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Calculation of the biexciton shift in nanocrystals of inorganic perovskites
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We calculate the shift in emission frequency of the trion and biexciton (relative to that of the single exciton)
for nanocrystals (NCs) of inorganic perovskites CsPbBr3 and CsPbI3. The calculations use an envelope-function
k · p model combined with self-consistent Hartree-Fock and a treatment of the intercarrier correlation energy in
the lowest (second) order of many-body perturbation theory. The carriers in the trion and biexciton are assumed
to have relaxed nonradiatively to the ground state at the band edge before emission occurs. The theoretical
trion shifts for both CsPbBr3 and CsPbI3 are found to be in fair agreement with available experimental data,
which include low-temperature single-dot measurements, though are perhaps systematically small by a factor
of order 1.5, which can plausibly be explained by a combination of a slightly overestimated dielectric constant
and omitted third- and higher-order terms in the correlation energy. Taking this level of agreement into account,
we estimate that the ground-state biexciton shift for CsPbBr3 is a redshift of order 10–20 meV for NCs with an
edge length of 12 nm. This value is intermediate among the numerous high-temperature measurements on NCs
of CsPbBr3, which vary from large redshifts of order 100 meV to blueshifts of several meV.
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I. INTRODUCTION

Hybrid organic-inorganic lead halide perovskites such
as CH3NH3PbX3 (X = Cl, Br, or I) attracted widespread
attention several years ago on account of their excellent
properties for photovoltaic applications [1,2]. The reported
power-conversion efficiencies have increased rapidly since
then and now reach 23.7% [3]. These high efficiencies are
possible in part because the materials have a high defect
tolerance [4] and very long carrier diffusion lengths [5].

More recently, nanocrystals (NCs) of all-inorganic lead
halide perovskites CsPbX3 (X = Cl, Br, or I) were shown to
be outstanding candidates for light-emitting applications [6].
The NCs fluoresce strongly, with the emission frequency
tunable over the entire visible range by varying the size of
the NCs and their composition (halide X , including mixtures
of different halides) [6]. The quantum yields obtained are
close to 100% [7]. This has led to important applications of
inorganic perovskite NCs to light-emitting diodes [8,9], lasers
[10,11], and room-temperature single-photon sources [12],
among others.

An important quantity in many light-emitting applications
using NCs is the strength of the exciton-exciton interaction,
which causes a shift in the frequency of light emitted by
a biexciton (two confined excitons) compared to a single
exciton. The presence of biexcitons (or, more generally,
of multiexcitons) under device conditions can reduce the
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frequency purity of the emitted light, depending on the size
of the shift. The biexciton shift plays a critical role in lasers
based on NCs of II-VI semiconductors such as CdSe, where
the small biexciton redshift is instrumental in creating a
population inversion on the biexciton-to-exciton transition
where lasing occurs [13]. It might also be possible to gen-
erate polarization-entangled photon pairs from the biexciton-
exciton cascade |XX 〉 → |X 〉 → |0〉 in NCs of CsPbBr3 [12],
for which it would help to understand the energetics of the
biexciton decay.

However, the biexciton shift in NCs of CsPbBr3 is at
present poorly understood. Many measurements exist [14–19]
that largely contradict one another for reasons that are still
controversial, with reported values of the biexciton shift vary-
ing from large redshifts [16] of order 100 meV to a recently
reported small blueshift [19] of order a few meV.

To help understand this issue, we present here calculations
of the biexciton shift in NCs of CsPbI3 and CsPbBr3 using a
multiband k · p envelope-function approach, combined with
many-body perturbation theory (MBPT). We assume that
the biexciton has relaxed nonradiatively (by rapid phonon
emission) to its ground state at the band edge before emitting,
which enables us to construct a detailed microscopic theory
of the multicarrier correlations responsible for the shift. Our
results suggest that the biexciton shift under these conditions
is a redshift having a value that is intermediate among the
available measurements on NCs of CsPbBr3.

The plan of the paper is the following. In Sec. II, we outline
our formalism. We treat the confined carriers as an ‘artificial
atom’ using methods of MBPT from atomic physics and
quantum chemistry [20,21]. The first step is a self-consistent
Hartree-Fock (HF) model of the confined carriers; then we
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apply the leading correlation correction from second-order
MBPT. Our basic envelope-function model is discussed in
Sec. II A, the HF method in Sec. II B, and the correlation
energy in Sec. II C. For reasons of computational efficiency,
we use a spherical basis set in the MBPT calculations. This
leads to extensive formulas for the various terms involving ra-
dial integrals and angular factors, which can be derived using
standard methods of angular-momentum theory [20,22,23].
These detailed formulas will be presented elsewhere.

These methods are then applied to NCs of inorganic per-
ovskites in Sec. III. A difficulty with these materials, which
have only recently become the subject of intensive research, is
that many of their properties are at present poorly understood.
Even some basic properties, such as the effective masses of the
valence and conduction bands, are uncertain. We discuss the
available data and the parameters that we assume in our model
in Sec. III A. Next, in Sec. III B, we apply our approach to the
trion and biexciton shift in NCs of CsPbI3 and CsPbBr3. Both
these shifts are dominated by intercarrier correlation effects,
the mean-field (HF) contribution largely canceling [24]. As
we shall see, the calculations of the correlation energy for
trions and biexcitons are very closely related, so that the data
on trion shifts provide a very useful additional check on our
calculation of the biexciton shift. Our conclusions are given in
Sec. IV.

II. FORMALISM

A. Model

Our approach is based on an envelope-function formalism
[25] for a system of carriers (holes and electrons) confined in a
potential Vext, with the bulk band structure described by a k · p
Hamiltonian hk·p and screened Coulomb interactions among
the carriers. The total Hamiltonian in the space of envelope
functions is

H =
∑

i j

{i† j}〈i|hk·p + Vext| j〉 + 1

2

∑
i jkl

{i† j†lk}〈i j|g12|kl〉 ,

(1)

where {i†1i†2 . . . j1 j2 . . .} is a normally ordered product of cre-
ation (and absorption) operators for electron envelope states
i1, i2, . . . (and j1, j2, . . .), which span the conduction bands
(CBs) and valence bands (VBs) included in the calculation.
The Coulomb interaction g12 in envelope-function approaches
is given generally by a sum of long-range (LR) and short-
range (SR) terms [26,27]. Here we will consider only the LR
part (we use atomic units throughout)

g12 = 1

εin|r1 − r2| , (2)

where εin is the dielectric constant of the NC material ap-
propriate to the length scale Ldot of the nanostructure (see
Sec. III A). The LR Coulomb interaction is in principle mod-
ified by the mismatch with the dielectric constant εout of
the surrounding medium, which leads to induced polarization
charges at the interface, although we will not consider this
effect in the present paper.

Even though perovskite NCs are generally cuboid, we use a
basis of envelope states i, j, . . ., etc., in Eq. (1) appropriate to

spherical symmetry. This is done for reasons of computational
efficiency. In a spherical basis, the angular integrals can be
carried out analytically and the remaining radial integrals are
one-dimensional. It is also possible to sum over the mag-
netic substates of the basis states analytically [20,22], which
effectively reduces (very substantially) the size of the basis
required in correlation calculations. Although we will not do
so in this paper, nonspherical terms in the Hamiltonian (for
example, arising from the crystal lattice or from the overall
shape of the NC) can in principle be included in later stages
of the formalism as perturbations.

To generate a spherical basis, we take the confining poten-
tial to be spherically symmetric. We choose a spherical well
with infinite walls,

Vext(r) =
{

0, if r < R
∞, otherwise . (3)

If the NC is a cube with edge length L, the radius R can be
conveniently chosen to satisfy

R = L/
√

3 . (4)

To motivate this choice of R, we note that at effective-mass
level the eigenvalues of noninteracting electrons in a cubic
box are given by

εcube
λ (nx, ny, nz ) = π2

2m∗
λL2

(
n2

x + n2
y + n2

z

)
, (5)

where (nx, ny, nz ) are integers and m∗
λ is the band effective

mass. Thus, the condition (4) ensures that the entire spectrum
of “S-like” states in a cube (nx = ny = nz = n) coincides
exactly with the spectrum of nS states in a sphere,

ε
sph
λ (n) = π2n2

2m∗
λR2

. (6)

One can also show that the lowest “P-like” state in a cube
(nx = 2, ny = nz = 1, together with the two other permuta-
tions, nx ↔ ny and nx ↔ nz [28]) has an energy within 2.3%
of that of the 1P state in the equivalent sphere (4), and that
higher-lying P-like states also have energies within several
percent of their analog in the sphere.

Even though the single-particle energies are in close agree-
ment, wave functions and therefore matrix elements can still
differ between cubic and spherical confinement. However, in
Sec. II B we show that the first-order Coulomb energy of the
ground-state exciton differs by only about 1.5% in the two
cases, and the HF energy by about 0.04%. In Sec. II C, we
estimate that the error in the correlation energy from using
a spherical basis is about 5%. Therefore, for the purposes of
this paper, the nonspherical correction term arising from the
NC shape is expected to be unimportant.

We consider two k · p models. The first is a 4 × 4 model,
which includes the s-like VB and p1/2-like CB around the R
point of the Brillouin zone in inorganic perovskite compounds
[29,30]. The other is an 8 × 8 model including additionally
the p3/2-like CB, which lies about 1 eV above the p1/2-like
CB at the R point [29–31]. Including the p3/2-like CB in this
way leads to a small correction to correlation energies at the
1% level (see Sec. II C).

125424-2



CALCULATION OF THE BIEXCITON SHIFT IN … PHYSICAL REVIEW B 101, 125424 (2020)

For spherical confinement, the angular part of an envelope
function with orbital angular momentum l couples to a Bloch
function with Bloch angular momentum J (here J = 1/2 or
3/2) to give a state with total angular momentum (F, mF ) [32],
which we denote by a basis vector |(l, J )FmF 〉. In the 8 × 8
model, the total wave function (including envelope and Bloch
functions) can then be written as a sum of four components
[32]:

|ηFmF 〉 = gs(r)

r
|(l + 1, 1/2)FmF 〉 + ḡp(r)

r
|(l̄, 1/2)FmF 〉

+ gp(r)

r
|(l, 3/2)FmF 〉 + fp(r)

r
|(l + 2, 3/2)FmF 〉.

(7)

Here, gs(r) and ḡp(r) are the radial envelope functions for the
s-like and p1/2-like bands, respectively, while gp(r) and fp(r)
apply to the p3/2-like band. These last two terms are absent in
the 4 × 4 model. The allowed values of the angular momenta
l and l̄ follow from angular-momentum and parity selection
rules [32]. We solve for the radial functions and eigenvalues
of the single-particle states in the presence of a Hartree-Fock
potential (Sec. II B) using a generalization of the method of
Ref. [32].

For states in the s-like VB, the term involving gs(r) in
Eq. (7) is typically the large component of the wave function,
while the other terms are small components representing the
admixture of CB states into the VB states due to the finite
range of the confining potential Vext and the k · p interaction.
In the CB states, the role of the small and large components
are interchanged. The presence of the small components al-
lows the formalism to pick up the leading k · p corrections
arising from the coupling of the VB and CB.

B. Hartree-Fock

The first step in the correlation calculation for a general
excitonic system with Ne electrons and Nh holes is to solve
the self-consistent HF equations including exact exchange
[20,21]. The HF potential will then be used to define the
single-particle states of the many-body procedure discussed
in Sec. II C.

For an occupied state |a〉 (either a hole or an electron), the
HF equation is(

hk·p + Vext + V av
HF

)|a〉 = εa|a〉 , (8)

where the HF potential V av
HF is given by a sum of direct and

exchange terms, V av
HF = Vdir + Vexc, with

〈i|Vdir|a〉 =
occ∑
b

ebqa
b〈ib|g12|ab〉 , (9)

〈i|Vexc|a〉 = −
occ∑
b

ebqa
b〈ib|g12|ba〉 , (10)

where the sum is over all occupied (or partially occupied)
states. Here, eb is a charge-related parameter, with eb = 1 for
electrons and eb = −1 for holes. (We are using the convention
that eigenvalues εa refer to electron states, even though the
states may be ‘occupied’ by a hole with an energy −εa.)

The usual HF potential with qa
b = 1 in Eqs. (9) and (10)

is generally only a scalar operator for closed-shell systems.

Since we wish to create a spherical basis for open-shell
systems as well, we employ instead a configuration-averaged
HF [20], in which the configuration-averaging weights qa

b are
given by

qa
b =

{
nB/gB b /∈ A

(nB − 1)/(gB − 1) b ∈ A
. (11)

Here, A or B denotes the shell containing the states a or b,
respectively, nB is the occupation number of shell B, and gB

is the degeneracy (maximum occupation) of shell B. For a
closed-shell system, nB = gB for all shells and then all weights
qa

b = 1. The configuration-averaged HF equations (8) for a
spherically symmetric Vext can now be reduced to a set of
radial HF equations following standard procedures [20].

The configuration-averaged HF energy of the excitonic
system is

E av
HF =

occ∑
a

eaqa〈a|hk·p + Vext|a〉 + 1

2

occ∑
a

eaqa
〈
a
∣∣V av

HF

∣∣a〉
,

(12)

where

qa = nA/gA (13)

is the fractional occupation of shell A (where a ∈ A). Conven-
tionally we define the zero of the band-structure energy to be
the VB maximum. Then we can decompose E av

HF into different
physical contributions as

E av
HF = Eband + Econf + ECoul , (14)

where Eband = NeEg is the “band energy” (Eg is the gap
between the s-like VB and the p1/2-like CB) and Econf is the
confinement energy,

Econf =
occ∑
a

eaqa〈a|hk·p|a〉 − Eband . (15)

One can also define an energy of interaction with the external
potential, Eext = ∑occ

a eaqa〈a|Vext|a〉, although here Eext ≡ 0
because of our simple choice of potential (3). The Coulomb
energy is

ECoul = 1

2

occ∑
a

eaqa
〈
a
∣∣V av

HF

∣∣a〉
, (16)

which can be further decomposed into direct and exchange
terms using Eqs. (9) and (10). Example calculations showing
these energy contributions for a NC of CsPbBr3 are given in
Table I. Note that the exchange energy for a single exciton
is very small; this contribution can be shown to be formally
of order (Latom/Ldot )2, where Latom is the interatomic length
scale.

To study the dependence of the HF energy on the shape of
the NC (sphere or cube), consider the 1Se-1Sh ground state of
a single exciton. In the effective-mass limit, the noninteracting
1S states (electron or hole) have wave functions

ψcube
1S (r) =

√
8

L3
cos

(
πx

L

)
cos

(
πy

L

)
cos

(
πz

L

)
(17)
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TABLE I. Hartree-Fock calculation for a ground-state single
exciton (X ), negative trion (X −), and biexciton (XX ) confined in a
NC of CsPbBr3 with edge length L = 9 nm, using the material pa-
rameters in Table III (and EP = 20 eV). Eband is the band energy, Econf

the confinement energy, Edir and Eexc are the direct and exchange
Coulomb energy, respectively, ECoul is the total Coulomb energy,
ECoul = Edir + Eexc, and EHF = Eband + Econf + ECoul is the total HF
energy.

X (eV) X − (eV) XX (eV)

Eband 2.3420 4.6840 4.6840
Econf 0.1036 0.1556 0.2071
Edir −0.0699 −0.0069 0.0000
Eexc 0.0003 −0.0655 −0.1385
ECoul −0.0696 −0.0724 −0.1385
EHF 2.3760 4.7671 4.7526

for cubic confinement, and

ψ
sph
1S (r) = 1√

2πR

1

r
sin

(
πr

R

)
(18)

for spherical confinement. The confinement (kinetic) energy
of the the 1Se-1Sh exciton at this level of approximation
follows from Eqs. (4)–(6) to be

E (1)
conf = 3π2

2L2

(
1

m∗
e

+ 1

m∗
h

)
(19)

for both the cube and the equivalent sphere (4). The first-
order Coulomb energy can be obtained by inserting the wave
functions (17) and (18) into Eqs. (9) and (16), and neglecting
the exchange term. This gives

E (1)
Coul = − ξ

εinL
, (20)

where, after numerical integration, we find ξ ≈ 4.389 eV nm
(for a cube) and ξ ≈ 4.455 eV nm (for a sphere). Thus the
Coulomb energy differs by about 1.5% between the cube
and the equivalent sphere. From Eqs. (14), (19), and (20)
we then find that, for the parameters used in Table I, the HF
energy of the single exciton at this level of approximation is
EHF = 2.3858 (for a cube) and 2.3848 eV (for a sphere), a
difference of only 0.04%. Finally, one sees from Table I that
the HF energy for a sphere changes by 0.4% from this value
upon incorporating k · p corrections (with EP = 20 eV) and
iterating the HF equations to self-consistency.

C. Correlation energy

From the point of view of MBPT [20,21], the HF energy
of a closed-shell system is correct through first order, EHF =
E (0) + E (1), where E (0) = ∑occ

a eaεa is the sum of the single-
particle eigenvalues of the occupied HF states, and E (1) is
the first-order correction of the residual Coulomb interaction.
The configuration-averaged HF energy (12) of an open-shell
system is similar, but gives the energy of the center of gravity
of the configuration multiplet, again correct through first order
in MBPT [20]. The higher-order corrections to the energy,
Ecorr = E (2) + E (3) + . . ., are referred to as the correlation
energy.

FIG. 1. Closed-shell second-order correlation energy: direct (on
the left) and exchange (on the right).

In this paper, we will consider only the second-order
energy, Ecorr ≈ E (2). For atoms and molecules, E (2) typically
accounts for about 75% or more of the total correlation energy
(depending on the system)[20,21] and usually E (2)/Ecorr < 1.

This approximation has the merit of simplicity. Using the
spherical basis (7), E (2) for the excitonic systems considered
here can be converged to an accuracy of a fraction of a percent
in about 1 s or less on a single processing core.

The second-order energy for a closed-shell atom or
molecule in a HF potential is given [20,21] by the many-body
diagrams in Fig. 1. To apply this approach to an excitonic
system of holes and electrons, we will effectively consider
the electrons and holes to be different species of particle and
evaluate the diagram for the mixed system [33]. Thus the lines
directed downward in Fig. 1 (a and b) correspond to occupied
states (either holes or electrons) while upward-directed lines
(r and s) correspond to unoccupied states (either holes or
electrons). The total second-order energy is given by

E (2) = 1

2

∑
abrs

D(2)
abrs , (21)

where

D(2)
abrs = 〈ab|g12|rs〉(〈rs|g12|ab〉 − 〈rs|g12|ba〉)

ωa + ωb − ωr − ωs
, (22)

and ωi = εi for electrons and ωi = −εi for holes, since the
single-particle energies must now apply to each particle type.
Decomposing E (2) explicitly into electron and hole contribu-
tions gives

E (2) = E (2)
ee + E (2)

hh + E (2)
eh , (23)

where

E (2)
ee = 1

2

elec∑
abrs

D(2)
abrs , E (2)

hh = 1

2

hole∑
abrs

D(2)
abrs ,

E (2)
eh =

∑
ar (elec)
bs (hole)

D(2)
abrs . (24)

The terms E (2)
ee and E (2)

hh correspond to the correlation energy
of the separate electron and hole subsystems, respectively. The
third term E (2)

eh is a cross-term, involving single excitations of
both the electron and hole subsystems.

A general excitonic system with Ne electrons and Nh holes
may contain open shells. An approximate formula for the
correlation energy in this case may be found by inserting
configuration-averaging weights for the occupied or partially
occupied shells of a and b into the closed-shell formula
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TABLE II. Second-order correlation energy for a ground-state
single exciton (X ), negative trion (X −), and biexciton (XX ) confined
in a NC of CsPbBr3 with edge length L = 9 nm, using the material
parameters in Table III (and EP = 20 eV). E (2)

ee , E (2)
hh , and E (2)

eh are
the electron term, the hole term, and the electron-hole cross-term,
respectively, given by Eq. (24). Direct (dir) and exchange (exc) terms
are shown separately; the exchange term from E (2)

eh is negligible. First
three columns: 4 × 4 k · p model; last column: 8 × 8 k · p model.
Units: meV.

4 × 4 k · p 8 × 8 k · p
X X − XX X

E (2)
ee (dir) 0.00 −8.44 −8.41 0.00

E (2)
ee (exc) 0.00 4.21 4.20 0.00

E (2)
hh (dir) 0.00 0.00 −8.41 0.00

E (2)
hh (exc) 0.00 0.00 4.20 0.00

E (2)
eh (dir) −6.83 −10.22 −16.82 −7.13

E (2) (total) −6.83 −14.44 −25.24 −7.13

(21), following the same argument used for the configuration-
averaged HF energy [20]. Equation (21) is then modified by

D(2)
abrs → qaqa

bD(2)
abrs , (25)

where qa
b and qa are given by Eqs. (11) and (13), respectively.

To evaluate the sums over states in Eq. (21), we create a
basis set of single-particle states in the HF potential (8) up to
a high energy cutoff. This basis set contains the occupied or
partially occupied states a and b, which contribute to the HF
potential, together with unoccupied (excited) states r and s.
For the calculations on single excitons, trions, and biexcitons
presented in this paper, we take qa

b for any unoccupied state a
to be qc

b, where c is chosen to be the 1Se state (for electrons) or
the 1Sh state (for holes). This choice forces all S-wave excited
states in the basis set to be orthogonal to the occupied 1Se and
1Sh states (as required).

Example calculations of the second-order correlation en-
ergy are given in Table II. Note that only the cross-term
E (2)

eh contributes for a single exciton, since the configuration-
averaging weights in Eq. (25) vanish for the other terms. Also,
the electron E (2)

ee and hole E (2)
hh terms here contribute equally

for the biexciton, because we assume VB-CB symmetry in the
material parameters; this is not true in general. The sums over
the intermediate states r and s are quite rapidly convergent:
about 10% of E (2) arises from the S-wave channel, 70% from
the P-wave channel, and 18% from the D- and F -wave chan-
nels. In addition, the first three principal quantum numbers
of each angular channel are sufficient to obtain about 98% of
E (2). We note that the contributions to E (2) presented contain
small k · p corrections of about 2%.

From Table II, we see that using the 8 × 8 k · p model
modifies the single-exciton correlation energy by only about
4% compared to the 4 × 4 model. Actually, most of this shift
is due to the modification of the k · p corrections by the
presence of the p3/2-like band. If the calculations are repeated
in the effective-mass limit (EP → 0), one finds a difference
of only about 0.1% between the 8 × 8 and 4 × 4 models,
showing that the excitations into the p3/2-like band are not
very significant in themselves (owing to their relatively high

TABLE III. Parameters used in the calculations. E (1)
P is the Kane

parameter estimated from the 4 × 4 k · p model, E (2)
P from the 8 ×

8 k · p model. For further explanation, see Sec. III A.

CsPbBr3 CsPbI3

Eg (eV) 2.342a 1.723a

μ∗ (m0) 0.126a 0.114a

m∗
e , m∗

h (m0) 0.252 0.228

soc (eV) 1.0b 1.0b

εeff 7.3a 10.0a

εopt 5.3c 4.8d

E (1)
P (eV) 27.9 22.7

E (2)
P (eV) 16.4 13.9

aReference [35].
bReference [31].
cReference [36], at a wavelength of 600 nm.
dReference [37], at a wavelength of 600 nm.

excitation energy). This justifies the use of the 4 × 4 k · p
model for perovskite NCs for the calculation of the correlation
energy.

Noting that the dominant intermediate channel is P-wave,
we estimate the error in E (2) from using a spherical (not cubic)
basis to be about 5%, which is the error in the energy denom-
inator associated with the 1S → nP excitations for n = 1 − 3
(see Sec. II A). For an alternative approach to correlation
in a confined excitonic system with spherical symmetry, see
Ref. [34].

III. APPLICATION TO PEROVSKITE NANOCRYSTALS

A. Parameters

The material parameters that we use for CsPbBr3 and
CsPbI3 are summarized in Table III. The bulk parameters μ∗
and εeff are taken from Ref. [35] and apply to the orthorhom-
bic phase of CsPbBr3 and the cubic phase of CsPbI3 at
cryogenic temperatures [38–40]. Although the reduced mass
μ∗ = m∗

e m∗
h/(m∗

e + m∗
h ) has been measured [35] by magneto-

transmission techniques, the individual effective masses of
electron m∗

e and hole m∗
h are unknown. Evidence from experi-

ment [41] and first-principles calculations [6,30,42] suggests,
however, that m∗

e and m∗
h are approximately equal. Here we

will assume m∗
e = m∗

h exactly (m∗
e applies to the p1/2-like CB,

and m∗
h to the s-like VB, around the R point of the Brillouin

zone). The spin-orbit splitting 
soc between the p1/2-like
and the higher-lying p3/2-like band has been measured in
Ref. [31].

The ‘effective’ dielectric constant εeff in Table III is derived
[35] from the measured binding energy of the bulk exciton.
We also give for comparison values of the optical dielectric
constant εopt at a wavelength of 600 nm, which are somewhat
smaller than εeff. The constant εeff applies to a length scale of
order the bulk Bohr radius aB, which is quite close to the size
of the NCs that we consider (2aB = 6.1 nm for CsPbBr3 and
2aB = 9.3 nm for CsPbI3, using the parameters in Table III).
Therefore we shall use εin = εeff to screen the LR Coulomb
interaction (2) in the main parts of our calculations of the
correlation and exchange energy.
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The Kane parameter EP of CsPbBr3 and CsPbI3 has not
been measured directly. An estimate of EP can be made by
assuming that the contribution to m∗

e and m∗
h from remote

bands is zero, which in the 8 × 8 k · p model implies [51]

1

μ∗ = 2

3

(
EP

Eg
+ EP

Eg + 
soc

)
, (26)

where Eg is the gap energy. The Kane parameter here is
defined by

EP = 2|〈S|pz|Z〉|2 , (27)

where |S〉 is the Bloch state of the s-like band and |Z〉 is
the z-component of the Bloch state of the (spin-uncoupled)
p-like band [52]. Equation (26) can now be solved for EP.
The corresponding equation [29,35] for the 4 × 4 k · p model
is obtained by allowing 
soc → ∞. The values of EP inferred
in this way for the two models are summarized in Table III.

We take the view that EP is uncertain. A conservative range
would be 10 eV � EP � 32 eV for CsPbBr3 and 8 eV �
EP � 26 eV for CsPbI3. Note that the uncertainty in EP is not
critical for the calculation of the energy, since EP determines
only the rather small k · p corrections to E av

HF and Ecorr (see
Secs. II B and II C). For illustrative purposes, we choose a
central value of EP = 20 eV for CsPbBr3 in Tables I and II.

An overall assessment of the parameters and the model can
be made by comparing the theoretical single-exciton energy
with the energy of the emission peak [53], as shown in Fig. 2.
The data in the figure correspond to a variety of experimental
conditions. Most of the measurements were made at room
temperature, although Yin et al. [48] (CsPbI3) and Canneson
et al. [49] (CsPbBr3) were at cryogenic temperatures, as
were the measurements [35] used to determine our param-
eters (Table III), which are therefore more appropriate to
low temperatures. This explains part of the apparent small
discrepancy at large sizes L, as the bandgap increases at room
temperature by about 60 meV (CsPbBr3) to 80 meV (CsPbI3)
[35]. Also, the measurement of Liu et al. [47] (CsPbI3) is
ligand-dependent, as indicated by the multiple data points.

It is clear from Fig. 2 that the contribution of correlation to
the total emission frequency is not significant, but the role of
correlation is greatly enhanced in measurements of the trion
and biexciton shifts, which are discussed in the next section.

B. Bi-exciton and trion shifts

Emission from trions or biexcitons in NCs is usually ob-
served to occur at a slightly lower frequency than from a single
exciton [16,17,24,54,55]. The trion 
X − and biexciton 
XX

redshifts, relative to the single-exciton emission frequency,
can be found by taking the difference of the initial and final
energies,


XX = 2EX − EXX , (28)


X − = EX + E1e − EX − , (29)

where EX , EX − , EXX , and E1e are the total energies of the
single exciton, the negative trion, the biexciton, and a sin-
gle confined electron, respectively. We assume here that the
excitonic systems relax nonradiatively under experimental
conditions before emitting, so that these total energies will be

FIG. 2. Measured photoluminescence peak energies of NCs of
(a) CsPbI3 and (b) CsPbBr3 (triangles/squares/circles), and theo-
retical single-exciton energy using HF (dashed curve) and HF plus
second-order correlation energy (full curve). Yumoto et al., Ref. [43];
Dong et al., Ref. [44]; Pan et al., Ref. [45]; Dutta et al., Ref. [46];
Liu et al., Ref. [47]; Yin et al., Ref. [48]; Protesescu et al., Ref. [6];
Canneson et al., Ref. [49]; and Brennan et al., Ref. [50].

taken to refer to the ground state. In Eqs. (28) and (29), we
have anticipated that the shifts are redshifts by defining 
X −

and 
XX as minus the change in energy relative to a single
exciton. Because we assume VB-CB symmetry of effective-
mass parameters (see Table III), the positive trion will have an
identical shift to the negative trion, 
X + = 
X − .

Remarkably, the biexciton [Eq. (28)] and trion [Eq. (29)]
shifts are dominated by intercarrier correlation effects, as
the mean-field contribution largely cancels [24]. This phe-
nomenon for a NC of CsPbBr3 is illustrated in Table IV.
Note that for large edge lengths L�7 nm, the cancellation
of the HF contribution is more complete for the biexciton
than for the trion, with the reverse being true for the smaller
edge lengths tabulated. The final shifts 
XX and 
X − have
a quite weak size dependence. This can be understood by
noting that a Coulomb matrix element scales approximately as
〈ab|g12|rs〉 ∼ 1/L, while the energy denominator in Eq. (22)
scales approximately as ωa + ωb − ωr − ωs ∼ 1/L2 owing
to the confinement effect (5), so that E (2) is approximately
independent of L. In fact, both 
XX and 
X − become slightly
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TABLE IV. Calculated biexciton 
XX and trion 
X− redshifts in
NCs of CsPbBr3 with edge lengths 4 nm � L � 12 nm, assuming the
material parameters in Table III (and EP = 20 eV). The contributions
to Eqs. (28) and (29) from Hartree-Fock (HF) and correlation (Corr)
are shown separately; 
XX and 
X− are the sum of the HF and Corr
terms in the preceding two rows. Units: meV.

4 nm 6 nm 9 nm 12 nm

HF −3.96 −1.57 −0.58 −0.28
Corr 18.16 14.68 11.58 9.62

XX 14.19 13.11 11.00 9.34

HF −0.05 1.03 1.41 1.47
Corr 10.84 9.15 7.61 6.50

X− 10.79 10.18 9.02 7.96

larger at the smaller sizes in Table IV, an effect that has been
observed experimentally in perovskite NCs [16].

Our theoretical trion shifts are compared with the available
experimental data in Fig. 3. The agreement with the trion data
is fair, although the theoretical values are perhaps systemat-
ically too small (by a factor of order 1.3–1.8). Turning to
the data on the biexciton shift, shown in Fig. 4, we see that
a similar comment holds for CsPbI3, where the theoretical

Δ

FIG. 3. Measured trion redshift 
X− of NCs of (a) CsPbI3 and
(b) CsPbBr3 (squares/circles/diamonds). Solid line: theory (second-
order MBPT). Yin et al., Ref. [48]; Rainò et al., Ref. [55]; Fu et al.,
Ref. [56]; and Nakahara et al., Ref. [54].

FIG. 4. Measured biexciton redshift 
XX of NCs of (a) CsPbI3

and (b) CsPbBr3 (triangles/squares/circles/diamonds). Solid line:
theory (second-order MBPT). Yin et al., Ref. [48]; Makarov et al.,
Ref. [15]; Aneesh et al., Ref. [17]; Castaneda et al., Ref. [16]; Wang
et al. Ref. [14]; and Ashner et al., Ref. [19].

values are smaller than the few available measurements by
a factor of about 1.8–2.0. The situation is rather unclear for
the biexciton shift in CsPbBr3, however, where there are more
data available. The measured values of 
XX for CsPbBr3

range from large redshifts [16] of about 40–100 meV (which
is comparable to the HF Coulomb energy given in Table I)
to a recently reported small blueshift [19], of order 
XX =
−2 meV for L ≈ 10 nm. Our second-order MBPT approach
predicts a redshift for all sizes considered for both CsPbBr3

and CsPbI3, with a value 
XX = 10 meV for CsPbBr3 for
L ≈ 10 nm.

Before commenting on the experimental data, let us first re-
view some leading sources of theoretical error in our second-
order MBPT approach. These are the following.

(i) Correction terms due to fine-structure splittings. We
have neglected the fine structure (FS) of the excitonic states,
basing our formalism on a configuration-averaged approach
(25), which yields the center of gravity of the FS multiplet.
FS splittings in emission lines of inorganic perovskite NCs are
observed to vary from several hundred μeV (e.g., Ref. [48]) to
a few meV (e.g., Ref. [30]). Single-dot spectroscopy reveals
that they can vary quite markedly from dot to dot, both in
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magnitude and sometimes also in the number of FS com-
ponents observed [30,48,56]. In the few cases that FS split-
tings have been observed experimentally in the measurements
relevant to Figs. 3 and 4, the shifts plotted in the figures
correspond to the values obtained by averaging over the FS
(e.g., Ref. [48]). Because of this and the relatively small size
of the FS splittings, the error in Figs. 3 and 4 due to FS seems
likely to be at the level of 1–2 meV or less.

Let us consider the role of the FS of the single exciton
in greater detail. In perovskite NCs, the ground-state 1Se-1Sh

single exciton consists of electron and hole states with angular
momentum F = 1/2, in the notation of Eq. (7), which can
couple to a total angular momentum Ftot = 0 or 1 (singlet or
triplet, respectively). The triplet state has an allowed electric-
dipole radiative decay and is a bright exciton state; the singlet
is a dark state [30,56]. Similarly, the ground-state biexciton
in perovskite NCs has closed-shell electron and hole states,
1S2

e -1S2
h , which must therefore couple to Ftot = 0, and the

negative trion has a 1S2
e -1Sh ground state with Ftot = 1/2.

From selection rules, the allowed biexciton emission must
proceed via the bright single-exciton state, XX0 → X1, where
the subscript indicates the value of Ftot.

Now, the center of gravity of the bright-dark FS multiplet
in the single exciton is given by

ĒX = (1/4)EX0 + (3/4)EX1 , (30)

from which it follows that EX1 − ĒX = 
10/4, where 
10 =
EX1 − EX0 is the bright-dark FS splitting. (We are assuming
that any FS in the bright state, which is due to nonspheri-
cal or noncubic symmetry-breaking interactions [30,56–58],
has been experimentally averaged.) For the biexciton, the
configuration-averaged energy ĒXX = EXX0 , since there is only
one state. Therefore the observed biexciton shift is given by


XX = 2EX1 − EXX0 = (2ĒX − ĒXX ) + 
10/2 , (31)

and we see that our calculated result in Fig. 4 acquires a
correction term 
10/2. An analogous argument leads to a
correction term 
10/4 for the trion shift in Fig. 3. Since |
10|
is expected to be of order a few meV [58], we conclude again
that any error in Figs. 3 and 4 from this source is likely to be
of order at most 1–2 meV.

(ii) Uncertainty in the value of the dielectric constant. The
biexciton 
XX and trion 
X − shifts are dominated by correla-
tion or E (2), so that they are both approximately proportional
to 1/ε2

in, where εin is the dielectric constant of the material (2).
However, a more complete treatment of dielectric effects
than considered in the present paper would take into account
the space- and frequency-dependent bulk dielectric function
ε(k, ω). In the instantaneous approximation ω = 0, the di-
electric constant εin in Eq. (2) would then be replaced by a
space-dependent function ε(r1, r2). A more general treatment
including also the frequency-dependence of ε(k, ω) would
require a retarded Coulomb interaction (and, for example,
the use of Feynman propagators [59]). Inorganic perovskites
present the complication that the dielectric function is rapidly
varying; for instance, the effective and optical dielectric con-
stants given in Table III are quite different.

Another dielectric effect, which we have neglected here,
arises from the mismatch of the dielectric constant of the NC
with that of the surroundings, which modifies the effective LR

Coulomb interaction to take account of polarization charges
induced at the dielectric boundary [60].

In our calculations, we have assumed a dielectric constant
εin = εeff, where εeff is derived from the measured binding
energy of the bulk exciton (see Sec. III A). Formally, εeff cor-
responds to length scales of order the Bohr radius k ∼ π/aB

and to a frequency ω ≈ 0, since the exciton binding energy
is dominated by the direct Coulomb energy (9) and (16), in
which the energy flowing through the Coulomb propagator
in the Feynman rules is zero. The second-order energy E (2),
on the other hand, involves a nonzero average excitation
energy δωav = 〈ωa + ωb − ωr − ωs〉 in Eq. (25), which im-
plies a nonzero average energy flowing through the Coulomb
propagators. We find δωav ≈ 0.1 − 0.6 eV for 4 nm � L �
12 nm for NCs of CsPbBr3. In addition, although the size of
our NCs is comparable to the Bohr radius (see Sec. III A),
this is not exactly true. It follows that the appropriate value
of the dielectric constant εin to use in calculations of E (2)

might differ from εeff. For instance, it seems likely that the
frequency-dependence will shift the appropriate value of εin

from εeff toward a slightly smaller value, closer to εopt (see
Table III). This would increase E (2) and could explain part of
the discrepancy between theory and experiment observed in
Figs. 3 and 4(a).

(iii) Higher-order correlation. Usually in atoms and
molecules, E (2) underestimates the all-order correlation en-
ergy [20,21]. Unfortunately, it is hard to estimate the higher-
order correlation E (3+) = E (3) + E (4) + . . . without explicit
calculation, although we note that typical values of E (3+)

for atoms and molecules can vary up to 25% or so of E (2),
depending on the system. Each order of MBPT brings in
one extra Coulomb interaction g and an energy denominator

ε, which scale approximately as g/
ε ∼ L. Therefore the
contribution of higher-order MBPT is expected to become
more important for larger dots, and this could explain a large
part of the discrepancies noted in Figs. 3 and 4(a) for the case
of intermediate confinement encountered in perovskite NCs.

Table II makes it clear that the calculations of E (2) for
the trion and the biexciton are very closely related. The
term E (2)

ee in Eq. (23) can be seen to have almost the same
value for each. This happens because both systems contain
two electrons, so that the configuration-averaging factors in
Eq. (25) are the same (although the basis sets differ slightly,
because different states are occupied in the HF potential of
the two systems). Similarly, most of the difference in the
other two terms E (2)

eh and E (2)
hh in Table II is due simply to

the different configuration-averaging weights for the trion and
biexciton. Because of this, we expect that the errors in 
XX

and 
X − due to both dielectric effects [(ii) above] and omitted
higher-order MBPT [(iii) above] should be comparable. The
trion data in Fig. 3 can therefore serve as an additional check
on the biexciton data in Fig. 4.

Turning to the experimental data, we note first that it is
useful to distinguish between measurements on single dots at
cryogenic temperatures (e.g., using time-resolved photolumi-
nescence) and high-temperature measurements on ensembles
of NCs (e.g., using transient absorption). The low-temperature
measurements typically give narrow well-separated peaks,
from which the shifts can be extracted directly, while the
high-temperature measurements typically require extensive
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fits to side-features on overlapping peaks, or other indirect
analysis methods. Low-temperature single-dot measurements
have been performed on the trion (Fig. 3) by Fu et al. [56]
for CsPbBr3 and by Yin et al. [48] for CsPbI3, and the latter
also measured the biexciton shift for CsPbI3 [Fig. 4(a)]. No
low-temperature measurements are available of the biexciton
shift in CsPbBr3.

We observe that our agreement with all these low-
temperature measurements in the trion shift (Fig. 3) is fair.
Based on this, and the observation that the theoretical errors
for the trion and the biexciton shift are expected to be similar,
we believe that the present results provide quite strong theo-
retical evidence that the ground-state biexciton shift in NCs
of CsPbBr3 is a redshift of order 
XX = 10 − 20 meV for
L ≈ 12 nm (after allowing for a phenomenological increase in
the second-order MBPT values given in Table IV by a factor
of up to 2).

According to Shulenberger et al. [18], who performed ex-
periments on NCs of CsPbBr3, the fast red-shifted features of-
ten attributed to biexciton emission are actually an artifact of
the exposure of the sample to air, which they claim causes the
formation of larger bulk-like particles in the ensemble with a
redshifted single-exciton peak. Shulenberger et al. [18] placed
an upper limit on the true biexciton shift of 20 meV, which is
consistent with our theoretical prediction. However, the same
group later inferred [19] a small biexciton blueshift of order

XX = −2 meV for L ≈ 10 nm after extensive data fitting,
which seems to be inconsistent with our theoretical value.

Another experimental issue is whether the biexciton has
truly relaxed to the ground state, as we have assumed in
our calculation. Yumoto et al. [43] studied ‘hot’ biexcitons
in a transient absorption experiment on NCs of CsPbI3 by
observing the induced absorption signal immediately after
the pump excitation. They concluded that a hot biexciton,
composed of one exciton at the band edge and a second
excited exciton, had a substantially increased exciton-exciton
interaction. They found that 
XX for CsPbI3 could be as large
as 60 meV for excitation energies Eex of the second exciton of
order Eex�0.3 eV.

Finally, we note that Makarov et al. [15] measured

XX = 12 meV for NCs of CsPbI3 and obtained almost
the same value 
XX = 11 meV for NCs of the mixed per-
ovskite CsPbI1.5Br1.5, which would imply a biexciton shift for
CsPbBr3 in agreement with our theoretical value.

IV. CONCLUSIONS

We have presented a calculation of the trion and biex-
citon shifts in NCs of CsPbI3 and CsPbBr3 using second-

order MBPT. The agreement with the available data for the
biexciton shift in CsPbI3 and the trion shift in both CsPbI3

and CsPbBr3 is fair, although the theoretical values seem to
be systematically slightly smaller than the measurements, a
result that can be plausibly understood in terms of a slightly
overestimated dielectric constant and omitted higher-order
terms in MBPT. After taking this level of agreement between
theory and experiment into account, we infer that the ground-
state biexciton shift in NCs of CsPbBr3 is a redshift with
a value of order 10–20 meV (for a size L = 12 nm). This
value is intermediate in the large range of measured values
for CsPbBr3.

The theoretical approach used can be improved in various
ways in future work. It is possible to include higher-order
MBPT for excitonic systems with few carriers by means
of all-order procedures such as full configuration interaction
[21]. A better understanding of the dielectric function in
perovskites could perhaps be obtained using ab intio atomistic
codes [61]. The LR Coulomb interaction (2) can also be
generalized to take account of the dielectric mismatch with
the surrounding medium [60]. Although envelope-function
methods naturally work better on larger NCs, where atomistic
effects are relatively less significant, an important atomistic
effect can be included straightforwardly by assuming a diffuse
finite surface barrier instead of an abrupt infinite barrier (3).
Also, explicit nonspherical corrections for the cubic NC shape
could be added as perturbations.

Finally, it should be possible to generalize the methods
presented here to study hot biexcitons, in which one or both
excitons are excited. It would also be interesting to study
thermal effects on the biexciton shift at high temperature,
a regime that is more relevant to the conditions found in
practical devices. The present paper assumes that the excitonic
systems are in their quantum ground state, so that it is perhaps
natural to expect better agreement with the low-temperature
data.
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