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Abstract

In this paper, we propose new classes of trapdoor functions to solve the bounded distance
decoding problem in lattices. Specifically, we construct lattices based on properties of polyno-
mials for which the bounded distance decoding problem is hard to solve unless some trapdoor
information is revealed. We thoroughly analyze the security of our proposed functions using
state-of-the-art attacks and results on lattice reductions. Finally, we describe how our functions
can be used to design quantum-safe encryption schemes with reasonable public key sizes. Our
encryption schemes are efficient with respect to key generation, encryption and decryption.

1 Introduction

In today’s digital world, protecting the confidentiality and integrity of digital information is of
vital importance. At the core of providing data privacy, integrity and authenticity are a class of
algorithms called public-key cryptosystems, first introduced by Diffie and Hellman in 1976 [13].
Essentially, these public-key cryptosystems are constructed from trapdoor functions. Recall that a
trapdoor function f is a function satisfying:

• f(x) is easy to evaluate for all inputs x;

• Given an output y of the function f , it is computationally infeasible to determine x such that
y = f(x) unless some trapdoor information is known.

To date, most commonly deployed trapdoor functions rely on some computational number theory
problems where no efficient classical algorithm is known, including the integer factorization problem
and discrete logarithm problem in various finite groups. However, Shor showed in 1994 that there
exists a quantum algorithm that can solve these problems in polynomial time [43].

As such, there is an urgent need to design new trapdoor functions based on different math-
ematical problems that are resistant to quantum algorithms. At present, a number of potential
classes of mathematical problems are being considered and studied, namely, from coding theory,
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lattices, multi-variate polynomials, hash functions and isogenies of supersingular elliptic curves [7].
Among them, lattices seem to be among the most promising, spawning many new constructions
with different properties and capabilities, most notably fully homomorphic encryption [17].

1.1 Previous work

The first code-based cryptosystem was proposed by McEliece in 1978 [35] with its security based
on the hardness of decoding a random code. It provides efficient encoding and decoding while suf-
fers from the disadvantage of having large public key sizes for standard security levels. The main
ingredient of code-based schemes is a class of codes with efficient decoding which are indistinguish-
able from random codes. Many families of codes have been proposed including Goppa codes [35],
algebraic geometric codes [25], Reed-Muller codes [44], Reed Solomon codes [39] and MDPC codes
[37]. To date, Goppa codes and MDPC codes are among the few families of codes that possess the
desired properties for code-based schemes.

On the other hand, early lattice-based encryption schemes include the Ajtai-Dwork Encryption
[1], Goldreich-Goldwasser-Halevi (GGH) encryption [20] and NTRU encryption [23]. A break-
through of modern lattice-based cryptography is the invention of the learning with error (LWE)
and Ring-LWE problems [40, 34]. Consequently several LWE-based encryption schemes have been
proposed [8, 9, 18, 21].

The GGH encryption scheme [20] is an analog of the famous code-based encryption scheme–
McEliece encryption. However, it was shown in [38] that the structure of the error provided an
inherent weakness and together with the embedding technique, this weakness can be exploited to
attack the GGH instances. Even though suggestions were put forth in [38] to mend the scheme,
the corresponding parameters will make the scheme impractical for use.

Nonetheless, the ideas underpinning the GGH scheme remained interesting and motivated other
lattice-based trapdoor functions including those based on RLWE/SIS problems [19]. Besides, it
is interesting that the code-based analog McEliece cryptosystem is still secure against quantum
computers. As such, one might hope to improve the lattice-based GGH scheme such that it provides
the same level of security but is more efficient than the McEliece scheme.

1.2 Our work

In this paper, we seek to design new trapdoor functions in which the function inversion involves solv-
ing the Bounded distance decoding problem (BDD), one of the well-known hard lattice problems.
Our construction is primarily inspired by the GGH construction [20] and the McEliece code-based
cryptosystem [35]. In particular, our scheme can be viewed as the lattice analog of the Goppa-code
based McEliece cryptosystem. Like these schemes, our function involves constructing a point that
is sufficiently close to a certain point in a lattice determined by the input. Hence, inverting this
function will require one to solve BDD for a related lattice.

More precisely, we choose n distinct elements α1, α2, . . . , αn of Fq and t distinct monic irreducible
polynomials c1(x), c2(x), . . . , ct(x) of degree d0 such that gcd(

∏n
i=1(x − αi),

∏t
i=1 ci(x)) = 1 . An

integer point (a1, a2, . . . , an) ∈ Zn is a lattice point if and only if
∏n
i=1(x − αi)ai ≡ 1 (mod c(x)),

where c(x) =
∏t
i=1 ci(x). Then a basis of this lattice can be computed efficiently. We show in this

paper that, given q, n and certain range of d = td0, and the basis of this lattice, the embedding
technique does not work well to tackle the BDD of this lattice. On the other hand, with information
on {α1, α2, . . . , αn} and the polynomial set {c1(x), c2(x), . . . , ct(x)}, we are able to efficiently solve

2



the BDD of this lattice. With this trapdoor, we can design an encryption algorithm that is similar
to the one in the GGH encryption scheme. Furthermore, we conduct a thorough security analysis
on our trapdoor function.

1.3 Comparison

The main contribution of this paper is to design a new lattice-based trapdoor function whose
security relies on the hardness of the BDD problem on lattices. Our construction is analogous to
the construction of Goppa codes that admit an efficient decoding based on polynomial operations.
Unlike binary Goppa codes, our construction works over finite rings and its error decodability does
not depend on the norm of the constructed lattices or the Hamming weight of the associated code.

Similar to the GGH construction which is based on the hardness of the closest vector problem
(CVP), our function relies on the infeasibility of the related BDD problem. Nonetheless, we believe
that our function provides the following advantages over the GGH construction:

• We do not restrict to a basis that admits a solution via CVP solving algorithms as a trapdoor.
Instead, by using lattices constructed from polynomial functions, one can invert the function
efficiently as long as one has access to the polynomials and points involved. As such, the
vector norms of our basis can be better controlled, one of the main limitations of the GGH
scheme.

• For our construction, we do not need to multiply the basis by unimodular matrices to hide
the underlying structure.

• Our construction allows us to consider part of the generator matrix as the public key instead
of using the entire square matrix, thereby reducing the public key size of our scheme.

• The security of our scheme against embedding attacks can be analyzed concretely.

The Chor-Rivest scheme proposed in [11] can be thought of as a special case of our scheme by
considering an irreducible polynomial in our construction. For our scheme in Section 6, we propose
to use a product of linear polynomials instead. This has the advantage of making key generation
more efficient. Moreover, as discussed in Section 5, such a scheme is more secure.

1.4 Organization of the paper

This paper is organized as follows. In the next section, we briefly summarize some important
background on lattices as well as the two encryption schemes (namely, GGH and McEliece schemes)
that inspire our work. In Section 3, we describe a family of lattices constructed from polynomials.
We then present our new trapdoor functions based on these lattices in Section 4. This is followed
by a security analysis on these trapdoor functions in Section 5. In Section 6, we give details of a
semantically secure encryption scheme based on our trapdoor functions. In addition, we propose
some possible parameters for our scheme.
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2 Preliminaries

2.1 Background on Lattices

In this section, we briefly review some of the important definitions and notions on lattices. We
refer the reader to [36, 7] for more background materials.

Let n be a positive integer. By usual convention, we will represent vectors in Rn in the row

form. For x = (x1, . . . , xn) ∈ Rn, denote by ‖x‖ the Euclidean norm of x, that is, ‖x‖ =
√∑n

i=1 x
2
i .

Lattice: A lattice L is a discrete additive subgroup of Rn. Concretely, for m ≤ n, let
{b1, . . . ,bm} be m linearly independent vectors in Rn. Then a lattice L is a set {a1b1 + a2b2 +
. . . + ambm : ai ∈ Z, i = 1, 2, . . . ,m}. m is called the dimension or rank of the lattice. If m = n,
then L is said to have full rank. In this work, we will only focus on full-rank lattices. Further,
B = {b1, . . . ,bm} is called a basis of L. Let M be the m by n matrix with rows bi, i = 1, 2, . . . ,m
. Then, the determinant of L (or the volume of L) is given by det(L) = vol(L) =

√
‖MMT ‖.

n-Ball: For r ∈ R, let Bn(r) = {x ∈ Rn : ‖x‖ ≤ r} denote the n-dimensional ball centered

around the origin with radius r. The volume of Bn(r) is given by Vn(r) = πn/2rn

Γ(n/2+1) , where Γ(·) is
the Gamma function.

Short vectors of a lattice: As a lattice is a discrete subgroup of Rn, the set of all their
Euclidean norms forms a discrete subset of R. Hence, each lattice L has a nonzero point such
that its norm is the minimum. We denote this minimum norm by λ1(L). More generally, for
i = 1, 2, . . . , n, λi(L) denotes the smallest radius r such that the ball Bn(r) contains i linearly
independent points in L.

Gaussian heuristic: The Gaussian Heuristic estimates the number of lattice points in cer-
tain sets. Let L and S be a full-rank lattice and a connected n-dimensional subset, respec-
tively. Then the number of lattice points in S is approximated by vol(S)/det(L). This leads
to the following Gaussian heuristic estimate on the shortest vector λ1(L) for a random lattice L:
λ1(L) ≈ Vn(1)−1/ndet(L)1/n ≈

√
n/2πedet(L)1/n.

Lattice reduction: Given a basis of a lattice L, one can construct a new basis by multiplying
the matrix formed by the basis vectors with unimodular integer matrices, that is, integer matrices
with determinant ±1. In general, one often looks for a basis with short vectors or nearly orthogonal
vectors. There are various algorithms to reduce a basis of a lattice into a basis of better quality.
Well-known reduction algorithms include the LLL algorithm [30] and the BKZ algorithm [41]. In
the BKZ algorithm, one essentially tries to find short vectors in the sub-lattice formed by sub-blocks
of basis vectors. In fact, the LLL algorithm can be viewed as a special case of the BKZ algorithm
where we work with pairs of vectors each time. Evidently, a BKZ algorithm with a bigger block
size produces a basis with shorter vectors but this is achieved at the expense of a longer running
time.

In our security analysis, we consider the BKZ-2.0 algorithm [10] with better practical perfor-
mance. The BKZ-β algorithm attempts to find the shortest vector by repeatedly calling an SVP
oracle in a β dimensional sublattice. It was shown that after a polynomial number of calls to the
SVP oracle, the quality of the resulting basis will not be much improved [22]. The basis obtained
from BKZ-β reduction is called the BKZ-β reduced basis. In the Hermite-factor model, we assume
that the BKZ-β reduced basis contains a vector of length ‖b1‖ = δn × V ol(L)1/n with

δ = (((πβ)1/β)/(2πe))1/(2(β−1)).
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We model the lengths of the vectors in the BKZ-β reduced basis using the Geometric Series As-
sumption as follows.

Assumption 2.1 (Geometric Series Assumption[42]). After lattice reduction, the Gram-Schmidt
vectors of the basis satisfy the condition ‖b∗i ‖ = αi−1 × ‖b1‖ for some 0 < α < 1.

Combining the root-Hermite factor ‖b1‖ = δn × det(L)1/n with the GSA assumption, we get
α = δ−2n/(n−1) and then ‖b∗i ‖ ≈ δn−2i−1 × det(L)1/n.

In this work, the cost of BKZ algorithm with blocksize β in an n dimensional lattice will be
taken as [2, 3]

8n20.292β+16.4. (1)

Shortest Vector Problem (SVP): Given a lattice L, the shortest vector problem (SVP) seeks
a nonzero point v in L such that ‖v‖ = λ1(L). For low dimensions, some proposed approaches
to solve SVP include computing the Voronoi cell of the lattice and sieving (see [22] for details)
as well as enumeration methods [27, 16]. However, these methods have complexity at best ex-
ponential in the lattice dimension n. To date, SVP has been solved in a 155-dimensional lattice
(https://www.latticechallenge.org/svp-challenge/index.php). Several variants of SVP have been
proposed such as the unique SVP (uSVP). Specifically, the unique SVP with factor γ seeks for the
shortest vector of a lattice given that the length of the second shortest vector λ2(L) is at least γ
times of the length of the shortest vector λ1(L).

Closest Vector Problem (CVP)/Bounded Distance Decoding Problem (BDD): A
closely related problem to SVP is the closest vector problem (CVP). Given a target vector t ∈ Rn,
CVP seeks a vector v ∈ L that minimizes ‖t−v‖. Further, when ‖t−v‖ ≤ γλ1(L) for some γ < 1,
the problem is more commonly known as the bounded distance decoding problem (BDD).

In [27], an embedding technique was introduced that can transform BDD in an n-dimensional
lattice to uSVP in an (n+ 1)-dimensional lattice. Essentially, suppose that we have a target vector
t that is close to a lattice generated by a basis B = {b1, . . . ,bn}. We construct another lattice
L′ ⊂ Zn+1 generated by the following matrix:

B′ =


b1 0
b2 0
...

...
bn 0
t u

 .

Here, u is called the embedding factor.
We remark that solving BDD is one of the approaches to solve the learning with errors (LWE)

problem. As such, various experiments had been performed on LWE instances via the BDD ap-
proach [33, 28]. A good discussion of the various approaches to solve BDD can be found in [4].

2.2 The McEliece Cryptosystem

The McEliece encryption scheme was proposed in [35] as a public-key cryptosystem that is based on
hard problems in algebraic coding theory instead of the usual integer factoring problem or discrete
logarithm problems in groups. More specifically, its construction hinges on the difficulty to decode
general linear codes over finite fields. Unlike the widely-used integer factoring problem and discrete
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logarithm problem which had been proven to be vulnerable to polynomial-time quantum algorithms
[43], the decoding problem is touted as one of the potential candidates to be used as a basis for
post-quantum cryptography.

Essentially, the McEliece encryption scheme generates two different basis of a linear code, one
with an easy decoding strategy while the other is presumably difficult to decode. Concretely, let
G be an [n, k, 2t + 1] binary Goppa code which admits an efficient decoding algorithm. Let U be
a k × k invertible binary matrix and P an n × n permutation matrix. Let G′ = UGP . Then G′

represents a general linear code with no obvious way to decode. The basic structure of the McEliece
encryption scheme can be described as follows:

Public key: The matrix G′ and the parameters n, k, t.
Private key: The matrices G,U and P .
Encryption: Let m be a k-bit message. Randomly pick an n-bit error vector e with Hamming

weight t. The encryption of m is given by

c = E(m) = mG′ + e.

Decryption: Let c′ = cP−1. With the secret key G, decode c′ to obtain the message m′.
Compute m = m′U−1.

2.3 The GGH Cryptosystem

The GGH cryptosystem was presented in [20] as a lattice analog of the McEliece cryptosystem.
While the McEliece scheme exploits the difficulty to decode the received word obtained from a
random code whenever errors of small weights are introduced, the GGH scheme relies on a similar
phenomenon on general lattices. Indeed, the GGH scheme constructs two different bases of the
same lattice, one of which allows CVP to be solved efficiently via Babai’s nearest plane algorithm
while the other basis is constructed as a random basis of the lattice and hence, has very poor
performance with respect to CVP. More precisely, one first constructs a basis B with short highly
orthogonal rows (that is a basis with small orthogonality defect) and then multiply B by random
unimodular matrices to obtain a basis B′ of the same lattice with much higher orthogonality defect.
B is then used as the private key while B′ will serve as the public key. The basic structure of the
GGH encryption scheme is presented next.

Private key: The basis B and a unimodular matrix U ;
Public key: The basis B′ = UB, and the parameter n and a small positive integer σ;
Encryption: Let the message m ∈ Zn. Choose an error e ∈ Zn whose entries are randomly

picked to be ±σ. The encryption of m is given by

c = E(m) = mB′ + e.

Decryption: Using Babai’s nearest plane algorithm and the basis B, determine the vector v
closest to c. We have m = vU−1.

Remark 2.2. We have only outlined the basic McEliece and GGH constructions. These construc-
tions need to be further enhanced to make them semantically secure [20, 29, 24].
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3 Polynomial Lattices

In this section, we give a new construction of lattices via polynomials over a finite field. Let q be a
prime power. We denote by Fq the finite field with q elements. Let R denote the polynomial ring
Fq[x]. Fix a monic polynomial c(x) ∈ R of degree d and let Qc(x) denote the quotient ring R/c(x).

Let Q∗c(x) denote the unit group of Qc(x), i.e., let Q∗c(x) = {f(x) ∈ Qc(x) : gcd(f(x), c(x)) = 1},
where f(x) denotes the equivalence class of f(x) in Qc(x). It is easy to verify that Q∗c(x) forms a

multiplicative group. Furthermore, the cardinality of Q∗c(x), denoted by Φ(c(x)), is given by the
following formula.

Lemma 3.1. [32, Lemma 3.69] Let c(x) ∈ R. Recall that c(x) has the canonical factorization

c(x) =
t∏
i=1

ci(x)ei ,

where ci(x)’s are pairwise distinct monic irreducible polynomials over Fq and di’s are the degrees
of ci(x) and ei ≥ 1. We have

Φ(c(x)) =
t∏
i=1

(qeidi − q(ei−1)di).

Let α1, . . . , αn be n distinct elements in Fq such that c(αi) 6= 0 for i = 1, . . . , n. Denote by a
the vector (α1, . . . , αn) ∈ Fnq .

Define the map

φa : Zn −→ Fq(x) −→ Q∗c(x)

(u1, . . . , un)7−→f =
n∏
i=1

(x− αi)ui 7−→f(x) mod c(x).

Observe that φa is a group homomorphism from Zn to Q∗c(x). Let La,c(x) denote the kernel of φa.
As La,c(x) is a subgroup of Zn, La,c(x) is a lattice. The following lemma provides some important
properties of La,c(x).

Lemma 3.2. The lattice La,c(x) defined above satisfies the following properties:

(i) La,c(x) has rank n.

(ii) The determinant det(La,c(x)) is upper bounded by Φ(c(x)). Furthermore, det(La,c(x)) =
Φ(c(x)) if φa is surjective.

(iii) λ1(La,c(x)) ≥
√
d. Moreover, λ1(La,c(x)) =

√
d if and only if there exists a lattice point v of

the form v = ±v0, where v0 has d nonzero entries which are all equal to 1.

Proof. (i) Observe that for each i = 1, 2, . . . , n, we have (0, 0,Φ(c(x)), . . . , 0) 7→ (x−αi)Φ(c(x)) 7→
1 under φa. Hence, each of these points is in La,c(x). As these n points are clearly linearly
independent, they form a sub-lattice of La,c(x) of rank n. Consequently, La,c(x) has rank n.
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(ii) As Zn/La,c(x) ' Im(φa) ≤ Q∗c(x) and det(La,c(x)) = [Zn : La,c(x)] det(Zn) = [Zn : La,c(x)] =

|Im(φa)|, we obtain the desired inequality. In addition, if φa is surjective, then Zn/La,c(x) '
Q∗c(x). Hence the equality follows.

(iii) Let v = (v1, v2, . . . , vn) be a nonzero point in La,c(x). Denote by I and J the sets {1 ≤
i ≤ n : vi > 0} and {1 ≤ j ≤ n : vj < 0}, respectively. By definition of La,c(x), we have∏
i∈I(x−αi)vi

∏
j∈J(x−αj)vj−1 ≡ 0 mod c(x), i.e., the nonzero polynomial

∏
i∈I(x−αi)vi−∏

j∈J(x − αj)−vj is divisible by c(x). Hence, deg(
∏
i∈I(x − αi)vi −

∏
j∈J(x − αj)−vj ) ≥ d,

i.e.,
∑

i∈I vi ≥ d or
∑

j∈J −vj ≥ d. This gives
∑n

i=1 |vi| ≥ d. Therefore, ||v|| =
√∑n

i=1 v
2
i ≥√∑n

i=1 |vi| ≥
√
d (note that each vi is an integer). If there exists a lattice point with d nonzero

entries which are either all 1 or −1, then it is clear that λ1(La,c(x)) =
√
d. Conversely, assume

λ1(La,c(x)) =
√
d. Then there exists a nonzero lattice point v = (v1, v2, . . . , vn) in La,c(x) such

that ||v|| =
√∑n

i=1 v
2
i =

√
d. Since deg(

∏
i∈I(x − αi)vi −

∏
j∈J(x − αj)−vj ) ≥ d, we must

have that either I = ∅ &
∑

j∈J −vj = d or J = ∅ &
∑

i∈I vi = d. This forces that either
vi = 1 for all i ∈ I or vj = −1 for all j ∈ J .

According to Lemma 3.2 (iii), we see that La,c(x) has minimum norm λ1(La,c(x)) =
√
d when

there exist i1, . . . , id ∈ [n] such that
∏d
j=1(x − αij ) = 1 + c(x) or

∏d
j=1(x − αij )

−1 = 1 + c(x)

. It follows that there are at most 2
(
n
d

)
different c(x) ∈ R of degree d out of a total of qd such

polynomials such that La,c(x) satisfies λ1(La,c(x)) =
√
d. In other words, given a polynomial c(x) of

degree d and an (α1, . . . , αn) ⊂ Fnq , the probability that the lattice La,c(x) has minimum norm
√
d

is less than 2
(nd)
qd

< 1/d! and we can expect the minimum norm of the lattice La,c(x) to be bigger.
In particular, we will use the Gaussian heuristic to estimate the minimum norm of the lattices.
Assume that the map φa is surjective. By Lemma 3.2 (ii) and Lemma 3.1, the determinant of
La,c(x) is approximately qd. The Gaussian heuristic suggests that a random lattice of dimension n

and determinant qd has minimum norm approximately
√
n/2πeqd/n.

Next, we describe how to construct the set a = (α1, . . . , αn) ⊂ Fnq for which La,c(x) admits
a nice basis for a class of c(x). In the following, randomness will always refer to picking an
element randomly from a uniform distribution. Further, we assume that c(x) is of the form c(x) =
c1(x) . . . ct(x), where ci(x)’s are distinct irreducible polynomials over Fq, each having degree d0.
Hence, Qc(x)

∼= ⊕ti=1Fqd0 . Let β denote a generator of (Fqd0 )∗.
Let αn−t+1, . . . , αn be t distinct elements in Fq. For i = 1, . . . , t and j = 1, . . . , t, let γij =

x− αn−t+i mod cj(x). Let mij = logβ γij and M = (mij)i=1,...,t,j=1,...,t.
Suppose that M is invertible over the ring Zqd0−1. For each α ∈ Fq with α 6= αn−t+1, . . . , αn, let

y = (y1, . . . , yt), where yj = logβ((x− α) mod cj(x)), j = 1, . . . , t. Let gα = yM−1 mod qd0 − 1.
Write gα = (gα,n−t+1, . . . , gα,n). Note that for each j = 1, . . . , t,

yj =

t∑
i=1

gα,n−t+imij mod qd0 − 1. (2)

For j = 1, . . . , t, we have
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t∏
i=1

(x− αn−t+i)gα,n−t+i mod cj(x) ≡
t∏
i=1

(γij
mij )gα,n−t+i mod cj(x)

≡
t∏
i=1

(βmij )gα,n−t+i mod cj(x)

≡ β
∑t
i=1 gα,n−t+imij mod cj(x)

≡ βyj mod cj(x) ≡ x− α mod cj(x).

Note that the first equality follows from the definition of γij , the second follows from the definition
of the entry mij of the matrix M , the fourth is derived from the relation of y and gα as shown in
2, and the last follows from the definition of yj . Since it holds for any cj(x), it follows that x−α ≡∏t
i=1(x−αn−t+i)gα,n−t+i mod c(x). Consequently, the point (0, . . . , 1, 0, . . . ,−gα,n−t+1, . . . ,−gα,n),

where 1 is in the entry indexed by α is a point in La,c(x) for any α ∈ (α1, . . . , αn−t), which follows
the definition of La,c(x) and the map φa in Lemma 3.1.

Proposition 3.3. Let αn−t+1, . . . , αn be t distinct elements in Fq with the matrix M as above.
Suppose that M is invertible over Zqd0−1. Pick α1, . . . , αn−t randomly from Fq such that a =
(α1, . . . , αn) contains n distinct elements. Define G as the (n − t) × t matrix with rows given by
gαi

, for i = 1, . . . , n− t. A basis of the lattice La,c(x) is given by:

Ba,c(x) =

(
In−t −G

0t×(n−t) (qd0 − 1)It

)
,

where Ir denotes the identity matrix of rank r.

Proof. According to the preceding arguments, the first n − t rows of Ba,c(x) are points in La,c(x).

Since (x − αi)
qd0−1 ≡ 1 mod c(x) for i = n − t + 1, . . . , n, the last t rows of Ba,c(x) are also

in La,c(x). Clearly, the rows of the matrix are linearly independent. It remains to show that
the rows span La,c(x). Let u = (u1, . . . , un) be a point in La,c(x) so that

∏n
i=1(x − αi)

ui ≡ 1

mod c(x). Consider the point v = u−
∑n−t

i=1 uiBi, where Bi denotes the i-th row of Ba,c(x). Hence,
v ∈ La,c(x) and we can write v = (0, . . . , 0, vn−t+1, . . . , vn). It is sufficient to show that vn−t+i ≡ 0

mod qd0 − 1 for i = 1, . . . , t. In other words,
∏t
i=1(x − αn−t+i)vn−t+i ≡ 1 mod c(x), equivalently,∏t

i=1(x− αn−t+i)vn−t+i ≡ 1 mod cj(x) for j = 1, . . . , t. Now,

t∏
i=1

(x− αn−t+i)vn−t+i ≡
t∏
i=1

(βmij )vn−t+i ≡ β
∑t
i=1 vn−t+imij ≡ 1 mod cj(x)

which gives (vn−t+1, . . . , vn)M = 0 mod qd0−1. Since M is invertible, we conclude that vn−t+i ≡ 0
mod qd0 − 1 for i = 1, . . . , t.

Remark 3.4. Note that the lattices La,c(x) for different pairs of a and c(x) are not all distinct. For
instance, let a = (α1, . . . , αn) and let γ 6= 0 ∈ Fq. Let a′ = (α1 +γ, . . . , αn+γ) and c′(x) = c(x−γ).
Then, it is easy to check that La,c(x) = La′,c′(x).
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Next, we analyze the complexity of constructing Ba,c(x). First, one needs to compute about
tn discrete logs in the field Fqd0 . The discrete logarithm problem over finite fields is one of the
fundamental hard problems widely used in cryptography. Extensive studies have been done in this
area and various methods have been proposed to solve the discrete logarithm problem over finite
fields. In particular, it is adequate for us to employ Pollard’s rho method to compute discrete
logarithm with time complexity O(

√
qd0). Please refer to the survey paper [26] for the state-of-the-

art results on the discrete logarithm problem. For our construction, we have r = qd0 . For q = O(n)
and d0 = O(1), it follows that solving the discrete log is efficient.

Remark 3.5. To achieve a more practical scheme, we suggest that the user chooses d0 as a small
constant. Otherwise, computing the discrete logarithm in the field Fqd0 may not be so efficient. For
our concrete construction in Section 6, we choose d0 = 1.

Second, one needs to pick αn−t+1, . . . , αn so that the matrix M is invertible. Now, each entry
mij is the discrete log of x− αn−t+i mod cj(x). Since αn−t+i is random, we may assume that the
matrix M is a random matrix in the ring Zqd0−1.

Lemma 3.6. [38, Theorem 2] Let s = qd0 − 1 be a positive integer. Let p1, . . . , pm be the distinct
prime divisors of s. The probability that a random t× t matrix in Zs is invertible is

Ps =
m∏
i=1

t∏
j=1

(1− p−ji ).

It can be seen from the formula that the probability of a random t× t matrix being invertible
is non-negligible.

Remark 3.7. One sees that our construction bears some similarities to the Goppa code construc-
tion. Recall that the binary Goppa code with Goppa support a and Goppa polynomial c(x) consists
of (c1, . . . , cn) ∈ Fn2 such that

n∑
i=1

ci
x− ai

≡ 0 mod c(x).

Our construction in this paper is defined over the finite ring Zqd0−1 instead of over finite fields. As
seen in Theorem 4.2, the error decodability of our construction is upto deg(c(x))− 1, independent
of the shortest length of the lattice or the Hamming weight of the corresponding code.

Remark 3.8. Note that distinct degrees of ci(x)′s are still possible. If so, the discrete logarithm
should be computed in different fields when computing the matrix M , which also makes the notation
too complex there. For simplicity, we just assume that all the ci(x)’s are of the same degree. In
particular, in our concrete construction, we let the degree of every ci(x) be 1.

4 Construction of Our Trapdoor Functions

In this section, we describe new trapdoor functions where inverting the function amounts to solv-
ing the BDD for the associated lattices. Unlike the GGH construction, we do not generate two
different bases of a lattice. Instead, we require only one basis of our polynomial lattice as the
trapdoor involves information to construct the polynomial lattice. Recall that a trapdoor function
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encompasses four different sub-algorithms, namely, generate, sample, evaluate and invert. We will
now present each of these in detail.

Generate: Set the public parameters q, n, d according to the desired security level (see the
next section for details) such that

√
n/2πeqd/n > 2

√
d− 1. Let d = d0t. Choose t irreducible

polynomials ci(x) of degree d0 and let c(x) = c1(x) . . . ct(x). Choose a set a = (α1, . . . , αn) ⊂ Fnq
such that c(αi) 6= 0 for i = 1, 2, . . . , n and the elements αn−t+1, . . . , αn satisfy the conditions in
Proposition 3.3. Construct the basis Ba,c(x) of the lattice La,c(x) as described in Proposition 3.3.

Write Ba,c(x) =

(
In−t −G

0t×(n−t) (qd0 − 1)It

)
.

Let H = B′a,c(x) =
(
In−t, −G

)
. The trapdoor for our function includes the polynomial c(x)

and the set a = (α1, . . . , αn).
Sample: Randomly sample m ∈ Zn−t

qd0−1
and the error e = (e1, . . . , en) ∈ {0, 1}n satisfying:∑n

i=1 ei = d− 1.
Evaluate: For each input m ∈ Zn−t

qd0−1
, the function f is evaluated on m as

c = f(m, e) = mH + e mod qd0 − 1.

Invert: Suppose that we are given a valid output c = (c1, . . . , cn) of the function f . The
inversion process is as follows.

Step 1: Compute

r(x) =

n∏
i=1

(x− αi)ci mod c(x).

Step 2: Factorize r(x) over the ring Fq[x] as r(x) =
∏n
i=1(x− αi)ui . Let u = (u1, u2, . . . , un).

Step 3: Compute v′ = c− u. Write v′ = (v′1, . . . , v
′
n).

Step 4: Let m′ = (v′1, . . . , v
′
n−t).

Without knowledge of the trapdoor, observe that inverting the function will require us to find
the error e or equivalently, a point t in La,c(x) such that ‖c − t‖ =

√
d− 1. Concretely, one will

use the basis formed by the rows of the matrix

(
H

0 (qd0 − 1)It

)
Thus, one needs to be able to solve BDD with respect to this basis. We will discuss more about

this in the next section.

Remark 4.1. Here, we have chosen the parameters such that the expected shortest vector in the
lattice La,c(x) is greater than 2

√
d− 1 so we are in fact solving BDD with γ < 1/2. Thus, a solution

of the BDD will yield the error vector.

The following theorem shows that the inversion process indeed recovers m.

Theorem 4.2. Let m be a random element in Zn
qd0−1

and let c be the output produced by the

Evaluate algorithm. Let m′ be the output of the Invert algorithm. Then m′ = m.

11



Proof. First, we have c = mB′a,c(x) + e. We claim that v = v′, where v = mB′a,c(x). To see this,
note that

n∏
i=1

(x− αi)ci =
n∏
i=1

(x− αi)vi+ei =
n∏
i=1

(x− αi)vi
n∏
i=1

(x− αi)ei

≡1 ·
n∏
i=1

(x− αi)ei mod c(x) ≡
n∏
i=1

(x− αi)ei mod c(x)

Since
∑n

i=1 ei = d − 1 < d, we must have r(x) =
∏n
i=1(x − αi)

ei , so ui = ei. Therefore,
v′ = c− u = mB′a,c(x) + e− u = v and the claim is proved.

Note that we have v = mB′a,c(x) = (m,−mG). Therefore, we have (v1, . . . , vn−t) = m

mod qd0 − 1.

Remark 4.3. • In general, we like to have as many nonzero entries of the error as possible.
Hence, we choose ei to take small values. In particular, we typically let ei = 1.

• Instead of letting all the error entries be positive, we can equivalently let them be all negative.
In this case, in the inversion process, one needs to check if r(x) or 1/r(x) mod c(x) can be
factorized. In the former case, we have the usual case where ei ≥ 0. In the latter case, it is
easy to verify that we have ei ≤ 0, that is all the nonzero entries of the error are −1.

• For the inversion process, one can simply check if r(αi) = 0 to check if ui = 0 or 1.

Remark 4.4. • Here, only the right part −G of the matrix H =
(
In−t, −G

)
, which is used

to evaluate the function, is undetermined. It is an (n − t) × t matrix over Zqd0−1 and thus,
has size (n− t)td0 log2 q bits.

• Unlike the GGH scheme, inversion does not require solving the CVP. Instead, inversion is
carried out using properties of polynomials and remainders.

• In the above scheme, the first n − t positions of c may contain some information about m.
This is because we have only introduced error to d−1 positions, and thus, at least n− t−d+1
positions will be in the clear. In Section 6, we present a practical encoding scheme to mask
the original message m.

• Apart from the above scheme, other modifications are possible. Randomly pick an (n − t) ×
(n−t) unimodular matrix T with small entries and an n×n permutation matrix P . Construct
H = TB′a,c(x)P mod qd0 − 1. The left part of the new matrix H will hide all the information
of message m. This is analogous to the classic McEliece scheme where two secret matrices are
used to hide the structure of the underlying code used. However, in situations where the inputs
are completely random, the roles of T and P will not be so critical. Indeed, multiplying by a
permutation matrix P serves to permute the elements in the set a, which can be achieved if
the elements in a are chosen randomly. Similarly, the unimodular matrix T will not improve
the security of the scheme as given a matrix H, one can efficiently transform it such that the
left portion is a scalar matrix.
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5 Security Analysis of Our Trapdoor Functions

In deciding the parameters for our scheme, we will like to achieve the following:

• The public key size should be reasonably small;

• Key generation, encryption and decryption should be efficient;

• The scheme is resistant against all existing attacks.

We now discuss some possible attacks on our scheme to help us decide the appropriate param-
eters. First, suppose that d ≥ n/2 + 1. Let c be a valid output with error e. Then, e has d − 1
entries = 1. Consider c′ = c− (1, . . . , 1). It is c′ = mH + e− (1, . . . , 1) = mH + e′, where e′ has
< n/2 entries = −1. Hence, one may decrypt using c′ instead. (refer to Remark 4.3 on how one can
decrypt when the entries are negative.) It follows that we may assume that d ≤ n/2. Therefore,
we have t ≤ d ≤ n/2 and n ≤ q.

5.1 Error search

At first glance, it appears that one needs to search through all
(
n
d−1

)
entries to find the error.

However, one can in fact reduce the search in the following way. It is obvious that the first n − t
columns of H are linearly independent. Let I = {1, . . . , n− t}. Search through all possible error
positions in I. Recall that there are at most d− 1 such positions. Assuming that the error bits are
uniformly distributed, the number of nonzero error bits in these positions is roughly l = (n−t)(d−1)

t .
Consequently, the number of tries is around

(
n−t
l

)
.

Let cI denote the vector formed by the entries in c indexed by I. For each guess eI, define
x = cI − eI mod qd0 − 1. To verify if our guess is correct, check if c − xH is of the correct error
form, that is, contains exactly d− 1 1’s and all other entries are 0.

Consequently, the complexity of this attack is O(
(
n−t
l

)
(n− t)t).

5.2 Search for the trapdoor

One obvious way to attack the function is to find the trapdoor information. We will need to search
for c(x) and a = (α1, . . . , αn). One way to do this is as follows:

• Exhaustively search for the polynomial c(x). There are O(qd) different c(x) of degree d of the
form c(x) = c1(x) . . . ct(x).

• For each c(x), guess the ordered set (αn−t+1, . . . , αn). For each such set, determine if there ex-
ist α1, . . . , αn−t that satisfy the matrixB′a,c(x) =

(
In−t, −G

)
. Let−G = (bi,n−t+j)i=1,...,t,j=1,...,t.

Specifically, from the definition of La,c(x) and B′a,c(x), we can construct αi by checking for αi

such that (x − αi) ×
∏t
j=1 (x− αn−t+j)bi,n−t+j ≡ 1 (mod c(x)) for each i ∈ {1, . . . , n − t}.

Our guesses of c(x) and αi’s are correct if we can reconstruct (α1, . . . , αn−t) by the preceding
procedure. There are Pn−t

n ≈ nn−t possible ordered sets (αn−t+1, . . . , αn).

The overall complexity of this attack is O(qdnn−t(n− t)d2(log q)2) if we assume that the com-
plexity of polynomial multiplication in the ring Fq[x]/c(x) is O(d2(log q)2).
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Remark 5.1. In Remark 3.4, we have discussed that for each c(x) and ordered set a, there are
at least q − 1 different choices of pairs of polynomials and ordered sets that give rise to the same
lattice. Hence, for a more precise complexity, one will need to take into account these equivalent
lattices. However, as this number is relatively small and has a negligible impact on the complexity,
we will omit these details in our complexity analysis.

5.3 Embedding attack to solve BDD

As mentioned in the preceding section, one way to recover the message is to solve the BDD problem
on the lattice given the output. A common way to solve BDD is via the embedding technique (see
Section 2.1). We now investigate the cost of this attack.

There are two typical estimates for the costs of the embedding attack to recover the error
vector when employing BKZ to solve the uSVP. The first was proposed in [15] and the second was
sketched in [5]. The predicted costs of the two estimates are quite different. [3] investigated these
two estimates and suggested that the latter estimate is more indicative of the cost of the attack.
As such, we will use the second estimate in our analysis of the embedding attack.

Briefly, this estimate forecasts that the the attack outputs the correct error e if√
β/n‖(e, 1)‖ ≤ δ2β−ndet(L)1/n (3)

under the assumption that GSA holds, where n is the dimension of the full rank lattice L, β is
the block size when running the BKZ reduction. A concise explanation of the condition is that the
projection of the error vector e onto the last β vectors is shorter than the b∗n−β+1 under the GSA
assumption. Then an SVP oracle call on the last block of size β can find the error vector e.

It follows that in our situation, we will require β to satisfy√
β/n‖(e, 1)‖ ≥ δ2β−n(q − 1)d/n.

To achieve a desired level λ, one will need the to ensure that the cost of running BKZ-β given
by Equation 1 to be at least 2λ.

The embedding attack can be enhanced by combining with partial search of the error bits.
Specifically, if k nonzero error bits are guessed correctly, the remaining error norm will be reduced
to
√
d− k. thereby making the gap from λ1(La,c(x)) bigger. In fact, the dimension of the embedding

lattice is now reduced from n to n−k. Hence, we need to ensure that
(
n
k

)
times of each single BKZ

execution will be infeasible to carry out.

5.4 Attack when c(x) is irreducible

Note that with knowledge of the public information G, one can easily construct the matrix Ba,c(x).
The question is whether this matrix will leak information about the polynomial c(x) as well as a.
Here, we discuss a possible attack when c(x) is irreducible over Fq, that is, t = 1.

In this case, the matrix Ba,c(x) takes a very simple form, namely,

Ba,c(x) =

(
In−1 −G

01×(n−1) qd − 1

)
,
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where G is a (n − 1) × 1 column. Write G as G =


g1

g2
...

gn−1

 , where each gi ∈ Zqd−1. Note that gi

satisfies x−αi ≡ (x−αn)gi mod c(x). Without any loss of generality, we may assume that αn = 0
(by substituting x by x− αn in the whole system). It follows that c(x) is a common factor of the
polynomials x − αi − xgi , i = 1, 2, . . . , n − 1. Since c(x) is irreducible over Fq of degree d, it is a

factor of xq
d − x.

We can now perform the following steps to recover c(x) and the αi’s.

• Randomly guess α1. For each α1, compute the gcd h(x) = gcd(x − α1 − xg1 , xq
d − x). Find

all pairs α1, d(x) such that d(x) is irreducible of degree d and divides the polynomial h(x).

• For each pair α1, d(x) found above, test for α2 such that d(x) is also a factor of x−α2− xg2 .

• Continue the process until one d(x) is left. Let c(x) to be this d(x).

• Find the remaining αi’s by direct computation of αi = x− xgi mod d(x).

We remark that with high probability, the set of possible d(x) after the first step will be very
small. It follows that the main complexity of the above attack comes from performing the gcd
computations to find gcd of polynomials of the form x−α−xg and xq

d −x. In general, such a gcd
computation has complexity polynomial in g. Furthermore, with high probability, g is of the order
of qd. Consequently, in general, the above attack has complexity polynomial in qd. However, the
above attack works if g is small or is of a special form that makes the gcd computation easy.

The above attack easily generalizes to the case when t > 1 but the complexity increases as
well. Specifically, we will need to guess t different values of α in the first step. This has complexity
n!/(n− t)! ≈ nt. In view of these considerations, we will choose t to be as big as possible, say c(x)
is a product of linear or quadratic polynomials.

5.5 Attack based on Chor-Rivest scheme

When c(x) is irreducible, our scheme can be regarded as a variant of the Chor-Rivest scheme
[11], which is a knapsack based cryptosystem. The public key in Chor-Rivest scheme consists of
q integers, which are the discrete logarithms of q field elements in the extension field Fq[x]/(c(x)),
shifted by a random number v and then permuted by a random permutation. When v = 1, these
integers in fact constitute the matrix G described in the preceding attack. In the final version of
Chor-Rivest scheme [12, 7.1.e], they showed a sub-exponential attack attributed to Ernest Brickell
by Chor and Rivest. The attack consists of two major steps. The first step computes a very small
weight and small Euclidean norm vector in the dual space of the public key such that the sum of
the entries in the vector is also zero by employing a tweaked Laarias-Odlyzko lattice. The second
step uses the newfound small vector to facilitate guessing the private permutation and the private
shift number to proceed a successful attack.

We next consider the situation when c(x) is a product of t small degree polynomials, say c(x) is
a product of d linear polynomials. In this case, the public key will no longer be one column (as in
the case of the Chor-Rivest scheme) but comprises d columns. In the following, a short vector refers
to a vector of small Hamming weight and small Euclidean norm. Following the attack amounts to
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find a short coefficient vector for the public key such that the linear combination of the public key
is a zero vector. By considering the lattice formed by the rows of the public key, this problem is
equivalent to finding short vectors in the dual lattice. It is not clear that very short vectors exist
and our experiments for different choices of parameters have not produced such vectors.

Even if short vectors exist, finding any one of them is believed to be a difficult problem. As
such, we believe that in the case when c(x) is a product of linear polynomials, the scheme will not
suffer from the attack on the Chor-Rivest scheme.

6 A Practical Encryption Scheme

6.1 Description

Similar to the GGH encryption scheme and the McEliece encryption scheme, in order to transit
from the one-way trapdoor function to an encryption scheme, one needs a method to encode the
message before passing to the trapdoor function. In particular, the chosen encoding scheme should
ensure that the encryption scheme is semantically secure.

Recall that a cryptosystem is said to achieve CCA2 security if an attacker has no advantage
to decipher a given ciphertext given the plaintexts of other (possibly selected) ciphertexts. It is
indistinguishable in the CCA2-model if the attacker, when provided with two plaintexts and a
ciphertext, has no advantage to determine which plaintext correctly corresponds to the ciphertext.
Different proposals were presented in [20, 29, 24] to achieve semantic (or CCA2) security for the
GGH scheme and the McEliece scheme. We first show why the scheme employed in [20] will not
work for our construction.

Recall that for the GGH scheme, it was suggested to encode the plaintext bits as the least
significant bits of the input message to the trapdoor function and the other bits are allowed to be
picked randomly. We now show how this will make our scheme vulnerable to the related message
attack.

To this end, let p be an (n−t)-bit plaintext to be encrypted. Suppose that p is encrypted twice,
that is, encoded into m1 and m2 with p occupying the least significant bits of m1 and m2. Thus,
m1 + m2 mod 2 = 0. This gives c1 = m1H + e1 mod qd0 − 1 and c2 = m2H + e2 mod qd0 − 1.
Summing up, this yields (m1 +m2)H+e1 +e2 mod qd0−1 = c1 +c2. If q is odd, we can consider
the equation modulo 2 to get 0 ·H + e1 + e2 = c1 + c2 mod 2 or e1 + e2 mod 2 = c1 + c2. If d is
small relative to n, the number of entries which are 1 in both e1 and e2 will be very small. Hence,
we can guess the positions in which e1 or e2 is 1 from the non-zero entries in c1 + c2 mod 2 and
use the attacks in Section 5 to recover m.

In view of the above, we modify the encoding scheme to work for our trapdoor function. Suppose
that the parameters q, n, d, t are fixed. Our input to our trapdoor function is a vector in Zn−t

qd0−1
.

Thus, each entry is an s-bit string, where s = 1 + blog2(qd0 − 1)c. We will encode an (n − t)-bit
plaintext message P into the input m for the trapdoor function f . The ciphertext will be the
output of f in Zn

qd0−1
. The entire encryption and decryption processes are described as follows.

Let m = (m1, . . . ,mn−t) be in Zn−t
qd0−1

and let m
(j)
i denote the j-th least significant bit of

mi, j = 0, 1, . . . , s − 1. Further, let m(j) = (m
(j)
1 , . . . ,m

(j)
n−t). Suppose the plaintext message is

P = (P1, . . . ,Pn−t). In the following, let Hash denote a cryptographic hash function from {0, 1}∗
to {0, 1}n−t. Let f be the trapdoor function with all the notations in Section 4.
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Private key: The degree d polynomial c(x), the n elements α1, . . . , αn, the unimodular matrix
T and the permutation matrix P .

Public key: The parameters n, q, d, t and the matrix −G.
Encryption:

• Randomly select n− t bits z = (z1, . . . , zn−t).

• Randomly select the error string e = (e1, . . . , en) satisfying the desired properties.

• Set m(0) = P ⊕ z.

• Set m(1) = z.

• Set m(2) = Hash(P||z||e).

• For j = 3, . . . , s− 1, set m(j) randomly.

• Let H =
(
In−t, −G

)
. Then, the ciphertext c is c = f(m, e) = mH + e.

Decryption: Given a ciphertext c, the decryption proceeds as follows:

• Compute m = f−1(c) using the private key. Let e be the corresponding error. If e contains
only 0 or 1 entries with exactly d− 1 1’s, then continue. Otherwise, decryption fails.

• Write m = (m
(j)
i )i=1,...,n−t,j=0,1,...,s−1.

• Set P ′ = m(0) ⊕m(1).

• If Hash(P ′||m(1)||e) = m(2), then P = P ′ and the decryption is successful. Otherwise,
decryption fails.

Remark 6.1. • Like the GGH scheme [20], we encode our plaintext bits in the least significant
bits of the input to our trapdoor function.

• In our scheme, the input includes not only the plaintext bits but the error bits and random
bits as well. By including the error bits to the input, changing bits of the ciphertext will likely
make the decryption process fail. This helps to prevent reactive attacks where attackers try to
guess the error bits by sending modified ciphertexts.

• Similar to the conversion schemes suggested in [29] for the McEliece encryption scheme,
random bits and the hash of the plaintext bits are added to the input to ensure semantic
security and to prevent other attacks such as related message attacks.

6.2 Choosing the Parameters

In view of the attacks presented in Section 5, we will choose the parameters q, n, d, t to resist all
the possible attacks. Concretely, the following choices will be made.

• We let t = d, that is, c(x) is a product of linear polynomials.

• We set q to be the smallest prime bigger than n+ d.
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• We set d to satisfy 20 ≤ d ≤ n/2.

• For a security level λ, we set n and d so that
(
n−d
l

)
≥ 2λ, where l = (n−d)(d−1)

n .

With d = t, we have d0 = 1 so all our operations are done modulo q − 1. Our public key size is
(n− t)t(1 + blog2(q− 2)c) bits. Since encryption only involves matrix multiplication modulo q− 1,
encryption is efficient with complexity O(n2).

We now provide possible sets of values of n and d for our encryption scheme. For each pair of n
and d, we compute the smallest β such that Equation 3 holds for specified parameters, which gives
the corresponds BKZ cost by Equation 1.

Table 1: Possible n and d for Practical Encryption Scheme

n d q log2

(
n−d
l

)
β log2(BKZcost) public key size Ps

285 41 2819 138 180 80.1 120048bits= 14.66KB 0.289

500 43 29599 184 342 128.2 314416bits= 38.39KB 0.162

729 42 152003 208 518 180.1 519372bits= 63.40KB 0.289

Remark 6.2. Note that for the parameters in Table 1, the discrete logarithm is computed over the
field Fq rather than Fqd. Thus, Pollard rho method suffices to accomplish this task. As commented
in [14], our construction can be viewed as an improvement of the Chor-Rivest scheme in terms of
efficiency. The improvement is indeed that the discrete logarithm computation is done in the small
field Fq/(ci(x)) rather than in the big field Fq/(c(x)). In particular, for the parameters in Table 1,
we choose deg(ci(x)) = 1.

Remark 6.3. As mentioned in Remark 3.7, our construction is analogous to the Goppa code
construction. One may use techniques to reduce the key size of Goppa codes in our construction
as well. In particular, the techniques in [6, 31] based on automorphism groups can be adapted to
reduce the public key size of our construction.

7 Conclusion

In this paper, we proposed a new lattice-based trapdoor function that inherits the nice properties
of the McEliece encryption scheme. Based on this trapdoor function, we designed an encryption
scheme that achieves CCA2-security. the public key size of our scheme is around d(n−d) log2(q−1).
For future research, one may investigate the worst-case to average case hardness of the problem we
considered. Another interesting direction is to consider hardness problems for lattices where the
ratio between its shortest length and the degree of the polynomial is smaller than 2.
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