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Abstract: 

Hardware realization of artificial neural networks (ANNs) require analog weights to be 

encoded into the device conductances via blind update and access operations, leveraging 

Kirchhoff’s circuit laws. However, most memristive solutions lag behind in this aspect due to 

numerous device non-idealities like limited number of addressable states, need for a stringent 

compliance current control and an electroforming process. By modulating the oxygen 

vacancy profile of tin oxide switching elements, here we design and evaluate multi-state 

memristors as synaptic connections for brain-inspired computing. Harnessing the advantages 

of a forming-less compliance-free operation, our devices display gradual switching 

transitions across multiple conductance states, sufficing the switching requirements of 

synaptic connections in an ANN. The soft boundary conditions are analysed systematically, 

and spike-based plasticity rules, state-dependent spike-timing-dependent-plasticity (STDP) 

modulations, ternary digital logic and analog updatability schemes are proposed and 

demonstrated comprehensively to establish the analog programming window of our 

memristors. 

 

Introduction:  

With the advent of artificial intelligence (AI) and machine learning (ML), conventional 

hardware design based on the von Neumann architecture is progressively facing a bottleneck 

due to the increased data transfer between the separated processing and memory units1. In 

contrast to the conventional serial processing achieved with today’s von-Neumann 

architectures, the human brain utilizes highly parallel, event-driven, and energy-efficient 

architectures to achieve computational power of the order of 1018 FLOPS (Floating Point 

Operations per second) at a power consumption of ~20W2. Neuromorphic computing- an 

approach where electronic analog devices and circuits mimic neuro-biological architectures 

of the human brain, promises to dramatically improve the efficiency of important 

computational tasks such as perception and decision-making via computation-in-memory3. 

Efficient training of such artificial neural networks (ANNs) hinges on the incremental 

adjustment of weighted connections between the hidden layers to minimize the cost function 

of a gradient descent optimization based on back-propagation algorithms4. This in turn 

demands deployment of analog non-volatile memory elements with multiple conductance 

states and smooth conductance transitions as weighted connections to store and update 

weights/conductances in a manner congruent with the learning algorithm5.  
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Despite the remarkable advancement of standard programmable architectures based on 

CMOS, innovative neuromorphic hardware circuitry is needed to emulate the scale, 

connectivity and power effectiveness of biological neural networks6,7. Very recently, 

hysteretic field effect transistors have been reported to extensively emulate the complex 

signal processing of biological synapses8–10, but they lag behind in terms of scalability and 

memory retention. With memory of operational history, excellent non-volatility, nanometer-

level scalability, low energy consumption and ultrafast switching speeds, memristive devices 

are touted as potential building blocks for brain-inspired computing architectures and have 

been extensively investigated in recent years11. Despite their excellent properties, most 

implementations fall behind in terms of reliable analog switching properties, namely- 

multiple memory states and non-abrupt state transitions- a prerequisite for efficient training 

of high-performance neural networks3.  

 

Specifically in the case of oxide valence change memristors, formation and disruption of 

highly conductive filaments composed of atomic defects like oxygen vacancies often result in 

abrupt state transitions and uncontrollably high current levels, requiring stringent compliance 

current control via additional transistors to prevent device damage12. The addition of control 

transistors makes the architecture area- and power-inefficient and also makes the peripheral 

circuitry used to address the memory complicated. Additionally, most of these oxide 

memristors also require a forming step to initiate a stable switching behaviour. This can vary 

in magnitude from device to device and hence result in undesirable power- and time-

consuming steps to address the non-volatile states online during training and inference13. 

Most critically, the abrupt switching physics of oxygen vacancy migration often limits the 

number of addressable states in memristors to two (1 low resistance state (LRS) and 1 high 

resistance state (HRS)), limiting their plasticity and storage capacity, and adversely affecting 

the trainability of ANNs14. Therefore, there is a need to explore additional systems to further 

improve the bit precision, storage capacity and updatability required for energy-efficient in-

memory computations. 

 

In an attempt to solve these issues, here we design and evaluate multi-state memristors based 

on tin oxide as synaptic connections for brain-inspired computing. We utilize an ultra-thin 

oxide switching layer (SnOx) with a rich reservoir of oxygen vacancies for stable and 

repeatable formation of nano conductive filaments, resulting in a forming-less operation. 

More critically, the oxygen-gettering ability of the top electrode (Al) is harnessed to create a 
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resistive oxide interfacial gradient that enables gradual switching between conductance states. 

This also acts as a resistor in series, self-limiting the growth of nano conductive filaments and 

current flow, overcoming the need for compliance current control in our devices. The 

deposited thin film has been characterized to be conformal and the thickness is verified by 

cross-sectional imaging. The fabricated multi-state memristors are first evaluated by DC I-V 

sweeping tests, demonstrating its operational history and reversible switching memory. As a 

demonstration of the multi-level switching characteristics, we program the device with 

different operational pulses to multiple stable conductance states portrayed as weighted 

synaptic connections for brain-inspired hardware neural networks (HNNs). To further 

understand the dynamics of the switching behaviour, the weight changes are subjected to a 

non-linear model, critically identifying the digital and analogue regime in the switching 

characteristics. Having evaluated the analog programming window of these devices, writing 

schemes are next optimized to tap on the conductance soft boundaries to study neuronal 

features such as short- and long-term plasticity. A state-dependent spike-timing-dependent-

plasticity (STDP) modulation is established utilizing the soft boundary conditions of our 

memristors. As a final demonstration for this concept, a ternary digital logic and an analog 

updatability scheme is proposed and implemented utilizing ramping-profile input pulses. 

 

Results: 

DC I-V Characteristics: 

Figure 1a, S1 shows the resistive switching operation of the proposed Al/SnOx/FTO 

memristor across 100 consecutive DC sweeping cycles (0V→ +2V→ 0V→ -2.5V → 0V, 

step size=10mV). The voltage sweeps are applied across the top Al electrode with the bottom 

electrode (FTO) always grounded. The device switches (SET) seamlessly from its high 

resistance state (HRS~1mS) to low resistance state (LRS~11mS) without any electroforming 

process when the voltage is swept from 0V→ +2V→ 0V. In the reverse sweep 0V→ -2.5V 

→ 0V, the device RESETs backs to its initial HRS, again in a gradual manner. Both the SET 

and RESET processes depict non-abrupt/gradual transitions without the need for compliance 

current control as evident from Figure 1a, while the high cyclability reflects the excellent 

stability of the switching process. 
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Figure 1. Memristor operation exhibiting gradual switching characteristics. (a) DC I-V switching characteristics 

of the Al/SnOx/FTO memristor over 100 consecutive cycles. (b) Voltage-dependent switching with consecutive 

positive (blue) and negative voltages (red), showing gradual switching transitions across multiple conductance 

states. (c) Endurance characteristics of our devices over 100 sweeping cycles. The conductance window is read 

at 0.1V. (d) Cumulative probability distribution function of the SET and RESET voltages across 100 cycles.  

 

Staying within this voltage window, the SET and RESET transitions are gradual and highly 

tunable. Noticeably within this window, non-abruptness of the conductance transitions is 

independent of the voltage amplitude. To demonstrate the highly-modulatable non-abrupt 

SET process, the device is subject to voltage sweeps varying from 0V→ +0.7 to +2V→ 0V; 

while 0V→ -0.8 to -2.5V → 0V portrays the gradual RESET process (Figure 1b). In all these 

cases, absence of a forming process avoids undesirable power- and time-consuming steps to 

address the non-volatile states, increasing the efficiency of the HNN during training and 

inference13. And absence of a compliance current control bypasses the need for current-

limiting transistors, increasing its area- and power-efficiency15.  

 

Stability of the individual states, retention and dynamic range becomes cardinal evaluation 

parameters in the case of such multilevel memories, since the continuously modulated 
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conductance states lie close to each other or in other words the on-off ratio between the 

intermediate conductance levels is small16. A high dynamic range would ensure improved 

device reliability, increased number of distinct addressable states would improve the memory 

storage capabilities, while excellent retention properties would ensure stable device 

operation. Figures 1c-d depicts the excellent endurance characteristics and cumulative 

probability distribution function of SET and RESET voltages of our devices programmed in 

the window +2.0V (potentiation)/-2.5V (depression). The devices maintain a good on-off 

ratio of >10 and depict a narrow distribution of the SET-RESET voltages over 100 sweeping 

cycles, reiterating the stability of the switching process. 

 

Working Principle: 

Migration of oxygen vacancies under an applied electrical field is commonly recognized as 

the switching mechanism in oxide-based valence change memristors17,18. But the 

comprehensive switching mechanism still remains unsure and could be classified into 

interface or filamentary depending on the device structure and electrical characteristics 

exhibited by the device19. The gradual switching behavior in both the SET and RESET 

regions (Figures 1a-b, S2a-b) indicate an interfacial switching mechanism due to the 

formation of an interlayer at the electrode-oxide junction in our devices20. Absence of an 

electroforming process and compliance current control strengthens this inference. 

Logarithmic I–V curve plots and linear fittings of the SET process reveals an ohmic behavior 

of the HRS at low voltages and a space charge limited current (SCLC) conduction at higher 

voltages. The LRS is dominated by an ohmic conduction (Figure S2a-b), in agreement with 

other interfacial memristive devices. On the other hand, abrupt transitions in the pulsing 

characteristics (discussed below in detail) also indicate that filamentary mechanism plays a 

pivotal role as well21. A dynamic conductance analysis similar to Y. F. Chang et al.22 was 

conducted to understand the contribution of an internal filament to the self-compliance 

current behavior. In Figure S2c-d, the dynamic conductance is tabulated by taking the 

derivative of current with respect to the voltage step (0.01V) during a sweeping cycle. During 

a SET sweeping cycle (Figure S2c), the dynamic conductance increases monotonously before 

abrupt transition, signaling the onset of a SET process. At the SET transition, the dynamic 

conductance reaches a peak before stabilizing to a higher conductance state. With the 

increase in sweeping voltage each cycle, an increase of SET threshold is observed; such self-

limiting phenomenon is crucial in the compliance-free operations. Similarly, in the RESET 

sweeping cycle (Figure S2d), the dynamic conductance reaches a peak before depressing to a 
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negative dynamic conductance. The intercept at zero dynamic conductance marks the self-

compliance current limit and the onset of the RESET process. With the increase in sweeping 

voltage each cycle, a decrease in maximum dynamic conductance and RESET threshold is 

observed. Hence, we hypothesize the existence of both interfacial and filamentary switching 

mechanisms co-existing in our devices (Figure S1). The SnOx switching layer provides a rich 

reservoir of oxygen vacancies for stable and repeatable formation of nano conductive 

filaments. XPS measurements corroborate the proposed creation of oxygen vacancies as 

shown in Figure S4. For O 1s peaks, the signal at ~529.0eV is attributed to the low binding 

energy of fully-coordinated lattice oxygen of SnO2, while the left-shifted signal at ~530.0eV 

with higher binding energy is attributed to the oxygen vacancies. As evident from Figures 

S4a and c, a significant increase in the concentration of oxygen vacancies (from 50% to 59%) 

accompanies the switching transition from the pristine/HRS to LRS, corroborating the 

proposed hypothesis of the formation and rupture of  nano-conductive filaments composed of 

oxygen vacancies, determining the memristive switching process. Additionally, the oxygen-

gettering ability of Al creates a resistive interfacial gradient of vacancies at the Al-SnOx 

interface in series with the active switching matrix. On application of a positive voltage at the 

top electrode, oxygen vacancies at the Al-SnOx interface migrate through the SnOx switching 

layer forming several nano-sized conductive filaments bridging across the device. The rich 

reservoir of oxygen vacancies makes this process seamless without the need of a forming 

process. The interfacial resistor becomes more resistive during this process, in turn self-

limiting the size of filament and current flow, alleviating the need for compliance current 

control. These vacancies get filled in a gradual manner by the movement of oxygen ions 

during the RESET phase, resulting in multiple conductance states and gradual switching 

between these states. To shed further light on the RESET conduction mechanism, we 

evaluate the logarithmic I–V curve plots of multiple RESET operations performed on the 

same device. Transition from an ohmic to a space charge conduction limited (SCLC) 

conduction (Figure S2) reflects a gradual dissolution of filaments in the analog RESET 

processes, in accordance with our hypothesized switching mechanism15. 

 

Multi-level memory- Analysis of the soft boundaries for analog programming: 

Ideally, memristors deployed as weighted synaptic connections in a neural network must 

exhibit gradual transitions across multiple conductance states23. The overall efficiency and 

learning ability of a neural network has been shown to significantly depend on the number of 

conductance levels, conductance linearity, write noise and multi-level cell characteristics. 
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Burr et al.24 recently proposed up to 6-bit resolution between the minimum and maximum 

conductance with a conductance pair representing a single weight for a deep neural network; 

while at least a dozen of separate conductance levels was predicted to be necessary for 

recognition of MNIST handwritten digits by Querlioz et al25. But most implementations 

depict a binary switching logic with 1 non-modulatable LRS and HRS respectively, limiting 

their plasticity and storage capacity, and adversely affecting the trainability of an ANN. 

Hence to qualify as weighted synaptic connections in a neural network, the devices are first 

benchmarked on their degree of plasticity (number of accessible conductance levels and their 

modulations) as a function of input electrical stimuli.  

 

Figure 2. Multi-level memristor operation. (a) Non-volatile weight changes achieved via blind updates depict an 

asymptotic increase from 0.5mS to 9mS when stimulated with single pulses of amplitude +1.2V and pulse 

width=6ms. This represents the soft boundary of our devices. (b) Electrical stability and retention characteristics 

of the multiple conductance states at room temperature. Map of the conductance updates with uniform (c) set 

and (d) reset pulses.  

 

In congruence with the I-V characteristics shown in Figure 1, the devices depict multiple 

non-volatile conductance states that asymptotically increase from 0.5mS to 9mS when 

stimulated with single pulses of amplitude +1.2V and pulse width=6ms (Figure 2a). The 



 9 

weight changes (stepped increments) are initially large, but decrease quickly with increasing 

absolute weights, indicating a soft boundary for weight updates. In Figure 2a, the 

conductance value of 9mS is observed to be a soft boundary and the devices can be pushed 

beyond this value by optimizing the amplitude and number of repetitions of the input 

electrical stimuli as shown in Figure 2b. Excellent non-volatility of the individual 

conductance states, indicated by the large retention times (~5x103 seconds) and a narrow 

distribution of the individual weights (Figure 2b), portray their advantages over hysteretic 

transistor configurations. However, while the ability to write and address multiple non-

volatile states seem highly promising, presence of the soft bound behavior enforces a trade-

off between the degree of analog modulation and parameters (amplitude, pulse width) of the 

input writing schemes. All devices could be recovered back to the initial HRS (~0.5mS) after 

the various pulse measurements. 

 

To evaluate the bounded nature of the cumulative conductance change, weight/conductance 

traces produced by sequences of 30 identical pulses/blind updates are recorded as a function 

of the number of pulses as shown in Figures 2c-d. Amplitude of the blind updates are varied 

from +0.6 to +2V to map out the conductance changes or weight updates during potentiation, 

while variations from -1.1 to -2.5V are mapped for the weight updates during depression. The 

conductance dynamics evolves from a region of no substantial conductance/weight change to 

regions of gradual and abrupt switching (from dark to clear color tones) as evident from 

Figures 2c-d. For example, while input potentiating pulses of +0.6V amplitude do not 

produce substantial weight changes in our devices, pulse amplitudes of +0.7 to +0.9V result 

in gradual weight updates. Increasing the pulse amplitude further (>+0.9V) result in more or 

less abrupt switching, demarcating the soft boundary for analog programming in the 

potentiation window (Figure 2c). Similarly, in the depression phase, the memory window for 

analog programming is softly bound to amplitudes in the range -1.5 to -1.8V. The devices 

depict non-updatability below this range, and an abrupt switching behavior above this range 

as depicted in Figure 2d. These abrupt transitions in the pulsing characteristics (Figure 2), 

especially in the potentiation window (Figure 2c) and an area-independent switching 

behavior (Figure S2e), hints at a filamentary mechanism playing a pivotal role as well as 

explained above21. It can also be noticed that the conductivity window expands with the 

increase in strength of the programming conditions, but at the expense of the smoothness of 

the weight update. The achievement of conductance saturation for a sufficiently large amount 

of pulses is another important characteristic prevalent to all conductance curves. As the rate 
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of saturation approaches asymptotically, the impact generated by a single weight update 

operation becomes lower. This saturation and non-linear behavior suggest that conductance 

modulation in such memristors is highly dependent on the current state of the device and 

reflects the limited linear window for truly analog weight updates, beyond which the devices 

deviate from linearity.  

 

Figure 3. State-dependent modulation and analog programmability window. The conductance window 

Gmax/Gmin with respect to the number and amplitude of the (a) set and (b) reset pulses. The rate of update 

visualized with normalized weight changes with respect to the number and amplitude of the (c) set and (d) reset 

pulses. 

 

To illustrate the memory window for analog programmability further, conductance ratios 

(Gmax/Gmin) are plotted as a function of the pulse programming parameters (amplitude and 

number of repetitions)26 (Figure 3). A ratio of 1 indicates the inability to update weights in a 

non-volatile manner, while higher ratios reflect non-volatile conductance changes or weight 

updates with a retention time > 5x103 seconds. The white dashed line marked in Figures 3a-b 

(corresponding to a ratio of 2 in conductance) indicates the onset of non-volatile conductance 

change or weight update and hence represents the threshold for resistive switching. 

Programming voltages above this threshold result in higher conductance ratios as shown in 

Figures 3a-b. To assess the differences in switching kinetics in our devices, slope of the 



 11 

voltage–time (pulse number) relation/function is calculated for both the potentiation and 

depression phases. The steeper slope of the potentiation phase (100 pulses/V) highlights the 

faster switching kinetics of the potentiation process as supposed to 20 pulses/V of the 

depression phase. In general, the origin of such asymmetries resides in the fundamentally 

distinct switching kinetics of the procedures responsible for potentiation and depression, i.e. 

the formation and dissolution of filaments. More importantly, this indicates a state-dependent 

modulation of weight updatability in such memristive devices, often overlooked in most 

investigations. 

 

To account for this state-dependent weight modulation, we adopt a multiplicative update 

scheme featuring weight-dependent rules in congruence with the model proposed by Fusi and 

Abbott27. For synaptic weights denoted between 0 and 1, the following generalized soft 

bound equations are adopted for incremental (δw+(w)) and decremental (δw-(w)) weight 

changes in potentiation and depression events, respectively. 

δw+(w) = α(1 − w) γ      (1)  

δw-(w) = −αwγ      (2)  

where α is a multiplicative parameter that indicates the magnitude of weight modification 

induced by a plasticity event, and γ reflects the state dependency of the weight update. 

 

The normalized weight changes δw+(w) and δw-(w) are plotted with respect to the pulse 

number and amplitude of the events as shown in Figures 3c-d respectively. The first vertical 

dashed line represents the switching threshold below which weight changes are negligible, 

while the second dashed line demarcates the soft boundary for analog weight updates. To 

map this region of analog programmability, the distribution of weight changes over the span 

of 30 input blind update pulses are plotted and analyzed, as depicted in Figures 3c-d 

respectively. At input voltages slightly higher than the threshold, the weight changes are 

incremental and continuous, resulting in large number of addressable states. This window is 

ideal for the operation of ANNs since it allows efficient mapping of the weighted synaptic 

connections to multiple conductance states governed by mathematical algorithms. However, 

these weight updates are softly bound to their absolute values as indicated by the large, 

sudden digital-like updates beyond this window; restricting their operational window. The 

parameters α and γ extracted from these distribution plots are shown in Figures S5a-b. Below 
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the threshold voltage, the flat response produces α very close to 0, indicating only one stable 

effective state. For blind updates slightly above the threshold, α values are small, indicating 

an effective analog operation regime. Practically, the system is capable of achieving multiple 

states with effective steps of 1/α. Beyond this analog operation regime, α approaches a 

maximum value of 1, indicating only 2 effective states or a digital operation. Similarly, the 

exponential factor γ of 0 indicates that the weight changes are independent of the current 

state. An exponent slightly higher than 1 indicates a mild dependency of the current state. An 

average of γ = 1.2 and γ = 1.3 is extracted from the potentiation and depression events 

respectively as shown in Figures S5a-b. From Figures 3c-d, it is evident that the depression 

events have a larger window of analog programmability when compared to the potentiation 

events. This again reflects the fundamentally distinct switching kinetics of the procedures 

responsible for potentiation and depression in our devices and provides a sound guideline to 

map out the window of analog programmability from an algorithm perspective. 

 

Memristors as Synapses: 

Having mapped out the soft boundaries of analog programmability of our memristors, we 

next benchmark our devices against the most commonly utilized plasticity rules for spiking 

neural networks. Classified based on the timescales of operation, short and long-term 

plasticity rules defining learning and memory are studied by recording excitatory post 

synaptic currents (EPSCs) in response to pre- and post-synaptic training sequences. A train of 

pulses (+0.6V, 6ms, number=20) at the top electrode (pre-synaptic terminal) evokes a pulsed 

current response (called Excitatory post synaptic current (EPSC)) of 64A (equivalent 

conductance=0.64mS), which immediately decays back to its resting level of ~0.5mS on 

removal of the presynaptic pulse (Figure S6a).  Fitting the transient current response to the 

below equation, we derive decay time constant (τ) correlated to the forgetting rate to be ~0.3 

seconds. 

          G (t) = Gsteady + A exp (− 
𝑡

𝜏
 )   (1) 

G (t)- synaptic weights at time t, Gsteady - synaptic weights at steady state measured 30s after 

stimulation pulses and A- a pre-exponential constant.  

 

Tuning the stimulation voltage further results in a controlled modulation of τ from 0 to 0.6 

seconds respectively as shown in Figure S6a, indicating the modulatable forgetting rates of 

our devices. Such short-term memory and plasticity rules have been demonstrated to serve as 
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working memory and mapping matrices for removing auto-correlations and have been very 

recently adopted to learn fine temporal structure of event-based signals amidst rate-coded 

events28. While short-term plasticity occurring on a time scale of tens of milliseconds is 

helpful for temporal filtering and may play a part in speech processing, long-term plasticity 

occurring on a time scale of several seconds to minutes is considered to be the foundation of 

experience-dependent neural circuit modification29. Stimulation with spikes of higher 

amplitude and pulse width consolidates the weight changes, leading to precisely controlled 

non-volatile changes in conductance, emulating long-term plasticity features. For example, 

increasing the amplitude of input spikes from 0.65 to 0.725V (with other parameters 

remaining fixed- pulse width=6ms, number of repetitions=40, pulse interval=6ms) 

consolidates the memory from short- (volatile) to long-term (non-volatile) as depicted in 

Figure S6b. Similar behaviors are observed with devices pre-programmed to lower (Figure 

S6a) and higher (Figure S6c) initial conductances as summarized in Figure S6d, reiterating 

the state-dependency of weight modulations in our devices. 

 

Figure 4. Non-volatile memory operation and its state dependency. (a) Schematic of the experimental flow 

involving device initialization to various conductance states, followed by the potentiation or depression 

programming pulses. The weight changes are tabulated with respect to the voltage of pulse trains and initial 
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conductance state for (b) potentiation operation and (c) depression operation. (d) Spike-timing dependent 

plasticity with asymmetric Hebbian learning characteristics demonstrated and its state dependency 

characterized. 

 

Embracing the soft bound limits of analog programmability (Figures 3c-d), we next analyze 

the short- and long-term plasticity effects as a function of the initial conductance state of the 

device. The devices are pre-programmed to distinct initial states (0.5, 2 and 5mS) and pulsed 

current responses are recorded to extract the decay constants of the short-term memory. The 

devices exhibit a state-dependency in the decay constants as shown in Figure S6. Devices 

pre-programmed to higher initial conductance states depict longer decay constants and faster 

consolidation to long-term memory as expected. Non-volatile weight updates crucial for 

neural networks are next evaluated in detail as a function of the initial conductance states. 

Devices are pre-programmed to distinct initial states of 2, 5 and 9mS, their conductance 

changes are mapped as a function of the number of pulses (Figure 4a). Device at the initial 

state of 2mS exhibit the highest rate of weight change in the potentiation phase when 

compared to devices pre-programmed to higher initial conductances (5 and 9mS). Figures 4b-

c depicts this response clearly by plotting the absolute synaptic weight changes against the 

input pulse voltage. The depression phase demonstrates an opposite trend with the device 

pre-programmed to 9mS exhibiting the highest rate of weight change. In conclusion, highly 

resistive devices or devices with a low initial conductance exhibits larger plasticity window 

in the potentiation phase, while devices programmed to a high initial conductance exhibits 

larger plasticity window in the depression phase.  

 

Translating these weight changes to a spiking neural network domain, we next characterize 

the spike-timing-dependent-plasticity (STDP) properties of our devices. A refinement of 

Hebb's theory, STDP is regarded as the first law of synaptic plasticity and is the foundation 

of associative learning30. Different types of STDP have been noted in biological synapses and 

are ascribed to distinct data processing and storage tasks31. To characterize this plasticity rule, 

spike patterns corresponding to Figure S7 are applied to the pre- and post-synaptic terminals 

as indicated, and the change in conductance (weight) is recorded as a function of the pulse 

interval between pre- and postsynaptic spikes9,10,32. Temporal correlations between the pre- 

and postsynaptic spikes create voltage-dependent changes in conductance/weight, 

establishing the STDP rules. Repeated arrival of pre-post or post-pre spike pairs lead to 

resistance changes above the threshold for non-volatile conductance change in proportion to 
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the voltage and time-integrated device conductance function (f(Vpre-Vpost), t), where the net 

voltage on the device at each instant of time (t) is defined by the voltage difference between 

the pre- and post-spike (Vpre–Vpost). Changes in conductance are compared to the initial 

conductance value to convert the data to percentage weight changes (reading pulses of 0.1V 

is utilized for this measurement). The device is then allowed to relax back or erased to the 

initial conductance state (e.g. 5mS) before the next measurement to avoid dependence of 

previous history. For example, an interval (tpost-pre) of +200ms results in a net voltage of Vpre-

Vpost = (+0.70) – (-0.80) = 1.5V developed across the device, triggering a permanent increase 

in the channel conductance or LTP (~121 %). On arrival of presynaptic pulses after 

postsynaptic pulses, i.e. tpost-pre of -200 ms, the maximum net voltage developed across the 

device is Vpre-Vpost = (-1.10) – (+1.20) = -2.3V and this results in a decrease in conductance or 

LTD (~ -35 %). These measurements are repeated for several combinations of spike intervals 

and the weight changes are plotted as a function of tpost-pre as shown in Figure 4d. Weight 

changes are predominant at small pulse intervals, and weakens with increase in the interval, 

reflecting strong temporal correlations between the pre- and post-synaptic spikes. The STDP 

time windows shown here in milli-seconds and weight changes are comparable to biological 

values and could be further tuned by modulating the width, number and shape of the input 

spikes. As expected, the magnitude of weight changes also depicts a strong dependence on 

the initial device conductance as shown in Figure 4d. In congruence with the above 

measurements and observations, devices pre-programmed to lower initial conductance states 

depict a higher plasticity window in the potentiation phase and vice versa in the depression 

phase (Figure 4d). Mapping the window of analog programmability and understanding of the 

analogue conductance update under different programming conditions is necessary to 

effectively develop software algorithms to run memristive HNNs. Bound conductance values 

and state-dependent modulation are key factors that affect the storage capacity and 

performance of the neural network, but is very often ignored. This work offers a 

comprehensive guideline for establishing and optimizing the analog programming window of 

memristive devices in the perspective of HNNs. 
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Figure 5. (a) Ternary digital switching between 3 multilevel states using both intermediate and abrupt, setting 

and resetting pulses. All set operations are in train of 3 pulses and reset operations are in train of 10 pulses. 

‘SET2’ is a setting pulse to state ‘2’ regardless of initial conductance state while ‘SET1’ is a setting pulse to 

state ‘1’ from state ‘0’. Likewise for resetting pulses ‘RESET0’ and ‘RESET1’. (b) Cycling of 234 transitions 

between ‘0’ , ‘1’ and ‘2’ states. (c) A continuous variation of analog synaptic weights across a memory window 

of ~10 using incremental pulses. 

 

As a final illustration of the multi-level programmability of our memristive devices, we 

demonstrate a highly stable ternary digital logic and an analog updatability scheme as shown 

in Figures 5a-c. Ternary switching is an utility of state-dependent weight changes and 

demonstrates how the compliance-free multi-state memristor can achieve stable switching 

between 3 distinctly accurate programmable state without transitioning through any 

intermediate state.  For the ternary digital logic, we split the conductance band into 3 distinct 

levels denoted by logic ‘0’ (1-3mS), ‘1’ (4-6mS) and ‘2’ (8-10mS) respectively. Blind input 

update schemes are optimized to seamlessly switch between these conductance states as 

shown in Figure 5b. For example, state transitions from logic ‘0’ to ‘1’ are SET (“SET1”) via 

pulses of amplitude 1.1V and pulse width 6ms and transitions from logic ‘1’ to ‘2’ are 

achieved via 1.55V, 6ms pulses (“SET2”). More importantly, direct transitions from logic ‘0’ 

to ‘2’ are also mapped via 1.55V, 6ms pulses as denoted by “SET2” in Figure 5a, indicating 

the independence of these transitions from the initial state due to the presence of soft 

boundaries. These represent the potentiation part of the update schemes. Similarly, direct and 

indirect depression transitions from logic ‘2’ to ‘0’ are also mapped, as denoted by 

“RESET1” and “RESET0”. To demonstrate the highly stable switching behavior of our 
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devices, they are cycled continuously between each of these logic states for ~240 cycles. The 

device switches seamlessly between the 3 logic states without any signs of degradation as 

shown in Figure 5b. Being compliance-free, the complete ternary memristor is free from any 

initialization step33 to the low resistance state before stabilizing to the desired state. (see 

Figure S8) Compared to the traditional binary logic enabled by memristor systems, ternary 

logics with greater information-carrying ability can provide greater computational 

effectiveness with decreased circuit complexity9,10.  

 

A linear and symmetric weight update behavior of the analog synapse is critical for achieving 

high learning accuracy in artificial neural networks based on the back-propagation learning 

rules. To unlock this potential, requires analog weights to be encoded into the device 

conductances via blind update (write) and access (read) operations, accelerated in parallel via 

simple Kirchhoff’s circuit laws3. Hence going beyond the ternary digital logic, we 

demonstrate analog programmability in our devices across the window 0.5 to 15mS with 

gradual synaptic weight updates utilizing ramping nonidentical pulses of step size 10mV 

(Figure 5c). While this strategy complicates the peripheral circuit design and increases the 

latency and power consumption, the ability to address multiple linearly-distributed 

conductance states could alleviate the addressing requirements at an algorithm level and 

enhance the in-memory computing efficiency when compared to traditional binary systems 

with limited non-linear conductances9,10.  

 

Our Al/SnOx/FTO multi-state memristor device demonstrated good endurance of more than 

100 cycles, comparable to present efforts in multi-state memristors (see Table S1). The 

weaker RESET process, probably due to oxide induced interface can also be partially 

recovered by increasing the number of pulses34. By using more optimized triangular-shaped 

pulses with less capacitative overshoot, we hope that the switching endurance can be further 

improved35. 

 

Conclusion: 

Here we design and evaluate multi-state memristors based on tin oxide as synaptic 

connections for brain-inspired computing. The ultra-thin oxide switching layer (SnOx) 

provides a rich reservoir of oxygen vacancies for stable and repeatable formation of nano 

conductive filaments, resulting a forming-less operation. More critically, the oxygen-
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gettering ability of the top electrode (Al) creates a resistive oxide interfacial gradient that 

enables gradual switching between conductance states. This also acts as a resistor in series 

with the active switching matrix, self-limiting the growth of nano conductive filaments and 

current flow, alleviating the need for compliance current control in our devices. Both these 

features facilitate writing and addressing of multiple conductance states in response to pulsed 

inputs, making them eligible as weighted synaptic connections in brain-inspired hardware 

neural networks. However the stochastic nature of migration of oxygen vacancies results in a 

soft boundary for analog weight updates, restricting their memory window for neuromorphic 

computing. We investigate these soft boundary conditions in detail to evaluate the effective 

storage capacity and performance of our memristors when deployed as synaptic connections 

in a neural network. Neuronal features such as short- and long-term plasticity are studied 

extensively and a state-dependent modulation is established to effectively utilize the soft 

boundary conditions of our memristors. As a final illustration of the multi-level 

programmability of our memristive devices, we demonstrate a highly stable ternary digital 

logic and an analog updatability scheme utilizing ramping profile pulses. The systematic soft-

boundary estimation carried out in this work can be extended to all memristive platforms and 

provides a comprehensive guideline for the optimization of analogue programming in the 

context of hardware implementation of neural networks.  

 

Experimental Section 

Sample Preparation: 65nm SnOx film is grown on a conductive fluorine-doped tin oxide 

(FTO) conductive glass by thermal atomic layer deposition (ALD) at 120ºC using Tetrakis 

Dimethylamino Tin (TDMASn) precursor and H2O as oxidative reactant. The chamber 

pressure is maintained at 0.8Torr and the precursor exposure/purge time is optimized to be 

100ms/15s for TDMASn and 50ms/15s for water respectively. Growth rate is determined to 

be approximately 0.1nm/cycle (measured post-deposition using a surface step profiler). No 

further annealing is done. The 100nm Al top electrodes are deposited by thermal evaporation 

through a shadow mask with 200m to 500m circular patterns.  

 

Measurements: All memristive switching characteristics and pulse operations are carried out 

under ambient conditions using Keithley 4200 SCS Semiconductor characterization system. 

Retention characteristics are measured in vacuum (<10-2 mbar) at room temperature. The 

AFM images are captured using Asylum Research Cypher S at AC air non-contact mode. The 
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XPS spectra are captured using Kratos AXIS Supra (monochromatized aluminium Kα x-ray 

source). No etching of sample is done in this experiment; a 55µm aperture is used for 

selective area photoelectrons capture. ESCApe software from Kratos is used for detailed peak 

fitting of the narrow scan regions. A Shirley background is subtracted prior to peak fitting 

and a Gaussian*Lorentzian function is used. The Full Wave Half Maximum (FWHM) is 

manually kept at acceptable ranges below 2eV (1.4 to 1.9eV), the peak finding and the error 

minimization are done by the software. 

 

Retention characteristics: In order to get intermediate states, we first initialize by setting and 

resetting the device through a negative DC sweep. The device will be initialized to a 

conductance of approximately 0.5mS. After which, a train of 30 pulses (Pulse width of 6ms, 

40Hz, see Figure 2c) will be applied, bringing the device to its corresponding conductance 

state. For example, to bring the device to 9mS, a train of +1.2V pulses will be applied. Once 

the pulse stimuli are removed, the resultant conductance state will be measured. The device is 

biased at a constant voltage of 0.1V, a reading is taken every 2s for the first 100s and every 

100s for subsequent time period. 

 

To obtain the dynamic weight changes for a potentiation series, we apply the procedure as 

shown: 

1) In a series of 30 potentiation pulses, the conductance Gn is measured before and after 

every applied pulse 

2) We label the normalized conductance as wn (where n = 0 to 30 is the step number in 

the series) 

3) The conductance values are first normalized to fall between 0 and 1 (with the initial 

normalized conductance w0 = 0, and the final normalized conductance w30 = 1), therefore 

wn = ( Gn – G0 )/ ( G30 – G0 ) 

4) Delta w for potentiation series (δw+, n) is hence the change in normalized weight  

(wn - wn-1), where n is the step number in the potentiation series. 

 

Similarly, for the depression series, the conductance is normalized with 1 being the initial 

normalized conductance and 0 being the final normalized conductance. Delta w (δw-, n) is 

also the change in normalized weight (wn-1 - wn). 
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Spike-timing dependent plasticity: As a standard procedure in all our long-term weight 

change calculations, final conductance states are measured 30s after pulsing. This is to avoid 

transient effects (at the timescale of <10 seconds) that could occur after the pulsing and to 

standardize the weight change calculation. 

 

Supporting Information 

Supporting Information is available from the ACS Publications website or from the author. 

 

Memristor device fabrication, electrical behaviour of multiple conductance states, XPS fitting 

of HRS and LRS, STP measurements, STDP waveform. 
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