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Besides the well-known negative refraction, a negative refractive-index material can exhibit another two 

hallmark features, which are the inverse Doppler effect and backward Cherenkov radiation. The former is 

known as the motion-induced frequency shift that is contrary to the normal Doppler effect, and the latter 

refers to the Cherenkov radiation whose cone direction is opposite to the source’s motion. Here we combine 

these two features and discuss the Doppler effect inside the backward Cherenkov cone. We reveal that the 

Doppler effect is not always inversed but can be normal in negative refractive-index systems. A previously 

un-reported phenomenon of normal Doppler frequency shift is proposed in a regime inside the backward 

Cherenkov cone, when the source’s velocity is two times faster than the phase velocity of light. A realistic 

metal-insulator-metal structure, which supports metal plasmons with an effective negative refractive index, 

is adopted to demonstrate the potential realization of this phenomenon.   
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1. Introduction 

In his seminal work of negative refractive-index materials in 1968 [1], the Russian physicist Victor 

G. Veselago (1929-2018) proposed three exotic phenomena, namely, the negative refraction, the inverse 

Doppler effect, and the backward Cherenkov radiation (characterized by a backward Cherenkov cone 

opposite to the source’s motion). While the absolute existence of negative refraction has caused substantial 

debates in past decades [2-5], the phenomena of inverse Doppler effect [6-16] and backward Cherenkov 

radiation [17-20] in negative refractive-index materials have never been questioned. As a result, it has been 

widely considered that the Doppler effect in a negative refractive-index material is always inversed, i.e., 

the Doppler frequency shift in such a material is negative (positive) when the source approaches (leaves) 

the observer. Moreover, the connection between the inverse Doppler effect and the backward Cherenkov 

cone has never been discussed, although both phenomena are caused by source’s motion in negative 

refractive-index materials. Here we show that the Doppler effect in negative refractive-index materials is 

not always reversed but can be normal in a regime inside the backward Cherenkov cone, when the source’s 

velocity 𝑣 is two times faster than the phase velocity 𝑣p of light, i.e., 𝑣 > 2|𝑣p|. Because of the superlight 

velocity of source [21-26], we denote this phenomenon as the superlight normal Doppler effect in negative 

refractive-index systems. Such a finding is inspired by our recent work of the superlight inverse Doppler 

effect in positive-refractive index systems [26], which also appears if 𝑣 > 2|𝑣p|.  

It is V. L. Ginzburg and I. M. Frank, who noticed in 1947 that in positive refractive-index materials 

the Doppler effect near the Cherenkov cone exhibits anomalous properties [21-26]. They showed that when 

crossing the Cherenkov cone, the frequency of emitted photons will transit from positive to negative [22,23]. 

The criterion for this phenomenon is that the source’s velocity needs to be faster than the phase velocity of 

light, which is the same as the Cherenkov threshold [22,23]. In other words, such an anomalous Doppler 

frequency shift is intrinsically connected with the Cherenkov cone. However, their discussion was limited 

to positive refractive-index systems.    
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Here we extend Ginzburg and Frank’s theory of superlight Doppler effect [22,23] into negative 

refractive-index systems, and we discuss the possibility of constructing a normal Doppler frequency shift 

in such systems. As a concrete example, the highly squeezed polaritons with their effective refractive index 

being negative, such as the negative refractive-index metal plasmons in a metal-insulator-metal structure 

(where the group velocity and phase velocity are antiparallel) [27,28], are adopted as a potential platform 

to demonstrate this normal Doppler frequency shift in negative refractive-index systems. The procedure of 

the analytical derivation here follows our recent work [26], where the superlight normal and inverse 

Doppler effects were firstly discussed but limited to positive refractive-index systems. 

2. Results and Discussion 

To get a straightforward understanding of the normal Doppler frequency shift in negative 

refractive-index systems, we schematically illustrate the Doppler effect in time domain in Figure 1. Without 

loss of generality, we consider a radiation source that moves with a velocity �̅� = +�̂�𝑣 and has a natural 

positive angular frequency 𝜔0 in the moving source frame. In the laboratory frame, the received radiation 

fields have a frequency 𝜔; the radiation angle 𝜃 is the angle between the Poynting vector 𝑆̅ (i.e., power 

flow density) and �̅�. Figure 1a shows multiple wave fronts equally-distributed in phase and with different 

radii around a stationary source. Note that in negative refractive-index systems, the circular wave fronts 

propagate inward toward the source (while the wave energy propagates outward instead). So an observer 

will firstly receive wave fronts with smaller radii before wave fronts with larger radii arrive. When the 

source moves with a velocity of 𝑣 < 2|𝑣p|, as in Figure 1b,c, the wave fronts bunch together at 𝜃 = 180o 

or in the backward direction, where 𝑣p is the phase velocity of light. This leads to an inversed Doppler 

frequency shift, i.e., ∆𝜔 > 0 at 𝜃 = 180𝑜  in negative refractive-index systems. In contrary, when the 

source moves with a velocity of 𝑣 > 2|𝑣p| in Figure 1d, the wave fronts spread out at 𝜃 = 180o, giving 

rise to the normal Doppler frequency shift, i.e., ∆𝜔 < 0 at 𝜃 = 180𝑜 in negative refractive index systems. 

It is worthy to note that when the source moves at a subluminal velocity (𝑣 < |𝑣p|), as in Figure 1b, an 

observer at 𝜃 = 180o will firstly receive wave fronts with smaller radii, the same as Figure 1a. In contrast, 
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if the source moves at a superlight velocity (𝑣 > |𝑣p|), as in Figure 1c,d, an observer at 𝜃 = 180o will 

firstly receive wave fronts with larger radii.  

To facilitate the discussion of Doppler effects in the system with a negative refractive-index, we 

proceed to their analytical derivation. With the application of plane wave expansion [20,29], we have 

[
�̅�

𝜔/𝑐
] = [

�̿� +𝛾�̅�

+𝛾�̅� 𝛾
] [

�̅�′

𝜔0/𝑐
] from the Lorentz transformation [30]; �̅� = 𝑥𝑘𝑥 + �̂�𝑘𝑦 + �̂�𝑘𝑧 (�̅�′ = 𝑥𝑘𝑥

′ +

�̂�𝑘𝑦
′ + �̂�𝑘𝑧

′ ) is the wavevector in the laboratory frame (the moving source frame), respectively; �̅� = �̅�/𝑐; 

𝛾 = (1 − 𝛽2)−1/2 is the Lorentz factor; �̿� = 𝐼 ̿ + (𝛾 − 1)
�̅��̅�

𝛽2 ; 𝐼 ̿is the unity dyad and �̅��̅� = �̂��̂�𝑣2/𝑐2 is also 

a dyad. From the Lorentz transformation, we can directly have the following two relationships, namely 

𝜔 = 𝛾𝜔0 + 𝛾𝑣𝑘𝑧
′  and 𝑘𝑧 =

𝛾𝑣

𝑐
∙

𝜔0

𝑐
+ 𝛾𝑘𝑧

′ . By combining these two equations, then it is straightforward to 

obtain 𝑘𝑧 =
𝜔−𝜔0/𝛾

𝑣
. Moreover, the relation between 𝑘𝑧 and �̅� indicates that   

𝑘𝑧 = 𝑛(𝜔)
𝜔

𝑐
∙ 𝑐𝑜𝑠𝜃     (1) 

where 𝑛(𝜔) is the refractive index as seen in the stationary laboratory frame. Here we focus on the 

discussion of the cases with 𝑛(𝜔) < 0, and  the Poynting vector 𝑆̅ is antiparallel to the wavevector �̅� in 

negative refractive-index systems. With the combination of the two equations for 𝑘𝑧, we have  

𝜔 −
𝜔0

𝛾
= 𝑛(𝜔)

𝑣

𝑐
𝜔 ∙ 𝑐𝑜𝑠𝜃     (2) 

If 𝑛(𝜔)
𝑣

𝑐
𝑐𝑜𝑠 𝜃 ≠ 1 and 𝜔0 ≠ 0 (e.g., the source is a moving dipole), the Doppler effect [21-

23,26,31,32] is governed by 

𝜔 =
𝜔0/𝛾

1−𝑛(𝜔)
𝑣

𝑐
𝑐𝑜𝑠 𝜃

      (3)  

The appearance of 𝛾 in equation (3) is due to the time dilation [30]. Note that equation (3) is applicable to 

describe the Doppler effect in systems with arbitrary complex value of 𝑛(𝜔). In equation (3), if 𝜃 < 90𝑜 
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(𝜃 > 90𝑜), 𝜔 stands for the frequency of waves in the laboratory frame emitted by the moving source when 

the observer lies ahead (behind) of the source.  

If 𝑛(𝜔)
𝑣

𝑐
𝑐𝑜𝑠 𝜃 = 1 , equation (3) is satisfied only if 𝜔0 = 0  (namely the source is a moving 

charged particle, instead of a moving dipole for the Doppler effect). This corresponds to the backward 

Cherenkov radiation [1,17-20] and is featured by a backward Cherenkov cone, where its opening angle 𝜃𝐶𝑅 

satisfies 𝑣 𝑐𝑜𝑠 𝜃𝐶𝑅 = 𝑐/𝑛.  

Although the Doppler effect and backward Cherenkov radiation in negative refractive-index 

systems are two different physical phenomena, they have a strong connection via the backward Cherenkov 

cone. In a nutshell, the backward Cherenkov cone divides the K-space of the Doppler effect into two parts, 

each of which has different properties. This can be understood as follows. 

If 𝜃 < 𝜃𝐶𝑅, equation (3) is valid only for 𝜔 > 0, since 𝑛(𝜔)
𝑣

𝑐
𝑐𝑜𝑠 𝜃 < 1; this corresponds to the 

conventional inverse Doppler effect in negative refractive-index systems as proposed by Veselago [1]. 

Namely, the Doppler frequency shift outside the backward Cherenkov cone is always inversed in negative 

refractive-index systems [Figure 2]. To be specific, the observer will receive a frequency higher (lower) 

than the emitted frequency during the recession (approach), i.e., ∆𝜔 > 0 at 𝜃 > 90𝑜 (∆𝜔 < 0 at 𝜃 < 90𝑜) 

[Figure 1], where ∆𝜔 = |𝜔| − 𝜔0/𝛾 is the Doppler frequency shift. 

In contrast, if 𝜃 > 𝜃𝐶𝑅, equation (3) is valid only for 𝜔 < 0, since 𝑛(𝜔)
𝑣

𝑐
𝑐𝑜𝑠 𝜃 > 1. The negative 

𝜔 was firstly revealed by Ginzburg and Frank’s theory of superlight Doppler effects in positive refractive-

index systems [21-23]. There are many other exotic phenomena related to negative frequencies [33-37], 

such as the fiber-optical analog of the event horizon [36,37]. Therefore, if 𝑛(𝜔)
𝑣

𝑐
𝑐𝑜𝑠 𝜃 > 1, equation (3) 

corresponds to the superlight Doppler effects in negative refractive-index systems. By following Ginzburg 

and Frank’s terminology [22,23], we denote the cone in the K-space satisfying 𝑛(𝜔)
𝑣

𝑐
𝑐𝑜𝑠 𝜃 = 1  in 

negative refractive-index systems as the backward Cherenkov cone [Figure 2]. If the frequency dispersion 
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is neglected, i.e., 𝑛(𝜔) is a constant, 𝜔 diverges and transits from positive infinity to negative infinity when 

crossing the backward Cherenkov cone. In practical systems with an effective negative refractive index, 

𝑛(𝜔) always has a complex value; this way, the infinity for 𝜔 in equation (3) would disappear.  

Inside the backward Cherenkov cone, the superlight Doppler effects in negative refractive-index 

systems can be divided into two types. If 2 > 𝑛(𝜔)
𝑣

𝑐
𝑐𝑜𝑠 𝜃 > 1 in equation (3), the Doppler frequency shift 

inside the backward Cherenkov cone is still inversed, i.e., ∆𝜔 > 0 at 𝜃 > 90𝑜 [Figure 2]. This is denoted 

as the superlight inverse Doppler effect in negative refractive-index systems.  

If 𝑛(𝜔)
𝑣

𝑐
𝑐𝑜𝑠 𝜃 > 2  in equation (3), we find an un-reported Doppler phenomenon inside the 

backward Cherenkov cone. To be specific, the Doppler frequency shift in negative refractive-index systems 

becomes normal in a regime inside the backward Cherenkov cone, i.e., ∆𝜔 < 0 at 𝜃 > 90𝑜 [Figure 2]. This 

corresponds to the superlight normal Doppler effect in negative refractive-index systems. In addition, we 

show more analyses of the K-space representation of the Doppler effect at different values of 𝑣  in 

Supporting Information Figure S3. 

To facilitate the potential observation of the revealed normal Doppler frequency shift in Figures 1 

and 2, a realistic negative refractive-index system is needed. Ever since the advent of metamaterials, the 

negative refractive-index systems have attracted enormous attentions [2-6,8,9,19,38]. In Veselago’s 

seminal work [1], a negative refractive-index system refers to a material with simultaneously negative 

permittivity and permeability. Such a double negative material does not naturally exist but can be artificially 

constructed, such as through the design of metamaterials [38] and photonic crystals [8,39], but its realization 

is generally challenging. In addition to double negative materials, the effective negative refractive index for 

eigenmodes in some plasmonic or waveguide systems have also been reported, if the directions of the phase 

and group velocities for these eigenmode are anti-parallel (this circumvents the requirement for the 

permittivity and permeability to be simultaneously negative). For example, the effective negative refractive 

index has been realized for highly squeezed polaritons, e.g., metal plasmons in a metal-insulator-metal 
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structure as shown in Figure 3 [27,28] and phonon polaritons in a thin slab of hexagonal boron nitride [40-

43].  

Before we proceed, it shall be emphasized that the analytical derivation for the Doppler effect in 

equations (1-3) is also applicable to plasmonic or waveguide systems, if they support eigenmodes 

propagating in a plane parallel to the source’s trajectory (e.g., waves guided in the 𝑥-𝑧 plane but confined 

along the y direction ) and if these eigenmodes have an effective negative refractive index 𝑛eff(𝜔). In such 

systems, the Poynting vector 𝑆̅  becomes antiparallel to the in-plane wavevector �̅�|| = 𝑥𝑘𝑥 + �̂�𝑘𝑧  (the 

component parallel to the 𝑥-𝑧 plane) of these eigenmodes and the effective in-plane refractive index is 

defined as 𝑛eff(𝜔) = 𝑘||/(𝜔/𝑐). For plasmonic systems such as metal plasmons in the metal-insulator-

metal structure [27,28], �̅�|| = �̅�spp , where �̅�spp  is the in-plane wavevector of plasmonic eigenmodes. 

Accordingly, for plasmonic or waveguide systems, 𝑛(𝜔) in equations (1-3) shall be replaced with 𝑛eff(𝜔), 

and 𝜃 becomes the angle between 𝑆̅ (or −�̅�||) and �̅�; see the inset of Figure 4 for example. 

From equation (3) and the above analysis, the deterministic factor for the Doppler effect is the 

effective refractive index, instead of the effective permittivity or permeability. Therefore, it is feasible to 

adopt some plasmonic or waveguide systems, which support the propagation of eigenmodes with an 

effective negative refractive index, to demonstrate the superlight normal Doppler effect in Figures 1 and 2. 

As a typical example, the negative refractive-index metal plasmons are adopted in the following discussions. 

Figure 3 shows the dispersion of metal plasmons in a metal-insulator-metal structure. For metal 

plasmons in this plot, we pre-set the value of their group velocity 𝑣𝑔 =
∂𝜔

∂𝑘spp
 to be positive, i.e., 𝑣𝑔 > 0, to 

faciliate the clear definition of their effective refractive index. Correspondingly, the phase velocity for metal 

plasmons is 𝑣𝑝 =
𝜔

𝑘spp
 . If the directions of the phase and group velocities are anti-parallel in the 𝑥-𝑧 plane, 

we have 𝑣𝑔 ∙ 𝑣𝑝 < 0 and thus 𝑣𝑝 < 0. Since 𝑣𝑝 < 0, we have Re(𝑘spp) < 0 if 𝜔 > 0 in Figure 3. This way, 

the effective refractive index of metal plasmons can be directly defined as 𝑛eff(𝜔) = 𝑘spp/(𝜔/𝑐). From 
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the principle of causality and the fact that all electromagnetic fields in time domain are real-valued, we also 

have 𝑛eff(−𝜔) = 𝑛eff
∗ (𝜔) [30]. In Figure 3, the experimental data of permittivity of silver [44] is adopted. 

The insulator has a refractive index of 3 (e.g., boron phosphide [45]) and a thickness of 𝑑 = 0.01𝜆p, where 

𝜆p = 300 nm. Figure 3 shows that 𝑛eff(𝜔) for metal plasmons is negative within the range of [0.6 0.9]𝜔p, 

where 𝜔p = 2𝜋/𝜆p. Moreover, it is noted that for negative refractive-index systems, the absolute value of 

refractive index generally decreases with the frequency, such as metal plasmons in Figure 3.  

Figure 4 shows the possible realization of the normal Doppler frequency shift for the negative 

refractive-index metal plasmons. Below we consider the working frequencies only in the above range and 

let the dipole move parallel to the interfaces of metal-insulator-metal; see the structural setup in the inset of 

Figure 3. Note that the vertical distance between the moving dipole and the interface of metal-insulator-

metal has a trivial influence on the Doppler frequency shift in Figure 4, although it may affect the field 

distribution of excited metal plasmons. Two cases, i.e., 𝑣 = 0.08𝑐 and 𝑣 = 0.8𝑐, are studied in Figure 4. It 

shall be emphasized that the frequency dispersion of negative refractive-index systems is neglected for 

conceptual demonstration only in Figures 1 and 2 and also in Veselago’s seminal work [1], but is 

unavoidable in reality [46] such as the realistic system in Figures 3 and 4. When considering the dispersion, 

we note that the Doppler effect in negative refractive-index systems will be highly dependent on the 

dispersion. For example, due to the specific dispersion of metal plamsons (where |𝑛eff(𝜔)| decreases with 

frequency), there are two unique phenomena related to the superlight normal Doppler effect in negative 

refractive-index systems.  

First, the superlight normal and conventional inverse Doppler effects for negative refractive-index 

metal plasmons may simultaneously show up at the same values of 𝜃 in Figure 4. For example, when 𝑣 =

0.08𝑐 in Figure 4, we simultaneously have 𝜔 = 0.96𝜔0/𝛾 (which corresponds to the superlight normal 

Doppler effect in negative refractive-index systems) and  𝜔 = 1.21𝜔0/𝛾 (conventional inverse Doppler 

effect in negative refractive-index systems) at 𝜃 = 150𝑜. This phenomenon can be explained as follows. 

When considering the dispersion in negative refractive-index systems, the backward Cherenkov cone in the 
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interested frequency range can still be well defined as the cone in the K-space that has the minimum value 

of 𝜃  satisfying 𝑛eff(𝜔)
𝑣

𝑐
𝑐𝑜𝑠 𝜃 = 1 . According to the definition of the backward Cherenkov cone in 

dispersion-less and dispersive systems, the superlight Doppler effects in negative refractive-index systems 

always appear inside the backward Cherenkov cone. In contrast, the conventional inverse Doppler effect in 

negative refractive-index systems appears only outside the backward Cherenkov cone when the dispersion 

is neglected as in Figure 2 but may appear inside the backward Cherenkov cone when the frequency 

dispersion is considered as in Figure 4. In other words, when considering the frequency dispersion, the 

superlight Doppler effects and the conventional inverse Doppler effect in negative refractive-index systems 

may be partially overlapped in the K-space inside the backward Cherenkov cone, as shown in Figure 4. 

Second, the superlight normal Doppler effect might have even a lower velocity threshold than the 

superlight inverse Doppler effect. In absence of the frequency dispersion, one shall always expect that,  the 

appearance of superlight normal Doppler effect (which requires 𝑣 > 2𝑐/|𝑛| from equation (3)) always has 

a larger threshold of 𝑣  than the superlight inverse Doppler effect (which only needs 𝑣 > 𝑐/|𝑛|  from 

equation (3)); see more analysis in Supporting Information Figure S3. As a result, inside the backward 

Cherenkov cone in Figure 2, the regime of superlight normal Doppler effect should be always wrapped 

around by the regime of superlight inverse Dopper effect. However, this rule is not applicable when 

considering the realistic dispersion of negative refractive-index systems. As a representative example, when 

𝑣 = 0.08𝑐 in Figure 4, for superlight Doppler effects of negative refractive-index metal plasmons, there is 

only the superlight normal Doppler effect, without the appearance of the superlight inverse Doppler effect. 

To faciliate the explanation of this example, we choose two frequencies of 𝜔low  and 𝜔high  in the 

neighborhood of 𝜔0/𝛾, and let |𝜔low| < 𝜔0/𝛾 < |𝜔high|. For metal plasmons with |𝑛eff(𝜔)| decreasing 

with frequency, one has |𝑛eff(𝜔low)| > |𝑛eff(𝜔high)| , which may lead to 𝑐/|𝑛eff(𝜔high)| > 𝑣 >

2𝑐/|𝑛eff(𝜔low)| [e.g., when |𝑛eff(𝜔low)| > 2|𝑛eff(𝜔high)|]. If 𝑐/|𝑛eff(𝜔high)| > 𝑣 > 2𝑐/|𝑛eff(𝜔low)|, 

we can have the situation that the emergence condition of superlight normal Doppler effect (i.e., 𝑣 >

2𝑐/|𝑛eff(𝜔low)) is fulfilled, while the emergence condition of superlight inverse Doppler effect (𝑣 >
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𝑐/|𝑛eff(𝜔high)|) is failed. In other words, when considering the realistic dispersion, the appearance of 

superlight normal Doppler effect does not always need to have a larger threshold of 𝑣 than the superlight 

inverse Doppler effect in negative refractive-index systems.  

By using the second feature of the superlight normal Doppler effect in Figure 4, we show in Figure 

5 the possibility to spatially separate the superlight normal Doppler effect from the other Doppler effects in 

negative refractive-index systems, which may facilitate its experimental observation. Consider that a 

circularly-polarized source, moves along the +�̂� direction and has a dipole moment of �̅�(�̅�′, 𝑡′) =

𝑅𝑒{(𝑥 + �̂�𝑖)𝑒−𝑖𝜔0𝑡′
}δ(�̅�′) in the moving source frame. Figure 5 shows the distribution of emitted plasmons 

in the time domain with 𝑣 = 0.08𝑐. Two asymmetric caustics [47,48] are formed in regions 𝑥 > 0 and 𝑥 <

0 and propagate to the backward direction. For the excited metal plasmons dominant at region 𝑥 < 0, they 

propagate along the backward direction and have their wavelength much smaller than the plasmonic 

wavelength at 𝜔0/𝛾; from Figure 3, this indicates that the excited metal plasmons have their frequency 

smaller than 𝜔0, i.e., |𝜔| < 𝜔0/𝛾. In other words, the frequency of the excited metal plasmons along the 

backward direction in region 𝑥 < 0 is red shifted. As such, region 𝑥 < 0 corresponds to the superlight 

normal Doppler effect for negative refractive-index metal plasmons. For the excited metal plasmons 

dominant at region 𝑥 > 0,  they also propagate along the backward direction but have their wavelength 

much larger than the plasmonic wavelength at 𝜔0/𝛾; then from Figure 3, we have |𝜔| > 𝜔0/𝛾 for the 

excited metal plasmons at region 𝑥 > 0. In other words, the frequency of excited metal plasmons along the 

backward direction in region 𝑥 > 0 is blue shifted, and hence region 𝑥 > 0 corresponds to the conventional 

inverse or superlight inverse Doppler effects. From Figure 4, there is no superlight inverse Doppler effect 

of metal plasmons in the studied frequency range for the case of 𝑣 = 0.08𝑐. As a result, region 𝑥 > 0 in 

Figure 5 is dominated by metal plasmons having the conventional inverse Doppler effect. 

Last but not least, it is worthy to note that the Doppler effect has wide applications in various realms 

including the laser cooling [49], the tunable control of the transition frequency of semiconductor emitters 
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[50], and the design of plasmonic Doppler gratings for azimuthal angle resolved nanophotonic applications 

such as color sorters or refractive index sensors [51,52]. Then the revealed phenomenon of superlight 

Doppler effects in negative refractive-index systems may enrich these useful applications, as well as the 

exploration of non-locality in photonics and plasmonics. 

3. Conclusion 

In conclusion, we have revealed the possibility to create the normal Doppler frequency shift in 

negative refractive-index systems, by finding an un-reported superlight normal Doppler effect in a regime 

inside the backward Cherenkov cone. This way, our work further develops Veselago’s theory of inverse 

Doppler effect in negative refractive-index systems and Ginzburg & Frank’s theory of superlight Doppler 

effects in positive refractive-index systems. In addition to the isotropic (for both negative and positive 

refractive-index) systems, there are many other anisotropic systems, such as systems supporting hyperbolic 

eigenmodes (e.g., hyperbolic metamaterials) and photonic or plasmonic systems supporting nonreciprocal 

eigenmodes. The continuing exploration of Doppler effects at different velocities of the moving source in 

these intriguing systems [53,54] is highly wanted. 
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Figure 1. Real-space illustration of normal Doppler frequency shifts in a negative refractive-index system. 

The multiple wave fronts, illustrated by circular lines, are equally-distributed in time. A source or dipole 

moves with a velocity �̅� = �̂�𝑣. In the moving source frame, the source has a natural frequency 𝜔0. In the 

laboratory frame, the received radiation fields have a frequency 𝜔; 𝜃 is the angle between Poynting vector 

𝑆̅ and �̅� (or the �̂�𝑧 axis); 𝛾 is the Lorentz factor and is different in each panel. a If 𝑣 = 0, there is no Doppler 

frequency shift, i.e., ∆ω = 0, where ∆ω = |ω| − ω0/𝛾. b, c If 𝑣 < 2|𝑣p|, the wave fronts bunch together 

at 𝜃 = 180o, where 𝑣p = 𝑐/𝑛 is the phase velocity of light. This leads to an inverse Doppler frequency 

shift, i.e., ∆ω > 0 at 𝜃 = 180𝑜. d If 𝑣 > 2|𝑣p|, the wave fronts spread out at 𝜃 = 180𝑜, leading to a normal 

Doppler frequency shift, i.e., ∆ω < 0 at 𝜃 = 180𝑜. Here we set 𝑛 to be a negative constant with 𝑛 < −2.5 

for illustration.  
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Figure 2. K-space representation of the normal Doppler frequency shift in negative refractive-index 

systems. The normal Doppler frequency shift can appear in a regime (blue region) inside the backward 

Cherenkov cone. In the laboratory frame, the received radiation fields have a wavevector �̅� ; the 

corresponding Poynting vector (i.e, the power flow density) 𝑆̅ is antiparallel to �̅�; 𝜃 is the angle between 𝑆̅ 

and �̅�. The angles of 𝜃𝑆𝐷𝐸 and 𝜃𝑆𝑁𝐷𝐸 are the opening angles of the cone in which the superlight Doppler 

effects (blue and orange regions) occur and of the cone in which the superlight normal Doppler effect occurs, 

respectively. Note that 𝜃𝑆𝐷𝐸 = 𝜃𝐶𝑅 , where 𝜃𝐶𝑅  is the opening angle of the backward Cherenkov cone 

created by a moving charged particle (instead of a dipole here), since both 𝜃𝑆𝐷𝐸  and 𝜃𝐶𝑅  satisfy the 

condition of 𝑣 𝑐𝑜𝑠 𝜃 = 𝑐/𝑛. For the conceptual illustration, we let 𝑣 > 2𝑐/|𝑛| and set 𝑛 to be a negative 

constant here. 
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Figure 3. Dispersion of negative refractive-index metal plasmons in a metal-insulator-metal structure. For 

metal plasmons, �̅�spp = 𝑥𝑘𝑥 + �̂�𝑘𝑧  is the component of wavevector parallel to the 𝑥 -𝑧  plane or the 

interface. This figure is plotted by setting the group velocity of metal plasmons to be positive, i.e., 

∂𝜔

∂Re(𝑘spp)
> 0. This way, the effective refractive index of metal plasmons can be defined as 𝑛eff(𝜔) =

𝑘spp/(𝜔/𝑐). The real part of 𝑛eff(𝜔) is negative and its absolute value decreases with frequency, when the 

frequency is within the range of [0.6 0.9]𝜔p , where 𝜔p = 2𝜋/𝜆p  and 𝜆p = 300 nm. For the negative 

refractive-index metal plasmons, we have Re(𝑘spp) ∙ Im(𝑘spp) < 0; in other words, 𝑘spp is in the second 

or fourth quadrant of the complex 𝑘spp plane. The metal-insulator-metal structure is shown in the inset. 

The experimental data of permittivity of silver [44] is adopted. The insulator has a refractive index of 3 

(e.g., boron phosphide [45]) and a thickness of 𝑑 = 0.01𝜆p.  
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Figure 4. Normal Doppler frequency shift of negative refractive-index metal plasmons in a metal-insulator-

metal structure. The Doppler frequency shift is normal in the blue regions (namely ∆𝜔 < 0 at 𝜃 > 90𝑜 and 

∆𝜔 > 0 at 𝜃 < 90𝑜), but is inversed in the yellow regions (∆𝜔 > 0 at 𝜃 > 90𝑜 and ∆𝜔 < 0 at 𝜃 < 90𝑜). 

A dipole moves parallel to the interface of the meta-insulator-metal structure and excites metal plasmons. 

The propagating angle 𝜃 for excited metal plasmons in the 𝑥 -𝑧  plane is illustrated in the inset; the 

corresponding structural setup is shown in the inset of Figure 3. The dipole moves with a velocity �̅� = �̂�𝑣 

and has 𝜔0 = 0.75𝜔p , where 𝜔p = 2𝜋/𝜆p  and 𝜆p = 300 nm. The effective refractive index for metal 

plasmons is negative, e.g., 𝑛(0.75𝜔p) = −22,  and dcreases with frequency in the studied frequecy range; 

see Figure 3. The normal Doppler frequency shift of metal plasmons can appear if 𝑣 = 0.08𝑐, i.e., the 

superlight normal Doppler effect with ∆𝜔 < 0 at 𝜃 > 90𝑜. 
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Figure 5. Real-space representation of the superlight normal Doppler effect spatially separated from the 

other Doppler effects for the negative refractive-index metal plasmons. A circularly-polarized dipole source 

with 𝜔0 = 0.75𝜔p moves with a velocity �̅� = �̂�𝑣, where 𝑣 = 0.08𝑐. The distribution of the asymmetric 

radiation fields of metal plasmons at a fixed time 𝑡 = 𝑡0 (when the source is at 𝑧 = 1.7 μm) is shown here. 

Region 𝑥 < 0 is dominated by the superlight normal Doppler effect. Region 𝑥 > 0 is dominated by the 

conventional inverse Doppler effect. The vertical distance between the source and the neighboring silver-

insulator interface (at which the radiatison fields are plotted) is 𝑦 = 10 nm. The structural setup of silver-

insulator-silver is the same as Figure 3. 

 


