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Performing optical logic operations by a diffractive
neural network
Chao Qian1,2,3,4, Xiao Lin1,5, Xiaobin Lin1, Jian Xu 3, Yang Sun1,2, Erping Li 1,4, Baile Zhang 5 and
Hongsheng Chen 1,2,4

Abstract
Optical logic operations lie at the heart of optical computing, and they enable many applications such as ultrahigh-
speed information processing. However, the reported optical logic gates rely heavily on the precise control of input
light signals, including their phase difference, polarization, and intensity and the size of the incident beams. Due to the
complexity and difficulty in these precise controls, the two output optical logic states may suffer from an inherent
instability and a low contrast ratio of intensity. Moreover, the miniaturization of optical logic gates becomes difficult if
the extra bulky apparatus for these controls is considered. As such, it is desirable to get rid of these complicated
controls and to achieve full logic functionality in a compact photonic system. Such a goal remains challenging. Here,
we introduce a simple yet universal design strategy, capable of using plane waves as the incident signal, to perform
optical logic operations via a diffractive neural network. Physically, the incident plane wave is first spatially encoded by
a specific logic operation at the input layer and further decoded through the hidden layers, namely, a compound
Huygens’ metasurface. That is, the judiciously designed metasurface scatters the encoded light into one of two small
designated areas at the output layer, which provides the information of output logic states. Importantly, after training
of the diffractive neural network, all seven basic types of optical logic operations can be realized by the same
metasurface. As a conceptual illustration, three logic operations (NOT, OR, and AND) are experimentally demonstrated
at microwave frequencies.

Introduction
Optical computing, which operates with photons

instead of electrons, is becoming increasingly important,
since it promises to increase the efficiency of information
processing beyond traditional electron-based computing1.
Due to its unique features of signal propagation at the
speed of light, low power consumption, and the capability
of parallel processing2–5, optical computing holds huge

potential in many practical scenarios, particularly those
involving high-throughput and on-the-fly data processing,
such as augmented reality and autonomous driving6. The
logic operation lies at the heart of all computers7. Cor-
respondingly, optical logic gates8–13, including plasmonic
logic gates, are essential for the further exploration and
development of optical analogy computing, nanophotonic
processing14,15, and the field of cryptographically secured
wireless communication16. As such, there are growing and
strong interests to provide optical logic gates with com-
plete logic functionality in photonic systems with compact
dimensions.
Previous methodologies towards optical logic gates

considered mainly constructive/destructive interference
effects, including linear8–11 and nonlinear inter-
ference12,13, between the input light signals. We note that
the reported works are heavily dependent on the precise
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control of the basic properties of two input light signals,
the control light and/or the pump light, including their
phase difference, polarization, and intensity7 (Supple-
mentary Note 6); if the two nanowires are close to each
other, such as for the plasmonic logic gate, there is also a
stringent requirement on the size of input light beams to
avoid a potential false input. As a result, a better precise
control of input light can more thoroughly realize con-
structive or destructive interference and lead to a larger
intensity contrast ratio between the two output optical
logic states “1” and “0”, which is a key feature to char-
acterize the performance of an optical logic gate.
The heavy reliance on the precise control of input light

has two unfavourable influences on the design of compact
optical logic gates. First, their miniaturization becomes
difficult if the additional bulky apparatus to achieve these
controls are taken into consideration. Second, owing to
the difficulty and complexity to achieve the ideal control
of input light, their performance may suffer from an
inherent instability, and the intensity contrast ratio
between two output logic states may become quite low in
practical scenarios10. For miniaturized optical logic gates,
it is thus highly desirable to get rid of these critical
requirements on the input light. Such a goal remains an
open challenge that is long sought after due to its
importance for the development of novel architectures for
all-optical devices and systems.
To this end, here we introduce a simple yet universal

design strategy, namely, a diffractive neural network17, to
realize all seven basic optical logic operations in a com-
pact system, simply using plane waves as the input signal.
The diffractive neural network is implemented by a
compound Huygens’ metasurface18, and it can partially
mimic the functionality of an artificial neural network.
After training, the compound metasurface can direction-
ally scatter or focus the input encoded light into one of
the two designated small areas/points, one of which
represents logic state ‘1’ and the other stands for ‘0’. As a
conceptual demonstration, three basic logic gates, i.e.,
NOT, OR, and AND, are experimentally verified using a
two-layer high-efficiency dielectric metasurface at
microwave frequency. Our design strategy features two
distinct advantages. First, the realization of optical logic
operations here gets rid of the complicated and necessa-
rily precise control of the features of input light; such a
scheme is thus totally different from previous works.
Moreover, the design of the input layer is very general and
powerful, and it can be flexibly modified into other user-
favoured and programmable forms. Second, the proposed
strategy can enable complete logic functionalities in a
single optical network if the transmittance state of the input
layer is dynamically tuneable, e.g., electrically tuneable if the
optical mask is constructed by a spatial light modulator.
Therefore, the revealed universal design strategy has the

potential to facilitate a single miniaturized programmable
photonic processor for arbitrary logic operations.

Results
Design principle and underlying physics of the optical
logic operation
We start with the design principle of the optical logic

operation. For binary optical logic operation, the output
has only two cases, ‘1’ or ‘0’, which is very similar to a
classification/decision-making task from the perspective
of machine learning19 and can be readily tackled by an
artificial neural network; Supplementary Note 1 verifies
the theoretical feasibility. Analogous to an artificial neural
network (Fig. 1a), in the optical regime, a diffractive
neural network (composed of one input layer, at least one
hidden layer and one output layer) has been found to
allow powerful wavefront manipulation and communicate
information among layers at the speed of light. As deli-
neated in Fig. 1b, the input layer is a common optical mask
and is patterned to form multiple regions. Without loss of
generality, each region in the optical mask is set to have two
different states for the transmittance of light, and its high
(low) transmittance state indicates that it is (is not) selected
for optical computing. Then, it is possible and convenient
to directly define all seven basic optical logic operators and
the input logic states in the optical mask, simply by
assigning each of them to a specific region. The hidden
layers are designed to decode the encoded input light and
image the calculated result at the output layer.
We then progress to the introduction of the underlying

physics of the design of hidden layers. We use a meta-
surface made up of a dense array of subwavelength meta-
atoms to construct each hidden layer. Each meta-atom
behaves like an independent neuron in the neural network
and interconnects to other meta-atoms of the following
layers through the diffraction of light. Based on
Rayleigh–Sommerfeld diffraction20, the meta-atom/neu-
ron in the lth hidden layer, e.g., located at~rli ¼ xli; y

l
i; z

l
i

� �
,

serves as a secondary source. The Huygens wavelet of
such a source arises as a z-derivative of the spherical wave
(Fig. 1b) and can be described by HHuy

z ~r �~rli
� � ¼

G ~rli
� � � hHuy

z ~r �~rli
� �

, where

hHuy
z ~r �~rli

� � ¼ �1
2π

ik � 1
R

� �
z � zli
R

eikR

R
ð1Þ

In Eq. (1), R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xli
� �2þ y� yli

� �2þ z � zli
� �2q

, and k
is the wavevector of light in free space. The complex-
valued factor G ~rli

� �
is determined by the product of the

input wave u ~rli
� �

to the neuron and its transmission

coefficient tð~rliÞ, i.e., G ~rli
� � ¼ u ~rli

� � � tð~rliÞ. As such, the
total propagation field u ~rð Þ is the summation of the field
excited by all neurons in the lth layer, and it can be
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expressed as

u ~rð Þ ¼
Z Z 1

�1
HHuy

z ~r �~rli
� �

dxdy ð2Þ
For the first hidden layer with l= 1, u ~r1i

� �
is the

transmitted light spatially encoded by the input layer.
Following the forward propagation model in Eq. (2), the

encoded input light can be directed into any desired
location at the output layer via all learnable parameters
tð~rliÞ. As shown in Fig. 1b, we designate two small regions
with a radius of less than half a wavelength. If most of the
field intensity sMþ1

i ¼ u ~rMþ1
i

� ��� ��2 is focused in the left
(right) region, the computing result is “1” (“0”). Note that
this judgement criterion remains valid and consistent for
all logic operations being considered, distinct from the
case in refs. 11,16. Before implementing the diffractive
neural network, the transmission coefficients t ~rli

� � ¼ ali �
eiϕ

l
i at each hidden layer should be adequately trained via

an error back-propagation algorithm. In doing so, we
define a loss function with mean square error F tli

� � ¼
1
K

P
i

sMþ1
i � gMþ1

i

� �2
to evaluate the performance between

the output intensity sMþ1
i and the ground truth target

gMþ1
i , where K is the number of the measurement points.
The gradient of the loss function with respect to all the
trainable network variables is backpropagated to

iteratively update the network during each cycle of the
training phase until the network converges; see Supple-
mental Note 2 and “Methods” section for details. Note
that, in our case, we do not split the input data into
training, validation and test sets as done in the traditional
manner, since our goal is to achieve zero-error classifi-
cations for all cases.

Experimental demonstration of three basic logic
operations, NOT, OR, and AND
As a conceptual demonstration, we first numerically

realize three basic logic operations (Fig. 2), i.e., NOT, OR,
and AND, at the designed frequency f0, since the com-
bination of them can realize any other logic operation9.
Our proposed design strategy for optical logic operations
is, in principle, applicable for arbitrary frequencies. To
facilitate the following experimental verification, f0=
17GHz (wavelength λ0= 17.6mm) is chosen here. Figure 2a
shows the pattern of the input layer. For simplicity, the
high (low) transmittance state for each region is assumed
to have a transmittance of 100% (0%).
The hidden layers are composed of a cascaded two-layer

transmission metasurface21,22 with an axial distance of
17λ0 (one of the tuneable parameters in the training
process of diffractive neural network). Each metasurface

a

b

Fig. 1 Schematic illustration of optical logic operations by a diffractive neural network. a Layout of a conventional artificial neural network for
electron-based logic operations. b Layout of a diffractive neural network for photon-based logic operations. In b, each region at the input layer is
assigned with a specific logic operator or an input logic state, and it has two different states for the transmittance of light. That is, the input layer can
spatially encode the input plane wave for a specific optical logic operation, simply by setting the transmittance state of each region. The hidden
layers, composed of metasurfaces, are designed to decode the encoded input light and generate an output optical logic state. In other words, the
metasurface directionally scatters the encoded light into one of the two small designated regions at the output layer
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consists of 30 × 42 meta-atoms (inset in Fig. 2b), where
each meta-atom has a square cross section with a width of
0.57λ0. Here, we adopt a facile yet viable high-efficiency
dielectric metasurface by taking advantage of its unique
properties such as high transmittance and polarization
insensitivity. The local transmission response of the
designed meta-atoms is shown in Fig. 2b, where the
constituent F4B dielectric has a relative permittivity of
3.5+ 0.003i and is fabricated by mechanical processing
with an error <0.05 mm. The transmission phase ϕ varies
smoothly over the height h of the meta-atom. Approxi-
mately, we have h ¼ λ0ϕ=2πΔn, where Δn is the refractive
index difference between free space and the chosen
dielectric. In contrast, the magnitude of transmission
coefficients is almost uniform and close to unity. This
way, one may target to train phase-only diffractive mod-
ulation layers. The training details are left to Supple-
mentary Note 2. Figures 2c–l depict the numerical field
intensity after training. As expected, most of the fields are
correctly focused into one of the two small designated
regions.
Figure 3 shows the microwave experimental demon-

stration of the theoretical proposal in Fig. 2. The experi-
ment setup is depicted in Fig. 3a and described in
“Methods” section. A horn antenna excites transverse

electric (TE or s-polarized) waves with the electric field
along the x-axis, and it is placed far from the input layer
(~45λ0), so that the incident light signal can be reasonably
treated as plane waves23 (see Fig. S5). The transmitted
fields at the output layer, including their relative phase
and amplitude, are measured by an E-field probe (a small
monopole antenna24). For example, the inset at the output
layer in Fig. 3a shows the measured 2D field intensity for
the optical logic operation of “1+0”. Moreover, the
experimental performance of all optical logic operations is
shown in Fig. 3b. As expected, all the peaks of field
intensity definitely appear within one of the two desig-
nated regions, consistent with Fig. 2c–l. Quantitatively,
the contrast ratios between the measured intensities of
two designated regions are all larger than 9.6 dB. The
weak fields outside the two designated regions might be
caused by the impedance mismatch at the air–dielectric
interfaces, and this mismatch can be further reduced by
introducing periodic antireflection structures25.

Discussion
Direct realization of all seven optical logic gates and
cascaded optical logic gates
We emphasize that the proposed design strategy can, in

principle, directly construct any type (basic and

ba

c d e f g

h i j k l

Fig. 2 Numerical demonstration of three basic logic operations, i.e., NOT, OR, and AND, via a diffractive neural network. Here, the hidden
layers are composed of two layers of metasurfaces. a Schematic of the input layer. The transmittance of light in the white (grey) region is set to be
100% (0%). The pattern in a indicates the optical logic operation of ‘1+ 0’; see more in Fig. S2. b Transmittance response of the metasurface, formed
by a two-dimensional array of subwavelength meta-atoms. Each meta-atom can impart a local phase (blue line) and amplitude (red line) change to
the input light. Each meta-atom has a square cross-section with a width of p= 10 mm and is deposited on a uniform dielectric slab with a thickness
of a= 3 mm. c–l Intensity distribution at the output layer for three chosen logic operations with arbitrary input logic states. If the field is focused on
the left (right) small designated regions, the output optical logic state is defined as “1” (“0”). The designated regions are highlighted by two dashed
circles in each panel
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compound) of optical logic operation, such as all seven
basic logic operations as shown in Figs. 4 and S6. This can
be done by extending the encoding manner at the input
layer and developing a more sophisticated neural network
configuration. For more complete functionalities, we can
cascade multiple logic gates. As shown in Fig. S7, the
output waves from one logic gate couple into the wave-
guides and then are guided to the input layer of another

logic gate as the inputs26; see the details in Supplementary
Note 5.

Optical logic gates at higher frequencies
Although our experimental design in Fig. 3 only works

at microwave frequencies, our theoretical design strategy
in Fig. 1 should in principle be applicable to various fre-
quency regimes, including terahertz and optical

b

a

Fig. 3 Experimental demonstration of three basic logic operations, i.e., NOT, OR, and AND, at a microwave frequency of 17 GHz. a
Experimental setup. The metasurface has a cross section of 420 mm× 300m, and to facilitate the installation, it is surrounded by a frame with a width
of 40 mm. A small monopole probe moves automatically to scan the spatial intensity distribution at the output plane with a constant value of z. For
example, the measured 2D scan for the logic operation of “1+ 0” is shown at the output plane in a. b Distribution of the measured normalized

intensity along the dotted pink line with x= x0, namely, Ex x0; yð Þj j2=maxð Ex x0; yð Þj j2Þ, where x0= 190mm. All the maximum peaks are well confined
within one of the two designated regions, consistent with the numerical simulations in Fig. 2

a b

Fig. 4 Numerical demonstration of all seven basic optical logic operations via a diffractive neural network. Here, the hidden layers are
composed of three layers of metasurfaces. The design principle for the diffractive neural network follows Fig. 1 and is similar to Fig. 2. The space
separation of successive layers is set to 22.7λ0 and p= 0.57λ0. a Schematic of the input layer. The pattern in a indicates the logic operation “0þ 1”.
b Intensity distribution for the logic operation of “0þ 1” at the output layer. The intensity distribution for all other logic operations is shown in Fig. S6
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frequencies. The reason is that the main underlying
mechanism in this work follows the universal diffractive
law, which is scalable according to Maxwell equations. To
let our proposed idea work at higher frequencies, we
should at least consider scaling down the four key
ingredients to higher frequencies, namely, the meta-
surfaces, the input light encoder (or the spatial light
modulator), the light source and detector. These ingre-
dients are accessible to experimental investigations with
current technology17,25,27.

Comparisons with the traditional-related design
Our design principles of a multi-functional optical logic

gate and its switching behaviour are both different from
those of the traditional related design; see Supplementary
Note 6. First, the traditional multi-functional optical logic
gate essentially relies on several single-functional logic
gates, which are independent of each other and stacked
for multi-functional capability. In contrast, our design
relies on just one integrated multi-functional optical logic
gate. Second, traditional switches generally need to pre-
cisely control the input light, or involve the nonlinearity
and refractive indices of materials. These stringent con-
trols unfavourably incur a high complexity, high cost,
large volume, and even inherent instability of the system.
In contrast, our switch gets rid of these stringent
requirements, and it just allows or prevents light passing
through the corresponding regions/channels. This sim-
plified switch in our design makes a step towards a future
miniaturized multi-functional optical logic gate.

Other platforms to facilitate optical logic gates
Apart from the multi-layer metasurfaces, there are also

other platforms to facilitate optical logic gates, for
example, metamaterials/nanophotonics, which can offer
ultra-high computing density in a compact and layer-free
fashion26. By suitably engineering its spatial inhomo-
geneity, we can obtain an optical neural network on the
chip scale, and some optical computing tasks such as
image recognition and wavelength demultiplexer have
already been facilitated28. In Fig. S9, we design a compact
integrated-nanophotonic optical XOR logic gate as an
example using topology optimization and finite-difference
time domain (FDTD) simulation29,30.
To sum up, we have demonstrated a general framework

for all optical logic operations by a compound Huygens’
metasurface enacted diffractive neural network, making a
step towards multi-functional optical logic gates and high
computing density. In a conceptually microwave experi-
ment, we successfully realize three basic logical opera-
tions, i.e., NOT, OR, and AND, on a two-layer dielectric
metasurface. Implementing our proposed architecture
with metamaterials/nanophotonics may lead to chip-
scale, ultrafast computing elements and promise the

option of all-optical or hybrid optical–electronic tech-
nology. Looking forward, our proposed approach will also
lead to a broad scope of applications, for example, real-
time object recognition in surveillance systems and
intelligent wave shaping inside biological tissues in
microscope imaging31.

Materials and methods
Training of the diffractive neural network
The diffractive neural network is trained using Python

version 3.5.0. and TensorFlow framework version 1.10.0
(Google Inc.) on a server (GeForce 249 10 GTX TITAN X
GPU and Intel(R) Xeon(R) CPU X5570 @2.93 GHz with
48 GB RAM, running a Linux 250 operating system). It
takes dozens of minutes to make our diffractive neural
network converge. Notice that our process does not
involve nonlinear activation function. We leave that to
future work and experimentally compensate for its
absence by a nonlinear optical medium, such as a pho-
torefractive crystal and magneto-optical trap.

Experiment setup
A near-field 3D scanning system was used for mea-

surements. A horn antenna centred at the two-layer
metasurface was used as the excitation source. Another
small monopole probe oriented vertically to the ground
was used to scan the relative amplitude and phase (S21) of
the electric field Ex. In measurement, the source and
probe were connected to port 1 and port 2 of a vector
network analyser, respectively, and the parameter S21 was
recorded. The scan resolution in the xoy plane was
2 mm× 2mm.
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