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ABSTRACT   

We propose a scalable AR (Augmented Reality) multiplayer robotic platform, which enables multiple players to control 
different machines (a drone and a robot) in shared environments, i.e virtual and real environments. We use state-of-the-
art visual SLAM (Simultaneous Localization and Mapping) algorithms for tracking machine poses based on camera and 
IMU (Inertial Measurement Units) inputs. Players will observe consistent AR objects between them thanks to our 
backend system, which synchronizes the AR objects between players. Moreover, the system is scalable in term of 
hardware (e.g. IMU, camera, machine type) and software (SLAM algorithm) as we utilize ROS for communication 
between modules. We demonstrate our system on a game developed in Unity, a robust and widely used popular game 
engine. We present some statistics of the game such as its frames-per-second performance. 
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INTRODUCTION  
 
In this multiplayer robotic platform, each player controls a machine (drone or robot) remotely from a GCS (Ground 
Control Station), which is a laptop, over a wireless network. Video feed from the machines are streamed and viewed in 
the respective GCS. AR targets are inserted into the video feed in the GCS. In order to accurately track the AR targets, 
we use SLAM algorithms, which compute the machine pose (position and orientation) based on the video feed. Our 
system supports multiplayer thanks to a backend server that synchronizes all players. Our system has the following 
features: 
 

1. Accurate tracking: we incorporate state-of-the-art SLAM algorithms, i.e. VINS-Mono [1] and ORB-SLAM2 
[2]. Tracking is essential in order to be able to place an AR object correctly. 

2. Heterogeneous and scalable: it supports more than one type of machines such as aerial drones and ground 
robots. Moreover, it can be extended to other machine types such as underwater drone, customized robots based 
on Lego Mindstorms bricks, and so on. This is because we utilize ROS in our system. 

3. Modular system: thanks to ROS that we are using, the system is modular. We can easily switch various 
components with minimal changes (e.g. SLAM algorithms, camera devices, IMU devices, etc.) as long as they 
support ROS. 

4. Flexible game engine: we use Unity, a flexible and portable game engine. Applications developed in Unity can 
be compiled to various platforms. Moreover, it is good for fast prototyping and it has intuitive UI, in contrast to 
using C++ or OGRE3D, which needs to build the game from scratch. 

5. Complete backend solution: the server in our system consists of two components: database server for handling 
non-real-time requests (e.g. player and map information) and simulation server for handling real-time requests 
(e.g. syncing players’ poses and dynamic objects’ states). 
 

We demonstrate our system by applying it to a simple multiplayer AR game, i.e. a shooting game in which players shoot 
AR targets within a time limit. Our proposed system has various training applications, such as military, search and 
rescue, and delivery training. 
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RELATED WORK 

One main component in the proposed system is SLAM. Hence, we provide a brief overview of state-of-the-art SLAM 
algorithms. Visual-Inertial SLAM is a family of methods that computes pose (position and orientation) and surrounding 
map based on inputs from camera(s) and an IMU. Visual SLAM methods can be categorized into two categories: 
filtering-based [3, 4] and optimization-based [1, 5] methods. Filtering-based methods generally use Extended Kalmann 
Filter (EKF) method that is based on Bayesian filter. Filtering-based methods are generally considered as an online 
SLAM methods as current estimation is augmented and refined by incorporating new measurements during runtime. 
Optimization-based method, on the other hand, performs optimization on all or a set of frames simultaneously by 
minimizing a set of predefined cost functions. Thus, optimization-based methods are generally called full SLAM 
methods. As Visual Inertial SLAM method computes by combining both camera and IMU inputs, there are two 
approaches in doing so: loosely-coupled [3, 5] and tightly-coupled [1, 4] methods. In loosely coupled methods, the 
system estimates the states (e.g. poses) from visual and inertial data separately and combine them later. On the other 
hand, in tightly-coupled methods, the system estimates the states by directly combining raw measurement of visual and 
inertial data. 

Optimization-based methods obtain pose by minimizing cost functions over several keyframes in a window. As a result, 
it will produce more accurate result as it keeps refining previous keyframes. The downside of this approach is that it 
requires higher computational power and runtime memory. Filter-based methods, on the other hand, is a well-established 
SLAM approach. It was developed when the computing power was limited, and thus they are more efficient in resource 
requirement at the expense of accuracy. This is due to recursive nature that considers the only latest keyframe instead of 
several keyframes simultaneously. The disadvantage of recursive approach is that it is less accurate compared to 
optimization approach as errors will build up over the time. Moreover, generally filter-based methods do not have loop 
closure mechanism. For more comprehensive state-of-the-arts review of SLAM solutions, readers can refer to existing 
publications [6–8]. 

PROPOSED SYSTEM 

(b) 

(a) (c) 
Video 1. Figure 1. (a) System architecture. (b) The physical setting of the game, with the drone on the left, the robot on 
the right, and a laptop controlling the robot. (c) Screenshot of the robot GCS in (b). The red circles show the AR 
objects. http://dx.doi.org/10.1117/12.2566243.1  

In this project, we develop an Augmented Reality (AR) multiplayer system incorporating state-of-the-art SLAM 
algorithms. One of the main requirements of an AR system is accurate tracking. We could achieve this by incorporating 
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the latest sensor fusion algorithms, VINS-Mono [1] and ORB-SLAM2 [2]. We show our system architecture in the 
Video 1. Figure 1. 
 
The system consists of two types of machines, i.e. robot and drone. Each machine is controlled by a laptop, which we 
call GCS (Ground Control Station). Both the drone and robot are able to capture video feed from the camera installed on 
their systems. The robot has an additional input, i.e. an IMU that helps in performing more accurate SLAM computation 
compared to SLAM computation, which is based solely on a camera input. Our system uses ROS (Robotic Operating 
system) middleware in order to cater for communications between components in the system and hence it is modular and 
scalable. For instance, we can replace the robot and drone with other type of machines. In the lower level, we could 
replace each component (e.g. camera, IMU, and so on) in the robot with ease, as long as the replacement components are 
using ROS. Due to differences in specification and capability of robot and drone, the implementations between the robot 
and drone differ slightly which we explain in the following paragraphs. 
 
The robot body is where the system receives input from an environment, i.e. video feed (from camera installed on the 
robot body) and orientation & acceleration (from IMU installed on the robot body), performs SLAM, and sends the 
calculated pose to the GCS. We incorporate VINS-Mono [1], a state-of-the-art sensor-fusion-based Visual-Inertial 
SLAM algorithm which computes pose (i.e. position and orientation) based on camera and IMU inputs. The GCS is 
where player interacts with the system, e.g. sees video feed and gives input command to the robot. The main component 
in the GCS is a game application developed in Unity. As the laptop is using Microsoft Windows environment and the 
robot is using Ubuntu and mainly ROS, we use Ros# to bridge the communications between the robot and the GCS. 
 
The drone architecture is largely similar to the architecture of the robot. The main difference between the drone and 
robot is that SLAM computation is pushed to the GCS. This is because the drone we used does not have capability in 
performing heavy computation, i.e. SLAM. Moreover, the drone also does not have an IMU and therefore we use ORB-
SLAM2 [2], a monocular SLAM algorithm. As the GCS is using Microsoft Windows platform and the ORB-SLAM2 is 
in Linux platform, we install a Virtual Machine so that we can run the ORB-SLAM2 in a Linux environment in the GCS. 
 
In order to cater for multiplayer, we have a backend server, which is responsible for syncing and distributing information 
among the machines. There are two servers in our system. The first server is a database server for non-real-time purpose. 
It is used to store map data, player data, and so on. We design and develop endpoints using typescript for MongoDB. 
Using endpoints, we are able to provide CRUD services to developers around the world. In order to ease functional and 
load testing, JMeter is introduced to ease testing. The second server is a simulation server for real-time updating. During 
gameplay, each player updates its real-time position to the simulation server that will broadcast each player’s position to 
all players. It uses Node.js script. In addition to receiving and broadcasting each player’s status (i.e. pose), it also 
broadcasts any status of any dynamic objects in the scene, such as destroyed objects. 
 
As mentioned, we use VINS-Mono in robot and ORB-SLAM2 in drone. Compared to ORB-SLAM2, VINS-Mono can 
achieve better accuracy in term of accuracy as it fuses camera and IMU data as ORB-SLAM2 uses only data feed from a 
single camera. As SLAM tracking uses visual feed, the tracking performance depends on how the algorithm can extract 
features from camera feed. If the visual feed does not contain enough visual features, SLAM algorithms will generally 
unable to track anymore. By incorporating IMU data, sensor fusion-based algorithm can continue the tracking, hence the 
superiority of VINS-Mono over ORB-SLAM. One of the inputs to VINS-Mono are extrinsic parameters between a 
camera and an IMU (i.e. physical spatial and orientation differences between camera and IMU hardware). Hence, VINS-
Mono can track with more accurate scale compared to ORB-SLAM2 (whose input is only a single camera feed).  
 
According to existing tests, VINS-Mono can yield the most accurate localization at the expense of more CPU resource 
usage [8, 9] compared to its competitors. Moreover, the benefit (i.e. accuracy) of VINS-Mono outweighs its drawback 
(i.e. high CPU and RAM consumption) in our system as we install VINS-Mono in a robot, which is very modular and 
extendable (we can always upgrade its CPU and RAM).  Note that based on the tests [8, 9] generally optimization-based 
SLAM methods such as VINS-Mono can yield better accuracy compared to filtering-based due to error accumulation in 
filtering-based SLAM.  
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GAME DESIGN 
 
We develop a simple multiplayer game in order to demonstrate our system. In this game, players need to navigate their 
machines in an unknown environment and destroy all AR targets while avoiding them within a given time limit. Before 
the game start, they will be asked to calibrate their machines. Calibration involving initializing SLAM tracking (ORB-
SLAM2 for drone and VINS-Mono for robot) and resetting players’ position in game world to origin (for both drone and 
robot). Moreover, in the calibration we also obtain scaling factor for ORB-SLAM2 used by the drone. If the calibration is 
not done, SLAM algorithm might not give correct tracking and players may be spawned at random positions. Thus, 
VINS-Mono calibration consists of several random movements in order to initialize its position and mapping and ORB-
SLAM2 involves an additional calibration step, i.e. manually moving the drone to any predefined distance (1.5 meters in 
our experiment) after initialization in order to calibrate its scaling factor. We show a photograph and a screenshot of the 
game in Figure 1. 
 
We tested the game on two laptops with one laptop controlling the robot (Intel i7-8550U 1.8GHz, 12 GB RAM, NVIDIA 
GeForce MX150) and another laptop (Intel i7-8700K 3.7 GHz, 64 GB RAM, NVIDIA GTX 1080) controlling the drone 
and hosting the server. The drone GCS performance was around 72 frames-per-second and the robot GCS was around 
152 frames-per-second). 
 

CONCLUSION AND FUTURE WORK 
 
We have demonstrated our multiplayer AR system to be heterogeneous and scalable as it supports various machines, 
SLAM algorithms, and components. There are still rooms for improvement in our system. For instance, enabling 
overrides, i.e. the server takes over a player’s machine during an emergency such as shutting it down during an imminent 
physical collision event. We could also expand the system to Unreal game engine, another game engine similar to Unity 
that is also widely used. 
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