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Abstract—Traditionally, FPGAs were programmed using low-
level Hardware Description Languages (HDLs) like Verilog or
VHDL, which made it extremely difficult to design, build and
maintain systems for FPGAs. However, the recent release of
OpenCL SDKs by FPGA vendors like Xilinx and Altera have
significantly improved the programmability of FPGAs and have
brought new research opportunities for query processing systems
on FPGAs. It remains an open question whether and how we can
optimize OpenCL based database engines for FPGAs. There is
a gap on optimizations and tuning between OpenCL and FPGA,
since OpenCL is mainly designed for parallel multi-/many-core
architectures. In this paper, we attempt to answer this question
under the context of pipelined query execution. For this, we
first perform a detailed study of database engines on the latest
generation of FPGAs. We then design an FPGA based shared
pipeline query execution system (FADE) which exploits the
hardware features of FPGAs and minimizes inefficiencies like the
high communication reconfiguration overhead. Our experiments
show that our design achieves significant performance speedup
over existing approaches for pipelined query executions on
FPGA. Finally, we also present the challenges and opportunities
for query processing on the latest generation FPGAs.

I. INTRODUCTION

Over the last few decades, there have been significant efforts
to accelerate query processing systems [8], [43], [20], [19],
[40], [15], [36], [14]. One major field of interest has been the
use of accelerators like GPUs and FPGAs to speedup query
processing [40], [30], [38], [15], [39]. GPUs are more widely
used [40], [30], [15], due to the ease of programming them
(using languages like CUDA and OpenCL) when compared
to FPGAs which are notorious for the difficulty involved in
programming (due to the use of low-level HDLs like Verilog
and VHDL). However, we have witnessed a renewed interest
in FPGAs due to the emergence of OpenCL SDKs (released
by FPGA vendors) [5], [1], [2] as a high-level synthesis (HLS)
frameworks. These OpenCL SDKs have made it possible for
developers to expose the data parallelism of the FPGAs using
OpenCL.

Still, it remains an open question whether and how we
can optimize OpenCL based database engines for FPGAs.
There is a significant gap on optimizations and tuning between
OpenCL and FPGA. This is because, OpenCL is mainly
designed for parallel multi-/many-core architectures and the
architecture design of FPGAs is significantly different to
these. This makes it extremely difficult to efficiently port
existing query processing systems (designed for CPU/GPU)
to FPGAs. For example, due to hardware differences like the

limited availability of FPGA resources, it is not possible to
accommodate a wide variety of pipelines in a single FPGA
image. This coupled with the rigid nature of a FPGA based
systems results in high reconfiguration overhead in systems
that needs to handle a wide variety of queries. Further, existing
OpenCL-based systems are often optimized to take advantage
of the cache hierarchy of CPUs/GPUs, making them inefficient
on FPGAs which often lack a cache.

In this paper, we attempt to answer this question under the
context of pipelined query execution, which has been a classic
query processing paradigm for data warehouses. Modern data
warehouses provide significant opportunities for sharing data
and computation among queries. Hence, they need shared
execution systems that are capable of taking advantage of
these sharing opportunities. Due to this very reason, shared
systems like SharedDB [14], CJoin [10] MQJoin [24] have
gained significant attention in the recent years. However, none
of these existing systems support query execution on FPGAs
and their design is inefficient for FPGAs.

Hence, we develop FADE, the first shared execution engine
for FPGAs which solves the inefficiencies of existing database
engines in the following ways. First, we design efficient
shared pipelines that allows multiple queries to share the same
pipeline simultaneously; thus reducing the impact of limited
FPGA resources. Second, through clever hardware design we
make the hardware pipelines in FADE capable of executing
a wide variety of queries thus reducing the reconfiguration
overhead. Third, we adopt a fine grained pipeline approach
that helps FADE reduce the number of costly global memory
transactions through efficient use of local memory.

We have conducted experiments using the SSB [6] and TPC-
W [7] benchmark on an Intel/Altera Stratix V FPGA. Our
pipelined implementation that supports shared query execu-
tion makes efficient use of FPGA resources and shows up
to 10x performance improvement over the existing pipeline
approach [30] of single query evaluations. Shared pipeline ex-
ecution can further achieve up to 2.4x speedup over pipelined
single query implementation. Finally, we also present the
challenges and opportunities for query processing on new
generation FPGAs.

The rest of the this paper is organized as follows. In Section
II, we introduce the background and review the related work.
We illustrate our motivations for proposing a pipelined shared
query execution engine in Section III. We elaborate the design
and implementation details of FADE in Section IV. In Section



V we present our experimental results. Finally, we discuss the
lessons learnt in Section VI and conclude in Section VII.

II. BACKGROUND AND RELATED WORK

A. FPGA Hardware & OpenCL SDK

Modern FPGA hardware is manufactured by two major
vendors: Intel/Altera and Xilinx. The FPGAs from both these
vendors usually consists of four different kinds of hardware
units: logic units (or LUTs), memory blocks, registers and
DSPs. In addition to the on-chip block RAM, FPGAs usually
contain off-chip RAM (HBM or DDR) which usually has
higher capacity, higher latency and lower throughput than the
on-chip memory. Unlike GPUs, most FPGAs lack an on-chip
cache which automatically stores frequently used data items.

Traditionally, programmers used HDLs to specify a low
level design of the system in which different hardware units
are interconnected to realize the system functionality. The
OpenCL SDKs on the other hand abstracts away such com-
plexities and allows users to compile OpenCL code into a
hardware design (bitstream). Both Intel/Altera and Xilinx offer
OpenCL SDKs, referred to as Intel/Altera FPGA SDK for
OpenCL [1] and SDAccel [5] respectively. Throughout the rest
of this paper, we refer to both of them collectively as simply
OpenCL SDKs.

An OpenCL-based system is designed as a collection of
kernels which are mapped to what is referred to as a com-
pute units (CU) in the actual FPGA hardware. The OpenCL
memory hierarchy consists of a local memory and a global
memory, which are mapped to the on-chip block RAM and the
off-chip DDR/HBM RAM respectively. Due to its high latency
and low bandwidth, global memory accesses can be a major
bottleneck for system performance when designing OpenCL-
based query processing engines for FPGAs. To minimize the
use of global memory and associated overhead, the OpenCL
SDKs support the use of OpenCL pipes (hereafter referred to
as simply pipes), which are mapped to hardware FIFOs on
FPGAs. However, due to their hardware design these pipes
are fixed between a pair of operators and cannot be used for
dynamically routing the data between different operators.

B. Query Processing on FPGAs

A number of prior studies have tried to accelerate database
systems using FPGAs. Most of these works used HDLs like
Verilog or VHDL for designing the database operators [23],
[11], [17], [16], [21], [34], [26], [28], [29]. Woods et al.
proposed Ibex [39], which is a storage engine that supports
offloading of certain query operators. In Ibex the FPGA is
plugged in between the SSD and the operators are executed
while the data is read from the SSD. Our implementation on
the other hand looks into using FPGA to accelerate operators
in an in-memory database engine where the data is already
loaded into the memory. The development of database systems
using HDLs takes considerable amount of time and these
systems are not as flexible as OpenCL [36], [37], [33], [35] or
other High Level Synthesis (HLS) based [27], [25] approaches.
The development of database systems using OpenCL is a

recent phenomenon and most of these systems are still in their
early stage and none of them are capable of shared query
execution. To the best of our knowledge, this paper is the
first pipeline shared query execution system on OpenCL-based
FPGAs.

III. MOTIVATIONS

In this section, we first analyze the performance pitfalls of
existing pipeline execution approaches on CPUs/GPUs when
ported to run on FPGAs. Next, we elaborate the potential
advantages of supporting shared executions on the FPGA,
rather than one query at a time.

A. Inefficiency of Existing Pipeline Executions

Pipelined query processing systems were proposed to min-
imize the high communication overhead encountered by tra-
ditional operator at a time implementations. Paul et. al. [30]
proposed the current stat-of-the-art OpenCL based pipelined
query processing engine for GPUs. However, existing pipeline
execution strategies (including GPL) are inefficient on FPGAs,
due to the following reasons.

First, GPL still needs to store each block of intermediate
data in the global memory. The limited level of concurrency
available in the FPGA (due to resource limitations) and the
overhead associated with repeated kernel invocations means
that the use of very small tile size is not feasible on FPGAs,
leading to high global memory usage.

Second, GPL encounters a large number of global memory
transactions on FPGAs. GPL reduces the overhead associated
with memory transactions by taking advantage of small tile
sizes which could fit within the GPU cache. However, FPGAs
often lack an on-chip cache and the data in the block RAM
cannot be shared across kernels without using primitives like
OpenCL pipes. Hence, reading and writing of each data tile
needs to go through the global memory resulting in high
communication overhead.

B. Benefits of Shared Execution

Previous studies [14], [10], [24] have already demonstrated
the huge opportunities for data and operator sharing in modern
data warehouses. In addition to this, shared execution has
the following potential advantages when implemented on
accelerators, especially FPGAs.

The first is the reduced PCIe overhead when implementing
shared execution systems on accelerators. Our experimental
results in Section V-B show that accelerator based query pro-
cessing engines spend significant amount of time transferring
data over the PCIe bus. In fact, the PCIe overhead is even
more than the query execution time in most cases and hence it
is even impossible to hide the PCIe overhead by overlapping
computation and data transfer. Shared pipeline execution is
effective in reducing the impact of the PCIe overhead on the
overall performance by allowing maximum re-use of data.

The other benefit of shared execution systems is its ability to
address the resource under-utilization encountered by existing
single query systems. Our experimental results in Section V-B
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Fig. 1: System Overview of FADE.

TABLE I: Notations used in this paper
Notation Definitions
DBij bit string associated with tuple j of table i

DBij [k] the kth bit of DBij

WO weighted sum of the overlap of each operator
Ovlp[l] Overlap achieved by the lth operator/kernel
Cl Relative weight of the lth operator/kernel

show that a single query is not capable of making efficient
use of FPGA resources and will result in severe resource
under-utilization in FPGAs. This is because, the operations
required by a single query are often limited and is hence
incapable of taking advantage of all the hardware resources
within the system. This problem can be addressed by making
sure that multiple queries are active within the same FPGA
context simultaneously. However, a naive approach of running
a separate pipeline for each query will fail to take advantage
of the opportunities for sharing data and computation. Such
an approach will be further constrained by the limited amount
of hardware resources available on FPGAs. Allowing multiple
queries to share the same pipeline on the other hand addresses
these limitations and makes it possible to take advantage of
data sharing opportunities as well as improve the resource
utilization on FPGAs.

IV. SYSTEM DESIGN

In this section we present the design of FADE, the shared
pipeline system designed for OpenCL-based FPGAs. Figure
1 shows the high level view of the main components of
FADE that supports shared execution. Our system consists
of four major components: pre-processor, query scheduler,
system manager and the shared pipeline which executes the
query. In the remainder of this section we explore the detailed
design of each component. A summary of the notations used
in this section is given in Table I.

A. Pre-Processor

The queries submitted to FADE first go through a pre-
processor. It generates the query plan and estimates the re-
source requirements and the selectivity of each operator. The
query plan generation follows the pipeline generation method
of the previous study (SharedDB) [14]. The system uses a
frequency based histogram to estimate the selectivity of each
query [16], [32], [31]. After the pre-processing, the queries
are added to the query pool, waiting for execution.

B. Shared Pipeline Design

Modern data warehouses often need to support a large
number of concurrent queries that show significant overlap of
input data and operators. In such a scenario, a shared execution

model avoids repeated invocation of operators and unnecessary
data reads and can achieve much higher throughput. We use a
global query plan (GQP) to implement shared query execution
on FPGAs. The GQP based shared execution system merges
the individual query plans (of a group of queries) into a single
GQP after identifying opportunities for shared execution.

In order to support shared pipeline execution on FPGA,
we redesign the query operator for distinguishing individual
queries in a lightweight manner. Further, we develop FPGA-
specific optimizations to minimize the communication and
reconfiguration overhead.

1) Operator Design: The design of our operators are ac-
tually rooted at many of the previous pipelined execution en-
gines [30], [13], [22]. For each operator, we revisit the existing
designs and modify these implementations to support shared
execution on FPGAs. To support shared execution, FADE
maintains an additional attribute (bit string) for each table
in the database. This bit string allows FADE to distinguish
individual queries in a lightweight manner [10]. Each bit of
the bit string allows FADE to keep track of whether a specific
query is interested in the tuple. Particularly, a bit in this bit
string represents the involvement of a single query in the
shared pipeline. It is set to ‘1’ if the tuple will be processed by
the corresponding query, ‘0’ otherwise. Next, we present the
design and implementation of the major operators in FADE,
with an emphasis on the modification made to the pipeline
implementation in order to support shared execution.

Selection. In a shared environment, the selection on tuple j
of table i sets the kth bit of the associated bit string, DBij [k],
to ‘1’ if the tuple is selected by query k and ‘0’ otherwise. The
next kernel in the pipeline simply ignores all the tuples with
‘0’ values. To allow shared execution, FADE tries to merge
together the selection predicates of individual queries into a
single predicate. However, if this cannot be done for the given
set of queries, then FADE performs the selection operation in
multiple steps.

Group By and Aggregation. Both group-by and aggregate
operations are performed by a single kernel in our implemen-
tation. The kernel reads each tuple and its associated bit string
and then determines the group id for the tuple using the group-
by attributes. Finally, the aggregation operation is performed
for each query that is interested in the tuple. To improve
performance, the aggregation is done using local memory and
the final results are written into the global memory.

Hash Join. FADE adopts the same hash join implementation
used in the previous study [30], where the operation is
completed in two stages: build and probe. In FADE, the bit
string associated with each tuple is stored in the hash table
along with the data. The probe operation reads a tuple and
its associated bit string from the memory and then probes the
hash table. On finding a match, the probe operation performs
a bitwise AND operation of the bit string in the hash table and
DBij . The result of this operation is then passed to the next
operator.

Sort. FADE makes use of a hash based sort implementation.
The implementation is the same as the build stage of the hash



Fig. 2: A valid mapping between GQP and hardware pipeline

join.
Figure 2 demonstrates how a GQP is executed by the shared

pipeline and how the bit strings associated with a table are
modified by operators as the data advances through the shared
pipeline.

2) Minimizing Communication Overhead: A shared
pipeline essentially consists of a sequence of OpenCL kernels.
The tuples are passed through one kernel to another during
the execution. To minimize the communication overhead
between kernels, FADE moves the data between kernels using
pipes wherever possible, thus reducing the communication
overhead and the immediate result materialization to the
global memory.

The OpenCL SDKs from both Intel/Altera and Xilinx allow
system designers to tune both the width and the depth of
these pipes. The width is set to be the bit string size, which
enables fine-grained pipeline execution; while the depth needs
some careful tuning. A larger depth allows the producer
(consumer) kernel to queue (consume) more entries before
it gets blocked. In our testing, we found that most pairs of
kernels connected by these hardware pipes show very low
variation in data processing rate. Further, increasing the depth
results in severe increase in FPGA resource utilization, thus
reducing the resources available for performing computations.
Hence, in our experiments, we find that the system achieves
good performance when we keep the depth to a minimum (less
than 512 bytes).

3) Minimize Reconfiguration Overhead: Because the pipes
are implemented with one read and one write port, it is impos-
sible to dynamically route the data between arbitrary kernels
once the bitstream is generated. Further, any change in the
connected kernels require a full reconfiguration of the FPGA
(current OpenCL SDKs do not support partial reconfiguration),
adding significant overhead to query processing.

To avoid unnecessary reconfigurations and to make the
system design flexible, FADE supports two operating modes
for each kernel: pass-through mode and processing mode. The
processing mode is the default operating mode of a kernel/-
operator where the kernel fulfills its designed functionality.
A kernel in the pass-through mode just reads data from the
previous kernel and passes it to the next kernel using the
local memory. That essentially allows passing the tuples from
one kernel to another in a lightweight manner, although they

Fig. 3: Use of pass-through mode for operators

are not directly connected by pipes. Such an approach allows
FADE to efficiently handle a wide variety of queries without
requiring an FPGA reconfiguration.

To show the benefit of pass through kernels we use the
following as a motivating example. Figure 3 shows an example
mapping of a query plan to the operators in the hardware
pipeline. In this example, the query only needs to perform
one filter, one join and one aggregate operation. However,
the pipeline present in the FPGA has one filter operator, two
join operators and one aggregate operator connected using
pipes. There are two naive ways to execute the query on the
FPGA: 1) by reconfiguring the FPGA with a new bitstream
that can execute the given GQP efficiently, leading to costly
FPGA reconfigurations and 2) by passing the data from the
first join operator to the aggregate operator using the global
memory, resulting in an increase in the number of global
memory transactions. FADE on the other hand invokes the
second join operator in the pipeline in the pass-through mode
as shown in Figure 3. This avoids FPGA reconfiguration and
costly global memory transactions, compared with the two
naive approaches.

C. Query Scheduler

Before we detail the working of the query scheduler, we de-
fine the following key terms, which are essential to understand
the query scheduler design.

Candidate group: Any subset of the queries in the query
pool is defined to be a candidate group for scheduling consid-
eration.

Valid group: Any candidate group for which it is possible to
map every operator in the GQP to an operator in the hardware
pipeline, while keeping the data flow dependency. An example
of such a mapping is shown in Figure 2. Due to the support for
pass-through mode, the mapping from GQP to the hardware
pipeline is in fact more flexible, making it possible for FADE
to support a wide variety of queries using a limited number
of hardware pipelines.

Overlap: The overlap is defined as the percentage reduction
in the number of tuples accessed by the GQP with respect to
the sum of the number of tuples accessed by individual queries
that constitute the GQP. We can also compute the overlap at
the operator level by considering only the number of tuples
accessed by that particular operator.
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Fig. 4: Tuples accessed vs total runtime for shared query
execution.

The main task of the query scheduler is to examine the
possible candidate groups and find a valid group that achieves
good levels of operator and data sharing. Due to the large
solution space of this scheduling problem, we use a heuristic
based greedy algorithm. Prior to presenting our heuristic
based approach, we present a few experimental observations
regarding shared pipeline execution on FPGA, to demonstrate
the key factors affecting the performance in shared execution.

In Figure 4, we present the performance of 20 different
groups of SSB queries (shown in Table II), along with the
number of unique tuples accessed by the GQP of each group.
More experimental setup can be found in Section V. The
results show that there is a strong correlation between the two
factors, since memory accesses are still a major bottleneck for
the performance of pipeline execution on FPGA.

TABLE II: Query groups for shared query execution
Group ID SSB Queries

1 2.1 2.2
2 2.2 2.3
3 2.2 3.1
4 3.1 3.2
5 2.1 2.2 2.3
6 2.2 2.3 3.1
7 2.1 3.2 3.4
8 3.1 3.2 4.1
9 2.3 3.4 4.2

10 2.1 2.2 2.3 3.1
11 2.2 2.3 3.1 3.2
12 3.1 3.2 3.3 3.4
13 2.1 3.1 3.4 4.1 4.3
14 2.1 2.2 2.3 3.1 3.2
15 2.1 2.2 3.1 3.3 4.1
16 2.2 2.3 3.2 3.3 3.4 4.2
17 2.1 2.2 2.3 3.1 3.2 3.3 3.4
18 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1
19 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2
20 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

Next, we analyze the impact of data sharing on different
operators. Figure 5 shows speedup achieved by each individual
operator when the overlap is increased from 0% to 50%, for
two queries running concurrently. The speedup is measured
with respect to execution time when the overlap is 0%. The
result shows that different operators achieve different levels of
speedup in shared execution.

Considering the above key factors, we need to identify the
valid group that achieves the highest levels of data and operator
sharing. Due to the large number of valid groups that needs to
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Fig. 5: Speedup achieved by different operators with varying
overlap.

be considered, it is almost impossible to find the most suitable
group by evaluating the overlap of all possible groups. The
problem of identifying the best group of queries that achieves
maximum sharing of data is equivalent to the minimum weight
perfect matching problem in contention aware scheduling [18],
[41], [42]. The problem has been proved to be NP-Hard [18],
when more than two tasks/queries need to be co-scheduled.
Further, existing approximation algorithms (e.g., [18]) adds
very high runtime overhead when the number of queries
involved is quite high. Hence, we propose a simple and
effective greedy approach to find a ‘good enough’ group of
queries without incurring significant runtime overhead (less
than 15 ms in our study).

To account for the above factors, our query scheduler tries
to maximize the weighted sum of the overlap of each operator
in the GQP (WO) instead of simply maximizing the overlap
of GQP. We use Equation 1 to compute the WO value for
each GQP. Here, Ovlp[l] is the overlap of the lth operator
in the pipeline, Cl is a constant determined experimentally
through profiling and m is the total number of operators in
the pipeline. We profile the FPGA bitstream by executing a
set of test queries with varying memory access pattern.

WO =

m∑
l=1

Cl ∗Ovlp[l] (1)

When the FPGA is ready for execution, we use a greedy
algorithm to add queries from the query pool to the Execution
List (EL) one at a time. The selection is in the sorted order of
the query selectivity to maximize the probability of achieving
good overlap. If the addition of a query, Q, to the EL does
not result in a valid group, then the system removes some
queries from the EL, such that 1) the new set of queries form
a valid group and 2) the decrease in WO due to the removal
is minimal. Next, we compare the WO values of the group
of queries in the EL before Q was added and the group of
queries currently in the EL. The group with the highest WO
value is then chosen as the EL for the next iteration. Once we
check all the queries in the query pool, the queries currently
in EL form a valid group, and will be executed on the FPGA.

To avoid starvation, we associate a starvation counter (ini-
tialized to 0) with each query submitted to the system. Every
time a group is chosen for execution, the starvation counter



of all the remaining queries in the query pool is incremented
by one. Later, queries are chosen from the query pool in the
decreasing order of their starvation counter value. Also, we do
not allow the removal of a query with higher starvation counter
value over a query with lower starvation counter value.

In our heuristic approach, the order of considering queries
has a significant impact on achieving better overlap. This is a
classic problem associated with a greedy approach. Hence,
to improve the accuracy of our heuristic, whenever a new
query is added, we do not discard the old EL if its WO
value is above a certain threshold, and view them as active
for further consideration. Then, for each iteration we try to
add the query to all the active ELs. In our implementation,
we limit the number of active EL to 8 due to increase in
scheduling overhead with increase in the number of active
ELs. We experimentally evaluate the impact of this tuning
parameter in Section V.

D. System Manager

The system manager prepares the system for execution in
two ways. First, it transfers the necessary input data from the
CPU main memory to the FPGA global memory. The system
manager adopts an existing memory management approach [9]
to keep track of the data that is present in the FPGA. When a
set of queries are scheduled for execution, only the necessary
data needs to be transferred over the PCIe bus. The system
manager also has the additional responsibility of removing
cold data when the FPGA runs out of memory. Second,
it initializes all the necessary bit strings to support shared
execution.

Reconfiguration of the FPGA is also handled by the system
manager. In this study we assume that all the necessary
bitstreams are pre-compiled and made available to the sys-
tem manager when it begins execution. This is because, the
generation of even simple bitstreams take hours and hence its
impossible to perform this stage at runtime. Each bitstreams
in FADE will be capable of executing a different set of queries
and an FPGA reconfiguration is required whenever the current
bitstream is incapable of executing a given set of queries.
The reconfiguration time is around 2 seconds on average.
This is a limitation of current FPGAs and support for partial
reconfiguration can potentially reduce this overhead (currently
not available on OpenCL FPGAs).

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

Hardware. We study our proposed design using a Terasic
DE5Net board with an Intel/Altera Stratix V FPGA. The board
contains 4GB DDR3 global memory. The bitstreams were
generated using Intel/Altera FPGA SDK for OpenCL version
16.0. The FPGA is connected to the CPU via an x8 PCIe 2.0
interface, with peak bandwidth of 4GB/sec (bi-directional). We
use Quartus to measure the power consumption of FPGA.

Workload. We evaluate FADE using the following public
benchmarks: SSB [6] and TPC-W [7]. The SSB data set used
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Fig. 6: Performance comparison of single query implementa-
tion of FADE and GPL on FPGA.

for experiments has a scale factor of 20 and is used for evaluat-
ing both single query and shared query execution. Queries 1.1,
1.2 and 1.3 of the SSB benchmark contains filter operations
on the fact table and they do not perform any group-by or
order-by operations. All the other queries have both group-by
and order-by operations and only contain filter operations on
dimension tables. TPC-W data set used for experiments has
a data size representing 15K emulated browsers and is used
for comparing shared execution only. Following the previous
study [14], the updates are performed by the CPU and the
data in FPGA global memory is updated from the CPU side
to reflect the changes. Detailed description of the benchmarks
can be found in the benchmark specifications [7], [6].

Experimental Outline. Our evaluation is organized as fol-
lows. In Section V-B, we evaluate our fine-grained pipeline
by comparing FADE against a version of GPL running on
the FPGA. Since both the systems are running on FPGAs, the
overhead of the PCIe data transfer is not considered in this set
of experiments. In Section V-C, we evaluate the performance
of our shared pipelined as well as the greedy heuristic used
by the query scheduler. Note, that more experiments using
the TPC-W benchmark and comparison between FPGAs and
GPUs can be found in our technical report [4].

B. Fine Grained Pipeline Evaluation

Overall Comparison. In Figure 6, we use the SSB queries
to evaluate the single query implementation of FADE against a
version GPL running on the FPGA. Similar to the GPU based
version, the version of GPL running on FPGA moves data
between kernels in small chunks. However, due to the lack of
a cache on FPGA the data writes and reads associated with
each chunk of data actually go to the FPGA global memory.
In comparison, FADE is capable of transferring intermediate
data using hardware interconnections which makes use of the
FPGA local memory. This allows FADE to achieve signifi-
cantly lower communication overhead than GPL. Hence FADE
achieves close to 3.6x speedup over GPL, as shown in the
figure.

PCIe Overhead. Figure 7 shows amount of time spend
on PCIe data transfer and the total execution time for the
SSB queries. The results show that, in many cases the PCIe
overhead is more than twice of the computation time, making
it impossible to even hide the data transfer overhead by
overlapping data transfer with computation. This shows the
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Fig. 7: PCIe overhead and execution time for SSB queries.
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Fig. 8: Resource utilization in single query execution.

necessity of adopting shared execution, to reduce the PCIe
overhead by maximizing sharing of data.

Resource utilization. Figure 8 shows the percentage of
LUTs, registers and memory blocks consumed by each in-
dividual query of the SSB benchmark, when implemented on
the FPGA for optimal performance. It clearly shows that single
query execution results in severe resource under-utilization in
FPGAs. We observe similar results for TPC-W benchmark as
well. However, only SSB results are presented here due to
space constraints.

C. Shared Query Execution

Overhead of Unified Design Vs Reconfiguration Over-
head. Figure 9 shows the percentage increase in execution
time when we use a shared pipeline design that can execute
multiple SSB queries (2.1 to 4.3), compared with using a
custom designed pipeline that can execute only a single query.
The results show that, in most cases, the overhead associated
with the use of pass-through kernels, which enables the flexible
design, is small (below 12%).

To further demonstrate the efficiency of our design in
reducing the reconfiguration overhead to a shared pipeline
design, we compare the performance of 20 groups of queries
shown in Table II on two bitstream configurations (S1 & S2).
S1 consists of a single bitstream that can be shared by any
subset of SSB queries from 2.1 to 4.3. S2 contains 3 separate
bitstreams, each one capable of executing only one of the
following groups of SSB queries: queries 2.1 to 2.3, queries
3.1 to 3.4, and queries 4.1 to 4.3. Since each bitstream of
S2 is designed for a small set of queries, each one of them
is capable of achieving better performance than the bitstream
in S1. However, S2 has to perform an FPGA reconfiguration
to execute queries belonging to two separate groups. Figure
10 shows the speedup achieved by S1 when compared to S2.
The results show that when reconfiguration is not required
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Fig. 10: Speedup achieved by unified design.

(Group ID 1, 2, 4, 5 and 12), S2 fares slightly better than S1.
However, for all other groups, S1 outperforms S2 by up to
4.6x due to the high reconfiguration overhead in S2.

The two experiments presented above demonstrate an im-
portant dilemma faced by system designers when optimizing
for FPGAs. On the one hand, we could design pipelines
capable of executing only a small set of queries and pay
the high reconfiguration overhead. On the other hand, we
could design more flexible pipelines which are capable of
executing a wide variety of queries and pay a small overhead
for the execution of each individual query. The optimal choice
depends on the system requirements and the workload (e.g.,
the mix of different queries). It is our future work to explore
different choices in more details.

Improved Resource Utilization. Table III shows the per-
centage of LUTs, registers and memory blocks consumed
by the bistreams containing the shared pipelines used for
executing the SSB and TPC-W queries. We measure the
resource utilization when these pipelines are implemented
on the FPGA for optimal performance. When compared to
the resource utilization in single query execution (Figure
8), shared execution achieves significantly higher resource
utilization as shown in Table III.

Heuristic Evaluation. We now evaluate the effectiveness of
the heuristic proposed in Section IV. Figure 11 shows the aver-
age execution time of 5 workloads (G1–G5, each containing 50
random queries from SSB) for two cases: 1) when the queries
are grouped together using our heuristic based approach and
2) when we choose the optimal grouping by evaluating all
possible groupings offline. The execution time of our proposed
approach is very close to the offline (optimal approach). We
conduct these experiments using both SSB and TPC-W queries

TABLE III: Shared pipeline resource utilization
Pipeline LUT Register Memory Blocks
TPCW 92 46 92
SSB 91 40 92
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Fig. 12: Impact of using weighted sum for query scheduling

and found similar results. The runtime overhead incurred by
the heuristic is usually less than 1% of the total execution time.
The results show that the heuristic is capable of finding good
enough groups of queries, without adding significant runtime
overhead to query processing.

Figure 12 shows the average execution time of 5 group of
queries when we enable the use of weighted sum and when we
disable it. The result shows that the use of weighted sum has a
significant impact on improving the overall performance of the
system. This is because, different operators achieve different
levels of speedup during shared execution.

In Figure 13, we measure the average execution time of 5
group of queries, when the number of active execution lists
is increased from 1 to 8. The results show that the use of
multiple execution lists allows the heuristic to achieve better
grouping.

Overall Comparison. To evaluate the overall performance
speedup of adopting shared query execution, we conduct
experiments on 20 groups of queries shown in Table II. The
results presented in Figure 14 show that, shared pipeline
execution can achieve up to 2.4x speedup over pipelined single
query implementation and up to 10x speedup over the pipeline
design of GPL on FPGA (which uses software buffers for
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Fig. 14: Speedup of shared query execution when compared
to single query execution.

communication). Note that, one benefit of shared pipeline
execution is not reflected in this comparison. That is, shared
pipeline execution allows more queries to be evaluated before
an FPGA reconfiguration. In this experiment, we only need
one FPGA reconfiguration at the beginning of the evaluation.
In contrast, single-query executions generates one bitstream
for each query, which requires one FPGA reconfiguration per
query in the worst case. This overhead is not reflected in the
comparison.

VI. DISCUSSIONS

Through designing and implementing relational query pro-
cessing on OpenCL-based FPGAs, we have identified a num-
ber of opportunities and challenges for using FPGAs as a
database query co-processor.

The following are the major opportunities. First, the FPGA
programmability in terms of HLS support has been improving
greatly. FPGA vendors have offered OpenCL SDKs as well
as debugging and performance optimization tools for better
programmability. Second, the advantage of FPGAs for data
processing is in the fine-grained hardware parallelism. Further,
due to the new memory and computation features that have
been introduced to HLS SDK, FPGAs have become a suitable
target for implementing data-intensive database applications.
Third, the high energy efficiency of FPGAs make them an
attractive hardware accelerator for large data warehouses. As
a result of this FPGAs are being deployed in the cloud
computing environments to reduce the energy footprint of
many systems and applications in the cloud [3], [12].

We also identified a few limitations as well as open prob-
lems of FPGAs for performing relational query processing.

First, the performance comparison between OpenCL HLS
and HDL based solutions is challenging. HLS based systems
could have lower performance when compared to HDL-based
implementations. More importantly, this comparison may re-
veal more opportunities for optimizing the OpenCL-based
solutions. However, we find that, despite the abundance of
existing [23], [11], [17], [16], [21], [34], [26], [28], none of
them are open-sourced, to our best knowledge. Without proper
open-sourced implementation of the previous studies and due
to the resource constraints, we have to leave this comparison
as a future work.

Second, as a co-processor, the FPGA requires advanced
hardware and software techniques to support complex work-



loads more efficiently. One example is the high reconfiguration
overhead which prohibits many database workloads to execute
on FPGAs efficiently. The other is the low memory bandwidth
of the test bed, which can be 20 times lower than current GPU
based systems.

Third, the further integration of database query processing
techniques into FPGAs still has a large unexplored space. The
techniques such as dividing a query into separate segments,
multiple query execution, sharing among multiple queries, and
sharing the same input stream have been studied extensively
in RDBMSs and data warehouses. It is an open question on
how to integrate them in the best way so that the FPGA-based
systems can be optimized.

Fourth, it seems that there is still no real consensus on the
integration of the FPGA into the system architecture. Some
systems have used FPGAs as a co-processor, some use it as a
smart controller for disk systems, and some use the FPGA to
filter data coming from a network. There lacks a comparison
study on these different integrations, to identify their pros and
cons.

Lastly, OpenCL can be recompiled and target CPUs, GPUs
and FPGA architectures as well. We have witnessed that
“one size does not fit all. Although OpenCL targets dif-
ferent architectures, architecture-aware optimizations have to
be developed to unleash the power of target architectures.
It is uncertain whether we can develop some self-tuning
optimizations for OpenCL across different architectures.

VII. CONCLUSION

The recent release of OpenCL based HLS frameworks by
FPGA vendors like Xilinx and Intel/Altera have significantly
improved the programmability of FPGAs and has brought
new research opportunities for FPGA-based query processing
systems. As a start, we design FADE, the first OpenCL
based shared execution system. We then use FADE to study
the performance of shared execution engines on FPGAs. We
conduct the experiments on Intel/Altera Stratix V FPGA and
demonstrate the efficiency of our pipeline design on FPGAs.
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