4.3,
then, they can be dynamically calculated from the models.
• CPU power consumption Qcpuj,i : During the tests, we employ RAPL [18] to cap CPU
power, because all of the tested servers support RAPL, thus, we can get the real-time power
consumption from corresponding MSRs using Turbostat2. Some other tools are also avail-
able such as Power Governor3.

Coe�cients identi�cation for Eq. (7) to Eq. (12):

• Server power consumptionmodel: We run a series of experiments on our testbed to iden-
tify the coe�cients of Eq. 10. In the beginning, the inlet temperature was set to 25°C, and
the CPU utilization was set to speci�c value started from 10% for 1 hour, and then pushed to
next setpoint for another period of 1 hour until the CPU utilization is up to 90% while we al-
ways reserved 10% for our sampling tools. The experiments were repeated for temperatures
between 25°C and 35°C, with step of 1°C. Metrics parameters, such as the CPU utilization,
server power, inlet temperature and CPU power, were collected during the tests and utilized
in later experiments to determine the coe�cients of other equations. After the experiments
were �nished, curve �tting method (curve_fit in python) was used to identify c1 and c2; c0
is obtained by leaving the server idle; and the shape α of the server power is also obtained by
curve �tting as shown in Fig. 24 for Model1 and Fig. 25 for Model2, and it can also be tuned

2https://github.com/torvalds/linux/tree/master/tools/power/x86/turbostat
3https://software.intel.com/en-us/articles/intel-power-governor
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Fig. 24. Model1, server power as a function of inlet temperature and CPU utilization.

by annually setting the proper value based on the curve, as shown in Fig. 24b and 25b. As
listed in Table 5, we provide several characteristic functions to observe the e�ects ofTj,inlet
on server power in di�erent forms. As seen from the table, by properly choosing eαTj,inlet ,
the R2 of both server Model1 (0.90) and Model2 (0.97) can �t experimental data well. It in-
dicates the server power has a positive correlation with inlet temperature and capture the
potential relationship on them. Moreover, we also check that most of the servers in testing
are complying with the standard of ASHRAE 3. That suggests the maximum inlet tempera-
ture of a server is limited up to 45°C. From Fig. 24 and 25, the experiments already cover the
inlet temperature range of servers, therefore. Jointly considering the linear relationship with
CPU utilization, this model can be used to predict server power when the inlet temperature
is from 25°C to 45°C, and CPU utilization is from 0% to 100%.
• Processor power consumption model. The CPU power can be represented as a linear
function of the CPU utilization, as shown in Eq. 8 in which the slope c3 and intercept c4 are
derived from experimental data collected previously. Fig. 26a illustrates the results of curve
�tting and shows �ne goodness of Model1 (R2

= 0.99) and Model2 (R2
= 0.99). We can

clearly observe the linear correlation between the CPU power and utilization.
• CPU thermal capacity model. Most of the vendors equipped their servers with many
kinds of sensors (e.g., the thermal sensors for I/O Zone and PCI Zone of a server, as shown
in Fig. 22b) to measure the server outlet temperatureTj,outlet . If such a kind of sensors exists,
we approximately let Tj,outlet = TLA + δ . Otherwise, we can use the sensor installed in the
rear of racks as a proxy of TLA. Thus the thermal resistance can be identi�ed by using the
relationship described in Eq. 7. Since the fan speeds Fj are known, we can approximate these
two coe�cients through curve �tting. Fig. 27a shows the results of Model1 andModel2when
β is assigned to 1, which is suggested by ASHARE. The variable β can a�ect the shape of
curves and can be tuned manually. Fig. 27a gives di�erent behaviors when β is at several
possible values.

4.3.3 Validation of MA on Testbed. As shown in Fig. 23, MA is a scenario where a CPU vendor
provides its products with a mechanism of power monitoring (e.g., Intel RAPL). In this scenario,
we only need to identify all the coe�cients of equations described in Eq. 7-9. Then we can validate
theMA by performing a comparison of predicting outlet temperature and real data. To gather data
related toMA, we do several experiments by changingCPUutilization and cold aisle temperature as
Table 1 listed. The experiments can be divided into two groups: 1) case 1, inwhich CPUutilization is
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Fig. 25. Model2, server power as a function of inlet temperature and CPU utilization.
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Fig. 26. Parameters identification of CPU and fan power model on server Model1 (M1) and Model2 (M2)

manually set in order of 10%, 20%, 40%, 60%, 80%, and 90%, and maintain the cold aisle temperature
at a speci�c point that should be in the range of [25°C, 37°C] with each 2°C; 2) case 2, in which
CPU utilization is set to a constant level while varying temperature from 25° to 37°C with a step
size of 2°C. Fig. 28 and Fig. 29 show the prediction results of two server models on these two cases.

Table 5. Characteristic functions for Eq. 10

f (αTj,inlet )
Model1 Model2

c1 c2 α R2 RMSE c1 c2 α R2 RMSE

eαTj,inlet 3.20 0.18 0.02 0.97 18.62 0.76 22.55 0.06 0.94 20.17

αTj,inlet 3.23 0.32 1.62 0.93 27.55 0.44 3.10 2.16 0.72 43.43
(

αTj,inlet
)2

2.75 3.81 0.19 0.81 46.77 0.72 0.56 0.57 0.92 22.58
(

αTj,inlet
)3

1.60 2.19 0.13 0.14 99.79 0.77 0.76 0.19 32.37 0.84

αln(Tj,inlet ) 3.41 -2.06 -0.68 0.93 28.92 0.63 10.60 12.73 68.18 0.30
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Fig. 27. Parameters identification

Validation in Case 1. Fig. 28 is the testing results when CPU utilization is separately set to 10%
and 90 %. The sub-�gures (a) (b) (c) and (d) always show seven cycles. Each cycle represents a cold
temperature setpoint that was testing for one day. The total seven setpoint, which appear in the
same order in tests, are, from left to right: 25°C, 27°C, 29°C, 31°C, 33°C, and 37°C. For the sake of
comparison, we separate each sub-�gure into two parts: the top and bottom part. The top part of
each sub-�gures shows the real-time outlet temperatures (Ground Truth, GRD-OTemp) of servers
and the predicted outlet temperature (Estimated, EST OTemp) in MA. The bottom part shows two
curves: one is for the server inlet temperature, and another is for a server fan activity.
As seen from Fig. 28a and Fig. 28c, when CPU utilization is maintained at 10%, the predicted out-

let temperatures of both two models can properly follow the trends of real-time data. The results
show that the root mean square error (RMSE) of the outlet temperature obtained by theMA is less
than 1.3°C. When the CPU utilization is pushed to 90%, the prediction curve can track the real data
line with RMSE almost equal to 1.2°C in Model1, but the RMSE of Model2 is about 3.6°C. The possi-
ble reason lies in that the higher CPU utilization causes the environment inside a server changed
a lot, especially the temperature. This is indicated from Fig. 28c and 28d where the fan activity of
Model2 in Fig. 28d is almost close to 100% compared with 76% of Model1. Therefore, Due to the
higher temperature of servers, more components are a�ected by the higher CPU temperature. It
is also hard forMA to make a more accurate prediction in this kind of server.

Validation in Case 2. Fig. 29 is the testing results at the temperatures of 25°C and 37°C separately.
The sub-�gures (a) (b) (c) and (d) also show six cycles. Each cycle represents a CPU utilization
setpoint that was testing for one day. The setpoints, which appear in the same order in tests, are,
from left to right: 10%, 20%, 40%, 60%, 80%, and 90%. The top part of each sub-�gures also show the
real-time outlet temperatures of servers and the predicted outlet temperature by using MA model.
The bottom part shows two curves: one is for the server inlet temperature, and another is for a
server fan activity.
As shown in the bottom of all sub-�gures in Fig. 29, the inlet temperature almost tracks the

setpoints at 25°C and 37°C. We can also see the predicted trend of Model1 have a growth as the

CPU utilization increased, which can be quali�ed by d25 = 0.37 and d37 = 0.23 (dt =
OT90−OT10

OT10
), but

the real-time outlet temperatures are not signi�cantly a�ected by CPU utilization with d25 = 0.04
and d37 = 0.02. One of the reasons is that the predicted model (MA) assumes the power of CPU is
following the liner relationship with CPU utilization, and another possible reason has fully relied
on server fan control. The control algorithm might be varied vendor by vendor. To dig out more
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(a) Model1,Uj = 10%, RMSE = 1.22°C (b) Model1,Uj = 90%, RMSE = 1.20°C

(c) Model2,Uj = 10%, RMSE = 1.04°C (d) Model2,Uj = 90%, RMSE = 3.54°C

Fig. 28. Case 1, using MA described in Fig. 23 to approximately estimate server outlet temperature while

keeping CPU utilization at 10% and 90% respectively.

details of a server fan control is out of the scope of this paper. We are more concerned with server
fan activity that leads to outlet temperature prediction.
The predicted results also show that when the inlet temperature of Model1 is at 25°C, the RMSE

is about 3.41°C, which has 1.41°C higher than that of 37°C. Compared to the activities ofModel1, we
can see the ground truth temperature of Model2 in Fig. 29c has little drops when CPU utilization is
at 10% with d25 = −0.09. We can �nd the answer to this dropping from the server fan trend at the
bottom of the same �gure. As seen from this �gure, once the CPUutilization is up to 60%, the server
fan speeds suddenly increase up to 65%, and the d indicator of the real-time outlet temperature
is about -0.09 compared with 0.02 at 37°C in Fig. 29d, in which the real outlet temperature has a
very little increase with d37 = 0.05. Recalling the MA model, it assumes the outlet temperature is
higher than the inlet temperature. That’s why when the inlet temperature at 25°C, the RMSE has
a higher RMSE. Even this, we can estimate the outlet temperature with �uctuations within 4°C for
this server.
In summary, from our experiments, we can perform outlet temperature prediction using the

MA model with an average RMSE of 1.75°C of Case 1 and 3.02°C of Case 2. By referring to the
di�erence in vendors’ server layout, there exists some variation of prediction errors. Owing partly
to the fact of fewer numbers of servers (N ) and air leakage in our testbed, for MA and MB , the
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(a) Model1,Tinlet = 25°C, RMSE = 3.41°C (b) Model1,Tinlet = 37°C, RMSE = 3.00°C

(c) Model2,Tinlet = 25°C, RMSE = 3.59°C (d) Model2,Tinlet = 37°C, RMSE = 2.10°C

Fig. 29. Case 2, using MA in Fig. 23 to approximately estimate the outlet temperature while keeping cold

aisle temperature at 25°C and 37°C respectively.

outlet temperature also might be a�ected by air recirculation from the cold aisle, which would
be one of the factors that lead to prediction accuracy. However, our approach proposed a proper
solution for the out temperature prediction between 25°C and 37°C with a mean of 2.34°C.

4.3.4 Validation of MB on Testbed. We also valid the prediction approach using MB (shown in
Eq.10-12) with same settings asMA. Firstly, set CPU utilization at the speci�c level of 10% and 90%
respectively, then we observe the outlet temperature by changing inlet temperature from 25°C to
37°C with a step size of 2°C. Each setpoint lasts for one hour. After that, inversely, change the
setting order by independently maintaining inlet temperature at 25°C and 37°C. At each temper-
ature setpoint, we set CPU utilization to the level of 10%, 20%, 40%,60%, 80%, and 90%. There is a
di�erence from the �gures in the previous section for the validation ofMA. In each sub-�gures of
Fig. 30 and Fig. 31, we also show the server fan prediction in the bottom part of the corresponding
sub-�gures.

Validation in Case 1. In Fig. 30, when the CPU utilization is at the level of 10% of bothModel1 and
Model2, the predicted values can properly follow the real-time outlet temperature (see Fig. 30a and
Fig. 30c). The results of these two �gures show that the RMSE of the outlet temperature obtained by
theMB is less than 1.3°C. However, when the CPU utilization is pushed to 90%,MB has a di�erent
behavior. In Model1, the RMSE is 1.22°C compared with 3.81°C in model2. An obvious observation
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(a) Model1,Uj = 10%, RMSE = 1.22°C (b) Model1,Uj = 90%, RMSE = 1.22°C

(c) Model2,Uj = 10%, RMSE = 1.04°C (d) Model2,Uj = 90%, RMSE = 3.81°C

Fig. 30. Case 1, usingMB in Fig. 23 to approximately estimate the outlet temperature of Model1 and Model2

while keeping CPU utilization at 10% and 90% respectively.

in Fig. 30d is that the EST − OTemp prediction curve of Model2 has obvious jitters compared to
the same level of Model1 . The reason can be mainly ascribed to the server fan control due to more
heat generated from CPU, as seen from Fig. 30d .

Validation in Case 2. The sub-�gures of Fig. 31 are the results of testing at the 25°C and 37°C re-
spectively. As discussed in previous sections, Case 2 �xes the inlet temperature. ThusMA presents
a positive correlation with CPU utilization. That’s because there is a relationship between TLA

and CPU utilization. Due to the assumption,MB also shows this trend in Fig. 31. However, Fig. 31c
shows a di�erence from Fig. 31a, Fig. 31b and Fig. 31c. Intuitively, a little drop is shown in Fig. 31c,
but the d of it is only about -0.19°C. This little drop could be explained by the server fan activities.
As shown in the bottom part of Fig. 31c, when the CPU utilization is up to 60%, the server fan
also goes up to 55% while the predicated server fan is about 70%. Then we know the growth is
about 25%-30%. It o�sets the e�ects of prediction with MB . That’s the reason that when the inlet
temperature is at 25°C, the outlet temperature remains almost the same. Therefore, it causes the
max variation (RMSE = 4.27°C) compared to other sub-�gures in Fig. 31.
In summary, we can observe from the results that the same server model from the same vendor

has almost the same outlet temperature characteristics. For example, typically in Model1, the dif-
ference between the minimum temperature of 25°C and the maximum of 37°C is 0.37°C. Therefore,
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(a) Model1,Tinlet = 25°C, RMSE = 3.40°C (b) Model1,Tinlet = 37°C, , RMSE = 3.03°C

(c) Model2,Tinlet = 25°C, RMSE = 4.27°C (d) Model2, Tinlet = 37°C, , RMSE = 2.97°C

Fig. 31. Case 2, usingMB in Fig. 23 to approximately estimate the outlet temperature of Model1 and Model2

while keeping cold aisle temperature at 25°C and 37°C respectively.

we can infer that the prediction of other temperatures in this range has the same trend. Although
the RMSE is relatively higher, once we obtain characteristics of a speci�c server, then we can man-
ually add compensation (ε = 3°C for Model1 and Model2 in Fig. 31) to make up for the variation.
Thus we could get a more accurate prediction.

4.3.5 Summary and Discussion. The outlet temperature of servers is directly related to heat ex-
change in the DC room. Inversely, it is also the point that could re�ect the dynamic room tem-
perature states. In the tropical air-side free cooling environment, this is also the necessary and
essential parameter to track. On the other hand, we also rely on the outlet temperature to perform
server states steering and air�ow control. In modern state-of-art rack-based servers, most of the
vendors o�er thermal sensors that are built into their products. Thus users who are interested in
the value can interface with the onboard manage system (e.g.,iBMC of Huawei, iLO of HPE, iDrac
of Dell, etc.) to query the real-time readings. Nonetheless, there are also some servers that they do
not provide such kinds of sensors, such that we have to resort to the model approaches to build a
model to estimate the temperature appropriately.
However, it might take much longer to query the management system (e.g., BMC) by using a

protocol like IPMI. Then, the incurred problem could be that the querying response time is not
satisfying the requirements of �ne air�ow control. Besides, as the CFD is widely used in modern

40



data center design and optimization, it also requires a higher resolution of outlet temperature. It
also drives us to build such numeric models to predict outlet temperature based on the given infor-
mation, which could be treat as �xed such as inlet temperature and the high-resolution parameters
including CPU core temperatures and CPU utilization. The models adopted in this paper could be
utilized as a general method for servers in the data center. Even if we only validated our model
approaches on two types of servers, they could be easily extended to the others. Bene�tting from
these models, we could implement more �ne air�ow control and CFD model tuning.
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5 AIR-SIDE FREE-COOLED DC CONTROL AND COST SAVINGS

In this section, we �rst present the con�guration and results of the ventilation tests which use
only fans to cool servers. Then, we present a deep reinforcement learning (DRL)-based advanced
control algorithmwith a main objective of minimizing the total cooling energy consumption while
maintaining the supply air temperature and RH below desired thresholds. The energy saving of
each approach is also evaluated.

5.1 Ventilation Control and Energy Saving

An air-side free-cooledDCmainly leverages room fans to blow the outside air into the server room
to remove the heat generated by IT equipment. The cooling devices such as water-chiller based
cooling systems and compressor-based air conditioners are turned o� by default and turned on
only when required. Therefore, we conduct ventilation tests to investigate the server’s behaviors
and energy savings when only room fans are used to cool the servers.

5.1.1 Fixed ventilation. We run servers with �xed ventilation whose goal is to provide a su�cient
and constant air volume �ow rate to make sure no overheating, regardless of outside condition
and server workload. Speci�cally, we maintain an air �ow rate at 5000m3/h in an uncontrolled
environment condition where cooling coils and heaters are turned o�. All servers are fully utilized
with 100% CPU utilization level.

Fig. 32 shows 30-days’ trace of maximum cold and hot air temperatures under the �xed venti-
lation. Note that the cold air temperature is close to the outside air temperature since the cooling
coils and heaters are not used. From Fig. 32, the maximum hot air temperature is always less than
43.6°C over a period of 30 days. With a �xed air �ow rate of 5000m3/h, no server’s overheating
is found as the maximum cold air temperature is always within a range of [28°C, 34.7°C]. Note
that the server will be automatically shutdown to avoid overheating once the inlet temperature
reaches to a threshold of 45°C.

5.1.2 Adaptive ventilation. Tominimize the fan energy consumption, we develop and implement a
control logic to provide right enough and dynamic air volume �ow rate to the servers, in response
to outside condition and server workload changes. Speci�cally, the room air �ow rate is controlled
such that the maximum hot aisle air temperature does not exceed a threshold.

Fig. 32. Maximum cold and hot air temperatures under fixed ventilation.
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Fig. 33. Adaptive ventilation control logic.

Fig. 34. Execution results of adaptive ventilation.

Fig. 34 shows the �owchart of the control logic. The air �ow rate, denoted by F , is initially set
to a minimum value Fmin . At the beginning of every period of τ , if the current maximum hot aisle
temperature, denoted byTmax is higher than a threshold ofTth , F is increased by a certain step ∆F .
In caseTmax < Tth −∆T , where ∆T ≥ 0, F is decreased by ∆F . Otherwise, F remains at its current
value. Note that the air �ow rate can be increased only up to the maximum air �ow, Fmax that the
room fans of the TDC testbed can provide.
Fig. 34 shows the execution result of the adaptive ventilation test under the developed control

logic over a 30-day test period with the following settings: τ = 1min, Fmin = ∆F = 200m3/h,
Tth = 45°C, ∆T = 3°C, and Fmax = 12500m3/h. From Fig. 34(a), the air �ow rate can be adaptively
controlled in response to the change of the outside air temperature. The maximum air �ow rate
is 7500m3/h when the outside air temperature reaches to 37°C. From Fig. 34(b), the maximum
hot temperature is always maintained below 45°C. This suggests that the control objective is well
achieved.

5.1.3 Energy savings. Fig. 35 shows that PUEs of controlled and uncontrolled (i.e., ventilation)
tests. As shown in Fig. 35, the controlled tests have high PUEs since major energy is consumed
by cooling coils and fans to maintain a certain cold air temperature setpoint. For instance, the
maximum PUE is 7.81 when the cold air temperature setpoint is 25°C and the room air �ow rate
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Fig. 35. PUEs under various cooling modes.

is 12500m3/h. The PUE greatly decreases with the increase of the cold air temperature setpoint.
Compared to the controlled tests, the ventilation tests can achieve lower PUEs. Speci�cally, the
adaptive ventilation has a very low PUE of 1.05 as shown in Fig. 35. Note that typical DCs with
traditional water-chiller based cooling systems have average PUEs of 1.7 [9]. This result demon-
strates that the high energy e�ciency can be obtained by the air-side free cooling which uses the
outside air for cooling.

5.2 Advanced Control by Deep Reinforcement Learning

5.2.1 Approach Overview. To achieve desired server’s computing performance and reliability, we
need to maintain the supply air temperature below the reliability thresholds of the servers and
RH below a certain level (e.g., the lowest deliquescent RH of the particulate and gaseous contami-
nants present in the outside air). The temperature threshold can be obtained by controlling cooling
coils to process the outside air before supplying to the servers. However, the RH control is a chal-
lenging task in tropics as presented in Section 2.1.1. Traditionally, dehumidi�cation is achieved
by a cooling-then-reheating process. Speci�cally, a certain amount of moisture is condensed out
from the humid air by cooling the air below its dew point. Then, the cold air is reheated to the
desired temperature. However, the cooling and reheating processes consume signi�cant energy.
In our work, to reduce the supply air RH in an energy-e�cient manner, we recirculate a portion
of the hot return air and mix it with the fresh outside air to form supply air. The mixing can be
implemented by controlling the openness of the three dampers as illustrated in Fig. 2. Note that,
without condensation, the hot return air and the fresh outside air have the same absolute humidity.
From psychrometrics, the hotter mixed air will have lower RH compared with the fresh outside
air. However, when the fresh outside air is hot, the hotter mixed air to achieve the desired low RH
may exceed the servers’ reliability thresholds. In this case, the cooling coil should be activated to
reduce the temperature of the incoming air.
We develop control algorithms for the supply and exhaust fans, the cooling coil, and the dampers

such that the energy consumption of the non-IT facility is minimized subject to that the temper-
ature and RH of the air supplied to the servers are below respective speci�ed thresholds for the
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Fig. 36. Design workflow of DRL-based DC control.

sake of IT hardware reliability. The system will operate in the presence of exogenous disturbances,
i.e., the time-varying ambient condition and heat from servers.

5.2.2 MDP Formulation. Time is divided into intervals with identical duration of τ seconds. In
this study, we consider the secondary controls (i.e., adjustment of setpoints) for the actuators. The
beginning time instant of a time interval is called a time step. Control action is performed at every
time step. Thus, the τ is referred to as control period. We do not consider the details of the primary
controls of the actuators; we assume that the actuators can implement the setpoints decided by
the secondary controls using their closed-loop primary controls and the system has reached the
steady state by the end of every control period. In practice, the setting of the control period can
be chosen with the consideration of the dynamics of the primary controls to ensure the above
assumption. Under the above setting, the temperature and RH of the supply air at next time step
depend only on the system’s state (conditions of outside and supply air, servers’ powers) and the
control action at the current time step. Therefore, the control problem can be modeled as a Markov
decision process (MDP). We now de�ne the terminologies of the MDP formulation.
System state: The system state, denoted by x , is a vector x = [ts ,ϕs ,pIT,to ,ϕo], where t and ϕ

respectively represent temperature and RH, the subscript s and o respectively represent supply air
and outside air, and pIT represents the total power consumption of all IT equipment in the server
room. The pIT determines the amount of heat generated in the server room.
Control action: The supply and exhaust fans admit air volume �ow rate setpoints. To achieve

steady state without control errors, the setpoints for the two fans should be identical; otherwise,
the server roomwill be in the dynamic process of pressurization/depressurization or a steady state
with control errors. Let v̇s ∈ [0,v̇max] denote the air volume �ow rate setpoint for the two fans,
where v̇max is the maximum achievable air volume �ow rate. The cooling coil admits a setpoint ∆t
that represents the reduction of temperature, i.e., ∆t = to − tp , where tp represents the tempera-
ture of the processed air leaving the cooling coil. Let ∆tmax represent the maximum temperature
reduction that can be achieved by the cooling coil. Thus, ∆t ∈ [0,∆tmax]. Let α ∈ [0,1] denote
the setpoint for the damper system, which is the fraction of the recirculated hot air in the supply
air. Thus, 1 − α is the fraction of the outside air in the supply air. A setpoint α can be achieved
by controlling the openness of the three dampers. For example, to achieve α = 0, the supply and
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exhaust dampers should be completely open and the mixing damper should be completely closed;
to achieve α = 1, the supply and exhaust dampers should be completely closed and the mixing
damper should be completely open. The control action, denoted by a, is a vector a = [v̇s ,∆t ,α].
Reward function: When a control action a is performed at the current time step with a sys-

tem state of x , let p (x ,a) denote the average power consumed by the supply and exhaust fans to
maintain the air volume �ow rate v̇s and the cooling coil to lower the temperature by ∆t Celsius
degree over the next control period of τ seconds; let ts (x ,a) and ϕs (x ,a) denote the supply air
temperature and RH, respectively. We de�ne a penalty function as follows:

q(x ,a) = λ1 ·max (ts (x ,a) − tth,0) + λ2 ·max (ϕs (x ,a) − ϕth,0) , (13)

where tth and ϕth are the temperature and RH thresholds for the long-term reliability of the IT
hardware equipment; λ1 and λ2 are con�gurable weights. From the de�nition of q(x ,a), if the
supply air temperature and RH donot exceed their respective thresholds, no penaltywill be applied.
The immediate reward, denoted by r (x ,a), is de�ned as

r (x ,a) = −p (x ,a) − q(x ,a). (14)

where p (x ,a) is the average cooling power consumed in the next control period. Note that the
cooling power is a sum of powers consumed by cooling coils and fans i.e., p = pf + pc . Thus, the
reward is de�ned based on the weighted sum of the cooling power consumption and the degrees
of supply air temperature and RH requirement violations. The impact of λ1 and λ2 on the control
performance will be evaluated and discussed in Section 5.2.5.
Air-side free-cooledDC control problem:At every time step, the system controller observes

the system state x . Then, it decides and executes a control action a to operate the supply and
exhaust fans, cooling coil and dampers in the next control period of τ seconds. At the end of the
next control period, the system controller can receive an immediate reward r (x ,a) as a feedback
signal. The control design objective is to �nd a control policy that determines a based on x to
maximize the expected reward over a long run, i.e., E[r ].
In general, it is di�cult to design a closed-form control policy tomaximize E[r ] because the state

evolution of the system (i.e., ts (x ,a) and ϕs (x ,a)) is complex. Model-predictive control (MPC) is
a widely adopted approach to solve MDP problems (e.g., [13] for HVAC control). However, the
optimization of MPC is computationally expensive and often for a limited time horizon only. DRL
is an emerging approach to deal with the above challenges. In the interactions between the DRL
agent and the environment (i.e., the controlled system), the agent will learn the optimal control
policy from the historical data including system states, control actions, and the resulted imme-
diate rewards. With su�cient interactions, the DQN learned by the agent can well capture the
highly complex system dynamics. Moreover, the learned control policy approaches optimality for
a long time horizon comparable to the time duration of the training phase. In what follows, we
will present the detailed design of our DRL system to address the air-side free-cooled DC control
problem.

5.2.3 O�line Training of DRL Agent. We adopt the learning framework in [14] to train o�ine
a DQN for the control agent to capture a good control policy to address the problem formulated
in Section 5.2.2. Speci�cally, the DQN is trained through interacting with the computational model
developed in Section 4.1 for N episodes, each of which consists of T time steps. An episode starts
with a state chosen randomly from the training data. Then, at the kth time step, an action a[k] is
selected for state x[k] according to the ε-greedy algorithm [19] based on action-values given by
the DQN. Given the selected action a[k], the ts [k + 1], ϕs [k + 1] and pIT[k + 1] are estimated using
the psychrometric model and IT power model ((cf. Section 4)), where the outside air condition (i.e.,
to[k + 1] and ϕo[k + 1]) are taken from real traces. To calculate the immediate reward r [k], powers
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Fig. 37. Outside air condition over 125 days.

of fans and cooling coil with respect to the selected v̇s[k] and ∆t[k] are determined using MLP2
and MLP3, respectively.
During the learning phase, two mechanisms, i.e., experience replay and target Q-network, are

used to update the weights of the DQN (denoted by θ ) every time step. For the target Q-network
mechanism, we use the soft target update method [12] to update the weights θ ′ of the target Q-
network by setting θ ′ = βθ+ (1−β )θ with β ≪ 1. The soft target update often gives better learning
stability than the hard target update of the original DQN training.

5.2.4 Sensor Requirement. To run the trained DRL agent, the essential sensors include: (1) temper-
ature and RH sensors to monitor the outside air and supply air conditions; (2) a meter to monitor
the total power consumption of the IT equipment. Moreover, to implement the primary controls
of the supply/exhaust fans, the cooling coil, and the damper system, we need the following sen-
sors: (1) air volume �ow rate sensors to monitor the air entering the cold aisle and the air passing
the mixing damper; (2) a temperature sensor measuring the air leaving the cooling coil. To collect
training data for the o�ine learning of DRL, meters to measure the power consumption of supply
and exhaust fans, as well as the cooling coil are needed in addition to the sensors mentioned above.

5.2.5 DRL Agent Training and Execution. We build fully connected deep neural networks as the
DQNs (i.e., the primary and target action-value functions). Each network consists of an input layer,
four hidden layers and a linear output layer, where each hidden layer has 20 ReLUs. From our
extensive trials, the choice of four-layer perception achieves satisfactory convergence performance
for the control of the simulated testbed. TheDRL agent admits a system state and chooses an action
a = [v̇s ,∆t ,α] from a discrete action space: v̇s is from 1000 m3/h to 5000 m3/h with step size of
500m3/h;∆t is from 0°C to 10°Cwith step size of 1°C; andα is from 0 to 1 with step size of 0.1. These
step sizes are from the physical constraints of the supply/exhaust fans, the cooling coil, and the
damper system. The size of the action space is 9×11×11 = 1089.We set the RH thresholdϕth = 65%,
which is the deliquescent RH of many contaminants [2]. We set tth = 45°C, which is the reliability
temperature of ASHRAEClass A4 servers. The control period is oneminute. For the o�ine training
of the DQN, we adopt the following settings: training batch size is 64; replay memory size is 50000;
discount factor γ = 0.99; sort target update weight β = 0.01; Adam optimizer’s learning rate is
0.001; the ε of the ε-greedy method reduces linearly from 1 to 0.1.
Fig. 37 shows 125 days’ outdoor air conditions of the testbed area. We use the �rst 95 days’ data

for training the DRL agent and the remaining data for evaluating the trained agent. The o�ine
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Fig. 38. DRL training convergence and penalty factors.

Fig. 39. Execution results under various λ1 and λ2 se�ings. The red lines in 2nd and 3rd subfigures represent

tth and ϕth.

training is for N = 5000 episodes, each of which consists of T = 1000 control periods. At the
beginning of each episode, we select a batch of 1,000 samples of outside air condition to drive
the training. During the training, the system state is determined based on the action taken by the
agent, the psychrometric model, and the power models in Section 4.
The weights λ1 and λ2 in Eq. (13) a�ect the trade-o� between power consumption and compli-

ance to the temperature/RH requirements. We evaluate the convergence of the DRL agent training
under various settings for λ1 and λ2. Fig. 38 shows the training traces of reward, average power,
and average temperature and RH penalties (i.e., max (ts (x ,a) − tth,0) and max (ϕs (x ,a) − ϕth,0))
over an episode of 1000 time steps. Along the training episodes, the reward becomes �at; the
power consumption has increasing variance but decreasing overall trend. Both temperature and
RH penalties drop during training. With λ1 = λ2 = 2, the penalties are close to zero after 5,000
episodes. Di�erently, with λ1 = λ2 = 0.5, the penalties are higher. We also train the DRL agent
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under various settings for temperature and RH thresholds as well as weights. The results show
that the training of the DRL agent is convergent after a certain number of training episodes (e.g.,
N = 5000) with learning curves similar to those shown in Fig. 38.
We evaluate the execution of the trained DRL agent for controlling the system in trace-driven

simulations over a period of 30 days. The last 30 days’ outdoor air condition trace shown in Fig. 37
is used to drive the simulations. Fig. 39 shows the total energy consumption and boxplots for the
distributions of supply air temperature and RH over the execution period of 30 days with the DRL
agents trained with various λ1 and λ2 settings. From the 1st sub�gure, the energy consumption
increases with the weight. This is because, with smaller λ1 and λ2, the agent is trained towards
saving more power. However, from the 2nd and 3rd sub�gures, when the two lambdas are no
greater than 1, the temperature and RHmay exceed their thresholds. When the two lambdas are 2,
the temperature and RH do not exceed their thresholds during the 30-day test period. The above
results show the trade-o� between the energy consumption and the temperature/RH requirement
compliance. In practice, grid search can be applied to choose the settings of λ1 and λ2 based on
training and validation data, to achieve compliance of the temperature and RH requirements.
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6 IT EQUIPMENT FAILURES AND MITIGATION APPROACHES

In this section, we present the IT equipment failures that occurred on the testbed during the tests.
We also present our investigation on the reasons of the failures. Lastly, we discuss the mitigation
approaches, as a recommendation to the operations of such air-side free-cooled DCs in tropical
environments.

6.1 Summary of Failures

In Table 6 and Table 7, we summarize all the failures encountered during the reporting periods.
Note that all failures occurred on servers. The networking equipment (i..e., switches and routers)
have no failures.

6.1.1 Phase 1: From July 2018 to February 2019 (8 Months). All tested HDDs and memories work
successfully during this reporting period. One CPU fault was caused by over voltage from a mal-
functioned mainboard. All other CPUs work successfully during this reporting period.
We encountered server failures in Room A and Room B during the tests. Speci�cally, among a

total of 6 servers from Vendor 1 that are deployed in Room A and Room B, four of them failed in
October and November of 2018. We requested Vendor 1 to �x the failed servers and also requested
fault analysis. Vendor 1 �xed them in January of 2019. Speci�cally, the mainboards of three servers
were replaced; the CPU on one of the three servers was damaged due to mainboard malfunction
and was replaced. The backplane of the fourth server with fan alarms was replaced. After the
repairs, all servers from Vendor 1 operate normally. Vendor 1’s lab analysis con�rmed that the
previous batch of faults were not caused by high temperature; they were caused by the dust and
corrosion.

6.1.2 Phase 2: From March 2019 to October 2019 (8 Months). All tested HDDs and memories work
successfully during this reporting period. All CPUs work successfully during this reporting period.
We encountered �ve additional server faults in this test period.

• Four of them occurred on four Vendor 1 servers that had faults before and were �xed in Jan
of 2019. As mentioned previously, Vendor 1’s lab analysis con�rmed that the previous batch
of faults were not caused by high temperature; they were caused by the dust and corrosion.

Table 6. Server Status Overview as of Feb 28th 2019.

Server Model Room A Room B Room C

Vendor 1 Model1 Faulty, �xed1, operating Operating Operating

Vendor 1 Model2 Faulty, �xed2, operating Operating Operating

Vendor 1 Model3 Faulty, �xed3, operating Faulty, �xed4, operating Operating

Vendor 2 operating Operating Operating

Vendor 3 operating Faulty5 Operating

Vendor 4 operating Operating Operating
1Replaced the mainboard (Jan 4th 2019)
2Replaced the mainboard (Jan 4th 2019);
3Front fan failed; Rear fan working normally; Lots of noise.
1) Replaced the faulty fan; Engineers suggested to replace the backplane (Jan 4th 2019);
2) Replaced the backplane (Jan 15th 2019);
4Replaced the mainboard (Jan 4th 2019);
5Automatically halted. (The vendor did not responded to our failure report)
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Table 7. Server Status Overview as of Sep 23rd 2019

Server Model Room A Room B Room C

Vendor 1 Model 1 Faulty, mainboard replaced,
faulty again after 4 months1

Operating Operating

Vendor 1 Model 2 Faulty, mainboard replaced,
faulty again after 6 months2

Faulty, mainboard replaced,
faulty again after about 2
months4

Operating

Vendor 1 Model 3 Faulty, fan backplane re-
placed, faulty again3

Faulty, �xed4, operating Operating

Vendor 2 operating Operating Operating

Vendor 3 operating Faulty5 Faulty5

Vendor 4 operating Operating Operating

No faults with 12 switches and 3 routers.
1Replaced the mainboard (Jan 4th 2019); failed again (May 11th 2019)
2Replaced the mainboard (Jan 4th 2019); failed again (July 16th 2019)
3Front fan failed; Rear fan working normally; Lots of noise.
1) Replaced the faulty fan; Engineers suggested to replace the backplane (Jan 4th 2019);
2) Replaced the backplane (Jan 15th 2019); Front fan failed again and the server cannot
be powered on;
4Replaced the mainboard (Jan 29th 2019); failed again (March 20th 2019)
5Automatically halted. (The vendor did not responded to our failure reports)

Since no additional countermeasures against dust and corrosion were applied for the �xed
servers, this new batch of server faults should have the same reason as before, i.e., they were
caused by dust and corrosion.
• The remaining one fault occurred on a Vendor 3 server. As a result, all two servers from
Vendor 3 on the testbed have failed. Vendor 3 has not responded to our server fault report and
fault analysis request. From our investigation, the NO2 concentration levels on the testbed
are 5 times higher than Vendor 3’s requirement. This can be a main reason of the failure.

The corrosions caused by the co-presence of corrosive gas, dusts, and considerable relative hu-
midity were the cause of the server faults. Severe corrosions can be observed on the CD drives of
the two failed Vendor 3 servers, as shown in Fig. 40. Fig. 41 shows the dusts resting on the PCBs of
the motherboards of the faulty servers. Note that the vendor of the network equipment conveyed
that the switches/routers have anti-corrosion coating. This can be the main reason that the net-
work equipment on the testbed, though being exposed to the same environment condition as the
servers, had no failures.

6.2 Investigation on Failure Reason

This section presents the observations and investigation regarding several server faults on the
testbed. During the controlled tests, a number of servers in Room-A and Room-B had faults and
could not be booted. The remaining servers and all network equipment, forming a large portion of
all tested IT equipment, were healthy after 16-month operation, at the time when this report was
prepared. The vendors performed on-site examination for the faulty servers, replaced the faulty
components to revive the servers, and sent the faulty components for lab-based fault analysis.
The fault analysis results show that (1) corrosion caused by airborne contaminants on the moth-
erboards and other supporting PCBs is the main reason of the faults; (2) the server faults are not
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Fig. 40. Corrosion observed on the CD drive of a server in Room A in January and September of 2019. The

rightmost figure shows the CD drive of the same model of server in Room C.

Fig. 41. Dusts rest on the PCBs of the motherboard.

caused by CPUs, HDDs, and memories; and (3) high temperature is not a reason of the server
faults. In what follows, we provide some detailed information of the vendors’ fault analysis and
our investigation on the server room condition.

6.2.1 Our Own Investigation on Server Room Condition. We have performed investigation on the
potential reasons of the server failures. The results of our own investigation as follows.

(1) We investigated the temperature and RH conditions over the testing period and compare
them with the speci�cations of the servers. Our investigation shows that the temperature
and RH conditions do not violate the temperature and RH requirements of servers. Here are
the detailed results:
• Temperature: Two out of three Vendor 1 models are A4-compliant, i.e., they can contin-
uously operate under a condition of 45°C temperature and 90% relative humidity; Servers
from Vendor 2, 3, and 4 are A3-compliant, i.e., they can continuously operate under a
condition of 40°C temperature and 90% relative humidity. Except for a single model from
Vendor 1, no temperature violation occurred during the testing period. A further investiga-
tion on the Vendor 1 model shows that, this model can host a 4-node system and therefore
requires a lower temperature of 35°C. But the server of this model on our testbed only
hosts a 2-node system. Thus, this server will generate less heat and can tolerate higher
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Fig. 42. Simultaneous precise one-daymeasurement of corrosive gases concentrations in Room-A and Room-

C.

temperature. Given that the maximum temperature during the tests is 37°C, temperature
is not the reason for the failures of the servers.
• RH: From the servers’ datasheets, each server requires that the RH is lower than a thresh-
old among 85%, 90%, and 95%. Fig. 43 shows the traces of outside air RH and the cold air
RH in Room-A during three months before the server faults occurred. Note that because
we varied the cold air temperature in Room-A during the controlled experiments, the cold
air RH changed accordingly as shown in Fig. 43. We can see that the most stringent RH
requirement of 85% was violated for limited time periods, while the other two RH require-
ments of 90% and 100% were never violated. As a comparison, we also investigated the
cold air RH in Room-C. Following the common practice, Operator-B sets 20°C and 50% as
the temperature and RH setpoints for the hot return air that is inhaled by the CRAC unit.
The temperature and RH within the cold air containment is about 17°C and 70% that is
represented by the solid horizontal line in Fig. 43. From the �gure, we can see that, in fact,
the RH of the cold air of Room-C is close to and higher than the average RHs of Room-
A’s outside and cold air, respectively. Since there is no fault in Room-C, we think high
RH alone is not the reason of the faults. It is important to note that the RH requirements
speci�ed by the vendors assume that the air supplied to the servers is clean.

(2) We investigated the air quality by analyzing the measurements of the corrosive gases con-
centration. Table 8 shows a server vendor’s requirements and our measurements. We can
see that the SO2 concentration is slightly higher than the requirement and the NO2 concen-
tration is up to 5x higher than the requirement. Since the gas sensors we deployed on the
testbed as shown in Fig. 4(i) are designed for real-time long-term monitoring but with less
accuracy, we contracted a third-party company with gaseous contaminants monitoring ex-
pertise to perform one-day measurements in Room-A and Room-C simultaneously. Fig. 42
shows the company’s measurement apparatuses in the two rooms. Table 9 shows the mea-
surement results. We can see that the NO2 concentration in Room-A is at least 4.9x higher
than that in Room-C. By comparing our NO2 concentration measurements with those re-
ported in ASHARE’s whitepaper [2], we conclude that the estimated corrosion rate is at
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Fig. 43. RH of outside air, cold air in Room-A, and cold air in Room-C before the server faults in Room-A/B.

The three horizontal dash lines represent the servers’ maximum allowable RH levels that specified in their

datasheets.

Table 8. A server vendor’s requirement and our

measurement (unit: ppb).

Gas Required* Reading

H2S < 3 ≈ 0
SO2 < 10 ≈ 15
NO2 < 50 100-250

*The concentration upper bounds are
based on RH ≤ 50%.

Table 9. Simultaneous precise one-day measure-

ment (unit: µg/m3).

Gas Room-A Room-C

H2S 13 < 12
SO2 < 10 < 10
NO2 49 < 10

“<” means that the actual value is below the
measurement resolution.

Fig. 44. Microscopic images generated during vendor’s fault analysis.

least 12 times higher than Vendor 1’s requirement. This result is consistent with the ob-
served corrosion on the metal parts of the servers in Room A and B. Note that past research
showed that high RH will enhance the corrosion e�ects of corrosive gases [20].

(3) As Room-A and Room-B are about 100 meters from a major highway in Singapore, we also
suspect that the car exhaust gas is a major source of the NO2. Room-C has clean air because
DC operators �ltrate the air entering the DC building to remove the corrosive gases.

6.2.2 Vendor’s Fault Analysis. The key �ndings of Vendor 1’s fault analysis include the following:

• The faults of the two mainboards that failed during Phase 1 were caused by dusts and/or cor-
rosions. These two mainboards functions properly at room temperature after being shipped
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to the lab of Vendor 1. The test engineer applied liquid nitrogen spray and successfully repli-
cated the faults, suggesting that the fault was caused by dust. This is because when the
moisture in the air condenses on the motherboard, the dust on the motherboard absorbs the
condensed moisture and causes short circuits. Rust on the PCBs can be observed under mi-
croscope. After cleaning the motherboard using alcohol, the motherboard restored, passed
48-hour CPU and memory pressure tests at room temperature, and survived liquid nitrogen
spray tests. This behavior points to dust-induced failures.
• A faulty CPU is con�rmed to be caused by the over voltage due to a failed power supply chip
on themainboard. Thus, the CPU failure is a cascading failure. It is not caused by overheating.
The reason of the chip failure is not speci�ed by the fault analysis.
• Vendor 1 con�rmed that high temperature is not the cause of the server failures. Vendor 1
concluded that the short circuits and disconnections due to dusts and corrosions found on
the printed circuit board (PCB) surface are the main causes. Fig. 44 shows several pinpointed
corrosion problems that caused the mainboard failures. Vendor 1 conveyed that the faulty
servers do not have anti-corrosion coating and suggested that anti-corrosion coating on
PCBs can prevent the faults we encountered on the testbed.

6.2.3 Summary and Discussions. From an existing study [21], corrosion on metal materials is a
joint e�ect of corrosive gases and RH, because the corrosive gases will absorb moisture in the air
to form acids. Particulate contaminants can also attack the metal materials in a similar way or
cause short circuit if the ambient RH exceeds the deliquescent RH of the contaminants [2]. Note
that dust can be seen on the faulty motherboards under microscope during the server vendors’
lab-based fault analysis. Therefore, the server faults in Room-A and Room-B can be attributed to
(1) the co-presence of NO2, dust, and high RH, (2) the lack of anti-corrosion coating for the PCBs
in the faulty servers. ASHRAE’s whitepaper [2] mentions that sea salt carried by winds can also
damage electronic devices in coastal areas. As there are no mature o�-the-shelf sensors to monitor
salt concentration in the air, our current research falls short of telling whether sea salt contributed
to the server faults. But this issue is of great interest for future research.

6.3 Recommendations for Singapore

From the investigation of the failure reason, several general recommendations to mitigate the
impact of corrosion on the server reliability include:

• Build natural air cooled DCs in clean areas;
• Apply dust and gaseous pollutant �ltration;
• Apply anti-corrosion coating on the servers’ PCBs exposed to air to increase server reliability
in natural air cooled DCs.

We also performed an analysis to make a recommendation on the selection of server equipment
and the temperature control. We consider a temperature control approach as follows. When the
outside temperature exceeds a speci�ed threshold, the system activates the standby cooling coil
to process the outside air and maintain the temperature of the air supplied to the servers at the
threshold. During this process, the air temperature decreases while the RH increases. When the
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(a) Temperature threshold = 28°C (b) Temperature threshold = 31°C

(c) Temperature threshold = 34°C (d) Temperature threshold = 37°C

Fig. 45. Simulation results of the temperature control.

cooling coil is activated, the RH of the air supplied to the server can be calculated as follows:

PW 1 = f (Toutside + 273.15), (15)

PW 2 = f (Tsupply + 273.15), (16)

RHsupply = RHoutside ×
PW 1

PW 2
, (17)

f (T ) = e−
5.8×10−3

T
+1.392−4.864×10−2×T+4.176×10−5×T 2−1.445×10−8×T 3

+6.546×logT , (18)

whereToutside andTsupply are the outside and supply air temperatures in °C,RHoutside andRHsupply

are the outside and supply air RH. Based on the above equations, we perform a simulation using
Singapore’s daily outdoor air temperature and mean RH in the last 5 years (Jan 2014 to Oct 2018)
to compute the temperature trace and RH trace in the server room when four di�erent temper-
ature thresholds (28°C, 31°C, 34°C, 37°C) are used. Fig. 45 shows the simulated temperature and
RH traces for the four temperature threshold settings. Fig. 46 shows the cumulative distribution
function of the simulated RH under the four temperature thresholds.
Then, we cross check the simulated temperature and RH traces against ASHRAE’s four classes

regarding IT equipment’s temperature/RH tolerance. Fig. 47 shows the relationship between dif-
ferent levels of temperature control and ASHRAE’s classes.
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Fig. 46. Cumulative distribution function of the simulated RH. Temperature thresholds corresponding to

Level 1, Level 2, Level 3, and Level 4 are 28°C, 31°C, 34°C, and 37°C.

Fig. 47. Relationship between di�erent levels of temperature control and ASHRAE’s classes.

Table 10. Relative energy savings achievable with the energy consumption at 25°C as the baseline.

Level Supply air temperature threshold ASHRAE X-factor Relative energy saving

Level 1 28°C 1.36 31.33%
Level 2 31°C 1.45 56.77%
Level 3 34°C 1.52 53.36%
Level 4 37°C 1.6 53.48%

We have also investigated the energy saving corresponding to the four temperature settings
based on the energy pro�les shown in Fig. 18. Table 10 shows the ASHRAE’s reliability X-factor
and the relative energy saving (with the energy consumption at 25°C as the baseline. From the table,
we can see that the energy saving achieves a knee point when the temperature control threshold is
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31°C. With higher temperature threshold, the energy saving has a slight reduction. This is because
the servers’ built-in fans will rotate faster, resulting in higher energy consumption.
By jointly analyzing the results in Fig. 47 and Table 10, we can achieve a rule-of-thumb recom-

mendation of adopting ASHRAE Class A3 IT equipment and running the air-side free-cooled DC
with a temperature upper limit of 31°C. With this con�guration, we can fully meet ASHRAE’s A3
temperature requirement, and meet A3 RH requirement for 96.5% of time, and achieve the highest
energy saving of 56.77%. Note that many latest servers (e.g., all Dell’s gen14 servers and all HPE’s
DLx gen9 servers) are compliant with the A3 requirement. This rule-of-thumb recommendation
does not override the need of clean air and/or anti-corrosion measures, since the ASHRAE’s A3
requirement assumes clean air.
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7 DISCUSSIONS AND CONCLUSION

As the �rst systematic trial of air-side free cooling for DCs in Singapore, our research has generated
various valuable experiences and information for DC-related entities. Some of them are in the form
of learned lessons that the future research and industrial practice should consider. We summarize
them as follows.

• Singapore’s high temperaturesdonot impede air-side free cooling:During the project
period, no computing performance degradation was observed on our testbed with cold aisle
temperature up to 37°C. Investigation shows that the server faults on our testbed were not
caused by temperature. As ASHRAE has been working on extending the recommended al-
lowable temperature and RH ranges for IT equipment, many latest servers (e.g., all Dell’s
gen14 servers and all HPE’s DLx gen9 servers) are compliant with the A3 requirement to
be able to tolerate 40°C. Thus, the temperatures of Singapore with a record maximum of
37 °C will not impede air-side free cooling. From the results of this project, we make a rule-
of-thumb recommendation of adopting A3-compliant IT equipment and running an air-side
free-cooled DC when the ambient temperature is no greater than 31°C. Only when the am-
bient temperature is higher than 31°C, standby cooling is activated to maintain the tempera-
ture at 31°C. This operating guideline ensures that the A3 requirements on temperature and
RH are met for most of time in Singapore. Moreover, it gives a satisfactory saving in overall
energy consumption.
• Server hardening vs. airborne contaminants removal:We believe that by only deploy-
ing hardened IT equipment with anti-corrosion coating on the PCBs exposed to air, hard-
ware faults caused by corrosion and conductive dust will be resolved. Alternatively, better
airborne contaminants �ltration can be employed. The following two categories of �ltration
approaches can be considered:
– Passive �ltration: This project uses Class MERV-6 to remove PM10 and larger particles.
Filters in higher classes can be used instead to remove �ner particles. For corrosive gases,
the hot air generated by the servers can be recirculated and mixed with the outside cold
air to form warm air with lower RH to be supplied to the servers. The lower RH will
reduce the corrosive gases’ attack capabilities. This approach requires no extra energy
and exploits the higher temperature tolerance of the latest servers. The details of this
approach are described in Section 5.2. The speed control logic of server built-in fans may
need adjustment to avoid fast wear and tear due to unnecessarily high rotation speeds in
high temperatures. Note that the server fan speed control logic update can be implemented
using a shell script and deployed easily.

– Active �ltration: Electrostatic air cleaner can be employed to strengthen the particle
removal. Traditional chemical approaches can be applied to remove corrosive gases. How-
ever, these approaches will consume energy.

Therefore, this project has narrowed the feasibility problem of air-side free cooling in Singa-
pore down to the e�ectiveness of airborne contaminants removal and its associated Capex
and Opex. The choice of server hardening and better �ltration is a design problem that will
depend on speci�c con�gurations and constraints of the DC. For example, server hardening
may not be feasible for colocation DCs. We note that carefully choosing the location for
cleaner ambient air may signi�cantly ease the design of an air-side free-cooled DC.
• Implication for existing DCs: Our results also suggest that the existing DCs operated in
enclosed buildings can consider increasing their temperature setpoints for better energy e�-
ciency. These DCs will not have the airborne contamination problem, owing to the enclosed
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design and the deployed air �ltration systems. By simply raising the server room temper-
ature setpoint, the di�erence between the temperatures of the chilled water entering and
leaving the CRAC units of the server room will increase, resulting in decreased volume �ow
rate of the chilledwater for the room. Existing studies have shown that the increase of chilled
water temperature di�erence will lead to less energy usage of the chiller plant and the CRAC
units. For a colocation DC that hosts many private vaults for di�erent customers who desire
di�erent temperature setpoints, a pricing scheme that fairly attributes the energy usage of
the shared chiller plant infrastructure to the customers is still an open issue. If the heat ex-
change between the private vaults through the physical separations cannot be ignored, the
problem becomes more challenging. Such issues are interesting topics for future research.
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8 FUTURE RESEARCH

This project has generated two operational recommendations for air-side free cooling with server
performance, reliability, and energy e�ciency into consideration:
First, Section 5.2 proposes to use mixing to maintain the supply air temperature su�ciently

high (but still within the IT equipment’s thermal safety threshold, e.g., 40°C of A3 equipment)
such that the RH is below the deliquescent RH of the air-borne contaminants. We apply the deep
reinforcement learning to learn how to operate the fans and mixing dampers based data-driven
models. This approach aims to mitigate the impact of air-borne contaminants. Whether such a
control strategy can avoid the corrosion issue is still not experimentally studied.
Second, Section 6.3 provides a simple and practicable recommendation for Singapore’s air-side

free-cooled DCs without RH and contamination controls. It recommends to use IT equipment
compliant with the ASHRAE A3 requirement and run the DCs with supply air temperature not
exceeding 31°C. When the ambient temperature is higher than 31°C, standby cooling is activated
to maintain the supply air temperature at 31°C. Therefore, the temperature and RH requirement
of ASHRAEA3 class are satis�ed with high probability. However, the air-borne contaminants may
still cause IT hardware corrosion with the help of RH. Therefore, in this recommendation, the IT
equipment should have anti-corrosion measures.
Based on extensive knowledge obtained in this project, the future research can use the above

two operational recommendations to design, analyze, and verify a control approach to achieve
reliable, high-temperature air-side free-cooled DCs in Singapore’s tropical environment. The new
control approach can use the air mixing to maintain the supply air temperature su�ciently high as
in the approach presented in Section 5.2, use electrostatic air cleaner to reduce dusts entering the
room, and adjust the server fan control logic to avoid fast wear and tear. The objective is to operate
air-side free-cooled DCs reliably with normal servers that are not speci�cally hardened with anti-
corrosion measures. This project achieved a PUE of about 1.05 under the adaptive ventilation
approach. With additional air processing units (e.g., electrostatic air cleaner), a higher PUE of
1.1 can be a reasonable target of the new control approach. Moreover, arti�cial intelligence (AI)-
powered joint control of the environment and computation can also push the Pareto frontier of the
performance, reliability, and energy e�ciency. The study presented in Section 5.2 has shown the
great potential of the deep reinforcement learning in the control of the air-side free-cooled data
centres with complex cyber-physical dynamics. Future research can implement the new control
approach and perform veri�cation experiments for an extended period of time.
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