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OPTIMAL LOCALLY REPAIRABLE CODES VIA ELLIPTIC

CURVES

XUDONG LI, LIMING MA, AND CHAOPING XING

Abstract. Constructing locally repairable codes achieving Singleton-type bound
(we call them optimal codes in this paper) is a challenging task and has attracted
great attention in the last few years. Tamo and Barg [14] first gave a breakthrough
result in this topic by cleverly considering subcodes of Reed-Solomon codes. Thus,
q-ary optimal locally repairable codes from subcodes of Reed-Solomon codes given
in [14] have length upper bounded by q. Recently, it was shown through extension
of construction in [14] that length of q-ary optimal locally repairable codes can be
q + 1 in [7]. Surprisingly it was shown in [2] that, unlike classical MDS codes, q-ary
optimal locally repairable codes could have length bigger than q+1. Thus, it becomes
an interesting and challenging problem to construct q-ary optimal locally repairable
codes of length bigger than q + 1.

In the present paper, we make use of rich algebraic structures of elliptic curves to
construct a family of q-ary optimal locally repairable codes of length up to q + 2

√
q.

It turns out that locality of our codes can be as big as 23 and distance can be linear
in length.

1. Introduction

Because of recent applications to distributed storage systems, people have introduced
a new class of block codes, i.e, locally repairable codes and they have attracted great
attention of researchers [5, 4, 10, 11, 3, 9, 14, 15, 1]. A local repairable code is just a
block code with an additional parameter called locality. For a locally repairable code
C of length n with k information symbols and locality r (see the definition of locally
repairable codes in Section 2.1), it was proved in [4] that the minimum distance d(C)
of C is upper bounded by

(1) d(C) 6 n− k −
⌈

k

r

⌉

+ 2.

The bound (1) is called the Singleton-type bound for locally repairable codes and
was proved by extending the arguments in the proof of the classical Singleton bound
on codes. In this paper, we refer an optimal locally repairable code to a block code
achieving the bound (1).

1.1. Known results. Construction of optimal locally repairable codes, i.e., block
codes archiving the bound (1) is of both theoretical interest and practical importance.
This is a challenging task and has attracted great attention in the last few years. In
literature, there are a few constructions available and some classes of optimal locally
repairable codes are known. A class of codes constructed earlier and known as pyramid
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codes [6] are shown to be codes that are optimal. In [11], Silberstein et al proposed
a two-level construction based on the Gabidulin codes combined with a single parity-
check (r + 1, r) code. Another construction [15] used two layers of MDS codes, a
Reed-Solomon code and a special (r + 1, r) MDS code. A common shortcoming of
these constructions relates to the size of the code alphabet which in all the papers is an
exponential function of the code length, complicating the implementation. There was
an earlier construction of optimal locally repairable codes given in [10] with alphabet
size comparable to code length. However, the construction in [10] only produces a spe-
cific value of the length n, i.e., n =

⌈

k
r

⌉

(r+1). Thus, the rate of the code is very close
to 1. There are also some existence results given in [10] and [14] with less restriction
on locality r. But both results require large alphabet which is an exponential function
of the code length.

A recent breakthrough construction was given in [14]. This construction naturally
generalizes Reed-Solomon construction which relies on the alphabet of cardinality com-
parable to the code length n. The idea behind the construction is very nice. The only
shortcoming of this construction is restriction on locality r. Namely, r + 1 must be a
divisor of either q − 1 or q, or r + 1 is equal to a product of a divisor of q − 1 and a
divisor of q for certain q, where q is the code alphabet. This construction was extended
via automorphism group of rational function fields by Jin, Ma and Xing [7] and it turns
out that there are more flexibility on locality and the code length can be q + 1.

Based on the classical MDS conjecture, one should wonder if q-ary optimal locally
repairable codes can have length bigger than q + 1. Surprisingly, it was shown in
[2] that there exist q-ary optimal locally repairable codes of length exceeding q + 1.
Although only few q-ary optimal locally repairable codes with length bigger than q+1
were produced in [2], it paves a road for people to continue search for such codes.

1.2. Our main results. In this paper, we make use of rich algebraic structures of
elliptic curves over finite field to construct q-ary optimal locally repairable codes with
length bigger than q + 1. More precisely speaking, we take a subgroup G of the auto-
morphism group Aut(E/Fq) of an elliptic curve E over a finite field Fq, then consider
the subfield F of the elliptic function field Fq(E) whose elements are fixed by G. By
carefully choosing functions from both F and Fq(E) and mixing them together, we can
define a subcode of an algebraic geometry code by taking these function as evaluation
functions. It can be shown that this subcode is an optimal locally repairable code. As
an elliptic curve over Fq has more than q+1 points and the length of the code is almost
equal to the number of points, thus we obtain a q-ary optimal locally repairable code
of length bigger than q + 1. Our main result of this paper can be summarized below.

Theorem 1.1. Let q = pa for a prime p and an even number a > 0. If p = 3 or p ≡ 2
(mod 3), then there exists an optimal q-ary [n = 3ℓ, k = 2t + 1, d = n − 3t] locally

repairable code with locality 2 for any 0 6 t < ℓ 6
⌊

q+2
√
q

3

⌋

.

Theorem 1.2. Let q = pa for a prime p and an even number a > 0. Then there exists
an optimal q-ary [n = (r+1)ℓ, k = r(t−1)+1, d = n− (t−1)(r+1)] locally repairable
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code with locality r for any integers t and ℓ satisfying 1 6 t < ℓ 6

⌊

q+2
√
q−r−2

r+1

⌋

if p

and r satisfy one of the followings.

(i) r = 3, p = 2 or p ≡ 3 (mod 4).
(ii) r = 5, p = 3 or p ≡ 2 (mod 3).
(iii) r = 7, p = 2.
(iv) r = 11, p = 2 or 3.
(v) r = 23, p = 2.

Remark 1. (i) In the paper [2], a few optimal locally repairable codes such as 4-ary
[18, 11, 2] code with locality 2, 5-ary [24, 17, 3] code with locality 3 etc are found
based on various surfaces. The q-ary optimal locally repairable codes given in
[2] have length around q2, but small distance d and locality r such as d = 3 and
r = 2, 3, 4. The optimal codes in this paper have length slightly bigger than
q + 1. However, the minimum distance of our code can be linear in length and
locality can be as large as 23.

(ii) Although we only state the result for codes over Fqa with an even integer a, the
construction in this paper also applies to the case where a is odd.

(iii) The conditions p ≡ 3 (mod 4) and p ≡ 2 (mod 3) in (i) and (ii) of Theorem
1.2 are proposed in order to find explicit maximal elliptic curves.

1.3. Organization of the paper. In Section 2, we introduce some preliminaries for
this paper such as definition of locally repairable codes, elliptic curves over finite fields,
field extension, algebraic geometry codes, etc. In Section 3, we present explicit con-
structions of maximal/minimal elliptic curves with automorphism groups determined.
In the last section, we give explicit constructions of optimal locally repairable codes
from elliptic curves given in Section 3. In addition, we will prove our main results,
namely Theorems 1.1 and 1.2 in the last section.

2. Preliminaries

In this section, we present some preliminaries on locally repairable codes, elliptic
curves over finite fields, field extension, algebraic geometry codes, etc.

2.1. Locally repairable codes. Informally speaking, a block code is said with locality
r if every coordinate of a given codeword can be recovered by accessing at most r other
coordinates of this codeword. The formal definition of a locally repairable code with
locality r is given as follows.

Definition 1. Let C ⊆ F
n
q be a q-ary block code of length n. For each α ∈ Fq and

i ∈ {1, 2, · · · , n}, define C(i, α) := {c = (c1, . . . , cn) ∈ C | ci = α}. For a subset
I ⊆ {1, 2, · · · , n} \ {i}, we denote by CI(i, α) the projection of C(i, α) on I. Then C
is called a locally repairable code with locality r if, for every i ∈ {1, 2, · · · , n}, there
exists a subset Ii ⊆ {1, 2, · · · , n} \ {i} with |Ii| 6 r such that CIi(i, α) and CIi(i, β) are
disjoint for any α 6= β ∈ Fq.

Apart from the usual parameters: length, rate and minimum distance, the locality of
a locally repairable code plays a crucial role. In this paper, we always consider locally
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repairable codes that are linear over Fq. Thus, a q-ary locally repairable code of length
n, dimension k, minimum distance d and locality r is said to be an [n, k, d]q-locally
repairable code with locality r.

If we ignore the minimum distance of a q-ary locally repairable code, then there is a
constraint on the rate [4], namely,

(2)
k

n
6

r

r + 1
.

In this paper, the minimum distance of a locally repairable code is taken into con-
sideration and we always refer an optimal code to a code achieving the bound (1).
For an [n, k, d]-linear code, k information symbols can recover the whole codeword.
Thus, the locality r is usually upper bounded by k. If we allow r = k, i.e., there is
no constraint on locality, then the bound (1) becomes the usual Singleton bound that
shows constraint on n, k and d only. The other extreme case is that the locality r is 1.
In this case, the locally repairable code is a repetition code by repeating each symbol
twice and the bound (1) becomes d(C) 6 n− 2k+2 which shows the Singleton bound
for repetition codes.

2.2. Elliptic curves over finite fields. By a curve, we will always mean a projective,
smooth and absolutely irreducible algebraic curve. An elliptic curve E over Fq is defined
by a nonsingular Weierstrass equation

(3) y2 + a1xy + a3y = x2 + a2x
2 + a4x+ a6,

where ai are elements of Fq. An elliptic curve over Fq is also denoted by a pair (E, O),
where E is the curve defined by the above Weierstrass equation (3), and O is the
common pole of x and y which is called the point at infinity of E. The genus of E is
1. Denote by E := Fq(E) and E(Fq) the function field of E and the set of Fq-rational
points, respectively. Then the function field E is given by E = Fq(x, y), where x and
y satisfy the above Weierstrass equation (3). The set E(Fq) consists of O and the
solutions (a, b) ∈ F

2
q to the Weierstrass equation (3) and forms an abelian group with

O as the zero element. There is one-to-one correspondence between Fq-rational points
of the elliptic curve E/Fq and rational places of its function field E/Fq. The rational
point (a, b) corresponds to the unique common zero of x − a and y − b and the point
O corresponds the common pole of x and y.

Let E/Fq be an elliptic function field defined above. Let PE be the set of all places
of E and P

1
E = {P ∈ PE : deg(P ) = 1} be the set of rational places of E. Then we can

identify P
1
E with E(Fq). This means that P1

E is also an abelian group. The divisor group
of E/Fq is defined as the free abelian group generated by PE and is denoted by Div(E).
The set of diviosrs of degree 0 forms a subgroup of Div(E), denoted by Div0(E). Two
divisors of E are called equivalent if there exist z ∈ E∗ such that A = B + (z), and we
denote this by A ∼ B. The set of divisors

Princ(E) = {(x) =
∑

P∈PE

νP (x) : x ∈ E∗}
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is called the group of principal divisors of E/Fq. It is a subgroup of Div0(E). The
factor group

Cl0(E) = Div0(E)/Princ(E)

is called the zero divisor class group of E/Fq.
Then there is a group isomorphism between P

1
E = E(Fq) and Cl0(E) given by.

Φ :

{

P
1
E → Cl0(E),

P 7→ [P − O].

The group operation of P1
E is denoted by ⊕ and the place O is the zero element of the

group P
1
E . Thus, the following holds true for any P,Q,R ∈ P

1
E:

(4) P ⊕Q = R ⇔ P +Q ∼ R +O.

The following lemma says that two distinct points can not be equivalent to each
other due to isomorphism between P

1
E = E(Fq) and Cl0(E).

Lemma 2.1. Let E/Fq be an elliptic curve with function field E = Fq(E) and let P,Q
be two rational places of E. Then

P −Q = (z) for some z ∈ E∗ if and only if P = Q.

The following lemma gives an upper bound on the size of E(Fq). It is called the
Hasse-Weil bound [12, Theorem 1.1 of Chapter 5].

Lemma 2.2. Let E/Fq be an elliptic curve defined over a finite field. Then

||E(Fq)| − q − 1| 6 2
√
q.

If the number |E(Fq)| of the rational places of E attains the upper bound 1+q+2
√
q

(or lower bound 1 + q − 2
√
q, respectively), then E is called a maximal elliptic curve

over Fq (or a minimal elliptic curve over Fq, respectively). Note that in this case q
must be square of a prime power.

The zeta function of E/Fq is defined to be the following power series

Z(E/Fq;T ) = exp

( ∞
∑

n=1

|E(Fqn)|
T n

n

)

,

where E(Fqn) stands for the set of Fqn-rational points of E. The zeta function of E is
a simple rational function (see [12, Section 2 of Chapter 5]).

Lemma 2.3. Let E/Fq be an elliptic curve. Then there is an integer t ∈ Z with
|t| 6 2

√
q such that

Z(E/Fq;T ) =
1− tT + qT 2

(1− T )(1− qT )
.

Furthermore, t = q+1−|E(Fq)| and 1−tT +qT 2 = (1−αT )(1−βT ) for some complex
numbers α, β with |α| = |β| = √

q.
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The polynomial 1− tT + qT 2 is called the L-polynomial of E/Fq and denoted by

L(E/Fq, T ) = 1− tT + qT 2.

It is easy to see that E/Fq is maximal (or minimal, respectively) if and only if t = −2
√
q

and L(E/Fq, T ) = 1 + 2
√
qT + qT 2 = (1 +

√
qT )2 (or t = 2

√
q and L(E/Fq, T ) =

1− 2
√
qT + qT 2 = (1−√

qT )2, respectively).

2.3. Extension theory of function fields. Let E/Fq be a function field with the
full constant field Fq. Let PE denote by the set of places of E and let g(E) denote by
the genus of E. Let G be a divisor of E. The Riemann-Roch space

L(G) = {z ∈ E∗ : (z) > −G} ∪ {0}
is a finite dimensional vector space over Fq and its dimension dimFq

L(G) is at least
deg(G) − g(E) + 1 from Riemann’s theorem [13, Theorem 1.4.17]. If E is an elliptic
function field and deg(G) > 1, then dimFq

L(G) = deg(G). Let F be a subfield of E
with the same full constant field Fq such that E/F is separable. Then the Hurwitz
genus formula [13, Theorem 3.4.13] yields

(5) 2g(E)− 2 = [E : F ](2g(F )− 2) + degDiff(E/F ),

where Diff(E/F ) stands for the different of E/F [13, Theorem 3.4.13].
Let Aut(E/Fq) be the automorphism group of the function field E over Fq, that is,

Aut(E/Fq) = {σ : σ is an Fq-automorphism of E}.
Now we consider the group action of the automorphism group Aut(E/Fq) on the set
of places PE . For any automorphism σ ∈ Aut(E/Fq) and any place P ∈ PE , then
σ(P ) = {σ(z) : z ∈ P} is a place of E as well. Let G be a subgroup of Aut(E/Fq).
The fixed subfield of E with respect to G is defined by

EG = {z ∈ E : σ(z) = z for all σ ∈ G}.
From the Galois theory, E/EG is a Galois extension with Gal(E/EG) = G. For any
place P ∈ PE , the place P ∩ EG is splitting completely in E if and only if σ(P ) are
pairwise distinct for all automorphisms σ ∈ G.

Lemma 2.4. Let E/Fq be an elliptic curve with function field E = Fq(E). Let F be
the subfield of E such that E/F is a finite separable extension and there is a place Q
of E with ramification index eQ > 1. Then F is a rational function field.

Proof. Let dQ be the different exponent of Q. Then dQ > eQ − 1 > 1 from Dedekind’s
Different Theorem [13, Theorem 3.5.1]. By the Hurwitz genus formula (5), we have

0 = 2g(E)− 2 > [E : F ](2g(F )− 2) + dQ deg(Q).

This gives g(F ) 6 1 − dQ deg(Q)

2[E:F ]
< 1. This forces that g(F ) = 0, i.e, F is a rational

function field. �
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2.4. Automorphism groups of elliptic curves. Consider the Weierstrass equation
(3). Let b2 = a21 +4a2, b4 = 2a4 + a1a3, b6 = a23 +4a6 and b8 = a21a6 +4a2a6 − a1a3a4 +
a2a

2
3 − a24. Then the quantity ∆ defined by

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6

is called the discriminate of the Weierstrass equation (3). Then the Weierstrass equa-
tion (3) is nonsingular if and only if ∆ 6= 0. In this case, it defines an elliptic curve
E over Fq. Furthermore, let c4 = b22 − 24b4 and c6 = −b32 + 36b2b4 − 216b6. Then the
quantity j(E) defined by

j(E) = c34/∆

is called the j-invariant of the elliptic curve E. Two elliptic curves are isomorphic over
the algebraic closure Fq of Fq if and only if they both have the same j-invariant. Under
isomorphism, the Weierstrass equation (3) of an elliptic curve can be simplified to some
forms [12, Proposition 1.1 of Appendix A].

We denote by Aut(E) the set of automorphisms of E over the algebraic closure F̄q, i.e.,
the automorphism group Aut(E/F̄q). Then every automorphism σ ∈ Aut(E) fixes the
zero point O. Let Aut(E/Fq) the subgroup of Aut(E/F̄q) in which every automorphism
is defined over Fq. The following result can be found in (see [12, Theorem III.10.1]).

Lemma 2.5. Let E/Fq be an elliptic curve. Then the order of Aut(E) divides 24. More
precisely speaking, the order of Aut(E) is given by the following list:

(i) |Aut(E)| = 2 if j(E) 6= 0, 1728;
(ii) |Aut(E)| = 4 if j(E) = 1728 and char(Fq) 6= 2, 3;
(iii) |Aut(E)| = 6 if j(E) = 0 and char(Fq) 6= 2, 3;
(iv) |Aut(E)| = 12 if j(E) = 0 = 1728 and char(Fq) = 3;
(v) |Aut(E)| = 24 if j(E) = 0 = 1728 and char(Fq) = 2.

Let E be the function field Fq(E) of E and denote by Aut(E/Fq) the automorphism
group of E fixed every element of Fq. Let F be the subfield of E fixed by Aut(E/Fq),
i.e., F = {x ∈ E : σ(x) = x for all σ ∈ Aut(E/Fq)}. Then Aut(E/Fq) = Aut(E/Fq) ∩
Aut(E) = Gal(E/F ) ∩ Aut(E) is the decomposition group of Gal(E/F ) at the point
O.

The following result shows that there are not many ramified places for an elliptic
curve.

Lemma 2.6. Let E/Fq be an elliptic curve with function field E = Fq(E). Let G be a
subgroup of Aut(E/Fq) of E at the point O with order |G| = r+1 for a positive integer
r. Let F = EG be the fixed subfield of E with respect to G. Then apart from the zero
point O, there are at most other r + 2 rational places of E that are ramified in E/F .

Proof. O is totally ramified in E/F since G is a subgroup of Aut(E/Fq). Assume that
P1, . . . , Pm are m ramified rational places of E in E/F . As O has differnt exponent
at least r + 1 − 1 = r and each Pi has different exponent at least 2 − 1 = 1, by the
Hurwitz genus formula (5), we have

0 = 2g(E)− 2 > [E : F ](2g(F )− 2) + (r + 1− 1) +m(2− 1) > −2(r + 1) + r +m.

This gives the desired result. �
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We now study certain specific elliptic curves and their automorphism groups.

Lemma 2.7. Let q is an even power of 2 and let E be an elliptic curve over Fq defined
by an equation y2 + y = x3 + α for some α ∈ Fq. Then |Aut(E/Fq)| = 24.

Proof. By [12, Proposition 1.1 of Appendix A], the j-invariant j(E) is equal to 0. An
automorphism σ ∈ Aut(E/Fq) is given by

(6) σ(x) = u2x+ s, σ(y) = u3y + u2sx+ t,

where u, s, t ∈ Fq satisfy u3 = 1, s4 + s = 0 and t2 + t + s6 = 0 (see [12, Proposition
1.2 of Appendix A]). This gives 24 solutions (u, s, t) ∈ F

∗
q × Fq × Fq. If we denote by

σu,s,t the automorphism given in (6), we have

Aut(E/Fq) = {σu,s,t : u ∈ F
∗
4, s ∈ F4, t ∈ F4, t

2 + t = s3}
and |Aut(E/Fq)| = 24. �

Lemma 2.8. Let q is an even power of 3 and let E be an elliptic curve over Fq defined
by an equation y2 = x3 + αx for some α ∈ F

∗
q. Then

|Aut(E/Fq)| =
{

4 if −α is a non-square in F
∗
q;

12 otherwise.

Proof. By [12, Proposition 1.1 of Appendix A], the j-invariant j(E) is equal to 0. An
automorphism σ ∈ Aut(E/Fq) is given by

(7) σ(x) = u2x+ s, σ(y) = u3y,

where u, s ∈ Fq satisfy u4 = 1, s3 + αs = 0 (see [12, Proposition 1.2 of Appendix
A]). This gives 4 solutions (or 12 solutions, respectively) (u, s) ∈ F

∗
q × F

∗
q if −α is a

non-square (or square, respectively). If we denote by σu,s the automorphism given in
(7), we have

Aut(E/Fq) = {σu,s : u ∈ F
∗
9, u

4 = 1, s ∈ F
∗
q , s

3 + αs = 0}.
The proof is completed. �

Lemma 2.9. Let q is an even power of a prime p with p 6= 2, 3 and p ≡ 2 (mod 3) and
let E be an elliptic curve over Fq defined by an equation y2 = x3 + α for some α ∈ F

∗
q.

Then |Aut(E/Fq)| = 6.

Proof. In this case, the j-invariant j(E) is equal to 0. An automorphism σ ∈ Aut(E/Fq)
is given by

(8) σ(x) = u2x, σ(y) = u3y,

where u ∈ F
∗
q satisfies u6 = 1 (see [12, Proposition 1.2 of Appendix A]). This gives 6

solutions in Fq since q ≡ 1 (mod 6) in this case. If we denote by σu the automorphism
given in (8), we have

Aut(E/Fq) = {σu : u ∈ F
∗
p2, u

6 = 1}.
The proof is completed. �
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Lemma 2.10. Let q is an even power of a prime p with p 6= 2, 3 and p ≡ 3 (mod 4)
and let E be an elliptic curve over Fq defined by an equation y2 = x3 + αx for some
α ∈ F

∗
q. Then |Aut(E/Fq)| = 4.

Proof. In this case, the j-invariant j(E) is equal to 1728. An automorphism σ ∈
Aut(E/Fq) is given by

(9) σ(x) = u2x, σ(y) = u3y,

where u ∈ F
∗
q satisfies u4 = 1 (see [12, Proposition 1.2 of Appendix A]). This gives 4

solutions in Fq since q ≡ 1 (mod 4) in this case. If we denote by σu the automorphism
given in (9), we have

Aut(E/Fq) = {σu : u ∈ F
∗
p2, u

4 = 1}.
The proof is completed. �

2.5. Algebraic geometry codes. For the construction of algebraic geometry codes,
the reader may refer to [8, 16, 17] for more details. Let F/Fq be a function field with
the full constant field Fq. Let P = {P1, . . . , Pn} be a set of n distinct rational places
of F . For a divisor G of F with 0 < deg(G) < n and supp(G) ∩ P = ∅, the algebraic
geometry code associated with D and G is defined to be

(10) C(P, G) := {(f(P1), . . . , f(Pn)) : f ∈ L(G)}.
Then C(P, G) is an [n, k, d]-linear code with dimension k = dimFq

(G) and minimum
distance d > n − deg(G). If V is a subspace of L(G), we can define a subcode of
C(P, G) by

(11) C(P, V ) := {(f(P1), . . . , f(Pn)) : f ∈ V }.
Then the dimension of C(P, V ) is the dimension of the vector space V over Fq and the
minimum distance of C(P, V ) is still lower bounded by n− deg(G).

3. Maximal and minimal elliptic curves

In order to construct algebraic geometry codes with good parameters, we usually
need function fields over finite fields with many rational places, especially maximal
function fields. In this section, we provide explicit maximal elliptic curves which will
be used in the latter section.

Lemma 3.1. Assume that q is a square and E is an elliptic curve over Fq.

(i) If E/Fq is maximal, then E is maximal over Fqs if and only if s is odd. Fur-
thermore, E is minimal over Fqs if and only if s is even.

(ii) If E/Fq is minimal, then E is minimal over Fqs for all s > 1.

Proof. Since E/Fq is maximal, its L-polynomial is L(E/Fq, T ) = 1 + 2
√
qT + qT =

(1 +
√
qT )2. Thus, the L-polynomial over Fqs is L(E/Fqs , T ) = (1 − (−√

q)sT )2 (see
[13, Section 5.1]). Since E is maximal (or minimal, respectively) over Fqs if and only
is its zeta function is (1 + qs/2T )2 (or (1− qs/2T )2, respectively). The desired result of
part (i) follows.

The proof of part (ii) is similar and we skip the detail. �
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An elliptic curve E/Fq is supersingular if its number of Fq-rational points is equal
1 + q + t for an integer t divisible by the characteristic of Fq. Two elliptic curves over
Fq are said isogenous if they have the same number of Fq-rational points.

Lemma 3.2. (see [18]) The isogeny classes of elliptic curves over Fq for q = pa are in
one-to-one correspondence with the rational integers t having |t| 6 2

√
q and satisfying

some one of the following conditions:

(i) (t, p) = 1;
(ii) If a is even: t = ±2

√
q;

(iii) If a is even and p 6≡ 1 (mod 3): t = ±√
q;

(iv) If a is odd and p = 2 or 3: t = ±p
a+1

2 ;
(v) If either (i) a is odd or (ii) a is even and p 6≡ 1 (mod 4) : t = 0.

The first of these is not supersingular; the rest are supersingular.

By making use of Lemma 3.2 or counting points directly, we provide some examples
of maximal elliptic curves with automorphism group determined in this section.

Lemma 3.3. For any even a, there exists a maximal elliptic curve E over F2a defined
by an equation y2 + y = x3 + γ for some γ ∈ F2a such that it has an automorphism
group of size 24, i.e., |Aut(E/Fpa)| = 24.

Proof. Let q = 2a. First assume that a ≡ 2 (mod 4). Consider the elliptic curve E

defined by y2 + y = x3. It is straightforward to verify that it has 9 = 1 + 4 + 2
√
4

rational points over F4 and hence it is maximal over F4. Then E is maximal over F2a

for a ≡ 2 (mod 4) by Lemma 3.1(i).
Now let a ≡ 0 (mod 4). By Lemma 3.1(i), the elliptic curve E is minimal over F24 .

Then E is minimal over Fq for a ≡ 0 (mod 4) by Lemma 2.6(ii). We claim that the
twisted curve E

′ defined by y2 + y + γ = x3 for some γ ∈ Fq \ {β2 + β : β ∈ Fq} is
maximal. Indeed, let N and N ′ denote the number of Fq-rational points of E and E

′,
respectively. For any α ∈ Fq, it is easy to see that one of y2+y = α3 and y2+y+γ = α3

has no solutions and other has two solutions. This implies that N +N ′ = 2+2q, where
the point O at infinity is counted twice. Since E is minimal, we have N = 1+ q−2

√
q.

Hence, N ′ = 1 + q + 2
√
q, i.e., E′ is maximal over Fq.

By Lemma 2.7, we have |Aut(E/Fq)| = |Aut(E′/Fq)| = 24. �

Lemma 3.4. Let p ≡ 3 (mod 4) be a prime. Then for any even a, there exists a
maximal elliptic curve E over Fpa defined by an equation y2 = x3 + θ2x for some
θ ∈ F

∗
pa such that

|Aut(E/Fpa)| =
{

4 if p 6= 3;
12 if p = 3.

Proof. Let q = pa. By Example 4.5 of [12, Chpater V], the elliptic curve E/Fp defined
by y2 = x3 + x is supersingular. If p 6= 3, then by Lemma 3.2(v), E has 1 + p
rational points over Fp. This implies that the L-polynomial L(E/Fp, T ) is equal to
1+pT 2 = (1−i

√
pT )(1+i

√
pT ), where i is the imaginary unit. Thus, the L-polynomial

L(E/Fp2, T ) is equal to (1 − (i
√
p)2T )(1 − (−i

√
p)2T ) = (1 + pT )2, i.e, E is maximal

over Fp2. If p = 3, then it is straightforward to verify that the curve E is maximal
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over F9. Thus, for any prime p with p ≡ 3 (mod 4), the elliptic curve E/Fp2 defined
by y2 = x3 + x is maximal.

By Lemma 3.1(i), the elliptic curve E/Fpa defined by y2 = x3 + x is maximal for
a ≡ 2 (mod 4). Furthermore, since −1 is a square in Fq, by Lemma 2.8, we have
|Aut(E/Fq)| = 12 for p = 3. For p 6= 3, it follows from Lemma 2.10 that |Aut(E/Fq)| =
4.

If a ≡ 0 (mod 4), then by Lemma 3.1(i) the curve E is minimal over Fpa. By using
the similar way as in the proof of Lemma 3.3, the twist elliptic curve E1 given by
θy2 = x3+x for any non-square θ ∈ Fq is maximal. By multiplying θ3 on the both side
of the equation and then substituting θx by x, θ2y by y, we get the elliptic curve E2

defined by y2 = x3+θ2x that is isomorphic to E1 over Fq. Hence, it is still maximal over
Fq. For p 6= 3, it follows from Lemma 2.10 that |Aut(E2/Fq)| = 4. Furthermore, since
−1 and θ2 are squares in Fq, by Lemma 2.8, we have |Aut(E2/Fq)| = 12 for p = 3. �

Lemma 3.5. Let p 6= 2 and p ≡ 2 (mod 3) be an odd prime. Then for any even a,
there exists a maximal elliptic curve over Fpa defined by an equation y2 = x3 + θ3 for
some θ ∈ F

∗
pa such that it has an automorphism group of size 6, i.e., |Aut(E/Fpa)| = 6.

Proof. Let q = pa. By Example 4.4 of [12, Chpater V], the elliptic curve E/Fp defined
by y2 = x3 + 1 is supersingular. In the same way as we proved in Lemma 3.4, one
can show that E is maximal over Fp2. Thus, for any prime p with p ≡ 3 (mod 4), the
elliptic curve E/Fp2 defined by y2 = x3 + 1 is maximal.

By Lemma 3.1(i), the elliptic curve E/Fpa defined by y2 = x3 + 1 is maximal for
a ≡ 2 (mod 4). It follows from Lemma 2.9 that |Aut(E/Fq)| = 6.

If a ≡ 0 (mod 4), then by Lemma 3.1(i) the curve E is minimal over Fpa. By using
the similar arguments as in the proof of Lemma 3.3, one can show that the twist elliptic
curve E1 given by θy2 = x3 + 1 for any non-square θ ∈ F

∗
q is maximal. By multiplying

θ3 on the both side of the equation and then substituting θx by x, θ2y by y, we get the
elliptic curve E2 defined by y2 = x3 + θ3 that is isomorphic to E1 over Fq. Hence, it is
still maximal over Fq. It follows from Lemma 2.9 that |Aut(E2/Fq)| = 6. �

4. Construction of locally repairable codes via elliptic curves

4.1. A general construction via automorphism groups. Let E/Fq be an elliptic
curve with the function field E. Let Aut(E/Fq) be the automorphism group of E over
Fq. Let G be a subgroup of Aut(E/Fq) of order r + 1 and let EG be the fixed subfield
of E with respect to G. Denote by F the fixed subfield EG . Then E/F is a Galois
extension with Galois group Gal(E/F ) = G.

Assume that there exist ℓ rational places Q1, · · · , Qℓ of F which are all splitting
completely in E/F . Let Pi,1, Pi,2, · · · , Pi,r+1 be the r+1 rational places of E lying over
Qi for each 1 6 i 6 ℓ. Put P = {Pi,j : 1 6 i 6 ℓ, 1 6 j 6 r + 1}. Then the cardinality
of P is ℓ(r + 1).

Choose a divisor G of F such that supp(G) ∩ {Q1, · · · , Qm} = ∅. The Riemann-
Roch space L(G) = {f ∈ F ∗ : (f) > −G} ∪ {0} is a finite dimensional vector space
over Fq with dimension dimFq

(G) > deg(G) − g(F ) + 1, where g(F ) is the genus of
F . Let {z1, · · · , zt} be a basis of the Riemann-Roch space L(G) over Fq. Choose
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elements wi ∈ E such that w0 = 1, w1, · · · , wr−1 are linearly independent over F and
νPi,j

(wl) > 0 for all 1 6 i 6 ℓ, 1 6 j 6 r + 1 and 0 6 l 6 r − 1. Consider the set of
functions

(12) V :=

{

t
∑

j=1

a0jzj +

r−1
∑

i=1

(

t−1
∑

j=1

aijzj

)

wi ∈ E : aij ∈ Fq

}

.

Proposition 4.1. (see [2]) Let i be an integer between 1 and ℓ, and suppose that every
r × r submatrix of the matrix

M =









w0(Pi,1) w1(Pi,1) · · · wr−1(Pi,1)
w0(Pi,2) w1(Pi,2) · · · wr−1(Pi,2)

...
...

. . .
...

w0(Pi,r+1) w1(Pi,r+1) · · · wr−1(Pi,r+1)









is invertible. Then the value of f ∈ V at any place in the set {Pi,1, Pi,2, · · · , Pi,r+1} can
be recovered from the values of f at the other r places.

Proposition 4.2. Let P and V be defined as above and satisfy the assumption of
Proposition 4.1. If V is contained in L(D) for a divisor D of E with deg(D) < ℓ(r+1)
and supp(D) ∩ {Pi,1, . . . , Pi,r+1}ℓi=1 = ∅, then the algebraic geometry code

C(P, V ) = {(f(P ))P∈P : f ∈ V }
is a q-ary [n, k, d]-locally repairable code with locality r, length n = ℓ(r+1), dimension
k = rt− (r − 1) and minimum distance d > n− deg(D).

Proof. First, it is easy to see that the dimension of V over Fq is rt − (r − 1), since
w0, w1, · · · , wr−1 are linearly independent over F and {z1, · · · , zt} is a basis of the
Riemann-Roch space L(G) over Fq. Every nonzero function f ∈ V ⊆ L(D) has at most
deg(D) zeros among {Pi,1, . . . , Pi,r+1}16i6ℓ. Hence, the minimum distance of C(P, V ) is
lower bounded by d > n−deg(D). Under the assumption that deg(D) < ℓ(r+1) = n,
we have d > 1. Hence, the dimension of C(P, V ) is k = dimFq

V = rt − (r − 1). The
locality property follows from Proposition 4.1. �

By considering subgroups of the automorphism group Aut(E), we can choose a space
V and some rational points such that the assumption of Proposition 4.1 is satisfied.

Proposition 4.3. Let E be an elliptic curve defined by the Weierstrass equation (3).
Let E be the function field Fq(E). Let G be a subgroup of Aut(E/Fq) with order |G| =
r + 1 = 2s for positive integers s > 2 and r < q. Furthermore, we assume that the set
{σ(x) : σ ∈ G} has size s. Let F = EG be the fixed subfield of E with respect to G.
Then

(i) there exists an element z ∈ E satisfying that F = Fq(z) and deg(z)∞ = r + 1;
and elements w0 = 1, w1, · · · , wr−1 of E that are linearly independent over F ;

(ii) let {Pi,1, Pi,2, · · · , Pi,r+1} be the pairwise distinct rational places lying over the
same place of F for each 1 6 i 6 ℓ, such that {Pi,1, Pi,2, · · · , Pi,r+1}li=1 ∩
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supp(D) = ∅. Then every r × r submatrix of the matrix

M =









1 w1(Pi,1) · · · wr−1(Pi,1)
1 w1(Pi,2) · · · wr−1(Pi,2)
...

...
. . .

...
1 w1(Pi,r+1) · · · wr−1(Pi,r+1)









is invertible for all 1 6 i 6 ℓ.

Proof. Let σ1 = 1, σ2, · · · , σs be the automorphisms of G with the pairwise distinct
σi(x). Let σs+j be the automorphisms of G with σj(x) = σs+j(x) for 1 6 j 6 s. Let
P = (a, b) be a rational place of E such that σ(P ) are pairwise distinct for all σ ∈ G,
i.e., P ∩ F is splitting completely in E.

Put z =
∏s

i=1
1

σ−1

i (x)−a
. Then σ(z) = z ∈ F and the principal divisor of z is

(z) = (r + 1)O − P1 − P2 − · · · − Pr+1,

where {P1, P2, . . . , Pr+1} = {σ(P ) : σ ∈ G}. Hence, we obtain deg(z)0 = r + 1 = [E :
F ] and hence F = Fq(z) by [13, Theorem 1.4.11]. As ℓ(P1 + P2) = 2 from Riemann’s
Theorem, there exists an element w1 ∈ L(P1 + P2) \ Fq such that (w1)∞ = P1 + P2.

For each 2 6 i 6 r− 1, the set ∪i+1
j=1L(

∑i+1
u=1 Pu − Pj) has size at most (i+ 1)qi that is

less than qi+1 = |L(∑i+1
u=1 Pu)|. This implies that there exists an element wi ∈ E such

that (wi)∞ = P1 + P2 + · · · + Pi+1. We claim that w0 = 1, w1, · · · , wr−1 are linearly
independent over Fq(z). Suppose that w0, w1, · · · , wr−1 are linearly dependent over
Fq(z), i.e., there exist functions a0(z), a1(z), . . . , ar−1(z) that are not all zero such that
∑r−1

i=0 ai(z)wi = 0. By multiplying a common nonzero polynomial in Fq[z], we may
assume that every ai(z) is a polynomial of Fq[z]. Let 0 6 s 6 r − 1 be the largest
integer such that as(z) has the largest degree, i.e., deg(as(z)) = max{deg(ai(z))}r−1

i=0

and deg(as(z)) > max{deg(as+1(z)), . . . , deg(ar−1(z))}, where degree of the zero poly-
nomial is defined to be −∞. Thus, for i < s, we have

νPs+1
(ai(z)wi) = − deg((ai(z)) + νPs+1

(wi) = − deg((ai(z))

> − deg((ai(z))− 1 > − deg((as(z))− 1 = νPs+1
(as(z)ws).

For i > s, we have

νPs+1
(ai(z)wi) = − deg((ai(z)) + νPs+1

(wi) > − deg((as(z)) + νPs+1
(wi)

= − deg((as(z)) + νPs+1
(ws) = νPs+1

(as(z)ws).

This implies that νPs+1
(−as(z)ws) < νPs+1

(
∑

06i6r−1,i 6=s ai(z)wi) by the Strictly Trian-

gle Inequality [13, Lemma 1.1.11]. It is a contradiction since−as(z)ws =
∑

06i6r−1,i 6=s ai(z)wi.
If the pairwise distinct places Pi,1, · · · , Pi,r+1 lie over the same rational place z − βi

of F for some βi ∈ Fq, we claim every r × r submatrix of the matrix

M =









1 w1(Pi,1) · · · wr−1(Pi,1)
1 w1(Pi,2) · · · wr−1(Pi,2)
...

...
. . .

...
1 w1(Pi,r+1) · · · wr−1(Pi,r+1)
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is invertible. Without loss of generality, we may consider the first r rows. Suppose
that

det









1 w1(Pi,1) · · · wr−1(Pi,1)
1 w1(Pi,2) · · · wr−1(Pi,2)
...

...
. . .

...
1 w1(Pi,r) · · · wr−1(Pi,r)









= 0.

Then there exists (c0, · · · , cr−1) ∈ F
r
q \ {0} such that









1 w1(Pi,1) · · · wr−1(Pi,1)
1 w1(Pi,2) · · · wr−1(Pi,2)
...

...
. . .

...
1 w1(Pi,r) · · · wr−1(Pi,r)

















c0
c1
...

cr−1









= 0.

Then we have (c0 + c1w1 + · · · + cr−1wr−1)(Pi,j) = 0 for all 1 6 j 6 r and hence
c0 + c1w1 + · · · + cr−1wr−1 ∈ L(P1 + · · · + Pr − Pi,1 − · · · − Pi,r). Thus, the principal
divisor of c0 + c1w1 + · · ·+ cr−1wr−1 is

(c0 + c1w1 + · · ·+ cr−1wr−1) =

r
∑

j=1

Pi,j −
r
∑

j=1

Pj.

As the places Pi,1, · · · , Pi,r lie over the same rational place of z − βi, the x-coordinate
of Pi,j for 1 6 j 6 r are the roots of

s
∏

j=1

1

σ−1
j (x)− a

− βi = 0.

Let α1, α2, · · · , αs ∈ Fq be pairwise distinct roots of the above equation. After rear-
ranging order of the places Pi,j for 1 6 j 6 r, we may assume that

(x− αj) = Pi,2j−1 + Pi,2j − 2O for 1 6 j 6 s− 1.

Since we have Pj + Ps+j − 2O = (σ−1
j (x)− a) for 1 6 j 6 s− 1, then

Pi,r − Ps =
(

(c0 + c1w1 + · · ·+ cr−1wr−1)

s−1
∏

j=1

(σ−1
j (x)− a)

x− αj

)

.

This is a contradiction by Lemma 2.1. �

With the above preparation, we can now state a result on locally repairable codes
from elliptic curves.

Proposition 4.4. Let E be an elliptic curve with N rational points defined by the
Weierstrass equation (3). Let E be the function field Fq(E). Let G be a subgroup
of Aut(E/Fq) with order |G| = r + 1 = 2s for positive integers s > 2 and r < q.
Furthermore, we assume that the set {σ(x) : σ ∈ G} has size s. Then there exists an
optimal q-ary [n = ℓ(r+1), k = rt− r+1, d = n− (t−1)(r+1)] locally repairable code
with locality r for any 1 6 ℓ 6

⌊

N−2r−4
r+1

⌋

and 1 6 t 6 ℓ.
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Proof. Let F = EG be the fixed subfield of E with respect to G. Let z ∈ F and
w0, w1, . . . , wr−1 ∈ E be elements given in Proposition 4.3. By Lemma 2.6, there are
at most r + 3 rational places (including O) in total that are ramified in E/F . Except
for all ramified places, all other rational places of E are splitting completely in E/F .
By our assumption, we can find ℓ sets {Pi,1, . . . , Pi,r+1}ℓi=1 that do not intersect with
ramified points and r + 1 pole of z. Put zi = zi−1 for i = 1, 2, . . . , t and consider the
set V of functions given in (12). Then V is a subspace of L((t− 1)(P1 + · · ·+ Pr+1)),
where P1, P2, . . . , Pr+1 are r + 1 pole places of z given in the proof of Proposition 4.3.
By Proposition 4.2, the algebraic geometry code C(P, V ) is an [n = ℓ(r + 1), k =
rt− r+1, d > n− (t− 1)(r+1)] locally repairable codes with locality r. On the other
hand, by the Singleton-type bound (1),

d 6 n− k −
⌈

k

r

⌉

+ 2 = n− rt + r − 1−
⌈

tr − r + 1

r

⌉

+ 2 = n− (t− 1)(r + 1).

This implies that C(P, V ) is optimal and the desired result follows. �

Remark 2. By modifying algebraic geometry codes, we can include the poles of z in
the set of evaluation points (see the details in Sections 2 and 3 of [7]). Thus, ℓ in
Proposition 4.4 can take values up to

⌊

N−r−3
r+1

⌋

instead of
⌊

N−2r−4
r+1

⌋

.

Since we consider subgroups of Aut(E), the locality r can only take one of values
1, 2, 3, 5, 7, 11, 23. Locality 1 is a trivial case. Let us start with locality 2.

4.2. Locality r = 2. As Proposition 4.4 requires that r+1 be an even number, i.e., r
is odd, we need a different construction for the case where the locality r = 2.

Proposition 4.5. Let E/Fq be an elliptic curve with function field E = Fq(E). Assume
that Aut(E/Fq) contains a subgroup G of order 3. Let F be the subfield of E with
Gal(E/F ) = G. Assume that there are ℓ rational places of F that split completely in
E/F . Then for any t with 0 6 t < ℓ, there exists a q-ary [n = 3ℓ, k = 2t+1, d = n−3t]
locally repairable code with locality 2.

Proof. Let O be the zero element of E. Then O is totally ramified in E/F and hence
F is a rational function field by Lemma 2.4. Let O′ be the unique place of F that lies
under O. Choose z in F such that (z)∞ = O′ as a divisor of F (this is possible as F is
a rational function field). Then (z)∞ = 3O as a divisor of E. Choose x ∈ E such that
(x)∞ = 2O.

Consider the Fq-space Vt defined by
(13)
Vt := {f0(z) + f1(z)x : fi(z) ∈ Fq[z] for i = 0, 1; deg(f0(z)) 6 t; deg(f1(z)) 6 t− 1}.
It is clear that Vt is a subspace of the Riemann-Roch space L(3tO). We claim that
dimFq

Vt = 2t + 1. Suppose that f0(z) + f1(z)x is the zero function and one of f0(z)
and f1(z) is not the zero polynomial. Then both polynomials must be nonzero. Hence
f0(z) = −f1(z)x and −3 deg(f0) = νO(f0) = νO(−f1(z)x) = −3 deg(f1)− 2. This is a
contradiction and it implies that dimFq

Vt = 2t+ 1.
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Let {Pi1, Pi2, Pi3}ℓi=1 be n rational places of E such that, for each i, the three places
Pi1, Pi2, Pi3 lie over the same rational place of F . Define the algebraic geometry code

(14) Ct := {(f(Pi1), f(Pi2), f(Pi3))
ℓ
i=1 : f ∈ Vt}

Then the dimension of the code Ct is k = 2t+1 and the minimum distance d is at least
n − 3t > 0 as f ∈ L(3tO). The Singleton-type bound (1) of locally repairable codes
shows that d 6 n− k −

⌈

k
2

⌉

+ 2 = n− (2t+ 1)− (t+ 1) + 2 = n− 3t. Hence, the code
Ct is an optimal q-ary [3ℓ, 2t+ 1, 3ℓ− 3t]-locally repairable code with locality 2. �

Proof of Theorem 1.1:

Proof. If p = 2, then by Lemma 3.3, there exists a maximal elliptic curve E defined by
(i) y2 + y = x3 for a ≡ 2 (mod 4); or (ii) y2 + y = x3 + γ for a ≡ 0 (mod 4) and some
γ ∈ Fq \ {α2 + α : α ∈ Fq} with |Aut(E/Fq)| = 24. Furthermore, the automorphism
σu,0,0 given by σu,0,0(x) = u2x and σu,0,0(y) = u3y for a 3rd primitive root u of unity in
Fq generates a cyclic group G of order 3. Let F = EG , where E = Fq(E) is the function
field of E. The zero point O is a totally ramified point with respect to the extension
E/F .

In addition, for a ≡ 2 (mod 4), the point (0, 0) and (0, 1) are also totally ramified
since σu,0,0(0, 0) = (0, 0) and σu,0,0(0, 1) = (0, 1). Thus, the rest of q+2

√
q− 2 rational

points split completely. By Proposition 4.5, there exists an optimal q-ary [n = 3ℓ, k =

2t+ 1, d = n− 3t] locally repairable code with locality 2 for any 0 6 t < ℓ 6
q+2

√
q−2

3
.

Note that in this case we have
q+2

√
q−2

3
=
⌊

q+2
√
q

3

⌋

.

For a ≡ 0 (mod 4), the curve is given by y2+y = x3+γ. In this case, the point (0, α)
and (0, β) are totally ramified for some α, β ∈ F̄q \Fq. Thus, there are q+2

√
q rational

points that split completely in E/F . By Proposition 4.5, there exists an optimal q-
ary [n = 3ℓ, k = 2t + 1, d = n − 3t] locally repairable code with locality 2 for any

1 6 t < ℓ 6
q+2

√
q

3
. Note that in this case we have

q+2
√
q

3
=
⌊

q+2
√
q

3

⌋

.

If p = 3, then by Lemma 3.4, there exists a maximal curve elliptic curve E defined
by y2 = x3 + θ2x for some θ ∈ F

∗
q with |Aut(E/Fq)| = 12. In particular, G := {σ1,s :

s ∈ Fq, s3 + θ2s = 0} is a group of order 3, where σ1,s given by σ1,s(x) = x + s and
σ1,s(y) = y. Let F = EG , where E = Fq(E) is the function field of E. Then the
zero point O is the unique totally ramified point with respect to the extension E/F .
Thus, the rest of q+2

√
q splits completely. By Proposition 4.5, there exists an optimal

q-ary [n = 3ℓ, k = 2t + 1, d = n − 3t] locally repairable code with locality 2 for any

0 6 t < ℓ 6
q+2

√
q

3
. Note that in this case we have

q+2
√
q

3
=
⌊

q+2
√
q

3

⌋

.

Finally, assume that p 6= 2, 3. By Lemma 3.5, the elliptic curve E/Fq defined by
y2 = x3+θ2 for some θ ∈ F

∗
q is maximal with |Aut(E/Fq)| = 6. Then the automorphism

σu given by σu(x) = u2x and σu(y) = u3y = y for a 3rd primitive root u of unity in Fq

generates a cyclic group G of order 3. Let F = EG , where E = Fq(E) is the function field
of E. The zero point O is a totally ramified point with respect to the extension E/F .
In addition, the point (0, θ) and (0,−θ) are also totally ramified since σu(0, θ) = (0, θ)
and σu(0,−θ) = (0,−θ). Thus, the rest of q+2

√
q−2 rational points split completely.

By Proposition 4.5, there exists an optimal q-ary [n = 3ℓ, k = 2t+1, d = n−3t] locally
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repairable code with locality 2 for any 0 6 t < ℓ 6
q+2

√
q−2

3
. Note that in this case we

have
q+2

√
q−2

3
=
⌊

q+2
√
q

3

⌋

. This completes the proof. �

Example 4.6. Let q = 4 and F4 = F2(α) with α2 + α + 1 = 0. We give an explicit
construction of an optimal 4-ary [6,3,3]-locally repairable code with locality 2. Let E be
the rational function field F4(x, y) with y2+y = x3 and let F = F4(y). Then (y)∞ = 3O
and (x)∞ = 2O. It is easy to verify that P1 = (1, α), P2 = (α, α), P3 = (α + 1, α) are
lying over the same rational place Py−α of F , and P4 = (1, α + 1), P5 = (α, α + 1),
P6 = (α+ 1, α + 1) are lying over the same rational place Py−α−1 of F . Put

V := {a0 + a1y + b0x : a0, a1, b0 ∈ F4} .
Then the algebraic geometry code

C(P, V ) = {(f(P1), f(P2), f(P3), f(P4), f(P5), f(P6)) : f ∈ V } .
is an optimal 4-ary [6, 3, 3]-locally repairable code with locality 2. Furthermore, a
generator matrix of this code is computed as follows:





1 1 1 1 1 1
α α α α + 1 α + 1 α + 1
1 α α + 1 1 α α + 1



 .

Example 4.7. Let q = 64. By Theorem 1.1, for any integers t and ℓ with 0 6 t <
ℓ 6 26, there exists an optimal 64-ary [3ℓ, 2t+ 1, 3ℓ− 3t]-locally repairable code with
locality 2. In particular, for each integer t with 1 6 t 6 25, there exists an optimal
64-ary [78, 2t+ 1, 78− 3t]-locally repairable code with locality 2.

Example 4.8. Let q = 81. By Theorem 1.1, for any integers t and ℓ with 0 6 t <
ℓ 6 33, there exists an optimal 81-ary [3ℓ, 2t+ 1, 3ℓ− 3t]-locally repairable code with
locality 2. In particular, for each integer t with 1 6 t 6 32, there exists an optimal
64-ary [99, 2t+ 1, 99− 3t]-locally repairable code with locality 2.

Example 4.9. Let q = 25. By Theorem 1.1, for any integers t and ℓ with 0 6 t <
ℓ 6 11, there exists an optimal 25-ary [3ℓ, 2t+ 1, 3ℓ− 3t]-locally repairable code with
locality 2. In particular, for each integer t with 1 6 t 6 10, there exists an optimal
25-ary [33, 2t+ 1, 33− 3t]-locally repairable code with locality 2.

Now, we make use of Proposition 4.4 to get locally repairable codes of an odd locality
r.

4.3. Locality r = 3, 5, 7, 11 or 23. The main purpose of this subsection is to prove
Theorem 1.2.

Proof of Theorem 1.2:

Proof. We prove part (i) only. The similar arguments can be applied to other cases. By
Proposition 4.4 and Remark 2, it is sufficient to show that there exists a maximal elliptic
curve E/Fq defined by the Weierstrass equation (3) and a subgroup G of Aut(E/Fq)
such that |G| = 4 and the cardinality of the set {σ(x) : σ ∈ G} is 2.

If p = 2, by Lemma 3.3, there exists a maximal elliptic curve E/Fq defined by
y2 + y = x3 + α for some α ∈ Fq with |Aut(E/Fq)| = 24. Then G := {σ1,s,t : s ∈
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F2, t ∈ F4, t
2 + t = s} is a subgroup of Aut(E/Fq) of order 4, where σ1,s,t(x) = x+ s

and σ1,s,t(y) = y + sx+ t. Thus, {σ(x) : σ ∈ G} = {x, x+ 1} has size 2.
If p ≡ 3 (mod 4), by Lemmas 3.4, there exists a maximal elliptic curve E/Fq defined

by y2 + y = x3 + αx for some α ∈ Fq with |Aut(E/Fq)| divisible by 4. Then G := 〈σu〉
is a subgroup of Aut(E/Fq) of order 4, where σu(x) = u2x and σu(y) = u4y and u is a
4th primitive root of unity in Fq. Thus, {σ(x) : σ ∈ G} = {x, u2x} has size 2. �

Example 4.10. Let q = 64. Consider the elliptic curve over F64 defined by the equation
y2+ y = x3. It is maximal with 81 rational points over F64. Consider the sugroup G of
Aut(E/F64) given by G := {σ1,s,t : s ∈ F2, t ∈ F4, t

2 + t = s}. Then O is the unique
ramified point and all other 80 rational points split completely. These 80 points can be
taken as evaluation points and we get an optimal 64-ary [3ℓ, 3t+2, 3ℓ−4(t−1)]-locally
repairable code with locality 3 for all 1 6 t < ℓ 6 20. In particular, for each integer
t with 1 6 t 6 20, there exists an optimal 64-ary [80, 3t + 2, 80 − 4(t − 1)]-locally
repairable code with locality 3. For this example, ℓ can achieve 20, while in Theorem

1.2, ℓ is upper bounded by
⌊

q+2
√
q−r−2

r

⌋

= 18.
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