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Abstract

Internet-of-Things (IoT) devices are increasingly deployed in indoor environments.

In particular, there will be an IoT device proliferation in the household settings.

For instance, it is estimated that by 2022, a typical family home could contain

more than 500 smart devices. IoT devices are penetrating the industry environ-

ments to enable the realization of Industry 4.0. IoT devices are generally equipped

with processing units, various sensors, communication modules, and software plat-

forms to meet the application needs. A key characteristic of the IoT systems is the

heterogeneity of hardware and software. Specifically, there are numerous IoT hard-

ware platforms with diverse specifications and a number of embedded IoT operating

systems (OSes) such as Android Things, Wear OS, Contiki, and Arduino. Such het-

erogeneity introduces significant challenges to the implementation of various basic

system functions, such as clock synchronization and device authentication. Clock

synchronization aims at keeping the clocks of the IoT devices under consideration

having the same value all the time. However, the design of clock synchroniza-

tion faces the trade-off between the synchronization accuracy and the universality

over a variety of platforms. Specifically, high synchronization accuracy generally

requires platform-dependent hardware-level network packet timestamping, which

may not be available on any IoT platform. Thus, designing clock synchroniza-

tion approaches to improve the Pareto frontier of accuracy versus universality is

of great research interest. Device authentication verifies whether a device has a

certain property (e.g., possession of a secret key). It can be used to manage the

accesses to IoT devices. However, the existing device authentication approaches

require cumbersome sensor hardware or user’s manual input. Thus, they are de-

vised for specific devices and are generally inapplicable to a range of heterogeneous

IoT devices.

This thesis studies the clock synchronization and the device authentication prob-

lems for the IoT devices that can interact with the human bodies in the indoor

environments. Such body-interacting devices include the wearable devices (e.g.,

xiii
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smart watches, smart glasses, or medical sensors) and the indoor objects that the

user can physically touch (e.g., light switches, remote controls for television, or

voice assistants). This thesis designs and develops new clock synchronization and

device authentication approach based on a new sensing modality called induced skin

electric potential (iSEP) that provides desirable properties to solve the aforemen-

tioned challenges. Through extensive measurement studies on the electromagnetic

radiation signals emitted from the electric power lines in indoor environments, we

find that human body can act as an effective antenna and generate iSEP. The iSEP

signal has three properties: First, it shows the same periodicity as the powerline

voltages, which is 50 or 60 Hz. In particular, two iSEP signals have good syn-

chrony across a large area, e.g., a city, due to the synchrony of the power grid volt-

ages. Second, iSEP signals from the same location and the same body are similar,

whereas those from different bodies are distinct. Third, sensing iSEP only requires

a conductive wire connecting human body skin and the pin of an analog-to-digital

converter (ADC). As ADC is widely available on most microcontrollers (MCUs),

such a simple sensing mechanism can be universal for any IoT objects equipped

with MCUs. Based on iSEP, we design TouchSync and TouchAuth systems for

clock synchronization and device authentication for wearables and touchable IoT

objects.

TouchSync achieves millisecond synchronization accuracy while preserving univer-

sality in that it uses standard system calls only, such as reading system clock,

sampling sensors, and sending/receiving network messages. It is based on the

synchrony of iSEP signals collected from the same human body or different hu-

man bodies. TouchSync integrates the iSEP signal into the universal principle of

Network Time Protocol and solves an integer ambiguity problem by fusing the am-

biguous results in multiple synchronization rounds to conclude an accurate clock

offset between two synchronizing objects. With our shared code, TouchSync can

be readily integrated into any wearable applications. Example applications include

delivering audio stream synchronously for wireless earphones, motion analysis of

multiple on-body sensors, and gesture detection for multiple wearable gaming con-

trollers.

The design of TouchAuth is based on the electrostatics of iSEP generation and a

resulting property, i.e., the iSEPs from two close locations and the same human

body are similar. Extensive experiments verify the above property and show that



xv

TouchAuth achieves high-profile receiver operating characteristics in implementing

the touch-to-access authentication policy. Our experiments show that a range of

possible interfering sources including appliances’ electromagnetic emanations and

noise injections into the power network do not affect the performance of TouchAuth.

TouchAuth can be used in various applications with touchable IoT devices, e.g.,

family members wearing tokens can authenticate TV remote controller to access

personalized programmes. In addition, the user with a wearable TouchAuth token

can unlock the smart phone or authenticate a payment terminal by a simply touch.

The designs of TouchSync and TouchAuth exemplify an important cyber-physical

approach that leverages on certain properties of the physical processes (i.e., ambi-

ent electric field and generation of iSEP) to improve performance, usability, and

security of the basic IoT system functions. Applying such a cyber-physical ap-

proach to implement a broader scope of system functions for a wider range of IoT

systems beyond wearable and touchable devices will be of great research interest

in the future work.
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Chapter 1

Introduction

Physical objects in our daily lives are increasingly equipped with sensing, com-

puting, communication, and actuation capabilities. A huge number of such smart

objects, together with the cloud computing back end, use the Internet as the com-

munication media to form the Internet of Things (IoT), which will be the largest

global cyber system in the coming decades. With the Internet as the communi-

cation infrastructure, the application layer will be a main area for IoT innova-

tions. Various basic system functions in the application layer have been devised

for general-purpose Internet hosts, such as time distribution, encryption services,

and unified authentication like OpenID. However, the adaptation of these legacy

system functions designed for resource-rich Internet hosts to the IoT objects need

to be studied, because IoT objects may be short of the needed computing resources

and human-machine interfaces. Moreover, different from the current Internet hosts

that are mainly used for information exchange, IoT objects will be mainly tasked

to sense and actuate for certain purposes. As such, new basic system functions will

be needed for IoT.

Increased heterogeneity in both hardware and software platforms is a key charac-

teristic of IoT. For example, unlike the current Internet hosts that use a limited

number of de facto standard network interfaces (Ethernet, Wi-Fi, and cellular net-

work), IoT objects additionally use a spectrum of network interfaces (including

various 2.4GHz and sub-GHz technologies). The diverse network interfaces with

distinct physical-layer and link-layer properties introduce challenges for implement-

ing accurate network packet timestamping and clock synchronization as two basic

1
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system functions. As another example, different from the standard password-based

authentication on Internet hosts, diverse hardware has been employed for IoT ob-

jects for implementing new authentication approaches, such as various biometric

scanners, face recognition cameras, or voice recognition microphones. Such het-

erogeneous authentication mechanisms make the envisaged unified authentication

more challenging.

To address the heterogeneity-induced challenges, this thesis proposes to adopt a

cyber-physical approach to leverage on the sensing capabilities of IoT objects and

exploit certain properties of the physical ambient to develop low-cost, lightweight,

and effective basic system functions for IoT objects. Specifically, this thesis studies

two basic system functions of clock synchronization and device authentication for

the wearable and touchable IoT objects found in indoor environments. It studies

and exploits a new sensing modality of induced skin electric potential (iSEP) that is

due to the electrostatic coupling between the human body and the electrical cabling

of the building. Three properties of iSEP, i.e., periodicity, synchrony, and body-

area similarity, enable lightweight, universal, and effective clock synchronization

and device authentication for wearable and touchable IoT objects. The following

two sections of this chapter introduce the detailed background of these two basic

system functions and present our iSEP-based approaches.

1.1 Application-layer Clock Synchronization for

Wearables Using iSEPs

The annual worldwide shipments of consumer wearables (e.g., smart watches, wrist-

bands, eyewears, and clothing) grew by 17% in 2017 (Gartner, 2017). This rapid

growth is expected to continue, projected to be 504 million units shipped in 2021

(Gartner, 2017). Along with the proliferation of consumer wearables, specialized

domains such as clinical/home healthcare (Chan, EstèVe, Fourniols, Escriba, &

Campo, 2012) and exercise/sport analysis (Mokaya, Lucas, Noh, & Zhang, 2016)

are increasingly adopting smart wearable apparatuses. In the body-area networks

formed by these wearables, a variety of system functions and applications depend

on tight clock synchronization among the nodes. For instance, motion analysis

(Lorincz et al., 2009) and muscle activity monitoring (Mokaya, Lucas, Noh, &
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Zhang, 2015; Mokaya et al., 2016) require sensory data from multiple tightly syn-

chronized nodes.

While current wearable systems adopt customized, proprietary clock synchroniza-

tion approaches (Apple Inc., 2015), we envisage a wide spectrum of interoperable

wearables that can synchronize with each other to enable more novel applications.

In the envisaged scheme, an application developer can readily synchronize any two

communicating wearables using high-level and standard system calls provided by

their operating systems (OSes), such as reading system clock, transmitting and re-

ceiving network messages. However, the design of clock synchronization approaches

faces a fundamental trade-off between the synchronization accuracy and the univer-

sality for heterogeneous platforms. This is because a high synchronization accuracy

generally requires low-level timestamping for the synchronization packets, which

may be unavailable on the hardware platforms or inaccessible to the application

developer.

We illustrate this accuracy-universality trade-off using the Network Time Protocol

(NTP) (NTP: The Network Time Protocol , 2017) and the Precision Time Protocol

(PTP) (IEEE, 2008). NTP synchronizes a slave node and a master node by record-

ing their clock values when a UDP synchronization packet is passed to and received

from the sender’s and receiver’s OSes, respectively. Thus, NTP is universal in that

it can be deployed to any host through UDP. However, as the application-layer

timestamping cannot capture the details of the nondeterministic OS and network

delays, NTP may yield significant synchronization errors up to hundreds of mil-

liseconds (ms) in a highly asymmetric network. To solve this issue, PTP uses

hardware-level timestamping provided by PTP-compatible Ethernet cards at the

end hosts and all the switches on the network path to achieve microsecond (µs)

accuracy. However, the need of the special hardware inevitably negates its univer-

sality and restricts PTP’s adoption to time-critical local-area networks only, e.g.,

those found in industrial systems.

In wireless networks, due to the more uncertain communication delays caused by

media access control (MAC), NTP performs worse. Thus, similar to PTP, most

existing clock synchronization approaches for wireless sensor networks (WSNs)

(e.g., Reference-Broadcast Synchronization (RBS) (Elson, Girod, & Estrin, 2002),

Timing-sync Protocol for Sensor Networks (TPSN) (Ganeriwal, Kumar, & Srivas-

tava, 2003), and Flooding Time Synchronization Protocol (FTSP) (Maróti, Kusy,
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Simon, & Lédeczi, 2004)) have resorted to MAC-layer timestamping provided by

the nodes’ radio chips to pursue synchronization accuracy. The study (Casas,

Gracia, Marco, & Falcó, 2005) uses MAC-layer access of Bluetooth called the Host

Controller Interface (HCI) to synchronize Bluetooth devices. The classic Bluetooth

devices can use the Bluetooth Clock Synchronization Protocol (CSP) included

in the Bluetooth Health Device Profile (HDP). However, Bluetooth Low Energy

(BLE) does not support HDP and CSP. The need of the MAC-layer timestamping

or specific radio links present a barrier for the wide adoption of these approaches

to the broader IoT domain, where the IoT platforms use diverse radios and OSes,

and in general they do not provide an interface for the MAC-layer timestamping.

In the first part of this thesis, we aim at developing a new clock synchronization

approach for wearables that establishes a desirable accuracy-universality trade-off

point between the two extremes represented by NTP and PTP to well address

the momentum of IoT platform heterogenization. In particular, we stem from the

sensor nature of wearables to explore ambient signals that can assist clock syn-

chronization. Recent studies exploited external periodic signals such as powerline

radiation (Rowe, Gupta, & Rajkumar, 2009) and Radio Data System (RDS) (L. Li

et al., 2011) to calibrate the clocks of WSN nodes. However, these approaches

need non-trivial extra hardware to capture the external signals. Moreover, they

focus on clock calibration that ensures different clocks advance at the same speed,

rather than synchronizing the clocks to have the same value. But they inspire us

to inquire (i) the existence of a periodic and synchronous signal that can be sensed

by different wearables without adding non-trivial hardware to preserve universal-

ity and (ii) how to exploit the signal to synchronize the wearables without using

hardware-level packet timestamping.

For the first inquiry, we conduct extensive measurements to explore such signals.

Our measurements based on Adafruit’s Flora, an Arduino-based wearable platform,

show that by simply sampling an onboard analog-to-digital converter (ADC), a

Flora can capture powerline electromagnetic radiation that oscillates at the power

grid frequency (e.g., 50 Hz). When the Flora’s ADC has a physical contact with the

wearer’s skin, the sampled induced skin electric potential (iSEP) is a significantly

amplified version of the powerline radiation, because the human body acts as an

effective antenna. Although the iSEP’s amplitude is dynamic due to the human

body movements, its frequency is highly stable. Moreover, the iSEPs on the same
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wearer and even different wearers in a same indoor environment exhibit desirable

synchrony. The time displacement between the iSEPs at different positions of a still

wearer is generally less than 1 ms. These results suggest that iSEP is a promising

basis for synchronizing the wearables.

For the second inquiry, we integrate the periodic and synchronous iSEP signal into

the universal principle of NTP to deal with the major source of NTP’s error, i.e.,

asymmetric communication delays. In the original NTP, the problem of estimating

the offset between the slave’s and master’s clocks is a real-domain underdetermined

problem that has infinitely many solutions. NTP chooses a solution by assuming

symmetric communication delays, which does not hold in many scenarios, how-

ever. Assisted with the periodic iSEP, the problem reduces to an integer-domain

underdetermined problem that has a finite number of solutions. However, it is chal-

lenging to infer which solution is correct. The integer ambiguity can be resolved by

jointly considering multiple synchronization rounds with dynamic and asymmetric

communication delays. Thus, the clock offset between a pair of wearables can be

estimated with ms accuracy due to the ms synchrony between their iSEP signals.

Based on the above two key results, we design a novel clock synchronization ap-

proach for wearables, which we call TouchSync. It runs at the application layer

in that the needed iSEP sampling, the network message exchange and timestamp-

ing can be implemented using standard wearable OS calls. Thus, by introducing

a rather simple skin contact, we can readily achieve ms synchronization accuracy

across heterogeneous wearable platforms, without resorting to the hardware-level

packet timestamping that is extremely difficult to be standardized. To simplify

the adoption of TouchSync by application developers, we design and release a

touchsync.h header file (Yan, Li, Tan, & Huang, 2017b) that implements Touch-

Sync’s signal processing algorithms and the integer ambiguity solver. With this

header, the implementations of TouchSync in Arduino and TinyOS need about 50

and 150 lines of code, respectively, which manage sensor sampling, synchroniza-

tion message exchange, and application-layer timestamping only. All these tasks

can be easily implemented by Arduino and TinyOS developers. We then conduct

extensive experiments in various indoor environments to show the pervasive avail-

ability of the iSEP signals. On the same wearer, TouchSync mostly achieves sub-ms

accuracy and the largest error is 2.9 ms. We conduct a TouchSync-over-Internet
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proof-of-concept experiment that yields errors below 7 ms between two wearers

10 km apart.

The ADC-skin contact needed by TouchSync can be easily integrated into the wear-

able designs with near-zero cost. Our experiments show that, in the absence of the

contact, TouchSync can still work with graceful performance degradation. iSEP is

a new and valuable sensing modality for integration consideration, since it provides

accurate timing and is indicative of other information about the wearer (e.g., body

orientation, movements, and indoor location) as suggested by our measurements

in Chapter 3.

1.2 Touch-to-Access Device Authentication Us-

ing iSEPs

The indoor environments are increasingly populated with smart objects. It is es-

timated that by 2022, a typical family home could contain more than 500 smart

devices (Gartner, 2014). Managing the access with many objects, including ac-

cessing the information on them or granting them to access certain information,

becomes challenging. Typing password is tedious and infeasible for the objects

without a keyboard or touchscreen. Biometrics-based user authentication suffers

various shortcomings. Fingerprint scanning requires a well positioned finger press.

Moreover, due to cost factor, small objects unlikely have fingerprint scanners. Face

recognition solutions require face positioning and are costly (Mayo, 2018). Voice

recognition-based access can be disturbing in certain environments, e.g., an open-

plan office with colleagues and a bedroom with sleeping buddies. Moreover, defining

a separate voice passphrase for each smart object to avoid incorrect invoking may

result in too many passphrases.

In the second part of this thesis, we aim to develop a low-cost and convenient

touch-to-access scheme that can be easily implemented on smart objects found in

indoor environments. Specifically, a simple touch on an object allows an authorized

user to access the object. This scheme will not require non-trivial interferences for

user interactions, e.g., touchscreen. Different from integrating user identification

(e.g., fingerprint scanning) into the objects, we resort to a device authentication

approach that offloads the user’s identity to a personal wearable token device (e.g.,
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a smart watch or a bracelet) and uses the token to access a touched object that has

been previously paired with the token. This touch-to-access device authentication

approach can greatly improve the user’s convenience and experience in interacting

with the smart objects. For instance, in a home with multiple residents, when a

user wearing his token turns on a TV set using a smart remote control, the control

obtains the user identity from the token and instructs the TV set to list the user’s

favorite channels. The user can touch other smart objects to personalize them.

For example, the user can touch a music player for the favorite music. Another

example is that the user can switch on a light that automatically tunes to the user’s

favorite color temperature or hue.

If the user can protect the personal wearable token well, the touch-to-access device

authentication can be used in more access-critical scenarios. For example, a touch

on a smartphone or tablet unlocks the device’s screen automatically, allows in-

app purchases, or passes the parental controls. Beyond the above use scenarios for

improved convenience in access control, the touch-to-access scheme can enhance the

security of various systems. For instance, it can be used with fingerprint scanning

to form a two-factor authentication against fake fingerprints. A wireless reader can

access a worn medical sensor only if the reader has a physical contact with the

wearer’s skin. The contact enforces the wearer’s awareness regarding the access

and prevents remote wireless attacks with stolen credentials (Halperin et al., 2008).

Thus, the touch-to-access scheme is more secure than the existing hardware token

approaches such as Duo (Duo, 2018).

The essence of the touch-to-access scheme is the detection of whether the wearable

token and the smart object in question have physical contact with the same user’s

body. Existing studies tackle this same-body contact detection problem by intra-

body communication (IBC) (Zimmerman, 1995; Matsushita, Tajima, Ayatsuka, &

Rekimoto, 2000; Park et al., 2006; Baldus, Corroy, Fazzi, Klabunde, & Schenk,

2009; Vu et al., 2012; Holz & Knaust, 2015; Roeschlin, Martinovic, & Rasmussen,

2018) and physiological sensing such as electrocardiography (ECG) (Poon, Zhang,

& Bao, 2006; F. Xu, Qin, Tan, Wang, & Li, 2011; Venkatasubramanian, Banerjee,

& Gupta, 2010; Hu et al., 2013; Rostami, Juels, & Koushanfar, 2013), photo-

plethysmogram (PPG) (Poon et al., 2006; Venkatasubramanian et al., 2010; Hu

et al., 2013), and electromyogram (EMG) (L. Yang, Wang, & Zhang, 2016). IBC

requires either non-trivial customized transceivers (Zimmerman, 1995; Matsushita
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et al., 2000; Park et al., 2006; Baldus et al., 2009; Roeschlin et al., 2018) or a

touchscreen as the receiver (Vu et al., 2012; Holz & Knaust, 2015), resulting in

increased cost or reduced applicable scope. The physiological sensing approaches

are based on a body-area property, i.e., the physiological signals captured from the

same human body have similar values or features, whereas those collected from

different human bodies are distinct. However, the physiological sensors are often

bulky due to the required physical distances among a sensor’s electrodes (Barill,

2003; L. Yang et al., 2016). Furthermore, they often need careful placement and

may perform poorly in daily life settings (Chang, Hu, Anderson, Fu, & Huang,

2012).

Different from IBC and physiological sensing, in this chapter, we investigate the

feasibility and effectiveness of using induced skin electric potential (iSEP) due

to the body antenna effect for touch-to-access device authentication. As a non-

physiological phenomenon, the body antenna effect refers to the alteration of the

intensity of the mains hum captured by an ADC when the ADC has a physical

contact with a human body. The mains hum induced by the building’s electri-

cal cabling is ubiquitous. In addition, ADC is a basic electronic component that

is widely available on microcontrollers. Recent studies have exploited the body

antenna effect for key stroke detection (Elfekey & Bastawrous, 2013), touch sens-

ing (Cohn, Morris, Patel, & Tan, 2011), motion detection (Cohn, Gupta, et al.,

2012), gesture recognition (Cohn, Morris, Patel, & Tan, 2012). These studies lever-

age several characteristics of iSEP, such as signal intensity alteration (Elfekey &

Bastawrous, 2013), or feed iSEP signals to machine learning algorithms for motion

and gesture recognition (Cohn et al., 2011; Cohn, Gupta, et al., 2012; Cohn, Mor-

ris, et al., 2012). To use iSEP for device authentication, its body-area property and

the underlying physical mechanism need to be well understood. To the best of our

knowledge, these issues have not been studied. This thesis investigates in detail

the physical mechanism of the iSEP’s generation and its body-area property. The

iSEP measurement by an ADC is the difference between the electric potentials of

the ADC pin and the ground1 of the sensor, respectively. From electrostatics, a

human body, which can be viewed as an uncharged conductor, will alter its nearby

electric field (EF) emitted from the electrical cabling of the building due to elec-

trostatic induction. As a result, the iSEP measurement by a sensor will be affected

by the presence of a nearby human body. In particular, we make the following two

1Throughout this chapter, “ground” refers to the floating ground of a device.
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hypotheses based on the above understanding. First, the iSEP signals measured

by two sensors that are on the same human body and close to each other will be

similar. This is because 1) the two sensors’ ADC pins will have the same potential

due to their connections to the equipotential human body, and 2) their grounds

will most likely have similar potentials as they are close to each other in the EF.

Second, the iSEP signals collected from different human bodies will be different.

This is because different human bodies will most likely have different potentials

and thus affect nearby EFs differently since they build up different surface charge

distributions in the electrostatic induction.

Our extensive measurement results are consistent with the above two hypotheses.

Based on the results, we design a prototype system called TouchAuth that performs

touch-to-access device authentication based on iSEP signals. We implement the

same-body contact detection algorithm based on two similarity metrics, i.e., abso-

lute Pearson correlation coefficient (APCC) and root mean square error (RMSE).

Extensive experiments show that the APCC-based TouchAuth achieves true ac-

ceptance rates of 94.2% and 98.9% subject to a false acceptance rate (FAR) upper

bound of 2% when one and five seconds of iSEP signal is recorded, respectively.

In contrast, ECG/PPG approaches (Poon et al., 2006; Venkatasubramanian et al.,

2010; Hu et al., 2013) need to record the signal(s) for tens of seconds to achieve

comparable detection accuracy (Section 4.1). Our experiments show that various

possible interfering sources including appliances’ electromagnetic emanations and

noise injections into power networks do not affect TouchAuth.

In summary, TouchAuth is a low-cost, lightweight, and convenient approach for the

authorized users to access smart objects in indoor environments. To implement

TouchAuth, the smart object’s and the wearable token’s microcontroller ADCs

are to be wired to their conductive exteriors. Compared with the near-field com-

munication (NFC) approach that enforces a proximity requirement on device au-

thentication, the touch requirement of TouchAuth is more intuitive and clearer.

Moreover, compared with the ADCs that are widely available on microcontrollers,

the NFC chips are more costly and need to be integrated into the smart objects to

read the wearable tags.
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1.3 Summay of Contributions

The contributions of this thesis are summarized as follows:

• It explains the generation mechanism of iSEP.

• It extensively measures iSEP signals to investigate various properties of iSEPs

including periodicity, phase, and body-area similarity.

• It design a clock synchronization approach called TouchSync based on iSEP

for wearables. TouchSync runs at the application layer that only need stan-

dard OS calls such as sampling sensors and transmitting/receiving network

messages. By solving an integer ambiguity problem, TouchSync achieves syn-

chronization errors of below 3 ms and 7 ms on the same wearer and between

two wearers 10 km apart, respectively.

• It designs an iSEP-based device authentication approach called TouchAuth.

TouchAuth uses iSEPs to detect whether two devices are in proximity on the

same human body. TouchAuth achieves comparable authentication accuracy

as existing physiological sensing approaches, but with much shorter sensing

times. TouchAuth offers a low-cost, lightweight, and convenient way for the

authorized users to access smart IoT objects found in indoor environments.

1.4 Thesis Structure

Chapter 2 presents the technical preliminaries of body antenna effect, the electric

field (EF) of electrical cabling, and the interactions among EF, sensor, and hu-

man body. Chapter 3 presents TouchSync, an iSEP-based clock synchronization

approach for wearables. Chapter 4 presents TouchAuth, a device authentication

approach for wearables using iSEP. Chapter 5 concludes this thesis and discusses

future work.



Chapter 2

Preliminaries on Body Antenna

Effect

In this chapter, we present a set of measurement results to illustrate the body

antenna effect. Moreover, we describe the underlying physical mechanism of body

antenna effect, i.e., the electric field (EF) from the electric cabling, and the gener-

ation of skin electric potential induced by EF.

2.1 Body Antenna Effect

First, we illustrate the body antenna effect. The two curves in Fig. 2.1 are the

measurement traces of a mote-class sensor placed at a fixed position, with an ADC

pin floating in the air or pinched by a person, respectively. Without body contact,

the sensor captures the mains hum with weak amplitude and a frequency of about

50 Hz (i.e., the nominal grid frequency in our region). With body contact, the

signal has greater amplitude and exhibits more clearly the frequency of 50 Hz.

The above result shows that the human body affects the reception of mains hum.

Several recent studies (Cohn, Morris, et al., 2012; Elfekey & Bastawrous, 2013)

exploited this human body antenna effect for various applications. However, they

do not provide an in-depth explanation of the effect. This chapter explains this

effect in detail, which guides our experiments and the designs of TouchSync and

TouchAuth.

11
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Figure 2.1: The body antenna effect.

2.2 Electric Field (EF) From Electrical Cabling

A line of charge emits an EF, whereas a current through the line generates a

magnetic field. Thus, a charged wire carrying alternating current (ac) generates

both time-varying electric and magnetic fields. However, since the magnetic fields

generated from the two close-lying current-carrying wires within a single power

cable tend to cancel each other, the overall magnetic field around a power cable is

normally very weak (Vistnes, 2001).1 At the nominal frequency of the ac power

grid, i.e., 50 or 60 Hz, the power cable’s EF is an extremely low frequency (ELF)

radiation with a wavelength of thousands of miles. At such a wavelength scale, we

do not need to consider the magnetic field excited by the time-varying EF. Thus,

EF is the main emanation from a power cable.

Modern buildings often have complex electrical cabling. For example, permanent

power cables run above ceilings, below floors, and on walls. There are also power

extension cords installed by residents. As the EF from a cable is a vector field with

intensity attenuating with the distance from the cable, the combined EF caused by

all the cables in a building is a vector field with a complex intensity distribution

over the space. In normal homes with 220 V power supply, the intensity of the

combined EF is often between 3 V/m and 30 V/m (Vistnes, 2001). The EF is

the superposition of the EFs emitted by surrounding electrified power cables and

appliances. Due to the spatial distribution of the power cables and appliances, the

gradients of the EF at different locations are generally different.

1The low-intensity net magnetic field due to a small mismatch between the two wires’ currents,
which is caused by the vagabond currents effect, is sensible using special devices such as hall effect
sensors and tank circuits tuned to the power grid frequency.
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Figure 2.2: Mains hum measured by a sensor (without human body contact)
placed close to a power cord supporting a 2 kW heater.

Note that if an appliance is powered off, the intensity of the EF from the power cable

supporting the appliance remains unchanged. This is due to the fact that most

switches only break the connection in one wire, while the wires still have the same

service voltage as when the appliance is powered on. We conduct an experiment

to verify this. Fig. 2.2a shows the mains hum measured by a sensor that has a

conductor wire connected to an ADC pin to improve EF sensing and is placed

close to a power cord supporting a 2 kW heater. From the figure, the operating

status of the heater does not affect the measurements. Fig. 2.2b shows the sensor’s

measurements when the heater remains off and the power cord is connected to or

disconnected from the wall outlet. We can see that the intensity of the sensor

readings is weaker when the power cord is diselectrified. The remaining intensity is

caused by the EFs from other electrified power cables in the building. The above

results suggest that (i) the ambient field is an EF caused by the ac voltages, (ii)

the ac current changes caused by appliances’ operating status changes have little

impact on the ambient field.

2.3 Interactions Among EF, Sensor, and Human

Body

First, we discuss the situation without a human body. Our discussions below

concern a time instant only. As a typical sensor’s ADC has high input impedance
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Figure 2.3: Impact of an uncharged conductor (e.g., human body) on an EF
from a point charge. Arrows represent the directions of the EF; dotted curves
represent equipotential lines.

(hundreds of kΩ up to a few MΩ), the ADC pin and the ground of the sensor can

be considered insulated for simplicity of discussion. The ADC and ground have

different potentials in the building’s ambient EF due to their physical distance.

The potential difference is the measurement of the sensor. For instance, in an EF

with an intensity up to 30 V/m, if the equivalent distance between the ADC pin

and the ground is 1 cm, the measurement can be up to 0.3 V. This is consistent

with our results in Figs. 2.1 and 2.2.

Now, we discuss the situation with a human body. A body can be viewed as a

conductor due to its low impedance (a few kΩ (Reilly, 1998)). From electrostatics,

an uncharged conductor in an EF builds up a surface charge distribution to reach

an electrostatic equilibrium, where the EF inside the conductor is zero and the

conductor’s surface is an equipotential surface (Purcell & Morin, 2013). The surface

charge distribution will generate an EF. As a result, the EF combining that from the

original source (i.e., electrical cabling) and the electrostatically induced conductor

(i.e., the human body) is different from the EF in the absence of the conductor. In

other words, the human body affects its nearby EF. The change of field intensity

results in the change of potential difference between the sensor’s ADC and ground,

i.e., the sensor’s measurement.

We use an electrostatics example as shown in Fig. 2.3 to illustrate the human

body’s impact on ambient EF. When an uncharged conductor is in the field from

a point charge, negative/positive surface charges will be built up. As a result, the

EF intensity, which is characterized by the density of the equipotential lines, will

change in the space close to the electrostatically induced conductor. For instance, in

Fig. 2.3, the EF between the charge and the conductor is intensified. The reading of
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a sensor in this area will increase if its ADC and ground are arranged in the direction

of the field. In practice, the indoor EF will be much more complex than the one

shown in Fig. 2.3. Nevertheless, the example provides a basic understanding of the

body antenna effect. Noted that the iSEP sensor runs at 3.7 volts and captures

the electric potentials from human skin passively, there is no current go through

the user.





Chapter 3

Wearables Clock Synchronization

Using iSEPs

In this chapter, we present TouchSync, an application-layer clock synchronization

approach for wearables1. Section 3.1 reviews related work. Section 3.2 introduces

background. Section 3.3 presents a measurement study. Section 3.4 designs Touch-

Sync. Section 3.5 extends the design to address the situations where the iSEPs are

too weak. Section 3.6 and Section 3.7 implement and evaluate TouchSync, respec-

tively.

3.1 Related Work

Highly stable time sources are ill-suited for wearables. Chip-scale atomic clocks are

too expensive ($1,500 per unit (Wire, 2011)). GPS receivers are power-consuming

and do not work in indoor environments. The studies (Ferrari, Zimmerling, Thiele,

& Saukh, 2011) and (Lenzen, Sommer, & Wattenhofer, 2009) propose synchro-

nization protocols for IEEE 802.15.4 networks. The studies (Terraneo, Leva, Seva,

Maggio, & Papadopoulos, 2015) and (Lim, Maag, & Thiele, 2016) improve the

synchronization accuracy by compensating the propagation delays. However, these

studies (Ferrari et al., 2011; Lenzen et al., 2009; Terraneo et al., 2015; Lim et al.,

1This chapter is partially published on (Yan, Li, Tan, & Huang, 2017a) and (Yan, Tan, Li, &
Huang, 2019).
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2016) need the MAC-layer access, which is usually not provided by the heteroge-

neous wearable platforms. Recent studies exploited external signals available in

indoor environments to synchronize or calibrate the clocks of distributed nodes. In

(Chen, Wang, Chang, & Terzis, 2011), an AM radio receiver is designed to decode

the global time information broadcast by timekeeping radio stations. In (L. Li et

al., 2011), a mote peripheral is designed to capture the periodic RDS signals of

FM radios for clock calibration. In (Rowe et al., 2009), a mote peripheral called

syntonistor can receive the periodic electromagnetic radiation from powerlines to

calibrate wireless sensors’ clocks, where some clock synchronization approach is

still needed for the initial synchronization. In (Viswanathan, Tan, & Yau, 2016;

Rabadi, Tan, Yau, & Viswanathan, 2017), voltage sensors plugged in to wall power

outlets are used to secure clock synchronization against malicious network delays.

In particular, the voltage cycle length fluctuations are exploited to implement a

data-based clock synchronization approach (Viswanathan et al., 2016). In (Y. Li,

Tan, & Yau, 2017), such fluctuations extracted from the powerline radiation are

used as natural timestamps. However, the error of the natural timestamps can be

up to hundreds of ms. Moreover, the clock synchronization based on the natural

timestamps needs to transmit a considerable amount of cycle length data and a

compute-intensive matching process to decode the fluctuations to time informa-

tion (Y. Li et al., 2017). Thus, the natural timestamping approach is ill-suited for

tight clock synchronization among resource-constrained wearables. In (Lazik, Ra-

jagopal, Sinopoli, & Rowe, 2015), a smartphone captures ultrasonic beacons from

pre-deployed synchronized beacon nodes to synchronize its own clock. All the above

approaches (Chen et al., 2011; L. Li et al., 2011; Rowe et al., 2009; Viswanathan et

al., 2016; Rabadi et al., 2017; Y. Li et al., 2017; Lazik et al., 2015) need non-trivial

customized hardware and infrastructures, which reduce their universality.

Two recent studies leverage built-in sensing modalities to capture external periodic

signals for clock calibration. In (Hao, Zhou, Xing, Mutka, & Chen, 2011), a 802.15.4

radio is used to capture the Wi-Fi beacons to calibrate motes’ clocks. Although

this approach requires no peripherals, it uses the received signal strength indication

(RSSI) register of the radio chip, which makes it hardware specific and nonuniversal

for IoT platforms that use diverse radios. In (Z. Li et al., 2012), motes use light

sensors to capture the fluorescent light that flickers at a frequency twice of the

power grid frequency to calibrate their clocks. Although light sensors are widely

available, the required fluorescent lighting may not be available in natural lighting
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environment. In contrast, the powerline radiation that induces the iSEP signal

used by our approach pervades civil infrastructures.

The studies (L. Li et al., 2011; Rowe et al., 2009; Hao et al., 2011; Z. Li et al.,

2012) mentioned above, including the two (Rowe et al., 2009; Z. Li et al., 2012)

that are power grid related, focus on clock calibration that involves no message

exchanges among nodes. Though continuous clock calibration maintains the nodes

synchronized once they are initially synchronized, the initial synchronization and

the resynchronizations needed upon clock calibration faults are not addressed in

these studies. Thus, these studies and ours are complementary, in that the principle

of TouchSync can be used for the initial synchronization of the systems adopting

these clock calibration approaches (L. Li et al., 2011; Rowe et al., 2009; Hao et al.,

2011; Z. Li et al., 2012).

In (He, Duan, Cheng, Shi, & Cai, 2014), a distributed clock synchronization ap-

proach based on consensus is proposed. Note that TouchSync addresses the clock

synchronization between two nodes only. The noise estimation algorithm in (He et

al., 2014) can be integrated with TouchSync to improve performance. TouchSync

can be applied to both centralized and distributed clock synchronization systems.

3.2 Background

3.2.1 NTP Principle and Packet Timestamping

Many clock synchronization approaches adopt the principle of NTP, which is illus-

trated in Fig. 3.1a. A synchronization session consists of the transmissions of a

request packet and a reply packet. The t1 and t4 are the slave’s clock values when

the request and reply packets are transmitted and received by the slave node, re-

spectively. The t2 and t3 are the master’s clock values when the request and reply

packets are received and transmitted by the master node, respectively. Thus, the

round-trip time (RTT) is RTT = (t4 − t1) − (t3 − t2). Based on a symmetric link

assumption that assumes identical times for transmitting the two packets, the off-

set between the slave’s and the master’s clocks, denoted by δNTP , is estimated as

δNTP = t4 −
(
t3 + RTT

2

)
. Then, this offset is used to adjust the slave’s clock to

achieve clock synchronization. Under the above principle, non-identical times for
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Figure 3.1: NTP principle and packet timestamping.

transmitting the two packets will result in an error in estimating the clock offset.

The estimation error is half of the difference between the times for transmitting

the two packets.

We use Fig. 3.1b and the terminology in (Maróti et al., 2004) to explain how

the timestamps (e.g., t3 and t4) are obtained in NTP and existing WSN clock

synchronization approaches. The send time and the receive time are the times used

by the OS to pass a packet between the synchronization program and the MAC

layer at the sender and receiver, respectively. They depend on OS overhead. The

access time is the time for the sender’s MAC layer to wait for a prescribed time

slot in time-division multiple access (TDMA) or a clear channel in carrier-sense

multiple access with collision avoidance (CSMA/CA). It often bears the highest

uncertainty and can be up to 500 ms (Maróti et al., 2004). The transmission (Tx)

and reception (Rx) times are the physical layer processing delays at the sender and

receiver, respectively. The propagation time equals the distance between the two

nodes divided by the speed of light, which is generally below 1µs.

As illustrated in Fig. 3.1b, NTP timestamps the packet when the packet is passed

to or received from the OS. Thus, the packet transmission time used by NTP

is subjected to the uncertain OS overhead and MAC. Therefore, as measured in

Section 3.2.2, NTP over a Bluetooth connection can yield nearly 200 ms clock offset

estimation errors. To remove these uncertainties, FTSP uses MAC-layer access to

obtain the times when the beginning of the packet is transmitted/received by the

radio chip. As the propagation time is generally below 1µs, FTSP simply estimates

the clock offset as the difference between the two hardware-level timestamps. Thus,

the two-way scheme in Fig. 3.1a becomes non-essential for FTSP.
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Figure 3.2: Performance of NTP over a BLE connection.

3.2.2 Performance of NTP over BLE Connection

As our objective is to devise a new clock synchronization approach that uses

application-layer timestamping as NTP does, this section measures the perfor-

mance of NTP to provide a baseline. We implement the NTP principle described

in Section 3.2.1 on Flora (Adafruit, 2018), a wearable platform. Our setup in-

cludes a Flora node and a Raspberry Pi (RPi) 3 Model B+ single-board computer

(Raspberry Pi 3 Model B , 2017) that perform the NTP slave and master, respec-

tively. They are connected via Bluetooth Low Energy (BLE). More details of the

Flora setup can be found in Section 3.3.1 of the chapter. Fig. 3.2a shows the dis-

tributions of the one-way application-layer communication delays over 110 NTP

sessions. The slave-to-master delays are mostly within [40, 50] ms, with a median

of 42 ms and a maximum of 376 ms (not shown in the figure). As specified by

the BLE standard, the master device pulls data from a slave periodically. The

period, called connection interval, is determined by the master. The slave needs

to wait for a pull request to transmit a packet to the master. In the RPi’s BLE

driver (BlueZ), the connection interval is set to 67.5 ms by default. As the arrival

time of a packet from the slave’s OS is uniformly distributed over the connection

interval, the expected access time is 67.5/2 = 33.75 ms. This is consistent with

our measured median delay of 42 ms, which is about 8 ms longer because of other

delays (e.g., send and receive times). The exceptionally long delays (e.g., 376 ms)

observed in our measurements could be caused by transient wireless interference

and OS delays. For the master-to-slave link, the delays are mostly within [0, 10] ms,

with a median of 8 ms and a maximum of 153 ms. A BLE slave can skip a number
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of pull requests, which is specified by the slave latency parameter, and sleep to

save energy. Under BlueZ’s default setting of zero for slave latency, the slave keeps

awake and listening, yielding short master-to-slave delays.

The asymmetric slave-to-master and master-to-slave delays cause significant errors

in the NTP’s clock offset estimation. At the end of each synchronization session,

the RPi computes this error as δNTP−δGT , where δNTP and δGT are NTP’s estimate

and the ground-truth offset, respectively. Fig. 3.2b shows the distribution of the

errors. We observe that 28% of the errors are larger than 25 ms. The largest error

in the 110 NTP sessions is 183 ms. Such an error profile does not well meet the ms

accuracy requirements of many applications (Dinescu, Mazza, Kujanski, Gaza, &

Sagan, 2015; Lorincz et al., 2009; Mokaya et al., 2016). Though it is possible to

calibrate the average error to zero by using prior information (e.g., the settings of

the connection interval and slave latency), the calibration is tedious, nonuniversal,

and incapable of reducing noise variance.

3.3 Measurement Study

In this section, we conduct measurements to gain insights for guiding the design of

TouchSync.

3.3.1 Measurement Setup

Our measurement study uses two Flora nodes and a RPi 3 Model B single-board

computer. The Flora is an Arduino-based wearable platform. Each Flora node, as
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shown in Fig. 3.3, consists of a main board with an ATmega32u4 MCU (8 MHz,

2.5 KB RAM), a BLE 4.1 module, and a 150mAh lithium-ion polymer battery.

The RPi has a built-in BLE 4.1 module and runs Ubuntu MATE 16.04 with BlueZ

5.37 as the BLE driver. Each node is powered by an independent battery and has

no electrical connection to any ground or grounded appliance. We use Adafruit’s

nRF51 Arduino library and BluefruitLE Python library on the Floras and the RPi,

respectively, to send and receive data over BLE in the UART mode. The Floras

and RPi operate as BLE peripheral (slave) and central (master), respectively. To

obtain the ground truth clocks in each experiment, we synchronize the Floras with

the RPi as follows. At the beginning of the experiment, we wire a general-purpose

input/output (GPIO) pin of the RPi with a digital input pin of each Flora. Then,

the RPi issues a rising edge through the GPIO pin and records its clock value

tmaster. Upon detecting the rising edge, a Flora records its clock value tslave and

sends it to the RPi. The RPi computes the ground-truth offset between the Flora’s

and the RPi’s clocks as δGT = tslave − tmaster. Then, we remove the wiring and

conduct experiments.

3.3.2 iSEP Sensing under Various Settings

In this set of measurements, we explore i) whether a human body is an effective

antenna for receiving the powerline radiation and ii) whether the iSEP signals in-

duced by the radiation on the same wearer or different wearers are synchronous.

The Flora’s microcontroller (MCU) has a 10-bit ADC that supports a sampling

rate of up to 15 kHz. To facilitate experiments, we have made two Flora-based

prototypes as shown in Fig. 3.4. We place the Flora into a 3D-printed insulating

wristband and use a thin stainless steel conductive thread to create a connection

between Flora’s ADC pin and the wearer’s skin. The Flora samples the ADC at

333 Hz continuously for two minutes and streams the timestamped raw data to the

RPi for offline analysis. The sampling rate of 333 Hz is sufficient to capture the

powerline radiation or iSEP with a frequency of 50 Hz in our region. All samples

are normalized using the reference voltage of the ADC. As only the ADC pin is

connected to the researcher, the grounding of the Flora may affect the sampling

result. To understand the impact of grounding, we conduct two sets of compar-

ative experiments, where the two Floras have shared and independent grounds,

respectively. During the experiment, neither Flora nor human body has contact



24 3.3. Measurement Study

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

N
or

m
al

iz
ed

si
gn

al

Time (s)

Node A
Node B

(a) Shared ground

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

N
or

m
al

iz
ed

si
gn

al

Time (s)

Node A
Node B

(b) Independent grounds

Figure 3.5: No human body contact.
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Figure 3.6: iSEPs on a same wearer (shared ground).

with grounded appliance. In each experiment set, there are two scenarios: still

and moving. For the moving scenario, the researcher keeps changing the body ori-

entation, movement, and location. The experiments are conducted in a computer

science laboratory with various appliances such as lights, computers, and printers.

3.3.2.1 Shared ground

We wire the ground pins of the two Floras, such that they have a shared ground.

We conduct three tests.

First, Fig. 3.5a shows the signals captured by the two Floras when they have no

physical contact with any human body. The signals have small fluctuations with a

normalized peak-to-peak amplitude of 0.024. The signals fluctuate at a frequency of

50 Hz. This suggests that the Floras can pick up the powerline radiation. However,

the signals are weak.

Second, a researcher touches the ADC pins of the two Floras with his two hands,

respectively. Figs. 3.6a and 3.6b show the signals captured by the two nodes during
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Figure 3.7: iSEPs on different wearers (shared ground).
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Figure 3.8: Absolute time displacement |ε| between the EMR signals captured
by the two Floras in various scenarios. Error bar represents (5%, 95%) confidence
interval in one minute of data.

the same time duration, when the researcher stands still and walks, respectively.

Under the two scenarios (still and moving), the two nodes yield salient and almost

identical signals. The peak-to-peak amplitudes in the two figures are around 0.4

and 0.8, which are 17 and 33 times larger than that of the signal shown in Fig. 3.5a.

This suggests that the human body can effectively receive the powerline radiation.

Third, two researchers touch the ADC pins of the two Floras separately. Figs. 3.7a

and 3.7b show the signals captured by the two nodes when the two researchers

stand still and walk, respectively. The two nodes yield salient signals with differ-

ent amplitudes. We note that several factors may affect the reception of powerline

radiation, e.g., human body size, position and facing of the body in the electro-

magnetic field generated by the powerlines.

We evaluate the synchrony between the signals captured by the two Floras shown

in Figs. 3.6 and 3.7. We condition the signals by first applying a band-pass filter

(BPF) to remove the direct current (DC) component that may fluctuate as seen

in Fig. 3.6b and then detect the zero crossings (ZCs) of the filtered signals. More
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Figure 3.9: iSEPs on a same wearer (independent grounds).

details of the BPF and ZC detection are presented in Section 3.4.2. We use the

time displacement between the two signals’ ZCs as the metric to evaluate their syn-

chrony. Specifically, the time displacement, denoted by ε, is given by ε = tZCA −tZCB ,

where tZCA and tZCB represent the ground-truth times of Node A’s ZC and the corre-

sponding ZC at Node B, respectively. Fig. 3.8a shows the error bars for |ε|, which

correspond to the scenarios in Figs. 3.6a, 3.6b, 3.7a, and 3.7b, respectively. In

Fig. 3.8a, “same” and “diff” mean the same wearer and different wearers, respec-

tively; “still” and “move” mean standing still and walking, respectively. On the

same wearer, the iSEPs captured by the two Floras are highly synchronous, with

an average |ε| of 0.9µs. On different wearers, the |ε| increases to about 1 ms. When

the two wearers move, the average |ε| is 0.35 ms smaller than that when they stand

still. Note that as shown shortly in Fig. 3.11b, the body orientation affects the

time displacement. In Fig. 3.8a, the two wearers stand still facing certain orienta-

tions. The time displacement under such body orientation setting is consistently

large. Thus, the average time displacement when they move is smaller. However,

consistent with intuition, the human body movements increase the variance of |ε|,
since they create more signal dynamics as seen in Fig. 3.6b.

3.3.2.2 Independent grounds

Then, we remove the connection between the two Floras’ ground pins, such that

they have independent grounds. This setting is consistent with real scenarios,

where the wearables are generally not wired. We conduct three tests.

Fig. 3.5b shows the two Floras’ signals when they have no physical contact with

any human body. The signals have small oscillations with a frequency of 50 Hz.
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Figure 3.10: iSEPs on different wearers (independent grounds).
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Figs. 3.9a and 3.9b show the signals of the two Floras worn on two wrists of a

researcher when he stands still and walks, respectively. Compared with the results

in Fig. 3.6a based on a shared ground, the two signals in Fig. 3.9a have an offset

in their values. This offset is the difference between the electric potentials at the

two Floras’ grounds. Fig. 3.9b shows the signals over two seconds that contain

about 100 iSEP cycles to better illustrate the changing signal envelopes over time

due to the human body movements. Compared with Fig. 3.6b, the two signals in

Fig. 3.9b have different signal envelopes. This is because the electric potentials

at the two Floras’ grounds, which are induced by the powerline radiation, are not

fully correlated in the presence of human body movements.

Figs. 3.10a and 3.10b show the signals of the two Floras worn by two researchers

each when they stand still and walk, respectively. Salient EMR signals can be

observed. Moreover, the human movements cause significant fluctuations of DC

lines and the signal amplitudes, as seen in Fig. 3.10b.

We also evaluate the synchrony between the two Floras’ signals. Fig. 3.8b shows

the time displacement’s error bars that correspond to the scenarios in Figs. 3.9a,
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3.9b, 3.10a, and 3.10b. The average |ε| is below 2 ms. Compared with the results in

Fig. 3.8a that are based on a shared ground, the time displacements increase. This

is because of the additional uncertainty introduced by the independent floating

grounds of the two Floras. Nevertheless, on the same wearer, the average |ε| is

about 0.5 ms only. The body movements increase the 95%-percentile of |ε| to

1.5 ms. In Section 3.4.2, we use a phase-locked loop to reduce the variations of ε.

We further evaluate the impact of skin condition and body orientation on the

iSEPs when the two Floras are worn by two hands of the same wearer. Fig. 3.11a

shows the normalized iSEP signal range and their time displacement on the same

still person, when the skin is dry or wet. The iSEP signal is amplified when

the sensor has direct contact with the human body. The skin moisture condition

does not affect the amplitude and synchrony (|ε|) of iSEP much. We have also

tested iSEP sensing using two conductive threads for a Flora. Results show that

the signal reception is not affected. However, using multiple conductive threads

reduces the chance that the wearable loses direct skin contact. Fig. 3.11b shows

the time displacements when the wearer is in different orientations. We can see

that the body orientation affects the time displacement. However, the average time

displacement |ε| in all tested orientations is below 4ms.

3.3.2.3 Summary

From the above measurements, we obtain the following three key observations.

First, the human body can act as an antenna that effectively improves the pow-

erline radiation reception. Second, during the human body movements, the iSEP

amplitude changes. However, the synchrony between the two iSEP signals captured

by the two nodes on the same wearer or different wearers is still acceptably pre-

served. In Section 3.4.2, we condition the iSEP signals to improve the synchrony.

Third, the floating ground of a node introduces additional uncertainty, because

the powerline radiation can generate a varying electric potential at the ground

pin. However, the floating ground does not substantially degrade the synchrony

between the two nodes’ iSEP signals. All experiments in the rest of this chapter are

conducted under the floating ground setting. The above three observations suggest

that the iSEP induced by powerline radiation is a good periodic signal that can be

exploited for synchronizing wearables.
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Figure 3.12: A synchronization process of TouchSync.

3.4 Design of TouchSync

This section presents the design of TouchSync. Section 3.4.1 overviews the work-

flow. Section 3.4.2 presents the signal processing algorithms to generate stable, pe-

riodic, and synchronous impulses trains (i.e., Dirac combs) from the iSEP signals.

Section 3.4.3 presents a synchronization protocol assisted with the Dirac combs.

Section 3.4.4 solves the integer ambiguity problem to complete synchronization.

3.4.1 TouchSync Workflow

TouchSync synchronizes the clock of a slave to that of a master. This chapter

focuses on the synchronization between a slave-master pair, which is the basis

for synchronizing a network of nodes. A synchronization process, as illustrated

in Fig. 3.12, is performed periodically or in an on-demand fashion. For instance,

the wearer(s) may push some buttons on two wearables to start a synchronization

process. The period of the synchronization can be determined by the needed clock

accuracy and the clock drift rate. During the synchronization process, both the

slave and the master continuously sample the iSEP signals and store the times-

tamped samples into their local buffers. Note that the iSEP signal strength may

become too weak to support accurate clock synchronization in certain scenarios.

The TouchSync node will switch to a mode that generates an internal periodic

signal to drive the clock synchronization, which will be presented in Section 3.5.

At the beginning of the synchronization process, the slave node sends a message

to the master to signal the start of the sensor sampling. As shown in Fig. 3.12, a
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synchronization process has multiple synchronization sessions. In each session, the

slave and the master exchange three messages: request, reply1, and reply2. The

request and reply1 are used to measure the communication delays. After trans-

mitting the reply1, the master retrieves a segment of iSEP signal from its buffer to

process and transmits the processing results using the reply2 to the slave. Upon

receiving the reply1, the slave retrieves a segment of iSEP signal from its buffer to

process. Upon receiving the reply2, the slave tries to solve the integer ambiguity

problem to estimate the offset between the slave’s and the master’s clocks. If the

ambiguity cannot be solved, another synchronization session is initiated; otherwise,

the two nodes stop sampling iSEPs and the slave uses the estimated offset to adjust

its clock and complete the synchronization process.

3.4.2 iSEP Signal Processing

This section presents TouchSync’s signal processing pipeline as illustrated in Fig. 3.12

that aims to generate a highly stable, periodic, and synchronous Dirac comb from

an iSEP signal with fluctuating DC component and jitters as shown in Fig. 3.9 and

Fig. 3.10. We apply a signal processing pipeline illustrated in Fig. 3.13. It consists

of three steps that are described in what follows.

3.4.2.1 Band-pass filter (BPF) or mean removal filter (MRF)

We apply a 5th-order/6-tap infinite impulse response (IIR) BPF with steep bound-

aries of a (45 Hz, 55 Hz) passband to remove the fluctuating DC component and

high-frequency noises of the iSEP signal. For too resource-limited wearables, a

MRF that subtracts the running average from the original signal can be used in-

stead of the BPF for much lower compute and storage complexities. Its effect is

similar to high-pass filtering.
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3.4.2.2 Zero crossing detector (ZCD)

It detects the ZCs, i.e., the time instants when the filtered iSEP signal changes from

negative to positive. It computes a linear interpolation point between the negative

and the consequent positive iSEP samples as the ZC to mitigate the impact of low

time resolution due to a low iSEP sampling rate.

3.4.2.3 Phase-locked loop (PLL)

We apply a software PLL to deal with the ZC jitters and miss detection caused by

significant dynamics of the iSEP signal. The PLL generates an impulse train using

a loop and uses an active proportional integral (PI) controller to tune the interval

between two consecutive impulses according to the time differences between the

past impulses and the input ZCs. The controller skips the time differences larger

than 25 ms to deal with ZC miss detection.

3.4.3 NTP Assisted with Dirac Combs

TouchSync uses the synchronous Dirac combs at the slave and the master to

achieve clock synchronization through multiple synchronization sessions. This sec-

tion presents the protocol for a single synchronization session.

3.4.3.1 Protocol for a synchronization session

A synchronization session of TouchSync is illustrated in Fig. 3.14. We explain it

from the following two aspects.

Message exchange and timestamping: The session consists of the transmis-

sions of three messages: request, reply1, and reply2. The request and reply1

messages are similar to the two UDP packets used by NTP. Their transmission and

reception timestamps, i.e., t1, t2, t3, and t4, are obtained upon the corresponding

messages are passed/received to/from the OS. The master transmits the auxiliary

reply2 message to convey the results of its signal processing, which is detailed

below.
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Figure 3.14: A synchronization session of TouchSync. The vertical arrows
represent the Dirac comb impulses generated from the iSEP.

Signal processing and clock offset estimation: After the master has transmit-

ted the reply1 message, the master (i) retrieves from its signal buffer an iSEP signal

segment that covers the time period from t2 to t3 with some safeguard ranges before

t2 and after t3, (ii) feeds the signal processing pipeline in Section 3.4.2 with the

retrieved iSEP signal segment to produce a Dirac comb as illustrated in Fig. 3.14,

and (iii) identifies the last impulses (LIs) in its Dirac comb that are right before the

time instants t2 and t3, respectively. The LIs are illustrated by thick red arrows in

Fig. 3.14. Then, the master computes the elapsed times from t2’s LI to t2 and t3’s

LI to t3, which are denoted by φ2 and φ3, respectively. The φ2 and φ3 are the phases

of the t2 and t3 with respect to the Dirac comb. After that, the master transmits

the reply2 message that contains t2, t3, φ2, and φ3 to the slave. After receiving

the reply1 message, the slave retrieves an iSEP signal segment that covers the

time period from t1 to t4 with some safeguard ranges, executes the signal process-

ing pipeline, identifies the LIs right before t1 and t4, and computes the phases φ1

and φ4, as illustrated in Fig. 3.14. After receiving the reply2 message, based on

{t1, t2, t3, t4} and {φ1, φ2, φ3, φ4}, the slave uses the approach in Section 3.4.3.2 to

analyze the offset between the slave’s and master’s clocks.

Now, we discuss several design considerations for the protocol described above.

TouchSync uses the request and reply1 messages to measure the clock offset,

while the reply2 is an auxiliary message to convey the timestamps t2, t3 and the

measurements φ2, φ3. With this auxiliary message, we can decouple the task of

timestamping the reception of request and the transmission of reply1 from the

signal processing task of generating the Dirac comb and computing φ2 and φ3. On
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many platforms (e.g., Wear OS and watchOS), continuously sampled sensor data

is passed to the application block by block. With the decoupling, the master can

compute φ2 and φ3 after the reply1 is transmitted and the needed iSEP data

blocks become available.

3.4.3.2 Clock offset analysis

We now analyze the offset between the slave’s and the master’s clocks based on

{t1, t2, t3, t4} and {φ1, φ2, φ3, φ4}. Denote by T the period of the Dirac comb. In

our region served by a 50 Hz grid, the nominal value for T is 20 ms. To capture the

small deviation from the nominal value, T can be easily computed as the average

interval between consecutive impulses of the Dirac comb. We define the rounded

phase differences θq and θp (which correspond to the request and reply1 messages,

respectively) as

θq =

{
φ2 − φ1, if φ2 − φ1 ≥ 0;

φ2 − φ1 + T, otherwise.
(3.1)

θp =

{
φ4 − φ3, if φ4 − φ3 ≥ 0;

φ4 − φ3 + T, otherwise.
(3.2)

As φk is the elapsed time from tk’s LI to tk, we have 0 ≤ φk < T , for k ∈ [1, 4].

From Eqs. (3.1) and (3.2), we can verify that 0 ≤ θq < T and 0 ≤ θp < T . From our

measurements in Section 3.2.2, the times for transmitting the request and reply1

messages can be longer than T . Thus, we use i to denote the non-negative integer

number of the Dirac comb’s periods elapsed from the time of sending request to

the time of receiving it at the master, and j to denote the non-negative integer

number of the Dirac comb’s periods elapsed from the time of sending reply1 to

the time of receiving it at the slave.

We denote τq and τp the actual times for transmitting the request and the reply

messages, respectively. Thus,

τq = θq + i ·T − ε, τp = θp + j ·T + ε, (3.3)

where ε is the time displacement between the slave’s and master’s Dirac combs.

Here, we assume a constant ε to simplify the discussion. Therefore, the RTT
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computed by RTT = (t4 − t1)− (t3 − t2) must satisfy

RTT = τq + τp = θq + θp + (i+ j) ·T. (3.4)

In Eq. (3.4), RTT, θq, and θp are measured in the synchronization session illus-

trated in Fig. 3.14; i and j are unknown non-negative integers. If the i and j can

be determined, the estimated offset between the slave’s and the master’s clocks,

denoted by δ, can be computed by either one of the following formulas:

δ = t1 − (t2 − τq) = t1 − t2 + θq + i ·T − ε, (3.5)

δ = t4 − (t3 + τp) = t4 − t3 − θp − j ·T − ε. (3.6)

It can be easily verified that the above two formulas give the same result. The

analysis in the rest of this chapter chooses to use Eq. (3.6). The ε is generally

unknown. If we ignore it in Eq. (3.6) to compute δ, it becomes part of the clock

offset estimation error.

Eq. (3.4) is an integer-domain underdetermined problem. Clearly, from Eq. (3.4),

both i and j belong to the range
[
0, RTT−θq−θp

T

]
. Thus, Eq. (3.4) has a finite

number of solutions for i and j. Note that, under the original NTP principle, we

have a real-domain underdetermined problem of RTT = τq + τp that has infinitely

many solutions. NTP chooses a solution by assuming τq = τp, which does not hold

in general. Thus, by introducing the Dirac combs, the ambiguity in determining

τq, τp, and δ is substantially reduced from infinitely many possibilities to finite

possibilities. Though we still have ambiguity in the integer domain, our analysis

and extensive numeric results in Section 3.4.4 show that the ambiguity can be

solved.

Note that, in (Rabadi et al., 2017), the periodic and synchronous power grid voltage

signals collected directly from power outlets are used to synchronize two nodes that

have high-speed wired network connections. The approach in (Rabadi et al., 2017)

uses the elapsed times from LIs (i.e., φ1, φ2, φ3, φ4) to deal with asymmetric

communication delays and improve synchronization accuracy. However, due to the

high-speed connectivity, it only considers the case where both i and j are zero.

In contrast, with wireless connectivity, i and j are random and often non-zero

due to the access time. Estimating i and j is challenging and it is the subject of

Section 3.4.4.
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3.4.4 Integer Ambiguity Solver (IAS)

Before we present the approach to solving integer ambiguity, we make the following

two assumptions for simplicity of exposition. First, we assume that the ground-

truth clock offset δGT is a constant during a synchronization process. From our

performance evaluation in Section 3.7, TouchSync generally takes less than one

second to achieve synchronization. Typical crystal oscillators found in MCUs and

personal computers have drift rates of 30 to 50 ppm (Hao et al., 2011). Thus, the

maximum drift of the offset between two clocks during one second is 50 ppm×1 s×
2 = 0.1 ms. This drift is smaller than the ms-level time displacement ε between two

iSEP signals, which dominates the synchronization error of TouchSync. Second,

we assume ε = 0. In Section 3.4.4.4, we will discuss how to deal with non-zero and

time-varying ε.

We let imin and imax denote the minimum and maximum possible values for i; jmin

and jmax denote the minimum and maximum possible values for j. For instance,

from our one-way message transmission time measurements (Section 3.2.2), the

BLE’s slave-to-master transmission times are always greater than 30 ms. Thus,

we may set imin = 1, since in our region T is 20 ms. When we have no prior

knowledge about the ranges for i and j, we may simply set imin = jmin = 0 and

imax = jmax = RTT−θq−θp
T

. Section 3.4.4.4 will discuss how the use of the prior

knowledge impacts on the integer ambiguity solving.

TouchSync performs multiple synchronization sessions to solve the integer ambi-

guity problem. In this section, we use x[k] to denote a quantity x in the kth

synchronization session. For instance, RTT[k] denotes the measured RTT in the

kth session. From Eqs. (3.4) and (3.6), for the kth synchronization session, we have
RTT[k] = θq[k] + θp[k] + (i[k] + j[k]) ·T ;

δ = t4[k]− t3[k]− θp[k]− j[k] ·T ;

imin ≤ i[k] ≤ imax, jmin ≤ j[k] ≤ jmax.

(3.7)

If TouchSync performs K synchronization sessions, we have an underdetermined

system of 2K equations with (2K+1) unknown variables (i.e., δ and {i[k], j[k]|k ∈
[1, K]}). In the integer domain, such an underdetermined system can have a unique

solution.



36 3.4. Design of TouchSync

master clock

slave clock

0

t1[1]=105

t2[1]=50 t3[1]=60

t4[1]=190 t1[2]=205

t2[2]=127 t3[2]=137

t4[2]=293

τq [1]=50 τp[1]=25 τq [2]=27 τp[2]=51

Figure 3.15: An example of solving the integer ambiguity. The transmissions
of the auxiliary reply2 messages are omitted in the illustration.

3.4.4.1 An example of unique solution

We use an example in Fig. 3.15 to illustrate. The unit for time is ms, which

is omitted in the following discussion for conciseness. In this example, T = 20,

imin = jmin = 1, imax = jmax = 4, and the ground-truth clock offset δGT = 105. Two

synchronization sessions are performed. The timestamps and the actual message

transmission delays are shown in Fig. 3.15. The ground-truth values for i and j in

the two synchronization sessions are: i[1] = 2, j[1] = 1, i[2] = 1, and j[2] = 2. The

RTTs can be computed as RTT[1] = 75 and RTT[2] = 78. With any synchronous

Dirac combs, from Eqs. (3.1) and (3.2), the rounded phase differences computed

by the two nodes must be θq[1] = 10, θp[1] = 5, θq[2] = 7, and θp[2] = 11. For the

first synchronization session, Eq. (3.7) has two possible solutions only:

{i[1]=1, j[1]=2, δ=85}, {i[1]=2, j[1]=1, δ=105}. (3.8)

For the second synchronization session, Eq. (3.7) has two possible solutions only

as well:

{i[2]=1, j[2]=2, δ=105}, {i[2]=2, j[2]=1, δ=125}. (3.9)

From Eqs. (3.8) and (3.9), δ = 105 is the only common solution. Thus, we conclude

that δ must be 105.

3.4.4.2 Program for solving integer ambiguity

From the above example, due to the diversity of the ground-truth values of i and

j in multiple synchronization sessions, the intersection of the δ solution spaces of

these synchronization sessions can be a single value. Thus, the integer ambiguity

problem is solved. On the contrary, if the ground-truth i and j do not change
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Algorithm 1 Slave’s pseudocode for a synchronization process

1: Global variables: t1, t4, δ’s solution space ∆ = ∅, session index k = 0
2:

3: command start sync session() do
4: k = k + 1
5: t1 = read system clock()

6: send message request = { } to master
7: end command
8:

9: event reply1 received from master do
10: t4 = read system clock()

11: if iSEP signal strength is good:
12: wait till iSEP data covering t1 and t4 are available
13: run iSEP signal processing pipeline in Section 3.4.2
14: else:
15: generate internal periodic signal2

16: endif
17: compute φ1 and φ4

18: end event
19:

20: event reply2 received from master do
21: compute θq and θp using Eqs. (3.1) and (3.2).
22: RTT = (t4 − t1)− (reply2.t3 − reply2.t2)
23: solve Eq. (3.7), ∆′ denotes the set of all possible solutions for δ
24: if k == 1:
25: ∆ = ∆′

26: else:
27: ∆ = ∆ ∩∆′

28: endif
29: if ∆ has only one element δ:
30: use δ to adjust clock
31: else:
32: start sync session() // start a new synchronization session
33: endif
34: end event

over multiple synchronization sessions, the ambiguity remains. With application-

layer timestamping, the message transmission times are highly dynamic due to

the uncertain OS overhead and MAC. Such uncertainties and dynamics, which

are undesirable in the original theme of NTP, interestingly, become desirable for

solving the integer ambiguity in TouchSync.

From the above key observation, TouchSync performs the synchronization session

illustrated in Fig. 3.14 repeatedly until the intersection among the δ solution spaces
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Algorithm 2 Master’s pseudocode for a synchronization process

1: event request received from slave do
2: t2 = read system clock()

3: ... // execute other compute tasks
4: t3 = read system clock()

5: send message reply1 = { } to slave
6: if iSEP signal strength is good:
7: wait till iSEP data covering t1 and t4 are available
8: run iSEP signal processing pipeline in Section 3.4.2
9: else:

10: generate internal periodic signalChapter 2
11: endif
12: compute φ2 and φ3

13: send message reply2 = {t2, t3, φ2, φ3} to slave
14: end event

of all the synchronization sessions converges to a single value. The pseudocode of

the algorithms running at the slave and the master can be found in Algorithm 1

and 2.

3.4.4.3 Convergence speed

We run a set of numeric experiments to understand the convergence speed of the

IAS. We use the number of synchronization sessions until convergence to charac-

terize the convergence speed, which is denoted by K in the rest of this chapter. We

fix imin and jmin to be zero. For a certain setting 〈imax, jmax〉, we conduct 100,000

synchronization processes to assess the distribution of K. For each synchroniza-

tion session of a synchronization process, we randomly and uniformly generate

the ground-truth i and j, as well as θq and θp within their respective ranges, i.e.,

i ∈ [0, imax], j ∈ [0, jmax], and θq, θp ∈ [0, T ). Then, we simulate the integer am-

biguity solving program presented in Section 3.4.4.2 to measure the K for each

synchronization process. In practice, the i, j, θq and θp may not follow the uniform

distributions. But the numeric results here help us understand the convergence

speed. In Section 3.7.3, we will evaluate the convergence speed in real-world set-

tings.

2Line 15 deals with a situation where the iSEP signal is too weak. The detailed explanation
can be found in Section 3.7.
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Figure 3.16: Convergence speed of IAS.

In Fig. 3.16a, each grid point is the average of all K values in the 100,000 synchro-

nization processes under a certain 〈imax, jmax〉 setting. Fig. 3.16b shows the box plot

for K under each setting where imax = jmax. We note that all simulated synchro-

nization processes converge. From the two figures, even if imax = jmax = 10 (which

means that the one-way communication delays are up to 200 ms for T = 20 ms),

the average K is nine only. Although the K’s distribution has a long tail as shown

in Fig. 3.16b, 75% of the K values are below 11. This result is consistent with our

real experiment results in Table 3.2 of Section 3.7.3, where most K values are two

only and the largest K is 12.

3.4.4.4 Discussions

First, we discuss how to address non-zero and time-varying ε. From the analysis in

Eq. (3.7) that is based on ε = 0, the difference between two δ solutions is multiple

of T . This can be seen from Eqs. (3.8) and (3.9). In practice, ε can be non-zero and

time-varying. It will be a major part of the δ estimation error. From Fig. 3.8b, the

|ε| is at most 6 ms. Thus, the resulted variation to the δ solutions will be less than

a half and one third of T , in the regions served by 60 Hz and 50 Hz power grids,

respectively. Therefore, we can still correctly identify the correspondence among

the δ elements in the set intersection operation. Specifically, if two δ elements

have a difference smaller than T/2, they should be considered the same element

in the set intersection operation; otherwise, they are different elements. For this

correspondence identification to be correct, the ε needs to be smaller than T/2.

After convergence, the final δ can be computed as the average of the δ elements
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that are considered the same. We have incorporated this in our implementation of

TouchSync.

Second, we discuss how the use of the prior knowledge (i.e., imin, imax, jmin, and

jmax) impacts on the integer ambiguity solving. With the prior knowledge, we

may shrink the search range for i and j to speed up the convergence of the IAS.

The prior knowledge can be based on the statistical information obtained in offline

experiments. For instance, a group of the box plots are the results for the IAS with

the prior knowledge of imax and jmax. The IAS can search the i and j within the

ranges of [0, imax] and [0, jmax], respectively. The other group of results are for the

IAS without the prior knowledge. Thus, the IAS has to search within the range

of
[
0, RTT−θq−θp

T

]
for both i and j. We can see that, if no prior knowledge is used,

the K increases. But the IAS still always converges. Once the IAS converges, the

synchronization error of TouchSync mainly depends on the time displacement ε.

3.5 TouchSync with Internal Periodic Signal

Our design of TouchSync in Section 3.4 is based on the periodic and synchronous

iSEP signals available to the slave and master nodes. However, in certain scenarios

where the wearables are extremely far away from the powerlines or in a Faraday

cage (e.g., an elevator cabin), the wearables can hardly sense EMR or iSEP. This

section extends the design of TouchSync to deal with such situations by letting

the wearables generate internal periodic signals (IPSes) with the same period by

themselves. Such IPSes are used to drive the clock synchronization. Section 3.5.1

presents our extended design. As the IPSes generated by any two wearables may

have a random and bounded time displacement, it is interesting to investigate how

this time displacement affects the performance of TouchSync, which is the subject

of Section 3.5.2.

3.5.1 Extended Design

The key extensions made to the design presented in Section 3.4 include the coor-

dination between the slave and the master on using the same IPS time period and
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the generation of their IPSes. Based on the generated IPS, each node follows ex-

actly the procedures described in Section 3.4 to estimate the clock offset. In what

follows, Sections 3.5.1.1 and 3.5.1.2 present the extensions to the TouchSync proto-

col and an Adaptive Period Mechanism that assists the convergence of TouchSync,

respectively.

3.5.1.1 Protocol for IPS-based TouchSync

We extend the TouchSync protocol in Section 3.4.3.1 to use IPSes. When the slave

is to estimate the offset between its clock and master’s, it transmits an initial packet

to the master, indicating the beginning of the synchronization process. The packet

includes the time period T for generating the IPS. The two devices will record their

time instants on transmitting and receiving the initial packet as tslave0 and tmaster0 .

In our approach, these two time instants are used as the first ZCs of the two devices’

IPSes. Then, same as the design in Section 3.4.3.1, one request and two reply

packets will be exchanged for each synchronization session. Meanwhile, the time

instants, i.e., t1, t2, t3, and t4 as illustrated in Fig. 3.14, are recorded by the two

nodes. For each recorded time instant, the elapsed time from the corresponding LI

is computed. For instance, the slave node computes φ1 as φ1 = (t1 − tslave0 ) modT ;

the master computes φ2 as φ2 = (t2 − tmaster0 ) modT . Then, the slave finds all the

possible estimated clock offsets based on the analysis in Section 3.4.3.2. TouchSync

repeatedly runs synchronization sessions until the ambiguity is solved using the IAS

presented in Section 3.4.4.

In this extended design, the absolute time displacement between the two nodes is

|tslave0 − tmaster0 |modT . The above protocol transmits an initial packet to establish

the initial ZCs at tslave0 and tmaster0 . As the transmission time of the initial packet is

random, the resulting time displacement is also random. An alternative approach

is to use NTP to establish the initial ZCs. However, as NTP is susceptible to

link asymmetry that is generally true under stochastic wireless link quality, this

alternative approach may not give smaller time displacements.
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Figure 3.17: Distribution of absolute clock offset estimation errors.

3.5.1.2 Adaptive Period Mechanism (APM)

When the IPS time period is larger, the number of IPS time periods elapsed during

a synchronization session (i.e., i + j) is likely less. Hence, a large IPS period

setting can generally reduce the TouchSync session’s ambiguity and speed up the

convergence. As an extreme example, when the IPS time period is very large such

that i + j = 0 (i.e., no ambiguity) and TouchSync converges after one session.

However, a larger IPS time period setting will lead to larger time displacements

and therefore larger clock offset estimation errors. Thus, there exist a trade-off

between the convergence speed and clock offset estimation accuracy. Based on this

observation, we propose APM to dynamically increase IPS period to make sure

that the system can alway converge. Specifically, the IPS-based TouchSync starts

with a small IPS time period setting. Whenever the system cannot converge within

a predefined number of synchronization sessions, it increases the IPS time period

and restarts IAS. In other words, APM keeps increasing the IPS period until the

ambiguity is solved. APM speeds up the convergence at the cost of larger clock

offset estimation error bounds. The preset maximum number of synchronization

sessions allowed for each IPS time period setting is the knob provided to the system

designer for choosing a satisfactory trade-off between the convergence speed and

error bound. We evaluate this trade-off via numeric experiments in Section 3.5.2.2.

3.5.2 Numeric Experiments

We conduct numeric experiments to evaluate the performance of the IPS-based

TouchSync in terms of clock offset estimation error and convergence speed, when

the time displacement between the two self-generated IPSes varies. Specifically, we
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develop a simulator that can simulate the packet transmissions between the slave

and the master. The ground-truth clock offset between the slave and the master

is an arbitrary value. The first ZCs of the IPSes at the slave and the master are

randomly selected. The transmission delays of the request and reply packets

are uniformly and independently drawn from the range of [0, 100 ms]. TouchSync

repeatedly runs synchronization sessions and terminates when either the integer

ambiguity is solved or the maximum session number limit of 200 is reached. The

numeric experiment results are presented below.

3.5.2.1 Distribution of clock offset estimation errors

We run 10,000 synchronization processes with the IPS period fixed to 20ms. Fig. 3.17a

shows the distribution of the clock offset estimation errors. We can see that the

errors are bounded by 20 ms, i.e., the IPS period. Now, we use an example in

Fig. 3.18 to explain this error bound. For this example, we assume that the in-

teger ambiguity has been solved and only focus on the packet transmission from

the slave to the master that is used to estimate the clock offset between the two

nodes. Suppose the one-way transmission delay τq is 19 ms and the solved value

for i is 0. In Fig. 3.18, the two trains of arrows represent the Dirac combs based on

the two nodes’ IPSes that are not synchronous. To facilitate illustration, we add

dashed lines on the master’s timeline that are synchronous with the slave’s Dirac

combs. As illustrated in the figure, φ1 = 1 ms and φ2 = 2 ms. From Eq. (3.1), we

have θq = 1 ms. As the two nodes independently generate IPSes, they do not know

the value of the time displacement between their IPSes. Thus, from Eq. (3.5), the

slave node will compute the clock offset as δ = t1− t2 + θq. If the clocks of the two
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nodes are actually synchronized such that t1− t2 = −19, the computed |δ| of 18 ms

is the absolute clock offset estimation error. From this example, if φ1 → 0, φ2 → 0,

and τq → 20 ms, the absolute clock offset estimation will approach to 20 ms. This

explains the error bound observed in Fig. 3.17a.

IPS-based TouchSync does not rely on any external signal, which is the same as the

NTP. For comparison, we evaluate side-by-side the clock offset estimation errors

of the NTP. Fig. 3.17b shows the results. The absolute clock offset estimation

errors are up to 35 ms. Note that, NTP’s synchronization error is (τ2 − τ1)/2,

where τ1 and τ2 are the one-way transmission delays of the request and reply

packets (Section 3.2.1). Hence, unlike IPS-based TouchSync that has an error

bound of the IPS time period, NTP’s error bound depends on the two one-way

packet transmission delays. Over a highly asymmetric link, NTP’s error can be

much higher than the IPS period.

3.5.2.2 Convergence speed

As discussed in Section 3.5.1, if the system uses a larger IPS period setting, it

will need fewer sessions to converge. To demonstrate this, we simulate the IPS-

based TouchSync system under different period settings and record the number of

sessions needed for solving the integer ambiguity. Fig. 3.19 shows the number of

sessions needed for convergence versus the IPS period. The result clearly shows

the trade-off discussed in Section 3.5.1.2. From the result, when the IPS period

is 10 ms to ensure a 10 ms error bound, a total of 13 synchronization sessions are

performed before convergence. If we loosen the error bound to 60 ms, the system

needs 2 sessions only to converge. We note that the convergence speed is affected

by the two one-way packet transmission delay, since a long transmission delay will

lead to larger values of i + j and thus increase the ambiguity. In Section 3.7, we

will evaluate TouchSync’s convergence speed under real-world settings.

3.5.3 Impact of Clock Skews

To simplify discussions, our analysis and the numeric experiments in Section 3.5.1

and Section 3.5.2 assume that the master and the slave have no clock skews. In

practice, small clock skews will result in additional clock synchronization errors



Chapter 3. Clock Synchronization Using induced BEPs 45

for IPS-based TouchSync. According to our experiments in Section 3.5.2, when

the IPS’ period is 40 ms, the IPS-based TouchSync takes less than one second

before the system converges. The clock drift over a second time duration is often

little. For instance, the average clock drift rate of MSP430’s clocks is 44.2 ppm

(MSP430 LFXT1 Oscillator Accuracy , 2004), which will introduce a drift of 44 µs

per second. Thus, the time displacement |tslave0 − tmaster0 | that ranges from 0 to the

IPS period dominates the synchronization error of IPS-based TouchSync.

The validness of the domination of the time displacement over clock skew depends

on the convergence time. However, the convergence time can be monitored and

managed. For instance, if we desire to maintain the synchronization error caused

by clock skew below 100 µs, we can enforce a convergence time upper bound of

2 s given a drift rate of 50 ppm. If IPS-based TouchSync does not converge within

2s, the Adaptive Period Mechanism presented in Section 3.5.1.2 should be used to

increase the IPS period.

In this chapter, our analysis ignores clock skews and focuses on estimating the clock

offset between the master and slave. Existing clock skew compensation approaches

(e.g., (Rowe et al., 2009; L. Li et al., 2011; Hao et al., 2011; Z. Li et al., 2012))

can be integrated with TouchSync to address clock skew and further improve the

clock synchronization performance.

3.6 Implementation of TouchSync

Designed as an application-layer clock synchronization approach, TouchSync can

be implemented as an app or part of an app, purely based on the standard wearable

OS calls to sample the iSEP signal, exchange network messages, and timestamp

them in the application layer. To simplify the adoption of TouchSync by applica-

tion developers, we have implemented TouchSync’s platform-independent tasks in

ANSI C and provide them in a touchsync.h header file (Yan et al., 2017b). These

tasks include buffer management, iSEP signal processing, and IAS. Other tasks

of TouchSync, i.e., sensor sampling, synchronization message exchange and times-

tamping, are platform dependent. We leave them for the application developer to

implement. As these tasks are basics for embedded programming, by using the



46 3.6. Implementation of TouchSync

Table 3.1: Storage and compute overhead of TouchSync.

Platform
Memory use (KB) Processing time (ms)
ROM RAM BPF/MRF ZCD PLL IAS

Z1 10 5 364 9 48 1
Flora 17 1.9* 1.3 3 15 0.8

* Estimated based on buffer lengths.

platform-independent algorithms provided by touchsync.h, application develop-

ers without much knowledge in signal processing can readily implement TouchSync

on different platforms. Our own Arduino and TinyOS programs that implement

TouchSync’s workflow have about 50 and 150 lines of code only, respectively.

To understand the overhead of TouchSync, we deploy our TinyOS and Arduino

implementations to Zolertia’s Z1 motes and Floras, respectively. The Z1 mote is

equipped with an MSP430 MCU (1 MHz, 8 KB RAM) and a CC2420 802.15.4 radio.

Both implementations sample iSEP at 333 Hz. On Z1, we configure the length of

the circular buffer defined in touchsync.h to be 512. Thus, this circular buffer can

store 1.5 seconds of iSEP data. This is sufficient, because the time periods [t2, t3]

and [t1, t4] that should be covered by the iSEP signal segments to be retrieved from

the circular buffer and processed by the master and slave are generally a few ms

and below 100 ms, respectively. On Flora, we configure the circular buffer length to

be 400 and redefine its data type such that TouchSync can fit into Flora’s limited

RAM space of 2.5 KB. Table 3.1 tabulates the memory usage of TouchSync and the

computation time of different processing tasks. On Z1, a total of 421 ms processing

time is needed for a synchronization session. The BPF uses a major portion of the

processing time. Flora cannot adopt BPF because of RAM shortage. It uses MRF

instead, which consumes much less RAM and processing time. Z1 and Flora are two

representative resource-constrained platforms. The successful implementations of

TouchSync on them suggest that TouchSync can be readily implemented on other

more resourceful platforms.

We use a Monsoon power monitor to measure the energy consumption of Touch-

Sync on a Flora node. With TouchSync running, the node consumes 57.16 mW

on average. Without TouchSync, the node’s average idle power consumption is

54.99 mW when the node is not in the sleep mode. Thus, TouchSync consumes

2.17 mW or 0.658 mA (with 3.3 V battery) on average. Assume we would like

to run TouchSync on two wearable devices, each with a 150 mAh battery and a
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50 ppm crystal, which can continuously run without sleep for a whole day after

fully charged. In order to keep the clock offset within 7 ms, TouchSync should be

activated every 140 seconds. Under such settings, the battery time of the wearable

is reduced by 39 seconds per day due to the running of TouchSync. In other words,

the execution of TouchSync reduces the battery time by 0.045% only. Note that

when the wearable has a sleeping schedule to prolong the battery time (e.g., around

10 days by a duty cycle of 10%), TouchSync can be executed when the wearable is

not in the sleep mode.

3.7 Performance Evaluation

We conduct extensive experiments to evaluate the performance of TouchSync in

various real environments. Each experiment uses two Flora nodes, which act as

the TouchSync slave and master, respectively. As Flora does not support BLE

master mode, the two Floras cannot communicate directly. Thus, we use a RPi

that operates as a BLE master to relay the data packets between the two Floras.

This setting is consistent with most body-area networks with a smartphone as the

hub. If the hub can sample powerline radiation or iSEP , each wearable can also

synchronize with the hub directly using TouchSync. We use the approach discussed

in Section 3.3.1 to obtain the ground truth clock of each Flora. The details and

the results of our experiments are presented below.

3.7.1 Signal Strength and Wearing Position

As the intensity of powerline radiation attenuates with distance, iSEPs have varying

signal strength. Thus, we evaluate the impact of the iSEP signal strength on

the performance of the signal processing pipeline in Section 3.4.1. We measure

the signal strength as follows. For a full-scale sinusoid signal with a peak-to-

peak amplitude of one (normalized using ADC’s reference voltage), its standard

deviation is 0.5/
√

2 = 0.354. The signal strength of a normalized sinusoid with

a standard deviation of σ is defined as σ/0.354. Thus, a 100% signal strength

suggests a full-scale signal for the ADC. For this experiment, we use a Flora to

record an iSEP signal. The strength of this signal is 34%. We feed the signal

processing pipeline with this signal to generate a series of baseline ZCs. Then, we
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scale down the amplitude of this signal, re-quantize it, and process it using the

pipeline to generate another series of ZCs. We use the mean absolute error (MAE)

of these ZCs with respect to the baseline ZCs as the error metric. Fig. 3.20 shows

the MAE versus the strength of the scaled down signal. When we scale down the

signal by 60 times, yielding a signal strength of 0.6%, the ZCs’ MAE is 0.14 ms

only. This suggests that TouchSync can still detect the ZCs accurately even when

the iSEP signal is rather weak.

We evaluate the impact of the wearing position on the synchrony of iSEP signals.

A researcher wears a Flora on his left wrist. Then, he conducts four tests by fixing

the second Flora to his right wrist, right ankle, forehead, and waist, respectively.

Each test lasts for two minutes. Fig. 3.21 shows the error bars (5%-95% confidence

interval) for the absolute time displacement |ε| between the two Floras in these

four tests. The average |ε| values in the four tests are close. This suggests that

the wearing positions have little impact on the synchrony of iSEP signals and the

synchronization accuracy of TouchSync.

3.7.2 Impact of High-Power Appliances on TouchSync

Since the periodic iSEP signal is induced by the EMR field, EMR interferences may

distort the iSEP signals and result in large and dynamic time displacement between

two iSEP signals. This may consequently cause clock synchronization errors. High-

power electrical appliances may generate time-varying EMR interferences. In this

section, we investigate the impact of these appliances on the EMR waveforms

and the time displacement between the EMR signals collected from two nearby

Floras. We conduct experiments with an electric oven and a microwave oven as
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Figure 3.23: Errors introduced into time displacements of the EMR signals.

the electrical appliances, two representative high-power appliances found in home

and office environments. Their rated powers are 800 W and 1050 W, respectively.

In the experiment for each appliance, we place the two Floras close to the tested ap-

pliance. The electric oven is placed on a table in a kitchen with no other appliances

nearby, whereas the microwave is in an office pantry with other appliances running

nearby including a fridge and a water heater. In each experiment, we switch on

the tested appliance and switch it off by unplugging it from the power outlet. By

investigating the data traces collected by the two Floras when the appliance is on

and off, we can understand the impact of the appliance on the EMR and iSEP

signals.

Fig. 3.22 shows the raw EMR signals, collected from the electric oven and the

microwave oven. From Fig. 3.22a, the EMR amplitude decreases significantly when

the electric oven is switched off. Note that the electric oven is a resistive load. Its

change of operating status leads to a significant change of electric current through

the appliance and the related powerlines. Thus, the operating status of the electric

oven significantly affects the nearby EMR. In contrast, from Fig. 3.22b, the EMR

amplitude does not change when the microwave is switched off. A potential cause is
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that, the EMR sensed by the Flora is dominated by several other nearby appliances

including a fridge and an automatic water heater. Microwave ovens generate EMR

at 2.45 GHz. However, such high-frequency EMR cannot be effectively received by

the Floras. From Fig. 3.22b, the EMR signal received by the Flora is primarily

at the 50 Hz. In other words, the 2.45 GHz EMR emitted by the microwave, if

present, does not disrupt the 50 Hz EMR.

We evaluate the impact of the electric and microwave ovens on the synchrony of

the EMR signals collected from the two Floras. Fig 3.23 shows the time displace-

ment over the courses in Fig. 3.22. From Fig. 3.23a, after the electric oven is

turned off, the intensity of time displacement fluctuation becomes larger. This is

because, when the oven is switched off, the EMR strength and its signal-to-noise

ratio decreases, resulting in more fluctuating time displacement. This suggests

that, TouchSync’s clock synchronization accuracy is better when a nearby high-

power resistive load is operating. But the mean value of the time displacement is

still around zero. From Fig. 3.23b, the time displacement keeps stable. From the

results in Fig. 3.23, we can see that the nearby high-power appliances introduce

little impact on the time displacement between two EMR signals and thus the

performance of TouchSync.

3.7.3 Evaluation in Various Environments

We evaluate the iSEP signal strength and the accuracy of TouchSync in various

indoor environments.

3.7.3.1 Laboratory

We conduct experiments in a computer science laboratory with about 100 seats and

various office facilities (such as lights, computers, printers, projectors, or meeting

rooms). Fig. 3.24 show the floor plans of laboratory. We arbitrarily select nine test

points, marked by “Lx” in the figure. A researcher carries the Floras to each test

point and conducts two experiments. In the first experiment, the Floras have no

physical contact with human body; in the second experiment, the researcher wears

the two Floras. Thus, the experiment evaluates the same-wearer scenario. The

example applications mentioned in Section 1.1, i.e., motion analysis, and muscle
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Table 3.2: Signal strength and TouchSync accuracy.

Test Without skin contact With skin contact
point Signal K error Signal K error

strength (ms) strength (ms)
L

a
b

o
ra

to
ry

L1 2.6% 3 -0.2 84.7% 2 -0.7
L2 3.2% 2 0.3 31.5% 3 -0.7
L3 2.3% 2 -2.5 26.1% 2 0.5
L4 4.0% 1 -0.6 33.7% 2 0.0
L5 0.8% 15 1.1 3.3% 2 -0.2
L6 5.7% 10 -0.4 39.5% 10 -0.0
L7 2.3% n.a. n.a. 3.0% 2 -0.9
L8 4.6% 2 -1.5 8.3% 2 0.6
L9 2.6% 1 -1.2 67.4% 2 -0.9

H
o
m

e

H1 4.2% 2 -1.1 8.9% 2 -0.8
H2 3.4% 1 -0.9 14.5% 2 -1.0
H3 4.6% 1 -1.3 44.9% 2 0.2
H4 7.8% n.a. n.a. 39.2% 2 0.3
H5 3.8% 1 -1.6 3.9% 1 -2.8
H6 3.9% 4 -4.4 9.9% 2 -2.3
H7 5.0% 2 -1.9 6.8% 1 -2.9
H8 8.2% 1 -11.5 54.7% 4 -1.3
H9 2.9% 1 -2.4 9.1% 1 -1.3

O
ffi

ce

O1 4.0% n.a. n.a. 3.3% 4 0.4
O2 5.6% 1 -7.9 2.9% 2 -1.6
O3 1.7% 1 -0.4 3.9% 2 -0.3
O4 5.4% 3 -2.5 5.8% 2 -0.8
O5 4.8% 6 -6.2 5.6% 12 -0.2

C
o
rr

id
o
r

C1 3.6% 12 0.1 4.4% 11 0.7
C2 6.2% 2 0.6 44.2% 2 -1.0
C3 5.8% 1 -7.6 4.4% 1 -1.1
C4 1.9% 1 -6.0 2.2% 1 -2.8
C5 1.9% 2 -3.7 5.8% 1 -1.0

* n.a. means that TouchSync cannot converge due to large ε.

activation monitoring, belong to this scenario. Each synchronization session takes

about 150 ms. A synchronization process completes once the IAS converges.

The first part of Table 3.2 shows the iSEP’s signal strength, the number of syn-

chronization sessions until convergence (K), and the clock offset estimation error

at each test point. Without skin contact, the signal strength is a few percent only.

But TouchSync can still achieve a 3 ms accuracy. At L7, TouchSync cannot con-

verge because of large and varying ε. The skin contact significantly increases the

signal strength. Moreover, TouchSync converges after two synchronization sessions
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Figure 3.24: Laboratory floor plan with test points marked.

in most cases. For K = 2, a synchronization process takes less than one second.

The absolute clock offset estimation errors are below 1 ms, lower than those without

skin contact. However, without skin contact, the accuracy does not substantially

degrade. This suggests that, TouchSync is resilient to the loss of skin contact due

to say loose wearing.

3.7.3.2 Home

Figure 3.25: Home floor plan with test points marked.
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We conduct experiments in a 104 m2 three-bedroom home with typical home furni-

ture and appliances. Fig. 3.25 show the floor plans of the home, marked by “Hx” in

the figure. The second part of Table 3.2 shows the results. Without skin contact,

the signal strength results are similar to those obtained in the laboratory. With

skin contact, the signal strength increases and the absolute clock offset estimation

errors are below 3 ms.

3.7.3.3 Office

The third part of Table 3.2 shows the results obtained at five test points in a

15 m2 office. At test points O1 and O2, the signal strength with skin contact is

slightly lower than that without skin contact. This is possible as the two tests were

conducted during different time periods and the powerline radiation may vary over

time due to changed electric currents. With skin contact, TouchSync gives sub-ms

accuracy except at O2.

3.7.3.4 Corridor

We select five test points with equal spacing in a 200 m corridor of a campus build-

ing. The fourth part of Table 3.2 gives the results. With skin contact, TouchSync

yields absolute clock offset estimation errors of about 1 ms except at C4. The errors

with skin contact are lower than those without skin contact.

In summary, with skin contact, TouchSync gives sub-ms clock offset estimation

errors at 20 test points out of totally 28 test points in Table 3.2. All errors are

below 3 ms.

From Table 3.2, at 3 out of 28 test points, the test without skin contact gives

higher signal strength than that with skin contact. This is because the two tests

are conducted sequentially and the EMR may change over time. Moreover, the

signal strength exhibits significant variation at different locations. This is because

the EMR decays with the distance from the powerline. Nevertheless, the above

results show the pervasive availability of iSEP in indoor environments.
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3.7.4 TouchSync-over-Internet

Tightly synchronizing wearables over long physical distances is often desirable.

For instance, in distributed virtual reality applications, tight clock synchronization

among participating sensing and rendering devices that may be geographically

distributed is essential. Although the synchronization can be performed in a hop-

by-hop manner (e.g., wearables ↔ smartphone ↔ cloud), errors accumulate over

hops. In particular, tightly synchronizing a smartphone to global time has been

a real and challenging problem – tests showed that the synchronization through

LTE and Wi-Fi experiences hundreds of ms jitters (Lazik et al., 2015). In contrast,

TouchSync can perform end-to-end synchronizations for wearables distributed in a

geographic region served by the same power grid. The basis is that, the 50/60 Hz

power grid voltage, which generates the powerline radiation, is highly synchronous

across the whole power grid (Viswanathan et al., 2016). TouchSync can synchronize

wearables directly with a cloud server in the same region. The smartphone merely

relays the messages exchanged among the wearables and the cloud server if the

wearables cannot directly access Internet. The cloud server can use a sensor directly

plugged in to a power outlet to capture the power grid voltage. Owing to the

Internet connectivity, the end-to-end synchronization scheme greatly simplifies the

system design and implementation.

We conduct a proof-of-concept experiment of TouchSync-over-Internet as follows.

Two researchers carry a Flora-RPi setup each to two buildings that are about 10 km

apart. The RPi is attached with an Adafruit GPS receiver to obtain ground-

truth coordinated universal time (UTC) with µs accuracy. The two nodes, one

as TouchSync master and the other as TouchSync slave, communicate through a

tunnel established by ngrok 1.7, an open-source reverse proxy often adopted for
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creating IoT networks. Fig. 3.26 shows the distributions of the two one-way delays

over the ngrok tunnel. We can see that the ngrok exhibits significant dynamics.

We evaluate TouchSync-over-Internet for eight times during a day. Fig. 3.27 shows

the box plots of the time displacements (i.e., ε) between the iSEPs captured by

the two nodes. We can see that ε varies from −2 ms to 9 ms during the day. From

the building managements, the two rooms where the master and slave nodes are

located draw electricity from the R and Y phases of the power grid, respectively.

There is a phase difference of 20/3 = 6.7 ms between these two phases. Moreover,

from power engineering, the difference between the power grid voltage phases at

different geographic locations is non-zero and time-varying. These factors lead to

the non-zero and time-varying ε in Fig. 3.27. The dotted line in Fig. 3.27 shows the

synchronization errors of TouchSync-over-Internet (i.e., δ) in various experiment

runs. They are within the range of ε, since ε is the major source of TouchSync’s

synchronization error. The largest δ is 7 ms. The integer ambiguity solver converges

within 4 to 13 synchronization sessions.





Chapter 4

Touch-to-Access Device

Authentication Using iSEPs

In this chapter, we present TouchAuth, a device authentication approach based

on iSEPs1. Section 4.1 reviews related work. Section 4.2 presents the system and

threat models, the approach overview, and the research objective. Section 4.3

presents the measurement study. Section 4.4 and Section 4.5 design and evaluate

TouchAuth, respectively. Section 4.6 discusses several issues.

4.1 Background and Related Work

4.1.1 Device Authentication and Key Generation

Various physiological signals have been exploited for contact-based device authen-

tication and key generation. Key generation establishes a secret symmetric key for

a pair of nodes on the same human body. Using ECG and PPG for the above

two tasks has received extensive research. An early work (Poon et al., 2006)

encodes the interpulse intervals (IPIs) of ECG or PPG into a bit sequence and

performs authentication by comparing the Hamming distance of two bit sequences

with a threshold. The study (F. Xu et al., 2011) generates IPI-based symmet-

ric key for an Implantable Medical Device (IMD) and an external device. PSKA

1This chapter is partially published on (Yan, Song, Tan, Li, & Kong, 2019).
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(Venkatasubramanian et al., 2010) and OPFKA (Hu et al., 2013) generate keys

from certain ECG/PPG features. Rostami et al. (Rostami et al., 2013) quan-

tify ECG’s randomness in terms of entropy and design the H2H authentication

protocol. However, ECG/PPG sensors often have large form factors due to the

required physical distances between electrodes. Moreover, ECG/PPG sensing can

be vulnerable to video analytics (Poh, McDuff, & Picard, 2010; Wu et al., 2012).

TouchAuth achieves comparable detection accuracy within shorter sensing times.

Recent studies have exploited EMG (L. Yang et al., 2016) and gait (W. Xu, Revadi-

gar, Luo, Bergmann, & Hu, 2016) for key generation. However, the multi-electrode

EMG sensor (L. Yang et al., 2016) is sizable and must be placed close to muscles.

Walking to generate keys (W. Xu et al., 2016) may be inconvenient and the used

inertial measurement units (IMUs) may be vulnerable to remote acoustic attack

(Trippel, Weisse, Xu, Honeyman, & Fu, 2017). In Section 4.6.6, we will compare

the performance of our iSEP-based approach with the above physiological sensing

approaches.

4.1.2 Human Body Coupled Capacitive Sensing

The iSEP sensing belongs to a broader area of capacitive sensing. A recent sur-

vey (Grosse-Puppendahl et al., 2017) provides a taxonomy of capacitive sensing.

We review the paper that passively sense the mutual impact between the human

body and ambient EF. The iSEP has been used for touch (Cohn et al., 2011) and

motion sensing (Cohn, Gupta, et al., 2012), keyboard stroke detection (Elfekey

& Bastawrous, 2013), and gesture recognition (Cohn, Morris, et al., 2012). Sev-

eral studies use a single off-body electrode to sense the change of ambient EF

due to human’s electrophysiological signals (R. Prance, Beardsmore-Rust, Wat-

son, Harland, & Prance, 2008) and body movement (Takiguchi, Wada, & Toyama,

2007; H. Prance, Watson, Prance, & Beardsmore-Rust, 2012). Platypus (Grosse-

Puppendahl et al., 2016) uses an EF sensor array on the ceiling to localize and

identify a human walker. The EF change is due to the triboelectric effect and

changes in capacitive coupling between the walker and the environment. Wang et

al. (Wang et al., 2015) use an external sound card as the ADC and three magneto-

inductive coil sensors to collect the electromagnetic interference (EMI) radiated

from various devices. The signatures contained in the EMI are used for identify-

ing the device the user is touching. Laput et al. (Laput, Yang, Xiao, Sample, &
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Harrison, 2015) attach a modified software-defined radio to the human body for

sampling iSEP. When the user touches an object, the class of the object can be

recognized based on the sampled iSEP signal. Yang et al. (C. Yang & Sample,

2016) develop a follow-up research of (Laput et al., 2015) to recognize the identity,

rather than the class, of the touched object. However, the needed training phase

of (Wang et al., 2015; Laput et al., 2015; C. Yang & Sample, 2016) introduces

overhead.

The human body can be used as a communication channel. Early studies (Zimmerman,

1995; Matsushita et al., 2000; Park et al., 2006; Baldus et al., 2009) build cus-

tomized transmitter and receiver for intra-body communication (IBC). Vu et al.

(Vu et al., 2012) design a wearable transmitter to convey identification data to a

touchscreen as the receiver. Holz et al. (Holz & Knaust, 2015) use a wrist wear-

able and touchscreen to measure bioimpedance and identify the user. Hessar et

al. (Hessar, Iyer, & Gollakota, 2016) uses fingerprint scanner and touchpad as the

transmitter and a software-defined radio attached to skin as the receiver. Yang et

al. (C. J. Yang & Sample, 2017) show that the transmitters can be LEDs, buttons,

I/O lines, LCD screens, motors, and power supplies. Roeschlin et al. (Roeschlin et

al., 2018) design an IBC approach that estimates the body channel characteristics

to pair on-body devices. Although IBC can be used for contact-based device au-

thentication, it often requires non-trivial transmitter/receiver devices. In contrast,

our approach requires a ubiquitous low-speed ADC only.

4.1.3 Other Related Studies

VAuth (Feng, Fawaz, & Shin, 2017) uses a wearable token device to sense the

vibrations caused by the speech of the wearer and match the vibration signal with

the received voice signal. The matched vibration and voice signals are further used

to verify that the voice signal received by a voice assistant is really from the token

wearer. Nyemkova et al. (Nyemkova & Shandra, 2018) study the distinguishability

of various electronic devices based on the fluctuations of their internal EMI.
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4.2 System Overview and Research Objective

4.2.1 System Model

We consider an authentication system with two devices that have been previously

paired, i.e., an authenticator and an authenticatee. We assume that the two devices

have a wireless communication channel, e.g., Wi-Fi, BLE, or Zigbee. The pairing

enables them to communicate. The authenticator is a trustworthy device that can

sense the iSEP signal s(t), ∀t, at a location L on the body of a user U . To be

authenticated, the authenticatee presents its sensed iSEP signal s′(t), t ∈ [t1, t2],

to the authenticator. The ` = t2 − t1 is called signal length. The authenticatee is

valid only if it has physical contact with a location L′ on U which is close to L such

that s′(t) ≈ s(t), ∀t ∈ [t1, t2]; otherwise, it is invalid. The valid authenticatee will

be granted a certain access; the invalid authenticatee will be denied the access. We

assume that the clocks of the authenticator and the authenticatee are synchronized,

such that the authenticator can select a segment of s(t) in the time duration [t1, t2]

to check the similarity between s(t) and s′(t) for same-body contact detection.

Before the authentication process, clock synchronization can be achieved using

existing approaches (Maróti et al., 2004; Z. Li et al., 2012).

We now discuss the roles of different devices in the scenarios discussed in Sec-

tion 1.2. When the user with a wrist wearable token touches a smartphone to

unlock its screen, the wearable token is the authenticator, whereas the automatic

unlock program on the phone is the authenticatee. On detecting human touch

(by either button/touchscreen press or increased iSEP intensity), the unlock pro-

gram presents its captured iSEP signal to the wearable token that will perform the

same-body detection. A positive detection result allows the program to unlock the

smartphone; otherwise, the program should not unlock the phone. In the example

of worn medical sensor access, the medical sensor is the authenticator, whereas

the wireless reader is the authenticatee. Only the reader that has physical con-

tact with the sensor wearer will receive a one-time password to access the data on

the sensor. In the less access-critical examples of personalizing smart objects, the

wearable token (i.e., the authenticator) transmits the user’s identity to the touched

smart object (i.e., the valid authenticatee) for personalization.
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Figure 4.1: Left: A use scenario where the smart watch personalizes a re-
mote control and the associated media system by a touch; Right: authentication
process.

4.2.2 Threat Model

We adopt the same threat model that is used for an ECG-based device authenti-

cation system in (Rostami et al., 2013). Specifically, we consider an adversary who

fully controls the communication channel between the authenticator and any valid

authenticatee and aims at impersonating the valid authenticatee. The channel con-

trol includes eavesdropping, dropping, modifying, and forging messages as desired.

The adversary can corrupt neither the authenticator nor the valid authenticatee.

4.2.3 Approach Overview

Fig. 4.1 illustrates an authentication process of our approach. The authentication

begins once the authenticatee detects a human touch based on iSEP. After a hand-

shake with a nearby authenticator, a Transport Layer Security (TLS) connection

is set up between the authenticator and the authenticatee to ensure data confi-

dentiality, integrity, and freshness of consequent communications. TLS is feasible

on mote-class platforms (Fouladgar, Mainaud, Masmoudi, & Afifi, 2006; Schmitt,

Kothmayr, Hu, & Stiller, 2017). Because the authenticatee’s certificate presented

during the TLS setup needs not to be validated by the authenticator, our approach

does not involve a cumbersome public key infrastructure (PKI). Then, the two par-

ties synchronize their clocks and sample their respective iSEPs s(t) and s′(t) syn-

chronously for ` seconds. After that, following an existing protocol H2H (Rostami

et al., 2013) that is designed for ECG-based device authentication, the two parties

perform a commitment-based data exchange to ensure the security of the system
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against the threat defined in Section 4.2.2. Note that, without using H2H, a naive

approach of transmitting s′(t) from the authenticatee to the authenticator over the

TLS connection for contact detection is vulnerable to a man-in-the-middle attack

based on full channel control (Rostami et al., 2013). After obtaining s′(t), the

authenticator runs a same-body contact detection algorithm with s(t) and s′(t)

as inputs to decide whether the authenticatee is valid. Lastly, the authenticator

notifies the authenticatee of acceptance or rejection.

Note that in the less security-critical use scenarios such as smart object personal-

ization, the TLS connection setup can be skipped and the commitment-based data

exchange procedure can be replaced with a normal data exchange procedure. This

reduces overhead.

4.2.4 Research Objective

As discussed in Section 2.3, the human body in an EF is an equipotential conductor.

Considering two sensors with their ADC pins connected to the same human body,

the potentials of their ADC pins will be the same. If they are close to each other,

their grounds will have similar potentials. Thus, their readings will be similar. If

the two sensors are attached to two locations on the human body which are far

from each other, their grounds will have different potentials. As a result, though

their ADC pins have the same potential due to the human body contact, their

readings will be different.

Now, we discuss the case where the two sensors are on different human bodies.

The human bodies will most likely have different potentials. Moreover, even if we

ignore the impact of the two human bodies on the EF, because the two sensors

are at two different locations, the gradients of the indoor EF at the two locations

will be most likely different. As a result, the two sensors’ measurements will be

different. This difference will be further intensified by the different impacts of the

two human bodies on their nearby EFs.

Our research objective is two-fold. First, we aim to verify the above inferences

from the iSEP electrostatics via an extensive measurement study, which is the

subject of Section 4.3. If the measurement results are supportive of the inferences,
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we will inquire whether iSEP sensing can be exploited to implement the desirable

touch-to-access scheme. This will be addressed in Section 4.4 and Section 4.5.

4.3 Measurement Study

4.3.1 Measurement Setup

Our experiments are conducted using several Zolertia Z1 motes (Zolertia Inc, 2018)

and a Kmote (KETI, 2009). Both types of motes are equipped with MSP430

microcontroller and CC2420 802.15.4 radio. The Z1 motes are used to collect

iSEP data from human bodies, whereas the Kmote is used as a base station to

synchronize the Z1 motes’ clocks and collect their iSEP data over wireless. Each

Z1 mote is powered by a lithiumion polymer battery; the Kmote base station is

connected to a desktop computer through a USB cable. Each Z1 mote has two

Phidgets sensor ports connected to several ADC pins of its microcontroller. We

use a conductive wire as an electrode to create a physical contact between a pin in

one Phidgets sensor port and the skin of the Z1 wearer. Fig. 4.2 shows a Z1 worn on

a wrist. Each experiment involves two people. Fig. 4.3 shows the sensor placements

on the bodies. The motes run TinyOS 2.1.2. The program running on the Z1 mote

samples the ADC at a rate of 500 sps. The samples are timestamped using the

Z1’s clock. The program uses a reliable transmission protocol called Packet Link

Payer (Moss & Levis, 2007) to stream the samples to a Kmote base station. The
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Figure 4.4: Time-varying magnetic field generator.

program integrates the Flooding Time Synchronization Protocol (FTSP) (Maróti

et al., 2004) to synchronize the Z1’s clock to the Kmote base station.

4.3.2 Measurement Results

We conduct three sets of experiments in a lab office.

4.3.2.1 Insensitivity to time-varying magnetic field (MF)

To verify that the body antenna effect is mainly caused by EF, rather than MF,

we build an MF generator and examine its impact on iSEP sensing. Fig. 4.4 shows

the schematic and the implemented MF generator. It consists of a power amplifier

that weighs 2.6 kg, a 320 mH inductor, and a 1µF capacitor. The power amplifier

admits a specified signal waveform and outputs the corresponding current to induce

the inductor to generate time-varying MF. The capacitor is used to smooth the

output signal during the induction. In this experiment, the specified signal is a

85 Hz sinusoid. The choice of this frequency has two reasons: a) As 85 Hz is close

to the grid frequency of 50 Hz in our region, the iSEP sensor have similar signal

reception performance as for the 50 Hz signal from powerlines; b) The choice of

85 Hz is to avoid the harmonics of the grid frequency, i.e., 100 Hz, 150 Hz and so

on. We configure the power amplifier to use its maximum gain. From our tests,

this generator causes strong interference to nearby tank circuits that can sense

MF changes. However, from our experiments, it generates little impact on nearby

on-body Z1-based iSEP sensors. From a frequency analysis, the power density of

the iSEP signal at 85 Hz is 66 times weaker than that at 50 Hz when the on-body
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iSEP sensor is only 2 cm away from the inductor. The intensity of the signal at

85 Hz is similar to that of the ambient noise. The reason is that the iSEP sensor

(i.e., an ADC with floating ground) is an open circuit, which cannot be induced by

the time-varying magnetic field. This result confirms that the body antenna effect

is mainly caused by EF.

4.3.2.2 iSEPs on the same body

First, Person A sits in a chair and uses his right hand palm to hold two Z1 sensors

steadily. The ADCs of both sensors have direct contact with the palm skin. In

Fig. 4.3, the nodes numbered ¶ and · illustrate the placement of the two sensors.

Fig. 4.5a shows the iSEPs captured by the two sensors over two seconds. Fig. 4.5b

shows a zoomed-in view of Fig. 4.5a. From the two figures, we can see that the two

iSEP signals are synchronous and of the same amplitude level. This shows that,

when the two sensors are in proximity on the same human body, their measurements

are similar.

Second, we investigate the impact of spatial location on iSEP. As discussed in

Section 2.1, the indoor EF has an intensity distribution over space. Thus, the

potential difference between the human body and the ground of the sensor varies

with location. In this experiment, Person A holds a sensor in his palm with skin

contact and stands at two spots in the lab. Fig. 4.6a and Fig. 4.6b show the

iSEPs at the two spots that are about one meter apart. From the two figures, the

amplitude of the iSEP at Spot X is larger than that at Spot Y. Note that Spot X is

closer to a cubicle with a number of electrified power cables and power extensions.

Third, we investigate the impact of the sensor placement on the received iSEP

signal. We place three sensors on Person A, two on the right arm and the remaining

one on the left arm. The two sensors on the right arm are separated by about 15 cm,

one of which is close to the wrist and the other is close to the elbow. In Fig. 4.3,

the nodes numbered ¸, ¹, and º illustrate the placement of the three sensors. In

this experiment, the person stands and keeps a side lateral raise posture. Fig. 4.7

shows the iSEP signals collected from the three sensors in the same time period.

Fig. 4.7a shows the iSEPs measured by the two sensors on the right arm. Fig. 4.7b

shows the iSEPs measured by two sensors on different arms. Fig. 4.7c shows the

zoomed-in view for the signals in Figs. 4.7a and 4.7b. From the results, we can
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Figure 4.5: iSEPs measured by two sensors in the same palm when the holder
sits in a chair.
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Figure 4.6: iSEPs measured by a sensor in the same palm when the wearer
stands at different spots in the lab.
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(c) Zoomed-in view.

Figure 4.7: iSEPs at different locations of Person A.

see that the signals measured by the two sensors on the right arm have similar

amplitudes, but a phase shift of about 180◦. This can be caused by that the ADC-

to-ground directions of the two sensors in the EF are different. Ignoring the phase

shift, the signals measured by the two sensors 15 cm apart on the same arm exhibit

higher similarity than those measured by the two sensors on different arms, but

lower similarity than those measured by the two sensors in the same palm as shown

in Fig. 4.5b.

We use the absolute Pearson correlation coefficient (APCC) to quantify the simi-

larity between two iSEP signals. The two bars in the first bar group labeled (a) in

Fig. 4.8 show the APCCs between two iSEP signals collected from the same and

different arms on the same person, respectively. The above results suggest that

the correlation between the iSEPs is affected by the distance between the sensors.

When the two sensors are closer, their iSEPs exhibit higher correlation. This is

supportive of our discussion in Section 4.2.4.
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(c) Zoomed-in view.

Figure 4.10: iSEPs measured by three sensors on two persons who sit steadily
1 m apart.

4.3.2.3 iSEPs on different bodies

In the first experiment, we place two sensors in the palm of Person A and another

sensor in the palm of Person B. The two persons sit steadily 1 m apart. In Fig. 4.3,

the nodes numbered ¶, ·, and » illustrate the placement of the three sensors.
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Figure 4.11: iSEPs measured by three sensors on two persons who sit 1 m
apart and perform random hand movements.

Fig. 4.10 shows the results. Fig. 4.10a and Fig. 4.10b show the iSEPs measured

by the two sensors in Person A’s palm and the two persons’ palms, respectively.

Fig. 4.10c shows the zoomed-in view. From the results, we can see that the iSEP

on Person B is clearly different from that on Person A, in terms of both signal

amplitude and waveform. In contrast, the iSEPs on Person A are very similar.

The two bars in the second bar group labeled (b) in Fig. 4.8 show the APCCs

for the cases shown in Figs. 4.10a and 4.10b. Clearly, the iSEPs from the same

body exhibit higher correlation than those from different bodies. This result is

supportive of our discussion in Section 4.2.4.

In the second experiment, we investigate whether movements affects the distinctive-

ness. We ask the two persons to perform some random hand movements. Fig. 4.11

and the third bar group labeled (c) in Fig. 4.8 show the results. We can see that,

in the presence of movements, the iSEPs from the same body still exhibit higher

correlation than those from different bodies.
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In the above experiments, the clocks of the sensors are tightly synchronized us-

ing FTSP that uses MAC-layer timestamping to achieve microsecond-level syn-

chronization accuracy. Platforms without MAC-layer timestamping can achieve

millisecond-level synchronization accuracy (Z. Li et al., 2012). We now assess the

impact of a clock synchronization error of up to 10 ms on the APCC. As our col-

lected iSEP signals are tightly synchronized, we simulate the clock synchronization

error by offseting an input iSEP signal. Fig. 4.9 shows the APCC under different

simulated clock offsets among the signals in Fig. 4.11. We can see that, in the

presence of clock synchronization error, the APCC for the signals from the same

person is generally higher than that for different persons. Moreover, when the

synchronization error is around −5 ms or 5 ms, the APCCs are nearly zero. This

is because the two signals have a phase difference of 90°, resulting in near-zero

correlations. Chapter 3 shows that by using iSEP, wearables on the same person

or two nearby persons can maintain the synchronization errors below 3 ms. Such

synchronization errors do not subvert the APCC as an effective similarity metric.

4.4 Same-Body Contact Detection

From Section 4.3.2, iSEP is promising for touch-to-access device authentication. In

this section, we present the design of the same-body contact detection algorithm

(Section 4.4.1) and discuss a mimicry attack that aims at subverting the algorithm

(Section 4.4.3).

4.4.1 Detection Algorithm

Before TouchAuth detects the same-body contact, it checks the iSEP signal strength.

Specifically, if the standard deviation of either s(t) or s′(t) is below a predefined

threshold, TouchAuth rejects the authentication request without performing same-

body contact detection. This ensures that the detection is made based on meaning-

ful iSEP signals. From our offline tests, a standard deviation threshold of 0.06 V is

a good setting for the Z1 platform. Similar offline tests can be performed for other

platforms. In what follows, we present the same-body contact detection algorithm.

The detection performance is evaluated in Section 4.5.
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The detector compares a similarity score between s(t) and s′(t), ∀t ∈ [t1, t2], with

a threshold denoted by η. If the similarity score is larger than η, TouchAuth

accepts the authenticatee; otherwise, it rejects the authenticatee. We adopt the

reciprocal of the root mean square error (RMSE) and the absolute Pearson cor-

relation coefficient (APCC) as our similarity metrics. The RMSE is a variant of

the Euclidean distance which has been used as a dissimilarity metric by physio-

logical sensing approaches (Poon et al., 2006). The Pearson correlation coefficient

measures the linear correlation between two variables. As shown in Fig. 4.7, the

iSEP signals collected from the same arm have a phase shift of 180◦, resulting

in a Pearson correlation of about −1. However, the authenticatee on the same

arm as the authenticator may be accepted. This motivates us to use the APCC

as the similarity metric that ranges from 0 to 1, with 0 and 1 representing the

lowest and the highest similarity values, respectively. In the rest of this chapter,

the TouchAuth based on the RMSE and APCC is called RMSE-TouchAuth and

APCC-TouchAuth, respectively.

Dynamic time warping distance (DTWD) is a widely adopted dissimilarity metric

that can address time-varying phase shift. From our experiments, it may wrongly

help the invalid authenticatee who is spatially close to the authenticator. Thus, we

do not adopt DTWD.

4.4.2 Assessment metrics

This chapter uses the false acceptance rate (FAR or simply α) and the true ac-

ceptance rate (TAR or simply β) as the main detection performance metrics. The

α and β are the probabilities that an invalid or valid authenticatee is wrongly or

correctly accepted, respectively. The detection threshold η and the signal length `

are two important parameters. The receiver operating characteristic (ROC) curve

of β versus α by varying η depicts fully the performance of a detector under a

certain `. The signal length ` characterizes the sensing time needed by the authen-

tication process. In this chapter, we use the ROC curves to compare the detection

performance of various detectors. In practice, the settings of η and ` can follow the

Neyman-Pearson lemma to enforce an upper bound for α. A stringent α is often

required by authentication. For instance, with α = 1%, an invalid authenticatee

needs to repeat the authentication process 100 times on average to be successful,
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Figure 4.12: Detection performance of APCC-TouchAuth when ` is 0.5 s, 1 s,
and 2 s, respectively.

which is frustrating if some after-rejection freeze time is enforced. Moreover, an

authenticatee device can be banned if it is continuously rejected for many times.

Fig. 4.12 shows the detection performance of APCC-TouchAuth assessed by using

the data shown in Fig. 4.11. Fig. 4.12a shows the α and the false rejection rate

(FRR) versus the detection threshold η when ` is 0.5 s, 1 s, and 2 s, respectively.

Note that FRR = 1−β. Fig. 4.12b shows the ROC curves when α is from 0 to 2%.

Note that the α and β values of each point on the ROC are measured based on 500

tests. From the figure, we can see that when ` = 2 s, APCC-TouchAuth achieves a

β value of 100% (i.e., correctly accepts all 500 tests when the authenticatee is valid)

while keeping α = 0% (i.e., correctly rejects all 500 tests when the authenticatee is

invalid). This suggests that APCC-TouchAuth can achieve a very high detection

accuracy. The equal error rate is 3.2%, 1.6%, 0.5% when ` is 0.5 s, 1 s, and 2 s,

respectively. From Fig. 4.12b, the ROC curve under a smaller ` setting becomes

lower, suggesting lower detection accuracy. Section 4.5 extensively evaluates the

detection performance of TouchAuth under a wider range of settings among a larger

group of users.

In addition to the ROC that characterizes detection performance, we use the signal-

to-difference ratio (SDR) to assess the quality of iSEP sensing. Specifically, let

P [x(t)] denote the average power of a signal x(t). Ideally, if the authenticator and

the valid authenticatee are very close to each other on the same human body, their

iSEP signals s(t) and s′(t) should be very similar. Thus, we define the SDR in

decibel as SDR = 10 log10
P [s(t)]

P [s(t)−s′(t)] dB. A high SDR suggests high-quality iSEP

sensing.
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4.4.3 Mimicry Attack

We now discuss a mimicry attack that attempts to obtain the authenticator’s s(t).

Due to the complex spatial distribution of the indoor ambient EF, it is generally

difficult for the attacker to estimate the authenticator’s s(t). In this attack, the

attacker wearing an iSEP sensor mimics the body movements of the victim user

wearing the authenticator. To be effective, the mimicry attacker should stay as

close as possible to the victim user to sense the same/similar ambient EF. Thus, it

is unrealistic in practice, because the strange mimic behavior in proximity can be

easily discerned by the user. Note that this attack is beyond the threat model de-

fined in Section 4.2.2 that concerns the security of data communications between

the authenticator and the authenticatee. Thus, our approach described in Sec-

tion 4.2.3, which is based on the secure protocol H2H, does not guarantee security

against this mimicry attack. In Section 4.5, we will show the ineffectiveness of this

attack experimentally.

4.5 Evaluation

We conduct a set of experiments to evaluate TouchAuth’s same-body contact detec-

tion performance under a wide range of settings including different wearers, various

indoor environments, multiple possible interfering sources, device proximity, skin

moisture, and heterogeneous devices.

4.5.1 Performance across Different Wearers

We collect a set of data involving a wearer R and 12 other wearers P1,P2, . . . ,P12.

The experiments are conducted in a computer science lab. In the ith experiment

(i = 1, . . . , 12), R holds an authenticator device and a valid authenticatee device

in his palm, whereas Pi holds an invalid authenticatee device in his palm. Thus,

in this set of experiments, we evaluate the detection performance of TouchAuth

for a certain user with a valid authenticatee against different users with invalid

authenticatees. In each experiment, R and Pi, which are about 0.5 m apart, are

allowed to perform some uncoordinated and random hand movements. The data
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Figure 4.13: ROCs for 12 different wearers with the invalid authenticatee
device. The x-axis and y-axis of each subfigure are α and β, respectively.

collection of each experiment lasts for two minutes. We measure the detection per-

formance of APCC-TouchAuth and RMSE-TouchAuth as follows. Let NL, or NI ,

denote the total number of tests between the authenticator and the valid authenti-

catee, or between the authenticator and the invalid authenticatee. Accordingly, let

NTA and NFA denote the total numbers of true acceptances and false acceptances,

respectively. The β and α are measured by NTA/NL and NFA/NI , respectively.

Fig. 4.13 shows the APCC- and RMSE-TouchAuth’s ROC curves for different wear-

ers with the invalid authenticatee device when the signal length ` is 1 s. Different

data points on an ROC represent the results under different detection threshold

η. The SDR assessed using the authenticator’s and the valid authenticatee’s iSEP

signals in each experiment is included in the corresponding subfigure. We can

see that across different wearers with the invalid authenticatee, APCC-TouchAuth

is comparable or superior to RMSE-TouchAuth in terms of the detection perfor-

mance. This is because that APCC inherently captures the correlation between

the iSEP signals on the same moving hand. In contrast, as the RMSE captures

sample-wise differences between two signals, two uncorrelated signals with simi-

larly small amplitudes can give a small RMSE value, leading to a false acceptance.
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Figure 4.14: ROCs for 8 different wearers with the valid authenticatee device.
The x-axis and y-axis of each subfigure are α and β, respectively.

Note that the RMSE has been adopted as a dissimilarity metric for physiological

sensing (Poon et al., 2006). However, it is ill-suited for iSEP sensing because the

iSEP signal amplitude has a large dynamic range depending on the ambient EF’s

gradient. This is different from physiological signals that often have stable ranges

of signal amplitude. From Fig. 4.13, we can see that APCC-TouchAuth achieves

a high β value (100%) subject to an α upper bound of 1%, except for the wearer

P11. For P11, APCC-TouchAuth achieves a β value of 100% subject to an α upper

bound of 4%.

We collect another set of data, whereR wears an invalid authenticatee and Pi holds

an authenticator and a valid authenticatee. Thus, this set of experiments evalu-

ate the detection performance of TouchAuth for different users wearing the valid

authenticatee against a certain user wearing the invalid authenticatee. Fig. 4.14

shows the ROCs for eight different wearers with the valid authenticatee. Simi-

lar to the results in Fig. 4.13, APCC-TouchAuth achieves high-profile ROCs and

outperforms RMSE-TouchAuth. The results in Figs. 4.13 and 4.14 show that the

detection performance of TouchAuth is not wearer-specific.
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Figure 4.15: Experiments in indoor environments.
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Figure 4.17: ROCs with various nearby appliances.

4.5.2 Various Indoor Environments

Two wearers conduct experiments in eight different indoor environments as shown

in Fig. 4.15, which include a living room, a study room, a kitchen, two bedrooms,

a corridor, a meeting room, and an open area of a lab. One wearer carries the

authenticator and a valid authenticatee and the other carries the invalid authen-

ticatee. Fig. 4.16 shows the snapshots of some environments and the measured

SDRs and ROCs in the eight environments. We can see that in certain envi-

ronments, the RMSE-TouchAuth performs poorly. Investigation on the raw iSEP

signals shows that in these environments, the iSEP signals of the authenticator and

the invalid authenticatee have similar amplitudes. In all the eight environments,

APCC-TouchAuth achieves high β values (≥ 97%) subject to an α upper bound of

1%. If the α upper bound is relaxed to 4%, the β value of 100% can be achieved.

4.5.3 Various Possible Interfering Sources

From our discussion in Chapter 2 and the measurement results in Section 4.3.2.1,

the iSEP measurement is mainly caused by the ambient EF. The MFs generated

by the operating currents of electric appliances have little impact on the iSEP
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Figure 4.18: ROCs with interference and skin moisture.

sensing. However, some appliances, especially those based on motors and high-

frequency switched-mode power, may generate interference to the iSEP sensing.

This is because that unlike the 50 Hz current-induced MF that generates little/no

EF, the high-frequency currents caused by the frictions between the motor’s brush

and stator as well as the switched-mode power may generate propagating electro-

magnetic waves. As a result, the EFs generated by the appliances and powerlines

may weaken each other, making the overall EF weaker. Thus, we conduct a set

of experiments with various home appliances including toaster, electric kettle, hair

dryer, ceiling fan, blender, and induction cooker. Specifically, two wearers, one

with a valid authenticatee and the other with an invalid authenticatee, stand close

to a certain appliance to collect iSEP traces. Fig. 4.17 shows the SDR and the

APCC-TouchAuth’s ROCs for various appliances when the appliance is on and

off. We can see that, for a certain appliance, the SDR may increase or decrease

when the appliance is switched on. This is because that the interference from the

appliance may be constructive or destructive to the EF generated by the building’s

power cabling. The operating status of the induction cooker causes the largest

SDR change of more than 5 dB. This is due to the high-frequency switched-mode

current in the cooker’s internal inductor. As a result, the ROC drops slightly when

the induction cooker is switched on. However, APCC-TouchAuth still achieves a

high β value (100%) subject to an α upper bound of 2.5%.

The signaling phase of a cell phone call often interferes with audio systems because

of the intermittent wireless power pulses. Thus, we evaluate the impact of cell

phone calls on APCC-TouchAuth. In the experiments, the wearer holds a smart-

phone, a valid authenticatee, and the authenticator in one palm. Another wearer

holding an invalid authenticatee stands 0.5 m away. Fig. 4.18(a) shows the ROCs
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Figure 4.20: Sensor proximity.

at different phases of a phone call. We can see that the phone call does not affect

the detection performance of APCC-TouchAuth.

Secondly, we use a circuit seeker (Greenlee CS-8000) that is capable of up to 4 miles

circuit tracing (Co., 2018) to inject noises into the power network serving the lab

in which we conduct experiments. The injector of CS-8000 is plugged into a power

outlet, injecting a 15 kHz signal into the power network; the seeker can detect the

15 kHz electromagnetic emanation from the powerlines. We conduct experiments

in proximity of a powerline close to the injector. Fig. 4.18(b) shows the ROCs

when the injector is in operation or not. We can see that the noise injection does

not affect TouchAuth.

Lastly, we evaluate the impact of the skin moisture conditions on TouchAuth. We

conduct two experiments, in which the user holds the authenticator using a wet

hand. Meanwhile, he holds a valid authenticatee in the same hand. Another user

stands 0.5 m away holding an invalid authenticatee. Fig. 4.18(c) shows the ROCs

for dry and wet skin moisture conditions. We can see that the skin moisture has

little impact on the performance of TouchAuth.

4.5.4 Impact of Signal Length `

We evaluate the impact of the signal length ` on the detection performance of

TouchAuth. We combine the data collected from 12 different wearers in Sec-

tion 4.5.1 into a single dataset. Based on the combined dataset, Fig. 4.19 shows the

β achieved by APCC-TouchAuth and RMSE-TouchAuth versus ` when α ≤ 1%

or α ≤ 2%. APCC-TouchAuth’s β increases sharply when ` ≤ 1 s. When ` > 1 s,

its β increases with ` slowly. This suggests that a setting of ` = 1 s well balances
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the detection performance and sensing time. The β-` curves for RMSE-TouchAuth

exhibits a similar pattern. Moreover, consistent with the results in Section 4.5.1

and 4.5.2, RMSE-TouchAuth is inferior to APCC-TouchAuth.

4.5.5 TouchAuth Devices’ Proximity

In the previous subsections, the authenticator and the valid authenticatee are in

the same palm. In this set of experiments, they are placed at different locations on

the user’s body. Fig. 4.20 shows APCC-TouchAuth’s ROC curves. When the two

devices are on the palm and the wrist of the same hand, respectively, a high-profile

ROC is achieved. When the two devices are on (i) the right palm and the right

elbow, respectively, or (ii) the right palm and the head, respectively, the detection

performance is degraded. This shows that TouchAuth is applicable to the example

use scenarios discussed in Section 1.2 where the two devices are in proximity on

the same body. In Section 4.6, we will further discuss the impact of the proximity

requirement on the usability of TouchAuth.

4.5.6 Mimicry Attack

We follow the data collection methodology described in Section 4.5.1 to collect

another dataset in the lab, except that each wearer Pi with the invalid authenticatee
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mimics the hand movements of the wearer R with the authenticator and the valid

authenticatee. The R performs simple and repeated hand movements, such that Pi
can follow easily. The distance between R and Pi is about 0.5 m. Fig. 4.21 shows

the APCC-TouchAuth’s β versus ` subject to various α upper bounds. The error

bars show the minimum, maximum, and mean of the β values among different R-

Pi pairs in the dataset. Compared with Fig. 4.19, when ` is small (e.g., 0.1 s), the

mimicry attack degrades APCC-TouchAuth’s detection performance. However, the

attack impact can be fully mitigated by adopting a larger ` setting (e.g., ` = 1 s).

4.5.7 Heterogeneous Devices

In this set of experiments, the authenticator and the invalid authenticatee are

based on Z1 motes (denoted by Z1-1 and Z1-2); the valid authenticatee is based on

an Adafruit’s Flora (Adafruit, 2018), an Arduino-based wearable platform. The

top part of Fig. 4.22 shows a Flora-based TouchAuth prototype device with a 3D-

printed insulating wristband and a conductive thread creating the body contact.

We use a laptop computer to relay the communications between the Bluetooth-

based Flora and the Zigbee-based Z1. The bottom part of Fig. 4.22 shows the

zoomed-in view of the signals captured by the three devices. We can see that

although the Z1 and Flora have different DC lines, the Z1-1 authenticator and

the Flora authenticatee are highly correlated. Based on this setup, with ` = 1 s,

APCC-TouchAuth achieves a β value of 100% subject to an α upper bound of 1%.

This result shows that TouchAuth can be applied on heterogeneous devices.

4.6 Limitations and Discussions

This section shows the limitations and discussions of TouchAuth. We first decribe

TouchAuth’s requirements of sensor’s proximity in Section 4.6.1. Then, in Sec-

tion 4.6.2, 4.6.3, 4.6.4, 4.6.5, we discuss TouchAuth’s applicability of iSEP injection

attack, other interferences, outdoor environments, and implantable medical devices

(IMD), respectively. Finally, we compare TouchAuth with existing approaches in

Section 4.6.6.
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4.6.1 Proximity Requirement

From the measurement study in Section 4.3 and the evaluation results in Sec-

tion 4.5.5, our approach requires that the authenticator and the authenticatee are

in proximity on the same human body. For instance, in the example of personaliz-

ing smart objects, the user should use the hand with the wrist wearable to touch

the objects. A wireless reader needs to be placed close to a worn medical sensor

to be authenticated. We believe that this proximity requirement introduces little

overhead of using TouthAuth-based devices. Nevertheless, TouchAuth offers a low

cost and small form factor solution based on ubiquitous ADCs only. Although

exiting IBC and physiological sensing approaches may not have this proximity re-

quirement, they generally require non-trivial sensing devices that are more costly

and of larger form factors. In particular, the proximity requirement increases the

barrier for active attackers to steal the iSEP signals, since they have to place a

sensor close to the authenticator. In contrast, if the body-area property is effective

for the whole body like for ECG/PPG, the attackers may attach a miniature sensor

to the clothing of the victim to steal the signal.

4.6.2 iSEP Injection Attack

If an attacker can generate a strong ac EF that overrides the ambient EF, the

attacker can infer the s(t) sensed by the authenticator and spoof it to accept an

invalid authenticatee. However, the strong EF generation is non-trivial and in-

evitably requires bulky equipment. Overriding the power grid voltage is generally

impossible unless the building’s power network is disconnected from the mains grid

and supplied by a power generator controlled by the attacker. Another possible

approach is to surround the victim TouchAuth devices with two metal plates con-

nected with an ac generator. The bulky setting of the EF generation renders the

attack easily discernible by the TouchAuth user and costly, unattractive to the

attacker. Another possible attack is to generate power surges in the power network

by frequently switching on and off high-power appliances like space heaters. How-

ever, the surges generate easily discernible disturbances to other appliances such as

lights and audio systems. Thus, we believe that the iSEP injection attack, though

possible, is unrealistic or easily discernible.
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4.6.3 Other Interferences

TouchAuth is based on the instantaneous similarity of the iSEP signals in close

proximity induced by the ambient EF. Hence, the similarity does not depend on

the user’s physiological state. Certain limited scenarios may affect the iSEP. For

example, a temporary charging caused by taking off a sweater may override the

iSEP in a short time. However, such situations do not happen frequently.

4.6.4 Applicability to Outdoors

The outdoor naturally occurring EF is too weak to be exploited by TouchAuth.

Thus, TouchAuth is not applicable outdoors, where it rejects all authentication

requests due to too weak iSEP signal strength (Section 4.4.1). As most smart

objects are indoors and we spend most of our time indoors (e.g., 87% on average

for Americans (Klepeis et al., 2001)), TouchAuth gives a satisfactory availability.

Note that the wide availability of the iSEP signals in indoor environments has

been shown in existing studies (Cohn et al., 2011; Cohn, Gupta, et al., 2012; Cohn,

Morris, et al., 2012). According to our experiment results in 4.5 using the SDR

value defined in 4.4.2, TouchAuth shows wide availabilities in indoor locations,

such as household rooms, offices, and corridors.

4.6.5 Applicability to Implantable Medical Devices (IMDs)

Our measurement study (Section 4.3) and evaluation (Section 4.5) are based on

iSEPs collected from skins. We now discuss the applicability of TouchAuth to

devices implanted into human bodies. From our discussion in Section 2.1, an

electrostatically induced human body is an equipotential body. Thus, the ADC

pin and the ground of an IMD that is fully implanted into the human body have

the same potential. As a result, the iSEP measurement is zero. We conducted

a set of experiments to verify this. We bought two types of homogeneous meat

from a supermarket. We wrapped a Z1 mote using cling film but leaved its ADC-

connected electrode out of the wrap. We fully and partially implanted the mote

into the meat. Under both settings, the electrode has significant contact with the

meat. The partial implanting means that a small portion of the cling film was still
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visible. The peak-to-peak amplitudes of the iSEP signals measured by the Z1 mote

fully and partially implanted are about 0.05 V and 0.1 V, respectively. The peak-

to-peak amplitude of the latter case is comparable to some of our measurement

results on human skins (Section 4.3). Frequency analysis shows that the former

is close to white noise and the latter clearly exhibits a frequency of 50 Hz. These

results suggest that TouchAuth is applicable to partially implanted devices, such

as insulin pumps, cochlear implants, and foot drop implants.

4.6.6 Comparison with Existing Approaches

Table 4.1: Comparison with existing approaches.

Ref. Signal Sensing time (s) α (%) β (%)

TouchAuth 1 2.0 94.2%
5 2.0 98.9%

(Poon et al., 2006) ECG+PPG ∼60 (67 IPIs) 2.1 93.5
∼30 (34 IPIs) 4.5 90.5

(Venkatasubramanian et al., 2010) PPG 12.8 0.1 99.9

(Hu et al., 2013) ECG ∼90 (90 IPIs) ∼0∗ ∼100∗

∗ (Hu et al., 2013) fuzzily states that its FAR and FRR are almost zero.

We compare the performance of APCC-TouchAuth (from Fig. 4.19) and several

ECG/PPG device authentication approaches introduced in Section 4.1.1. The

results are shown in Table 4.1. Compared with the approach using ECG+PPG

(Poon et al., 2006), APCC-TouchAuth achieve higher TAR β when FAR α is

2%. APCC-TouchAuth takes less than a tenth of sensing time that ECG+PPG

approach requires. For methods using PPG (Venkatasubramanian et al., 2010) and

ECG only (Hu et al., 2013), APCC-TouchAuth achieves a competitive high TAR β

with shorter sensing time and a simpler implementation. With quick and accurate

authentication process, compared to the existing approaches, APCC-TouchAuth

applies to more IoT objects using unobtrusive and convenient interactions.
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Conclusion and Future Work

In this thesis, we explain the electrostatics of iSEP with supporting measurement

results. Based on the understanding, we first designed TouchSync that synchro-

nizes the clocks of wearables by exploiting the wearers’ iSEP. Different from exist-

ing WSN clock synchronization approaches that find difficulties in being applied

on diverse IoT platforms due to their need of hardware-level packet timestamping

or non-trivial extra hardware, TouchSync can be readily implemented as an app

based on standard wearable OS calls. Extensive evaluation shows TouchSync’s syn-

chronization errors of below 3 ms and 7 ms on the same wearer and between two

wearers 10 km apart, respectively. With the capability to run on the application

layer, more wearable applications are possible, such as virtual reality gaming, re-

mote surgery, and synchronous audio streaming. We then designed TouchAuth for

device authentication based on iSEP signals. We evaluated its same-body contact

detection performance via extensive experiments under a wide range of real-world

settings, including various signal strength, wearing positions, environments, and

resistance to interferences. Results showed that TouchAuth achieves comparable

detection accuracy as existing physiological sensing approaches, but within much

shorter sensing times. Moreover, the uni-electrode iSEP sensor can be miniatur-

ized. TouchAuth offers a low-cost, lightweight, and convenient approach for the

authorized users to access the smart objects found in indoor environments. With

the help of TouchAuth, users wearing a smart token device can unlock smartphones,

personalize IoT devices, and access touchable objects with a simple touch.
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86 Chapter 5. Conclusion and Future Work

In the future, we will study iSEP signal to implement other basic system functions

such as indoor localization and key generation. As shown in our prior measurement

studies of TouchAuth, iSEP is location-dependent. As the distance from the sensor

to the powerline affects the iSEP signal’s amplitude, iSEP may be employed for

human body localization. When exploring the similarity of two iSEP signals, we

find that iSEP signals from two different people are more likely to be different.

Given the distinguishable shapes of each person, a unique key may be generated

from iSEP signal.

Another IoT system function, i.e., voice commanding, can be enhanced with the

cyber-physical approach. Because of the energy and size constraints, traditional

user interfaces like keyboards or touchscreens are infeasible for various IoT de-

vices. Hence, many IoT devices like TV remote controllers and home assistants

choose voice commanding as the main user interface. However, determining the

genuineness of a received voice command is a non-trivial problem. Several attack

approaches have been designed to generate a voice clip that can mislead the IoT

objects to execute the task designated by the attacker, while legitimate people can

hardly notice the attack. Using the sensors embedded in IoT devices admitting

voice commanding, two-factor verification approaches using physical signals can be

designed to counteract the existing attacks.
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