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Abstract This paper presents a system that aims to achieve autonomous grasp-

ing for micro-controller based humanoid robots such as the Inmoov robot[1]. 

The system consists of a visual sensor, a central controller and a manipulator. 

We modify the open sourced objection detection software YOLO (You Only 

Look Once) v2[2] and associate it with the visual sensor to make the sensor be 

able to detect not only the category of the target object but also the location 

with the help of a depth camera. We also estimate the dimensions (i.e., the 

height and width) of the target based on the bounding box technique (Fig. 1). 

After that, we send the information to the central controller (a humanoid robot), 

which controls the manipulator (customised robotic hand) to grasp the object 

with the help of inverse kinematics theory. We conduct experiments to test our 

method with the Inmoov robot. The experiments show that our method is capa-

ble of detecting the object and driving the robotic hands to grasp the target ob-

ject. 
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1 Introduction 

Currently, robot technology is making it possible to introduce more automation ser-

vice to our daily life. Intelligent and interactive robots could assist us in home or of-

fice. One of the most important tasks is to fetch objects. However, autonomous grasp-

ing is still a not completely solved problem in robotics. In order to archive autono-

mous grasping, robots should have abilities to recognise the target objects and deter-

mine the location of objects. Moreover, robots need to adjust their motion trajectory 

based on the information of the target objects, such as location and category. Never-

theless, there are still many uncertainties that need to be further studied. Therefore, 

how to deal with uncertain facts and improve the success rate of grabbing is a very 

worthwhile problem. Generally, the uncertainties in the grasping process mainly in-

clude the uncertainties of the shape of the target object, the pose of the object, the 

contact point of the manipulator and the quality of the object.  



 

 
Fig. 1. Autonomous grasping with real-time object detection 

To solve this problem, we establish a communication system, which includes a central 

controller, visual sensor and manipulator. We first collect the necessary information 

about the target, and then path-plan for the arm based on the position of the target. 

Finally, we actuate the robotic hand to grasp the target by preset grasp pose according 

to the categories and size of the targets. Fig. 1 shows the screenshot of our object 

detection software. The water bottle has been detected and highlights within the blue 

rectangular box. The “x,y,z” after “Cam Loc” indicate the 3D coordinate of the bottle 

regarding the KINECT II. And the “x,y,z” after “Roc Loc” indicate the 3D coordinate 

of the bottle after transformation regarding the robot’s position. “w” and “h”, indicate 

the width and height of the detected object.  

The rest of the paper is organized as follows: Section 2 gives an overview of existing 

related work about grasping of the humanoid robot. Section 3 presents our design and 

method in details. Section 4 reports the experiments of evaluating the performance 

with the Inmoov robot. 

2  Related Work 

2.1 Object Detection 

For robot perception, category-specific object detection (COD) is one of the most 

fundamental yet challenging problems in the computer vision community[3]. The 

object detection is actually the progress of finding predefined objects among a large 

number of images. One existing solution uses regions with convolutional neural net-

work features (R-CNN) and fast versions [4, 5].  In this solution, they solve the object 

localisation question in two parts: 1. Generate object proposal from an image and find 

where it is. 2. Classify each proposal into different categories and thus recognise the 

object. This progress brings a tremendous amount of repeated computing, and the 

speed of it is slow regarding the real-time automatic grasping. 



 

In [6] and [2],  the authors compared YOLO and YOLOv2 with other existing detec-

tion frameworks and showed that their methods are faster and more accurate. Regard-

ing the perception of the robot, the speed is fulfilled for real-time grasping. 

 

2.2 Grasping from a humanoid robot 

There are two commonly used methods to deal with the uncertain shape objects when 

a manipulator is used for grasping. One is to rely on other sensors, such as the tactile 

sensor, the force sensor, the laser sensor, to feedback more information about the 

object, to compensate for the shape error caused by vision sensor (camera), and final-

ly to control the multi-degree-of-freedom machine[7]. The other is to apply the meth-

od of machine learning to the manipulator grasping[3, 8]. A large amount of data 

obtained through enough grasping experiments can be used as a training set of feasi-

ble grasping configurations for manipulators, and a grasping model obtained from 

empirical data can be obtained. In [8], they create a complete framework for the iCub 

robot to let it learn how to roll affordances of the object and explore handheld tools, 

as well as learn how to use them and finally put the learned skill in real actions. 

3  The Proposed Method 

3.1 Object Perception in the RGB Image 

How to grasp the object remains a very difficult task. Therefore, for safe grasping in a 

real environment, the target objects need to be recognised and localised accurately. 

We define the task of grasping as fetching objects from a static place. Firstly, the 

system collects depth and RGB images from KINECT II. Based on the RGB images, 

a CNN-based object detection method named as YOLO is adapted to extract CNN 

features, detect objects and recognise objects. The objects are marked by rectangular 

boxes and labelled using the object category. Secondly, according to the rectangular 

boxes including the target objects, the corresponding regions are cropped from the 

depth image. Finally, in the depth images, object segmentation is designed to obtain 

the pixels belonging to the target objects, which is used to calculate the location of 

objects.  

Next, we will introduce the details about object perception for social robot grasping. 

In the vision-based grasping, an interested object should be perceived in the current 

image at real-time speed. To facilitate real-time object perception, we adopt YOLO[2] 

to detect and recognise the interesting objects. 

YOLO is a unified pipeline, which treats object detection as a regression problem. It 

can output spatially separated bounding boxes and corresponding class probabilities 

simultaneously. Because the pipeline of object detection is a single network, it can be 

optimised end-to-end directly. Moreover, YOLO can process images as a real-time 

speed. The pipeline of YOLO is shown in Fig. 2. It can be observed that global image 

features are used by YOLO to detect the objects. This framework consists of three 

steps: (1) resize the input image to $544×544$, (2) run a CNN-based network, and (3) 

output the results by the confidence of the network model. 



 

 

Fig. 2.  The pipeline of YOLO: (1) resize the input image to 544 x 544, (2) run a 

CNN-based network, and (3) output the results by the confidence of network mode. 

Next, we will briefly introduce YOLO. The input image is divided into a 7 x 7 grid. If 

a grid cell includes the centre of an object, that grid cell is used to detect that object. 

A bounding box and class probabilities are predicted using that grid. YOLO has 24 

convolutional layers followed by two fully connected layers. It uses 1 x 1 layer fol-

lowed by 3 x 3 convolutional layers and strode convolutions are used to replace the 

maxpooling layers.  

3.2 Object segmentation from the Depth image 

Having good segmentation information can be useful for grasping. It can help the 

social robot to estimate the location of target objects. Unlike previous methods, which 

only use RGB images, we take advantage of depth cues to get the pixels belonging to 

target objects. In order to segment the target objects from the depth image, we need to 

remove the background and the desk plane. 

Because the length of humanoid robot arms is about 0.8m, the background infor-

mation can be filtered by a fixed threshold  as Eqn. 1. 

𝑅𝐺𝐵(𝑝) = {
0, 𝑑𝑒𝑝𝑡ℎ(𝑝)  >  𝜃

  𝑅𝐺𝐵(𝑝),   𝑜𝑡ℎ𝑒𝑟， 
,                                 (1)  

where RGB(p) and depth(p) represent the RGB value and the depth value of pixel p; θ 

= 1000 is the threshold. For removing the background. It means that the RGB value of 

pixels whose depth value are larger than 1m will be set to 0. The distance-based filter 

can restrain the background. In order to segment objects, the depth map is also filtered 

as Eqn. 2. 

𝑑𝑒𝑝𝑡ℎ(𝑝) = {
0, 𝑑𝑒𝑝𝑡ℎ(𝑝)  >  𝜃

 𝑑𝑒𝑝𝑡ℎ(𝑝),   𝑜𝑡ℎ𝑒𝑟， 
,                                 (2)  

Next, we need to get the pixels belonging to the desk. It can be observed that the 

plane of the desk is the biggest one because the background has been removed in the 

last step. In order to detect the plane, the first step is how to transform the depth im-

age to point cloud data. IR camera intrinsic parameters, focal length and the principal 

point can be used to finish the transforming task[9]. The algorithm for converting the 

depth image to point cloud data is as Algorithm 1. 

Algorithm 1: Transform the depth image to point cloud data 

1: φ=1000; //Meter to MM 

2:  for vDepth = 1 to height 



 

3:      for uDepth = 1 to weight 

4:           z = depth(vDepth, uDepth)/φ 

5:           x = (uDepth - cxd) * z / fxd 

6:           y = (vDepth – cyd) * z / fyd 

7:           pointcloud(vDepth,uDepth,1) = x; 

8:           pointcloud(vDepth,uDepth,2) = y; 

9:           pointcloud(vDepth,uDepth,3) = z; 

10:    end 

11: end 

where fxd, fyd are the focal length and cxd, cyd are the principal points. After point 

cloud data is obtained, we adopt a RANSAC[10]-based plane fitting method to dis-

cover planes in point cloud data efficiently. The plane fitting method can get the larg-

est set of points which fit to plane. The plane equation is defined as: 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0                         (3) 

where a, b and c are plane parameters and d is the distance from the origin to the 

plane. From the point cloud data, three points are selected by RANSAC which can 

calculate the parameters of the corresponding plane according to these points. Then a 

distance threshold is set to enlarge the plane. The distance threshold is set to 0.0 in 

our method. According to the segmentation result, the corresponding depth pixels of 

the desk plane are removed. Finally, we can obtain the target objects in the depth 

image. Based on the object detection in the RGB image and the object segmentation 

in the depth image, the object location (xc,yc,zc) in the camera space can be 

calculated by averaging the location information of pixels belonging to the target 

objects. 

Aim to grasp the target objects, the location of the target objects should be trans-

formed to the corresponding value in the robot space. The joint of the right arm is set 

as the origin of the coordinate plane in the robot space, and the formulation of the 

affine transformation is defined as Eqn. 4 

(

𝑥𝑟

𝑦𝑟

𝑧𝑟

1

) = 𝑇𝑟𝑎𝑛𝑠(𝛿𝑥, 𝛿𝑦, 𝛿𝑧)𝑅𝑜𝑡𝑧(𝛾)𝑅𝑜𝑡𝑥(𝛽)𝑅𝑜𝑡𝑦(𝛼) (

𝑥𝑐

𝑦𝑐

𝑧𝑐

1

)                      (4) 

3.3 Kinematics of the arm 

As Inmoov robot’s arm has totally five DOFs, the kinematics calculation frame as-

signment is needed. After getting the position of the target object, the next task is to 

control the hand to approach the object. It is a typical inverse kinematics problem. It 

means that when a desired reachable position in the 3D space is given, the angle of 

each DOF can be calculated in order to move the robotic hand to the given location. It 

may have multiple solutions for one destiny position. The method proposed in [11] 

uses Eqn. 5 to calculate inverse kinematics of robot arm to get the solution with the 

least possible movement.  

      Δ𝜃 = 𝐽𝑇(𝐽𝐽𝑇 +  𝜆2𝐼)−1𝑒                         (5) 



 

3.4 Robotic hand design 

For a better grasping, with reference to previous work on humanoid robotic hand [12-

15], we made a six DOFs 3D printable robotic hand via the processes of 3D scanning, 

segmentation, collision part removing and joints adding. It enables highly similar 

grasping when it works with artificial hand skin (Fig. 3). 

 

Fig. 3. Our robotic hand’s 3D model and the final product 

4  Experiments 

We have tested our robotic hand on an open-sourced humanoid robot Inmoov with 

our customised robotic hand. The results showed that the robot could grasp the ob-

jects autonomously in real time. Fig. 4 provides three screenshots of the robot grasp 

test. The procedure of our method is as follows: 

1. Run our vision detection software on the controller PC. The linked KINECT II will 

start to detect the area in front of it. 

2. When a pre-programmed target appeared, our software will send the category, loca-

tion and size of the object to the humanoid robot (Fig. 1). In testing, we put a goblet in 

front of the robot with the human hand. Our software works fine in this case.  

3. The humanoid robot will do the motion plan for the hand and fingers to grasp the 

target object (Fig. 4). In testing, the robot raises the left arm and hand to approach to 

the cup and eventually grasp the cup with wrap pose.  

 

Fig. 4. Grasping test with Inmoov 
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