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Summary

With the prevalence of the concept of multi-agent system, there is a strong inter-

est to investigate the optimization and game problems among multiple agents or

decision-makers due to its wide range of applications in various fields, such as air

traffic control, robotics, power systems, smart grids, smart buildings, etc. With the

increase of the data size, computation and network complexity, solving these prob-

lems in a distributed manner has found its great advantages in terms of the efficiency

and reliability compared to the traditional centralized methods. However, in most

distributed algorithms, the knowledge on the gradient information of the cost func-

tions is required, making the methods rather restrictive, especially for the problems

where such information is not available. In this dissertation, several gradient-free

techniques are developed to solve the distributed optimization and Nash equilibrium

(NE) seeking problems in the multi-agent system. The following summarizes the

specific considered problems and proposed algorithms.

A distributed optimization problem with a set constraint is considered first. The

explicit form of the local cost function is assumed to be unknown, but its value can

be measured by each local agent. In such problem settings, the gradient informa-

tion of the cost functions is not available, and hence the gradient-based methods

are no longer applicable. A randomized gradient-free (RGF) distributed projected

gradient descent method is proposed based on the Gaussian smoothing technique.

Specifically, an RGF oracle is developed locally with the use of a random variable to

estimate the gradient information in a random direction. Under some conditions on
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iv Summary

the step-size, an approximate convergence result to the optimal solution is derived.

To improve the convergence result, a distributed projected pseudo-gradient descent

algorithm is proposed to solve the same set constrained distributed optimization

problem in the second part of this dissertation. Specifically, the gradient infor-

mation is estimated by a so-called pseudo-gradient operator, where the additional

parameters and random variables are introduced. By doing so, an exact convergence

to the optimal solution is achieved with proper settings of the parameters and the

step-size. Moreover, we propose an extra step locally, known as ‘optimal averaging

scheme’, after the decision variable updates at each time-step. This scheme relaxes

the requirement on the step-size selection as compared to most distributed methods,

but still obtains the same convergence result.

In many practical cases, the optimization problem is often in a highly dynamic en-

vironment, resulting in a time-varying objective, which leads to the study of online

optimization framework. Thus, in the third part of this dissertation, we consider

a distributed optimization problem where the local cost functions are allowed to

vary with time. An online RGF distributed projected gradient descent algorithm is

presented. The notions of both static and dynamic regrets are adopted to analyze

the performance of the proposed algorithm. With some standard assumptions on

the graph connectivity and cost functions, we are able to show that both regrets

are sublinear, and their corresponding averages over time are approximately con-

vergent to zero with a rate of O(1/
√
T ), which is comparable to the state-of-the-art

algorithms.

In the last part of this dissertation, we consider a multi-player non-cooperative static

game in which the players have limited knowledge on their local cost functions. To

find its NE, a gradient-free distributed algorithm is proposed, which does not rely

on the knowledge of the explicit form of the players’ cost functions. With the as-

sumption of the existence of the NE, the convergence of the proposed algorithm is

rigorously studied for both diminishing and constant step-sizes, respectively. Specif-
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ically, for the diminishing case, an exact convergence to the NE is attained, while for

the constant case, an approximate convergence to the NE with a gap proportional

to the step-size is achieved.

To summarize, this dissertation focuses on the research of gradient-free distributed

algorithms in distributed optimization problems where the agents collaboratively

achieve a system-level objective, and NE seeking problems where the players self-

ishly minimize their own cost functions. For the distributed optimization problems,

both static and time-varying cost functions are investigated, respectively. The con-

vergence results of the proposed algorithms are studied with rigorous proofs, the

effectiveness is verified by comparing with the state-of-the-art methods in numerical

simulations, and the performance is demonstrated through both numerical examples

and practical applications in energy systems.
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Chapter 1

Introduction

In this chapter, we provide an overview of this dissertation. Specifically, the back-

ground information is firstly introduced, followed by the motivation and objectives

of our research. Then, the existing literature related to our work is throroughly re-

viewed, followed by a highlight of our major contributions. Finally, the organization

of the thesis is presented.

1.1 Background, Motivation, and Objectives

A multi-agent system is a distributed computing system which consists of a number

of interacting computational entities. The key elements of a multi-agent system

includes: the intelligent entity, known as agent ; the aim of each agent represented

by a cost function, known as objective; and the underlying communication topology,

known as network. With the prevalence of the concept of multi-agent system, there is

a strong interest to investigate the optimization and game problems among multiple

agents or decision-makers, due to its wide range of applications in different fields,

including air traffic control, robotics, power systems, smart grids, smart buildings,

etc [1].

Nanyang Technological University Singapore



2 1.1. Background, Motivation, and Objectives

Mathematically, a general optimization problem can be defined as follows

min f(x), s.t., x ∈ X ⊆ Rn,

where x is the decision variable with some constraints defined as a set X , f(x) is

the cost function. Many scenarios regarding the coordination of multi-agent systems

can be modeled as optimization problems where agents collaboratively optimize a

global cost function. The global cost function consists of each agent’s individual

cost and is usually in the form of summation defined as follows

min f(x) =
N∑
i=1

fi(x), s.t., x ∈ X ⊆ Rn,

where x is the global decision variable of all agents constrained by a set X , f(x)

is the global cost function and fi(x) is the local cost function of agent i. Based

on the way of solving it, the optimization methods can be generally classified into

two categories: centralized optimization and distributed optimization, as shown in

Fig. 1.1. Specifically, the centralized optimization method solves the problem di-

(a) Centralized Optimization (b) Distributed Optimization

Figure 1.1: Optimization methods in a multi-agent system.

rectly in a central unit by considering the costs of all agents together. This method is

preferred for its straightforward formulation and easy implementation. However, it

suffers from the global knowledge requirements and high computational costs. The

distributed optimization method solves the problem where each agent considers its

own local cost function, then collaboratively solves the problem by communicating

Nanyang Technological University Singapore



Chapter 1. Introduction 3

with its neighbors. This method is favored by its effectiveness in computational cost

and reliability. With the increase of the data size, computation and network com-

plexity, distributed optimization methods in multi-agent systems have found great

advantages in terms of the efficiency and reliability over the traditional centralized

methods. From the perspectives of the applications, many engineering problems

can be formulated as distributed optimization problems in a multi-agent system,

such as parameter estimation and detection [2, 3], source localization in sensor net-

works [4,5], utility maximization [6], resource allocation [7,8], and multi-robot coor-

dination [9–12]. Therefore, efficient distributed optimization algorithms are of great

demand to these applications.

Despite of designing distributed optimization algorithms, which are specific to the

problems where the cost functions are fixed with respect to time. In some situations,

the uncertainties in the environment may influence the cost functions, which in turn,

affect the performance of the designed algorithms. One approach to cater such issues

is through stochastic methods, which has been studied in [13–15]. However, in many

practical cases, especially when mobile agents are involved, the optimization problem

is often in a highly dynamic environment, resulting in a time-varying objective.

Therefore, the techniques used in fixed or static distributed optimization cannot

be applied, leading to the study of online optimization framework, where the cost

functions assigned to agents vary with time and these variations are revealed to

agents only in hindsight.

Figure 1.2: Multi-player game.

Game theory is a power tool of analyzing the strategic interactions between rational

decision-makers. It has found a great potential in various applications (e.g., social

Nanyang Technological University Singapore



4 1.1. Background, Motivation, and Objectives

science, economics, electricity markets, power systems). For a general game, it

consists of three basic elements: the players/decision-makers, their actions, and

their cost/payoff functions, see Fig. 1.2 for a multi-player game. According to the

intrinsic nature of the players’ behaviors, the game is known as a non-cooperative

game if the players are self-interested, and selfishly minimize/maximize their own

cost/payoff functions by making decisions in response to other players’ actions. In

non-cooperative games, the Nash equilibrium (NE), named after John Forbes Nash

Jr., is a solution to the game, which says that no player can improve its payoff

by unilaterally changing its own action [16]. The Nash equilibrium (NE) is an

important concept and often used to analyze the strategic interaction among the

players. However, when the NE exists and how to find it are not trivial, especially

in multi-player non-cooperative games. Moreover, many engineering problems can

be modeled as non-cooperative games, such as power network control [17], energy

management control [18–20], transportation network control [21–23], etc. Therefore,

the NE seeking problems in different settings of non-cooperative games are of great

interests to study.

Even though distributed optimization and non-cooperative game are similar in terms

of the setups (i.e., multiple agents/players, local cost functions, decisions), the so-

lutions to the corresponding problems are rather different. The solution to the

distributed optimization is a social optimum point of the aggregate of each agent’

cost function, while the solution to the non-cooperative game is an equilibrium point

where no one can improve its payoff by unilaterally changing its own action (i.e.,

NE). The following simple numerical example illustrates the difference of these two

concepts:

Example 1.1. There are two agents (1 and 2), whose local cost functions are given

by

f1(x1, x2) = (x1 + 1)2 + (x2 + 1)2, f2(x1, x2) = (x1 − 1)2 + (x2 − 1)2,
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where x1 ∈ R and x2 ∈ R are their local decision variables, respectively. By

simple calculations, the optimal solution to the distributed optimization problem

minx1,x2(f1 + f2) is (0, 0), while the Nash equilibrium of the non-cooperative game

problem minx1 f1,minx2 f2 is (−1, 1).

Clearly, from Example 1.1, it can be concluded that a social optimal point is not

the same as a Nash equilibrium. For general distributed optimization and non-

cooperative game problems with multiple agents and more general costs, it may not

be possible to find their analytical solutions. Thus, it is of great interest to develop

efficient algorithms to seek the solutions.

Currently, most of the distributed optimization and NE seeking algorithms are

model-based methods, in which the knowledge on the agents’ cost functions and

constraints is required. For instance, one of the most common algorithms, the

gradient-based approach, needs to compute the derivatives of the cost functions to

guide the updates of the decision variables, which requires the agents to have direct

access to the gradient or subgradient information of the local cost functions and the

constraints. However, in some applications, the relation between the variables and

the cost functions are unknown, the gradient information is not available for usage,

or the derivative is not possible to determine [24]. For example, if considering the oc-

cupants’ thermal comfort as the objective, the relation between the thermal comfort

(output) and the control variables (input) such as the airflow, cooling temperature,

recirculation rate, etc., is difficult to model mathematically. On the other hand,

the occupants’ thermal comfort (output) can be easily obtained by collecting the

occupants’ feedback given any control input. In such cases where the cost function

is unknown but one can obtain its output iteratively, the methods purely based on

the measurements of the cost functions while requiring no gradient information are

strongly motivated.

In view of the great demand for the efficient distributed optimization and NE seek-

ing algorithms in the framework of multi-agent systems, and large interests on the
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gradient-free settings, we aim to achieve the following objectives in this dissertation.

• Formulate the gradient-free distributed optimization and NE seeking problems.

In the settings of distributed optimization and NE seeking problems, we as-

sume that the explicit form of the (possibly non-smooth) local cost function

is unknown, but the value can be measured by the local agent/player. Specif-

ically, for the distributed online optimization problem, the cost functions as-

signed to agents can vary with time and these variations are revealed to agents

only in hindsight. It should be noted that, in these problem settings, the gra-

dient information is no longer available for usage, or may not even exist.

• Propose efficient gradient-free algorithms.

Due to the lack of gradient information, it is desirable to propose some gradient-

free techniques to estimate the gradient information based on the local mea-

surements of the cost functions. Furthermore, since the agents/players are

only accessible to the local information, they are supposed to exchange infor-

mation with their neighbors to make decisions through an underlying com-

munication graph. As we consider the optimization and NE seeking problems

in the framework of multi-agent systems, the underlying communication net-

work is not fully connected, which implies that agents/players need to make

decisions based only on a limited set of information, such as the information

from the neighbors. Thus, a distributed protocol is necessary to achieve the

coordination among the agents/players.

• Analyze the convergence properties of the gradient-free algorithms.

It is well-known that the theoretical convergence analysis is an essential part

for the evaluation of an algorithm. Different from the analysis for gradient-

based algorithms where the gradient plays an important role in deriving the

convergence results, the challenge of establishing the convergence results for

the gradient-free algorithms lies in how to adapt the estimated gradient infor-

mation into the theoretical analysis. In contrast to the deterministic gradient
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term in gradient-based approaches, the characterization of the estimated gra-

dient for gradient-free algorithms needs to invoke the probability theory due

to the involvement of random variables. Thus, it is anticipated that the con-

vergence results of the gradient-free algorithms should be established in the

sense of expectation. Moreover, numerical simulations on testing the perfor-

mance of the gradient-free algorithms from different influencing factors should

be conducted to demonstrate the effectiveness.

1.2 Literature Review

This section provides an extensive review on the literature related to distributed

static optimization, distributed online optimization, and NE seeking in non-cooperative

games.

1.2.1 Distributed Optimization

Motivated by the optimization methods [25,26] for a centralized optimization prob-

lem, recent works on distributed optimization of a sum of local cost functions have

been reported in [27–47] and the references therein. Most commonly used dis-

tributed convex optimization methods include the gradient-based algorithm. For

example, in unconstrained distributed optimization problems, a subgradient method

and a subgradient-push algorithms were proposed in [27, 28], respectively. The

work in [29] introduced a distributed subgradient algorithm in a random network.

This method was improved in [30–32] to speed up the convergence rate to be lin-

ear. For constrained distributed optimization problems, projection-based methods

are widely used, such as the standard projected subgradient method in [33], pro-

jected scaled-subgradient method in [34], directed-distributed projected subgradient

method in [35], fixed step-size projected gradient descent method in [36], dual sub-

gradient averaging method in [37], and push-sum dual averaging method in [38].
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Besides, primal-dual subgradient-based methods are usually leveraged to cater the

constrained optimization problems, such as the distributed primal-dual perturbed

subgradient method in [39], the regularized primal-dual subgradient method in [40],

and the distributed penalty primal-dual subgradient method in [41–43]. The work

in [44] proposed an accelerated distributed Nesterov gradient descent for convex

and smooth functions, while Yuan et al. in [45] developed an optimal distributed

stochastic mirror descent for strongly convex functions. The work in [46] considered

a distributed contiunous-time optimization problem with non-convex velocity and

non-uniform position constraints. A distributed algorithm with non-uniform gradi-

ent gains was presented to achieve finite-time convergence. More references on the

topic of distributed optimization can be found in [47]. Overall, these works have

extensively investigated the distributed optimization problems differing from each

other in terms of constraints, communication topology, optimality conditions, etc.,

and presented various optimization methods to achieve promising results.

For the gradient-free distributed optimization, the concept of gradient-free tech-

nique has been brought out since the development of the optimization theory [48],

and successfully applied in the fields of aircraft design [49], hydrodynamics [50],

medicine [51], and earth sciences [52]. Recent research on gradient-free schemes has

been reported in [53–59] based on extremum seeking, and [60–70] based on smooth-

ing techniques. The extremum seeking-based methods use the sinusoidal dither

signals for perturbation such that the gradient of the cost function is extractable.

This type of methods, in general, is a continuous-time control-based approach, and

usually presumes some smoothness in the cost function. On the other hand, the

smoothing-based methods estimate the gradient of the cost function based on two

point values. This type of methods is usually designed in the discrete-time frame-

work, and allows the problem to be non-smooth. Specifically, Shamir et al. in [60]

investigated the performance of stochastic gradient descent method for non-smooth

optimization problems. An averaging scheme was proposed to attain the minimax-

optimal rates. On the other hand, Nesterov et al. in [61] provided an explicit way
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of computing the estimated gradient information known as randomized gradient-

free (RGF) oracle and investigated the convergence property for both convex and

non-convex problems. This idea was extended to minimize a sum of non-smooth

but Lipschitz continuous functions in [62–64], where the Gaussian smoothing tech-

nique was introduced to obtain the gradient-free oracle to replace the derivative in

the standard subgradient methods. However, all these methods are endowed with a

doubly-stochastic weighting matrix requirement, which is restrictive in a distributed

setting. The doubly-stochastic assumption was removed in [65] by adopting a push-

sum technique and [66,67] by introducing a surplus variable, respectively. Duchi et

al. in [68] introduced a smoothing technique which used two point gradient estima-

tion to close the optimality gap between the final iterate and the optimal point by

choosing appropriate parameters. This technique was extended to the distributed

scenario in [69], but restricted by the doubly-stochastic assumption on the weighting

matrix. The work in [70] proposed a gradient-free method to achieve the exact con-

vergence with only row- or column-stochastic weighting matrix. The following table

summarizes a review of the aforementioned distributed optimization algorithms.

Table 1.1: Review of distributed optimization algorithms

Reference Algorithm Adjency Matrix Step-size Convergence
[62] RGF-SG D decreasing inexact
[63] DGFA D constant inexact
[64] RGF-SG D diminishing inexact
[65] RGF-Push C decreasing inexact
[69] DZO D decreasing exact

Chapter 3 RGF-DPGD R, C diminishing inexact
Chapter 4 DPPGD R, C decreasing exact

‘D’, ‘R’ and ‘C’ refer to ‘doubly-stochastic’, ‘row-stochastic’ and ‘column-
stochastic’ conditions, respectively.
‘Decreasing’ and ‘diminishing’ refer to ‘

∑∞
k=1 αk = ∞, αk ≥ αk+1’ and

‘
∑∞

k=1 αk =∞,
∑∞

k=1 α
2
k <∞’.
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1.2.2 Distributed Online Optimization

The topic of distributed online optimization has been investigated in [71–78] and the

references therein. In [71], general gradient-based methods were proposed to solve

both unconstrained and set constrained time-varying quadratic optimization prob-

lems from the perspective of continuous-time domain. For discrete-time methods,

in [72], a distributed autonomous online learning based on dual averaging where

agents communicate over a weighted strongly connected graph was investigated. A

regret bound of O(lnT ) was derived for strongly convex cost functions. The same

problem was studied in [73], where a distributed online subgradient push-sum al-

gorithm was presented without the doubly-stochastic requirement on the weighting

matrix, and was found to achieve a regret bound of O((lnT )2). As for the agents

with general convex cost functions interacting over a switching network, distributed

dual-subgradient averaging algorithms were studied in [74] and [75], showing a re-

gret bound of O(
√
T ). Besides, Mateos-Nunez et al. in [76] introduced distributed

online subgradient descent algorithms with proportional-integral disagreement feed-

back, proving a regret bound of O(
√
T ) for convex cost functions and O(lnT ) for

strongly convex cost functions. It is worth noting that the regret used in all the

aforementioned methods is defined as the difference between the incurred network

cost and the cost of the best fixed decision in hindsight, which is known as static re-

gret. On the other hand, to study the scenario where the functions and the decision

variables evolve simultaneously instead of single best fixed decision, the notion of

dynamic regret was brought forward to characterize how much one regrets working

in an online setting as opposed to the offline solution with full knowledge of past and

future observations. With this concept, Shahrampour et al. in [77, 78] proposed a

decentralized mirror descent method for an online optimization problem, where the

minimizer follows an known linear dynamics corrupted by unknown unstructured

noise, and established a regret bound as a function of the deviation of minimizer

sequence.
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It should be noted that all these methods make use of the full knowledge of the

derivatives in the process of the optimization, which implicitly presumes that the

derivatives can be obtained directly. However, there are many applications where

the gradient information is not available to use, e.g., bandit feedback settings, then

these methods cannot be applied. That inspires the study of gradient-free tech-

inques. The gradient-free techniques have been extensively applied in the field of

static optimization as discussed in the previous part. However, for online optimiza-

tion, gradient-free optimization schemes have received little attention. The relevant

studies e.g., [77–79], considered the scenario where gradient of the cost function is

coupled with noise, and the stochastic gradient methods were applied. The follow-

ing table summarizes a review of the aforementioned distributed online optimization

algorithms.

Table 1.2: Review of distributed online optimization algorithms

Reference Algorithm Knowledge Convexity Regret Type Rate

[72]
autonomous online

learning
F strongly static O(lnT )

[73]
online subgradient

push
F strongly static O((lnT )2)

[76]
online subgradient

descent
F strongly static O(lnT )

[76]
online subgradient

descent
F convex static O(

√
T )

[74,75]
dual subgradient

averaging
F convex static O(

√
T )

[79]
Nesterov’s dual

averaging
F convex static O(

√
T )

[77,78]
decentralized mirror

descent
F convex dynamic O(

√
T )

Chapter 5 oRGF-DPGD B convex
static

dynamic
O(
√
T )

‘F’ and ‘B’ refer to ‘full knowledge’ and ‘bandit feedback’, respectively.
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1.2.3 Distributed NE Seeking

There are a large number of studies on Nash equilibrium computation in non-

cooperative games, such as matrix games [80], potential games [81], zero-sum games

[82, 83], aggregate games [84–88], generalized games [89–92], cluster games [93, 94],

hybrid games [95], etc., depending on how the players’ cost functions are coupled

and what types of constraints are involved. Regardless of the game types, the chal-

lenge of such problem settings is the requirement of global knowledge on all players’

actions, which is not practical if the underlying communication network is not fully

connected. In such cases, players have to make decisions based only on a limited set

of information, such as the information from the neighbors. Therefore, a distributed

information sharing protocol is usually adopted to disseminate the local information

among players. For example, the work in [81] derived a systematic methodology of

game design for distributed optimization in a state-based potential game, where a

distributed learning algorithm was introduced. The work in [82] proposed a dis-

tributed saddle-point strategy in a zero-sum game and proved its convergence in

undirected graphs. The same game setting was considered in [83], where a dis-

tributed subgradient-based algorithm was developed and the Nash equilibrium was

established under a uniformly jointly strongly connected weight-balanced digraphs.

In [84], generalized aggregative games with affine coupling constraints were con-

sidered, and a single-layer, fixed step, semi-decentralized algorithm was derived to

compute the generalized aggregative equilibrium. Besides, in [85], a dynamic aver-

age consensus and primal-dual dynamics based seeking strategy was developed to

find Nash equilibrium in set constrained aggregate games, and applied to address

energy consumption control among a network of electricity users. This technique

was also utilized in [86] to compute Nash equilibrium in set constrained aggregate

games. The dynamic average consensus protocol was also adopted in [87] with the

help of differential inclusions and differentiated projections for aggregative games,

where the players’ actions are coupled by linear constraints. This work was ex-

tended to the aggregative games of multiple heterogeneous Euler-Lagrange systems
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in [88]. In [89], a continuous time generalized convex game with shared inequal-

ity constraints among players was considered, a leader-following consensus protocol

with gradient descent method is applied to compute the generalized Nash equi-

librium. This protocol was also employed in [90] to estimate the other players’

actions for the generalized games, where the players’ action sets are constrained

by nonlinear inequality and linear equations. In [91], a distributed subgradient al-

gorithm was presented for a generalized convex game with both convex inequality

and set constraints. In [92], a forward-backward operator splitting method was

introduced for a generalized convex game with the set of players’ actions coupled

by a globally shared affine constraints. In cluster games, to achieve simultaneous

social cost minimization and Nash equilibrium, a dynamic average consensus proto-

col was implemented in [93] where the players’ payoffs are assumed to be smooth.

Zeng et al. in [94] considered cluster games with non-smooth payoffs, and applied

a leader-following consensus protocol with projected differential inclusions to find

generalized Nash equilibrium. In [95], the hybrid games with both continuous-time

and discrete-time players were considered. A hybrid gradient play with a hybrid

consensus protocol was utilized to compute the Nash equilibrium. In [96], the con-

vergence rate was improved by introducing the Nesterov type acceleration for the

gradient play in non-cooperative games with strongly monotone mappings. In [97], a

projection-based gradient play term was applied with a dynamic average consensus

protocol to solve the non-cooperative games with convex set constraints. In [98], a

dynamic gradient play scheme was adopted with a dynamic average consensus pro-

tocol to reject the additive disturbances in the players’ dynamics. Apart from the

leader-following consensus and dynamic average consensus protocols, gossip-based

averaging techniques were also commonly utilized in Nash equilibrium computa-

tions, such as [99–103]. Specifically, a gossip-based distributed algorithm with a

diminishing step-size sequence was developed for aggregate games in [99], while the

convergence to the Nash equilibrium was studied for both diminishing and constant

step-sizes in [100, 101], respectively. In [102], the gossip-based algorithm is applied

to a network graphical game where the undirected communication graph is a subset
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of the undirected interference graph. This work was extended in [103], where both

the communication and interference graphs are directed. In general, the aforemen-

tioned works are model-based approaches, i.e., the implementation of the algorithms

relies on the knowledge of the explicit form of the players’ cost functions, such as

the derivative computation.

There are non-model based approaches, which utilize the players’ local measure-

ments without the requirement on the information of the functional form. For ex-

ample, the work in [104] considered a generalized convex game with both convex cou-

pling inequality constraints and local set constraints. A finite-differencing method

with two-way perturbations was proposed to approximate the partial gradient. The

perturbation parameter needs to be chosen carefully to match the selected step-size.

Different from that, the work in [105] proposed a distributed payoff-based algorithm

for a class of convex games with and without coupling constraints. This technique

was further extended in [106] where the algorithm convergence was proved under

mere monotonicity assumption. Overall, the payoff-based learning strategy proposed

in these two works enables players to sample their actions in a Gaussian distribution.

Then, the mean of this distribution is iteratively updated using only local payoff

values. Another typical non-model based approaches are extremum seeking-based

methods, such as [107–112]. Specifically, the work in [107] proposed a continuous

time multi-input stochastic extremum seeking algorithm for the Nash equilibrium

seeking in non-cooperative games with general nonlinear cost functions. In [108], a

discrete time stochastic extremum seeking method was presented in non-cooperative

games where the players’ cost functions are strictly convex, but the actions are sub-

ject to a linear dynamic constraint. The work in [109] developed an integrator-type

extremum seeking algorithm in non-cooperative games with both quadratic payoffs

and general non-quadratic payoffs as the output of a dynamic system. More ex-

tremum seeking algorithms have been proposed in potential games with unstable

dynamics [110], dynamical constraints [111], and non-cooperative games with time-

varying Nash equilibrium [57]. In general, the extremum seeking strategy makes use
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of the cost value together with some sinusoidal dither signals for perturbation, such

that the gradient of the cost function is extractable. The following table summarizes

a review of the aforementioned non-model based NE seeking algorithms.

Table 1.3: Review of non-model based NE seeking algorithms

Reference Game Algorithm System Smoothness
[104] GNEP finite differencing discrete time non-smooth
[105] GNEP payoff-based discrete time smooth
[106] NEP payoff-based discrete time smooth
[107] NEP extremum seeking continuous time smooth
[108] dynamics extremum seeking discrete time smooth
[109] dynamics extremum seeking continuous time smooth
[110] potential extremum seeking continuous time smooth
[111] dynamics extremum seeking continuous time smooth
[57] NEP extremum seeking continuous time smooth

Chapter 6 NEP RGF-DNES discrete time non-smooth

1.3 Major Contributions of the Thesis

In this dissertation, gradient-free algorithms have been proposed to solve distributed

optimization and NE seeking problems. We would like to clarify that our gradient-

free algorithms belong to the category of zero-order methods (i.e., only the zero-

order information is used, such as the function value), as opposed to the first-order

methods in the literature where the gradient, subgradient, or instances of stochastic

gradient (first-order) information is directly accessible. The major contributions of

this dissertation are summarized as below.

• A set constrained distributed optimization problem with possibly non-smooth

cost functions is considered. In this problem, the explicit expressions of the

cost functions are assumed to be unknown, but the measurements can be

made by the local agents. A gradient-free distributed optimization algorithm

based on the smoothing technique is proposed, in which an RGF oracle is con-

structed locally to estimate the gradient. Different from the doubly-stochastic

Nanyang Technological University Singapore



16 1.3. Major Contributions of the Thesis

requirement, the weighting matrix used in the algorithm only needs to be row

or column stochastic, which enables the algorithm to be implemented in any

strongly connected and fixed digraphs. To justify the effectiveness of the pro-

posed algorithm, both the theoretical analysis and numerical simulations are

conducted. The algorithm is proved to approximately converge to the opti-

mal solution with an optimal gap related to a smoothing parameter, and its

convergence rate is also studied.

• We consider the same set constrained distributed optimization problem. To

improve the convergence results, we propose a gradient-free distributed op-

timization algorithm, in which a pseudo-gradient operator is developed to

estimate the gradient and an optimal averaging scheme is introduced at each

time-step to achieve the convergence to the exact optimal solution. This algo-

rithm requires the weighing matrix to be only row or column stochastic instead

of doubly-stochastic, making it convenient to implement in any strongly con-

nected and fixed digraphs. The optimal averaging scheme allows the algorithm

to converge to the exact optimal solution without the square-summable condi-

tion on the step-size, which increases the range of the step-size selection. The

convergence of the algorithm is rigorously proved, and its convergence rate is

studied with respect to different cases of the step-size.

• Noticing the time-varying nature of many practical problems, we consider a

set constrained distributed online optimization problem, where the possibly

non-differentiable cost functions are allowed to vary with time. Moreover,

the analytical expressions of the cost functions are unknown, but the values

can be measured and only revealed to the agents in hindsight. A gradient-

free distributed online optimization algorithm is presented. Due to the time-

varying nature of the optimal solution trajectory, the notions of both static

and dynamic regrets are adopted to analyze the performance of the algorithm.

With some standard assumptions on the graph connectivity and cost functions,

we are able to show that both regrets are sublinear functions of time, and the
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corresponding averages over time are approximately convergent to zero with

a rate of O(1/
√
T ), which is comparable to the state-of-the-art algorithms.

• A multi-player non-cooperative game is considered, in which the players have

limited knowledge on their local cost functions. Due to the incomplete infor-

mation on the players’ actions, an average consensus protocol is adopted to

disseminate the information among the players. To seek its NE, a gradient-

free distributed algorithm is proposed, which does not rely on the knowledge

of the explicit form of the players’ cost functions. With some mild assump-

tions on the graph connectivity, cost functions and the existence of NE, the

convergence results of the algorithm are derived for both diminishing and con-

stant step-sizes, respectively. In particular, an exact convergence to the NE is

established for the diminishing case, while an approximate convergence to the

NE with a gap proportional to the step-size is attained for the constant case.

1.4 Organization of the Thesis

In the rest of the dissertation, we introduce some definitions and preliminary results

of graph theory, game theory, Gaussian smoothing and RGF techniques in Chap-

ter 2. In Chapter 3, we consider a set constrained distributed optimization problem,

where the explicit expressions of the cost functions are unknown to agents. To solve

the problem, an RGF distributed projected gradient descent method is proposed.

To improve the convergence results, we develop a distributed projected pseudo-

gradient descent algorithm in Chapter 4 for the same problem settings. Towards

this end, the distributed online optimization problem has not been addressed yet.

Thus, in Chapter 5, we consider a distributed online optimization problem, where

the agents’ cost functions are time-varying. An online RGF distributed projected

gradient descent algorithm is presented. Up to now, the algorithms for both dis-

tributed static and online optimization problems have been studied. In Chapter 6,

we turn our focus to a multi-player non-cooperative game, where the players have
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limited knowledge on their cost functions. A gradient-free distributed NE seeking

algorithm is proposed. Detailed theoretical analysis and numerical simulations for

all proposed algorithms are provided to verify the performance of the algorithms in

the corresponding chapters. Chapter 7 concludes this dissertation and gives some

recommendations for further research.
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Chapter 2

Preliminaries

In this chapter, some definitions and preliminary results of graph theory, game

theory, Gaussian smoothing and randomized gradient-free (RGF) techniques are

introduced.

2.1 Graph Theory

Graph theory is commonly used to model the topological relations between agents

in a multi-agent system. A general graph can be classified into two categories:

undirected graphs, where the edges connecting agents are symmetric, and directed

graphs, where the edges connecting agents are asymmetric. Throughout the disser-

tation, we consider the directed graph, whose formal definition is given as follows.

For a directed graph G = {V , E}, the set of agents is V = {1, 2, . . . , N}, and the

set of ordered pairs, (i, j), i, j ∈ V is E ⊂ V × V implying that the information

can be transfered from agent i to agent j. The in-neighbors (respectively, out-

neighbors) of agent i are denoted by N in
i = {j ∈ V|(j, i) ∈ E} (respectively, N out

i =

{j ∈ V|(i, j) ∈ E}). Specifically, the agent i is included in both N in
i and N out

i ,

respectively. It should be noted that N in
i 6= N out

i in general.
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2.2 Game Theory

Game theory is a power tool of analyzing the strategic interactions between rational

decision-makers. With the emergence of multi-agent system, the multi-player non-

cooperative game has received increasing attention. This type of games involves

a number of players, who selfishly minimize their own cost functions by making

decisions in response to other players’ actions. Mathematically, the multi-player

non-cooperative game is defined as follows.

A game denoted by Γ(N, {fi}, {Ωi},G) consists of N players who are communicating

with each other under a directed graph G. Each player i ∈ V owns a cost function

fi : Ω → R, where Ω = Ωi × Ω−i ⊂ RN is the action set of all players, and Ωi ⊂ R

(respectively, Ω−i ⊂ RN−1) denotes the action set of player i (respectively, all players

except player i). Let x = (xi,x−i) ∈ Ω be the vector of all players’ actions, where

xi ∈ Ωi (respectively, x−i ∈ Ω−i) represents the action of player i (respectively, all

players except player i).

An important concept in game theory, Nash equilbrium [16], named after John

Forbes Nash Jr., is a proposed solution, which is formally defined below.

Definition 2.1. For a game Γ(N, {fi}, {Ωi},G), Nash equilibrium is an action pro-

file where no player can reduce its cost by unilaterally changing its own action, i.e.,

a vector x? = (x?i ,x
?
−i) ∈ Ω is called a Nash equilibrium of game Γ(N, {fi}, {Ωi},G)

if and only if

fi(x
?
i ,x

?
−i) ≤ fi(xi,x

?
−i), ∀xi ∈ Ωi, ∀i ∈ V .

2.3 Gaussian Smoothing and RGF

Gaussian smoothing and RGF techniques were initially proposed in [61] to solve

derivative-free optimization problems. Some preliminary results about these techn-
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ques are summarized as follows.

For a function f(x) : X ⊆ Rn → R, its Gaussian smoothed function is defined as

fµ(x) =
1

κ

∫
Rn
f(x + µξ)e−

1
2
‖ξ‖2dξ,

with κ =
∫
Rn e

− 1
2
‖ξ‖2dξ = (2π)n/2 and µ ≥ 0 is a smoothing parameter of function

fµ(x).

The RGF oracle of f(x) can be designed by

gµ(x) =
f(x + µξ)− f(x)

µ
ξ,

where ξ ∈ Rn is uniformly generated over a unit ball.

Some basic properties of fµ(x) and gµ(x) are summarized in the following lemma.

Lemma 2.1. (see [61]) Suppose that f(x) is convex but not necessarily differen-

tiable, its subgradient ∂f(x) is bounded by a positive constant D̂. Then, we have

1) fµ(x) is convex and differentiable, and it satisfies

f(x) ≤ fµ(x) ≤ f(x) +
√
nµD̂;

2) the gradient ∇fµ(x) satisfies

E[gµ(x)] = ∇fµ(x);

3) the RGF oracle gµ(x) satisfies

E[‖gµ(x)‖] ≤
√

E[‖gµ(x)‖2] ≤ (n+ 4)D̂,

where n is the dimension of x.
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The techniques mentioned above will be used in different problem settings in this

dissertation. Therefore, the properties summarized in Lemma 2.1 will vary accord-

ingly.
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Chapter 3

Distributed Optimization via

Randomized Gradient-Free Oracle

3.1 Introduction

As reviewed in Chapter 1, recent works on distributed optimization with a sum of

local cost functions have been reported in [27–47] and the references therein. These

works have extensively investigated the distributed optimization problems differ-

ing from each other in terms of constraints, communication topology, optimality

conditions, etc., and presented various optimization methods to achieve promising

results.

The implementation of these methods require the agents to have direct access to

the gradient or subgradient information of the local cost functions and the con-

straints. However, in some applications, the relation between the variables and the

cost functions are unknown, the gradient information is not available for usage, or

the derivative is not possible to determine. In such cases, the methods requiring no

gradient information are of great demand to these applications. Recent studies on

gradient-free optimization have been found in [60–65]. The work in [60] proposed
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a stochastic gradient descent method, where strongly convex property for the cost

function is assumed. This assumption is removed in [61], where the one-sided ran-

dom gradient-free oracle was firstly developed. A centralized gradient-free method

for an unconstrained optimization problem with different types of cost functions was

discussed in details [61]. This work was extended to a distributed manner in [62,63],

where a standard subgradient method was used with the derivative part replaced

by the oracles. The same idea was also applied to a push-sum algorithm in [65] for

an unconstrained problem. In [64], the two-sided random gradient-free oracle was

implemented and showed similar performance as its one-sided counterpart.

In this chapter, we introduce a randomized gradient-free method for a set constrained

problem. As compared to related works in [62–65], instead of using a standard sub-

gradient method, the methods in this chapter employ a state-of-the-art distributed

gradient descent approach requiring no doubly-stochastic weighting matrix under a

directed communication graph with one-sided randomized gradient-free strategy.

The main contributions of this chapter are summarized as follows.

• This chapter proposes a gradient-free distributed optimization method for a

set constrained problem, where no explicit expressions but only local measure-

ments of the cost functions are required, making it suitable for the applications

where gradient computing is costly or not possible.

• In comparison with most distributed optimization methods where the doubly-

stochastic matrix has been used (e.g., [28,29,32,33,37,39,62–64]), the proposed

method uses a row-stochastic matrix and a column stochastic matrix, making

the algorithm convenient to implement for directed graphs. In fact, there is no

guarantee for a directed graph to have its corresponding doubly-stochastic ma-

trix. Moreover, finding a doubly-stochastic weight matrix for a directed graph

is not a trivial task, especially for large communication network [113, 114].

As compared to the push-sum algorithms, e.g., [65], the push-sum consensus

involves variables in the denominator of the algorithm. This brings in the non-
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linearity to the algorithm, and may cause the possible failure of the algorithm

if the variables happen to be zero at some time-step.

• The detailed analysis on the convergence properties and the rate of convergence

is also provided.

The rest of the chapter is organized as follows. Section 3.2 introduces the problem

formulation. Section 3.3 presents the proposed randomized gradient-free optimiza-

tion algorithm, followed by the detailed analysis on the convergence properties.

Section 3.4 demonstrates the effectiveness of the algorithm through numerical sim-

ulations, followed by the conclusions in Section 3.5.

3.2 Problem Formulation

For a set constrained distributed optimization problem in a multi-agent system,

the objective of the multi-agent system is to cooperatively solve the optimization

problem defined in (3.1) with a set constraint X ⊆ Rn as follows:

min f(x) =
N∑
i=1

fi(x),x ∈ X (3.1)

where X ⊆ Rn is a convex and closed set, fi is a local cost function of agent i and

x = [x1, . . . , xn]T is a global decision vector. The explicit mathematical expression

of fi is unknown, but local agent i can measure the value of fi(x) by introducing the

input x to the system fi. The non-empty optimal solution set of (3.1) is denoted by

X ? with optimal value f ? = f(x?) for any x? ∈ X ?.

We introduce a smoothed version of (3.1) to help us establish the gradient-free

methods, given by

min fµ(x) =
N∑
i=1

fi,µi(x), x ∈ X , (3.2)
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where fi,µi(x) = 1
κ

∫
Rn fi(x + µiξ)e−

1
2
‖ξ‖2dξ is the Gaussian approximation of fi(x)

[61, 62] with κ =
∫
Rn e

− 1
2
‖ξ‖2dξ = (2π)n/2 and µi ≥ 0 is a smoothing parameter of

function fi,µi(x). The properties of the function fi,µi(x) are presented in Lemma 3.1.

Similarly, we denote the optimal solution set of problem (3.2) by X ?
µ with optimal

value f ?µ = fµ(x?µ) for any x?µ ∈ X ?
µ .

Throughout this chapter, we suppose the following assumptions hold:

Assumption 3.1. The directed graph is strongly connected.

Assumption 3.2. Each local cost function fi is convex, but not necessarily differ-

entiable. Its subgradient ∂fi(x) is bounded, i.e., ∀x ∈ X , there exists a positive

constant D̂ such that ‖∂fi(x)‖ ≤ D̂.

3.3 Main Results

In this section, we will present the randomized gradient-free method for the opti-

mization problem defined in (3.1), followed by the convergence analysis.

3.3.1 Randomized Gradient-Free Distributed Projected Gra-

dient Descent (DPGD)

Motivated by the distributed gradient descent algorithm in [27, 35], we develop a

randomized gradient-free distributed projected gradient descent (DPGD) method

to solve the problem defined in (3.1), which is described as follows.

At the k-th step, each agent j delivers its state information xjk with a weighted

auxiliary variable [Ac]ijy
j
k to its out-neighbor i ∈ N out

j . Then, agent i updates its

variables xik+1 and yik+1 with the information received from its in-neighbor j ∈ N in
i
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as follows

xik+1 = PX
[ N∑
j=1

[Ar]ijx
j
k + εyik − αkgµi(xik)

]
, (3.3a)

yik+1 = xik −
N∑
j=1

[Ar]ijx
j
k +

N∑
j=1

[Ac]ijy
j
k − εy

i
k, (3.3b)

where gµi(x
i
k) is the random gradient-free oracle given as

gµi(x
i
k) =

fi(x
i
k + µiξik)− fi(xik)

µi
ξik, (3.4)

ξi ∈ Rn is uniformly generated over a unit ball, Ar, Ac are the row-stochastic and

column-stochastic adjacency matrices, respectively, i.e.,
∑N

j=1[Ar]ij = 1 for all i ∈ V ,

and
∑N

i=1[Ac]ij = 1 for all j ∈ V . For any directed graphs, they can be obtained by

letting [Ar]ij = 1/|N in
i | and [Ac]ij = 1/|N out

j |. ε is a small positive number. αk > 0

is a diminishing step-size satisfying

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞. (3.5)

The procedures are summarized in Algorithm 3.1.

Algorithm 3.1 Randomized gradient-free DPGD

1: Initialize: i ∈ V
randomly select xi0,y

i
0 ∈ X

randomly generate {ξik}k≥0 over a unit ball independently
2: Iteration (k ≥ 0): i ∈ V

compute gµi(x
i
k) based on (3.4)

update variables xik+1 based on (3.3a)
update variables yik+1 based on (3.3b)

3: Output: i ∈ V
xik → x?

Compared with the standard subgradient method (e.g., [62–64]) where a doubly-

stochastic weighting matrix is used, our proposed algorithm introduced two weight-

ing matrices, aiming to establish the average consensus property for any arbitrary
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strongly connected graphs. However, a direct replacement of the doubly-stochastic

matrix by a row-stochastic (or column-stochastic) matrix in those algorithms will

cause the shift in the average. Thus, an auxiliary variable yik is employed to off-

set the shift caused by the unbalanced (non-doubly-stochastic) weighting structure.

The function of this auxiliary variable is to record the state change of the associated

agent at each time, known as ‘surplus’. These variables collectively maintain the

information of the average shift amount. For an agent in a directed graph, it has

both in-neighbors and out-neighbors. A doubly-stochastic matrix can balance the

information exchange for both in-neighbors and out-neighbors at the same time,

while a row-stochastic (or column-stochastic) matrix can only balance the infor-

mation exchange for one side neighbors (i.e., either in-neighbors or out-neighbors).

Hence, a row-stochastic and a column-stochastic weighting matrices are introduced

to characterize the communication with the in-neighbors and out-neighbors, respec-

tively. The parameter ε is used to specify the amount of surplus to update the state,

which is important to the convergence (see [115] for the details).

3.3.2 Convergence Analysis

In this part, we provide detailed analysis on the convergence properties of the pro-

posed algorithm. We denote the σ-field generated by the entire history of the random

variables from step 0 to k − 1 by Fk, i.e.,

Fk =

{x
i
0, i ∈ V}, k = 0,

{(xi0, i ∈ V); (ξis, i ∈ V); 0 ≤ s ≤ k − 1}, k ≥ 1.

Before proceeding to the main results, we first provide some properties of the func-

tion fi,µi(x), which is a variation of Lemma 2.1 stated in Chapter 2.

Lemma 3.1. (see [61]) Suppose Assumption 3.2 holds. For each i ∈ V, the following

properties of the function fi,µi(x
i
k) are satisfied:
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1) fi,µi(x
i
k) is convex and differentiable, and it satisfies

fi(x
i
k) ≤ fi,µi(x

i
k) ≤ fi(x

i
k) +

√
nµiD̂;

2) the gradient ∇fi,µi(xik) satisfies

E[gµi(x
i
k)|Fk] = ∇fi,µi(xik);

3) the randomized gradient-free oracle gµi(x
i
k) satisfies

E[‖gµi(xik)‖|Fk] ≤
√

E[‖gµi(xik)‖2|Fk] ≤ (n+ 4)D̂,

where n is the dimension of x.

For the convenience of analysis, we write (3.3) in a compact form as

zik+1 =
2N∑
j=1

[A]ijz
j
k + ϑik, (3.6)

where

zik =

xik, i ∈ {1, . . . , N},

yi−Nk , i ∈ {N + 1, . . . , 2N},

ϑik =

xik+1 −
∑N

j=1[Ar]ijx
j
k − εyik, i ∈ {1, . . . , N},

0n, i ∈ {N + 1, . . . , 2N},

A =

 Ar εI

I − Ar Ac − εI

 .
Define z̄k = 1

N

∑2N
i=1 zik = 1

N

∑N
i=1 xik + 1

N

∑N
i=1 yik, which is the average of xik + yik

over all agents at time-step k.

Next, we study the convergence of the weighting matrix A defined in (3.6).
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Lemma 3.2. (Lemma 1 in [35]) Suppose Assumption 3.1 holds. A is the weight-

ing matrix defined in (3.6), and the constant ε in A satisfies ε ∈ (0, ε̄) with ε̄ =

1
(20+8N)N

(1 − |λ3|)N , where λ3 is the third largest eigenvalue of A by setting ε = 0.

Then ∀i, j ∈ {1, . . . , 2N}, the entries [Ak]ij converge to their limits as k →∞ at a

geometric rate, i.e., ∥∥∥∥∥∥Ak −
1N1TN

N

1N1TN
N

0 0

∥∥∥∥∥∥
∞

≤ Γγk, k ≥ 1,

where Γ > 0 and 0 < γ < 1 are some constants.

Remark 3.1. For the upper bound parameter ε̄, it is to ensure the average consen-

sus for any arbitrary strongly connected directed topologies, which makes it rather

conservative, but is hard to avoid in order to estimate the perturbation bound with

respect to general matrices according to the matrix perturbation literature, see [116].

Thus, to choose a proper ε in real implementation, one needs to know the value of

its upper bound ε̄. This implies that the structure of the communication network has

also to be known as it involves λ3, which is not possible in distributed settings. One

may try to estimate the range of the bound ε̄ = ( 1−|λ3|
20+8N

)N ∈ (0, 1
(8N)N

) and select ε

in this range. Even though this estimation may not be good enough to confirm the

exact value of ε̄, it is still useful in terms of providing some reference in the selection

of ε.

Then, we characterize the bounds of the consensus terms xik − z̄k and yik − 0n.

Lemma 3.3. Suppose Assumptions 3.1 and 3.2 hold. Let {zik}k≥0 be the sequence

generated by (3.6). Then, it holds that

1) for i = {1, . . . , N} and k ≥ 1

E[‖zik − z̄k‖|Fk−1] ≤ 2NΓγk max
j
‖zj0‖

+ Γ
k−1∑
r=1

γk−r
N∑
j=1

E[‖ϑjr−1‖|Fr−1] +
N∑
j=1

E[‖ϑjk−1‖|Fk−1];
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2) for i = {N + 1, . . . , 2N} and k ≥ 1

E[‖zik‖|Fk−1] ≤ 2NΓγk max
j
‖zj0‖

+ Γ
k−1∑
r=1

γk−r
N∑
j=1

E[‖ϑjr−1‖|Fr−1],

where Γ > 0 and 0 < γ < 1 are some constants.

Proof: For k ≥ 1, we have

zik =
2N∑
j=1

[Ak]ijz
j
0 +

k−1∑
r=1

2N∑
j=1

[Ak−r]ijϑ
j
r−1 + ϑik−1.

by applying (3.6) recursively. Then we can obtain that

z̄k =
1

N

2N∑
j=1

zj0 +
1

N

k−1∑
r=1

2N∑
j=1

ϑjr−1 +
1

N

2N∑
j=1

ϑjk−1,

where we have used column-stochastic property of A, i.e., for k ≥ 1, it holds that∑2N
i=1[Ak]ij = 1.

For part 1), subtracting z̄k from zik and taking the norm and conditional expectation

on F` from ` = 0 to k − 1, we have that for 1 ≤ i ≤ N and k ≥ 1,

E[‖zik − z̄k‖|Fk−1] ≤
2N∑
j=1

∥∥∥∥[Ak]ij −
1

N

∥∥∥∥max
j
‖zj0‖

+
k−1∑
r=1

N∑
j=1

∥∥∥∥[Ak−r]ij −
1

N

∥∥∥∥E[‖ϑjr−1‖|Fr−1]

+
N − 1

N
E[‖ϑik−1‖|Fk−1] +

1

N

∑
j 6=i

E[‖ϑjk−1‖|Fk−1].

(3.7)

Noting that the last two terms

N − 1

N
E[‖ϑik−1‖|Fk−1] +

1

N

∑
j 6=i

E[‖ϑjk−1‖|Fk−1] ≤
N∑
j=1

E[‖ϑjk−1‖|Fk−1],
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and applying Lemma 3.2 to (3.7), we obtain the result of part 1).

For part 2), taking the norm and conditional expectation on F` from ` = 0 to k− 1

for zik, N + 1 ≤ i ≤ 2N and k > 1, we have

E[‖zik‖|Fk−1] ≤
2N∑
j=1

∥∥[Ak]ij
∥∥max

j
‖zj0‖+

k−1∑
r=1

N∑
j=1

∥∥[Ak−r]ij
∥∥E[‖ϑjr−1‖|Fk−1]. (3.8)

Applying Lemma 3.2 to (3.8), we complete the proof with similar arguments to part

1).

Next, we quantify the bound for the augmented randomized gradient-free oracle ϑjk

defined in (3.6).

Lemma 3.4. Suppose Assumptions 3.1 and 3.2 hold. Let ε be the constant such

that ε ≤ min(ε̄, 1−γ
2NΓγ

) where ε̄ = 1
(20+8N)N

(1− |λ3|)N , Γ > 0 and 0 < γ < 1 are some

constants. Then, there exists some bounded constant G > 0, such that for all k ≥ 0,

the augmented randomized gradient-free oracle ϑjk satisfies

N∑
j=1

E[‖ϑjk‖|Fk] ≤ Gαk,

where αk is the non-increasing step-size used in (3.3).

Proof: We first show the following two inequalities hold for any K ≥ 2

K∑
k=1

N∑
j=1

E[‖ϑjk‖|Fk] ≤ Φ1

K∑
k=1

αk + Ψ1, (3.9)

K∑
k=1

αk

N∑
j=1

E[‖ϑjk‖|Fk] ≤ Φ2

K∑
k=1

α2
k + Ψ2, (3.10)

where Φ1,Φ2,Ψ1 and Ψ2 are some bounded positive constants.
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By the definition of ϑik, we have

‖ϑik‖ ≤
∥∥∥∥xik+1 −

N∑
j=1

[Ar]ijx
j
k

∥∥∥∥+ ‖εyik‖ ≤ ε‖yik‖

+ ‖εyik − αkgµi(xik)‖ ≤ αk‖gµi(xik)‖+ 2ε‖yik‖

(3.11)

where the second inequality follows the projection’s non-expansive property. Taking

the conditional expectation on F` from ` = k − 1 to k in (3.11) and applying

Lemma 3.1-3) on E[‖gµi(xik)‖|Fk], Lemma 3.3-2) on E[‖yik‖|Fk−1], we have

N∑
i=1

E[‖ϑik‖|Fk] ≤ 4N2εΓγk max
j
‖zj0‖

+ (n+ 4)ND̂αk + 2NεΓ
k−1∑
r=1

γk−r
N∑
j=1

E[‖ϑjr−1‖|Fr−1].

(3.12)

Summing (3.12) from k = 1 to K, and noting that the last term

K∑
k=1

k−1∑
r=1

γk−r
N∑
j=1

E[‖ϑjr−1‖|Fr−1] ≤ γ

1− γ

K∑
k=1

N∑
j=1

E[‖ϑjk‖|Fk],

we can obtain that

K∑
k=1

N∑
i=1

E[‖ϑik‖|Fk] ≤ (n+ 4)ND̂
K∑
k=1

αk

+
4N2εΓγ

1− γ
max
j
‖zj0‖+

2NεΓγ

1− γ

K∑
k=1

N∑
j=1

E[‖ϑjk‖|Fk].

Rearranging the terms and doing some simple algebra, we can obtain the result of

(3.9).
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Similarly, it follows from (3.12) that

K∑
k=1

αk

N∑
i=1

E[‖ϑik‖|Fk] ≤ (n+ 4)ND̂
K∑
k=1

α2
k + 4N2εΓ max

j
‖zj0‖

K∑
k=1

γkαk

+ 2NεΓ
K∑
k=1

αk

k−1∑
r=1

γk−r
N∑
j=1

E[‖ϑjr−1‖|Fr−1].

(3.13)

Noting that the step-size is diminishing, the last term holds that

K∑
k=1

αk

k−1∑
r=1

γk−r
N∑
j=1

E[‖ϑjr−1‖|Fr−1] ≤
K∑
k=1

k−1∑
r=1

γk−rαr−1

N∑
j=1

E[‖ϑjr−1‖|Fr−1]

≤ γ

1− γ

K∑
k=1

αk

N∑
j=1

E[‖ϑjk‖|Fk].

By applying [66, Lemma 3-1)] on the second term of (3.13), we can obtain the result

of (3.10).

Next, we show the convergence of
∑N

j=1 E[‖ϑjk‖|Fk]. Taking the limsup on both

sides of (3.12), and noting that

lim sup
k→∞

k−1∑
r=1

γk−r
N∑
j=1

E[‖ϑjr−1‖|Fr−1] ≤ γ

1− γ
lim sup
k→∞

N∑
j=1

E[‖ϑjk‖|Fk],

and limk→∞ γ
k = 0 and limk→∞ αk = 0, we obtain

(
1− 2NεΓγ

1− γ

)
lim sup
k→∞

N∑
j=1

E[‖ϑjk‖|Fk] ≤ 0.

Therefore,
∑N

j=1 E[‖ϑjk‖|Fk] converges to 0 due to ε ≤ 1−γ
2NΓγ

.

Lastly, we prove the desired result by contradiction. Suppose the conclusion is not

true. Then, there exists some k, such that (
∑N

j=1 E[‖ϑjk‖|Fk])/αk = ∞. Since

αk 6= 0, there are two cases where (
∑N

j=1 E[‖‖ϑjk‖‖|Fk])/αk = ∞. Case 1 : at some

finite kf ,
∑N

j=1 E[‖ϑjkf‖|Fkf ] =∞; Case 2 : (
∑N

j=1 E[‖ϑjk‖|Fk])/αk =∞ when k goes

to infinity. Next, we show that both cases lead to contradiction.
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Case 1 : Suppose at some finite kf ,
∑N

j=1 E[‖ϑjkf‖|Fkf ] = ∞. From (3.10), we have∑∞
k=1 αk

∑N
j=1 E[‖ϑjk‖|Fk] ≤ Φ2

∑∞
k=1 α

2
k + Ψ2 < ∞. Since αk 6= 0, every term∑N

j=1 E[‖ϑjk‖|Fk] is bounded, which contradicts to
∑N

j=1 E[‖ϑjkf‖|Fkf ] =∞.

Case 2: Suppose (
∑N

j=1 E[‖ϑjk‖|Fk])/αk = ∞ when k goes to infinity. Since the

term
∑N

j=1 E[‖ϑjk‖|Fk] is convergent, it implies that there exists some finite K > 0

such that for all k ≥ K, we have
∑N

j=1 E[‖ϑjk‖|Fk] > 2Φ1αk. Since
∑∞

k=1 αk = ∞,

we have Φ1

∑K−1
k=1 αk + Ψ1 < Φ1

∑∞
k=K αk =∞. Hence, we obtain

∞∑
k=1

N∑
j=1

E[‖ϑjk‖|Fk] >
∞∑
k=K

N∑
j=1

E[‖ϑjk‖|Fk] > 2Φ1

∞∑
k=K

αk > Φ1

∞∑
k=1

αk + Ψ1,

which contradicts to (3.9).

Therefore, combining both cases, we complete the proof.

With the above lemmas, we are ready to establish the main results consisting of two

theorems – one for consensus and the other for optimality.

Theorem 3.1. Suppose Assumptions 3.1 and 3.2 hold. Let {zik}k≥0 be the sequence

generated by (3.6) with a diminishing step-size sequence {αk}k≥0 satisfying (3.5).

Then, zik satisfies

1) For i = {1, . . . , N},

lim
k→∞

E[‖zik − z̄k‖] = 0.

2) For i = {N + 1, . . . , 2N},

lim
k→∞

E[‖zik‖] = 0.

Proof: For part (1), applying Lemma 3.4 to the result in Lemma 3.3-1) and taking
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the total expectation, we have

E[‖zik − z̄k‖] ≤ 2NΓγk max
j

E[‖zj0‖] +GΓ
k−1∑
r=1

γk−rαr−1 +Gαk−1. (3.14)

Noting that limk→∞
∑k−1

r=1 γ
k−rαr−1 = γ

1−γ limk→∞ αk = 0 and limk→∞ γ
k = 0 from

the results in [66, Lemma 4], we complete the proof of part (1).

For part (2), applying Lemma 3.4 to the result in Lemma 3.3-2) and taking the total

expectation, we obtain the desired result by the same arguments as in part (1).

Remark 3.2. Theorem 3.1 characterizes the consensus property of the algorithm;

namely, all agents xik (respectively yik), i ∈ V will converge to the same point z̄k

(respectively 0n) asymptotically to achieve the exact convergence.

Theorem 3.2. Suppose Assumptions 3.1 and 3.2 hold. Let {zik}k≥0 be the sequence

generated by (3.6) with a diminishing step-size sequence {αk}k≥0 satisfying (3.5).

Then, we have

lim
k→∞

E[f(z̄k)]− f ? ≤
√
nD̂

N∑
i=1

µi.

Proof: Based on (3.6) and the fact that A is column-stochastic, we have

z̄k+1 =
1

N

2N∑
j=1

[ 2N∑
i=1

[A]ij

]
zjk +

1

N

2N∑
i=1

ϑik = z̄k +
1

N

N∑
i=1

ϑik.

Thus, for any x?µ ∈ X ?
µ , we can derive that

‖z̄k+1 − x?µ‖2 =‖z̄k − x?µ‖2 +

∥∥∥∥ 1

N

N∑
i=1

ϑik

∥∥∥∥2

+
2

N

N∑
i=1

〈ϑik, z̄k − x?µ〉

=‖z̄k − x?µ‖2 +
1

N2

∥∥∥∥ N∑
i=1

ϑik

∥∥∥∥2

(3.15a)

− 2αk
N

N∑
i=1

〈αkgµi(xik), z̄k − x?µ〉 (3.15b)

+
2

N

N∑
i=1

〈ϑik + αkgµi(x
i
k), z̄k − x?µ〉. (3.15c)
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For the second term in (3.15a), taking the conditional expectation on Fk yields

E
[∥∥∥∥ N∑

i=1

ϑik

∥∥∥∥2

|Fk
]
≤

N∑
i=1

E[‖ϑik‖2|Fk]

=
N∑
i=1

(E[‖ϑik‖|Fk])2 +
N∑
i=1

Cov(‖ϑik‖, ‖ϑik‖)

≤
( N∑

i=1

E[‖ϑik‖|Fk]
)2

+ V1,k ≤ G2α2
k + V1,k,

(3.16)

where we have applied Lemma 3.4 on
∑N

i=1 E[‖ϑik‖|Fk] and used E[xy] = E[x]E[y] +

Cov(x, y). V1,k > 0 is an upper bound of the covariance term
∑N

i=1Cov(‖ϑik‖, ‖ϑik‖).

For (3.15b), taking the conditional expectation on Fk and applying Lemma 3.1-2)

gives
∑N

i=1〈E[gµi(x
i
k)|Fk], z̄k − x?µ〉 =

∑N
i=1〈∇fi,µi(xik), z̄k − x?µ〉. Noting that

∇fi,µi(xik)T (z̄k − x?µ) = ∇fi,µi(xik)T (z̄k − xik) +∇fi,µi(xik)T (xik − x?µ)

≥ −‖∇fi,µi(xik)‖‖xik − z̄k‖+ fi,µi(x
i
k)− fi,µi(x?µ)

≥ −‖∇fi,µi(xik)‖‖xik − z̄k‖+ fi,µi(x
i
k)− fi,µi(z̄k) + fi,µi(z̄k)− fi,µi(x?µ)

≥ −(‖∇fi,µi(xik)‖+ ‖∇fi,µi(z̄k)‖)‖xik − z̄k‖+ fi,µi(z̄k)− fi,µi(x?µ)

≥ −2(n+ 4)D̂‖xik − z̄k‖+ fi,µi(z̄k)− fi,µi(x?µ),

where fi,µi(x
i
k)− fi,µi(z̄k) ≥ 〈∇fi,µi(z̄k),xik − z̄k〉 ≥ −‖∇fi,µi(z̄k)‖‖xik − z̄k‖ by con-

vexity of fi,µi(x); ‖∇fi,µi(xik)‖ and ‖∇fi,µi(z̄k)‖ can be bounded using Lemma 3.1-3),

particularly, ‖∇fi,µi(·)‖ = ‖E[gµi(·)|Fk]‖ ≤ E[‖gµi(·)‖|Fk] ≤ (n + 4)D̂. Thus, we

obtain

N∑
i=1

〈E[gµi(x
i
k)|Fk], z̄k − x?µ〉 ≥ −2(n+ 4)D̂

N∑
i=1

‖xik − z̄k‖+ fµ(z̄k)− f ?µ. (3.17)

Noting that for (3.15c), we have

N∑
i=1

〈ϑik + αkgµi(x
i
k), z̄k − x?µ〉 =

N∑
i=1

〈ϑik + αkgµi(x
i
k), z̄k − z̄k+1〉 (3.18a)
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+
N∑
i=1

〈ϑik + αkgµi(x
i
k), z̄k+1 − xik+1〉 (3.18b)

+
N∑
i=1

〈ϑik + αkgµi(x
i
k),x

i
k+1 − x?µ〉. (3.18c)

For (3.18a), we have

N∑
i=1

〈ϑik + αkgµi(x
i
k), z̄k − z̄k+1〉 ≤

N∑
i=1

‖ϑik + αkgµi(x
i
k)‖
∥∥∥∥ 1

N

N∑
i=1

ϑik

∥∥∥∥
≤ 1

N

( N∑
i=1

‖ϑik‖
)2

+
αk
N

N∑
i=1

‖ϑik‖
N∑
i=1

‖gµi(xik)‖.

Taking the conditional expectation on Fk gives

N∑
i=1

E[〈ϑik + αkgµi(x
i
k), z̄k − z̄k+1〉|Fk] ≤

1

N

( N∑
i=1

E[‖ϑik‖|Fk]
)2

+
αk
N

N∑
i=1

E[‖ϑik‖|Fk]
N∑
i=1

E[‖gµi(xik)‖|Fk] + V2,k

≤ 1

N
G(G+ (n+ 4)ND̂)α2

k + V2,k, (3.19)

where we have applied the results from Lemma 3.1-3) on E[‖gµi(xik)‖|Fk] and Lemma 3.4

on
∑N

i=1 E[‖ϑik‖|Fk]. V2,k > 0 is an upper bound of the sum of the covariance terms

Cov(
∑N

i=1 ‖ϑik‖,
∑N

i=1 ‖ϑik‖) and Cov(
∑N

i=1 ‖ϑik‖,
∑N

i=1 ‖gµi(xik)‖).

For (3.18b), we have

N∑
i=1

〈ϑik + αkgµi(x
i
k), z̄k+1 − xik+1〉 ≤

N∑
i=1

‖ϑik + αkgµi(x
i
k)‖‖z̄k+1 − xik+1‖

≤
N∑
i=1

(‖ϑik‖+ αk‖gµi(xik)‖)‖z̄k+1 − xik+1‖.
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Taking the conditional expectation on Fk yields

N∑
i=1

E[〈ϑik + αkgµi(x
i
k), z̄k+1 − xik+1〉|Fk]

≤ (G+ (n+ 4)D̂)αk

N∑
i=1

E[‖z̄k+1 − xik+1‖|Fk] + V3,k, (3.20)

where we have applied the results from Lemma 3.1-3) on E[‖gµi(xik)‖|Fk] and Lemma 3.4

on
∑N

i=1 E[‖ϑik‖|Fk]. V3,k > 0 is an upper bound of the sum of the covariance terms

Cov(
∑N

i=1 ‖ϑik‖, ‖z̄k+1 − xik+1‖) and Cov(
∑N

i=1 ‖gµi(xik)‖, ‖z̄k+1 − xik+1‖).

For (3.18c), it follows from the projection’s non-expansive property that

〈ϑik + αkgµi(x
i
k),x

i
k+1 − x?µ〉 ≤ 0. (3.21)

Thus, taking the conditional expectation on Fk in (3.18) and substituting (3.19),

(3.20) and (3.21), we obtain

N∑
i=1

E[〈ϑik + αkgµi(x
i
k),z̄k − x?µ〉|Fk] ≤

1

N
G(G+ (n+ 4)ND̂)α2

k + V2,k + V3,k

+ (G+ (n+ 4)D̂)αk

N∑
i=1

E[‖z̄k+1 − xik+1‖|Fk].

(3.22)

Taking the conditional expectation on Fk in (3.15), and substituting (3.16), (3.17)

and (3.22), we obtain that

2αk(fµ(z̄k)− f ?µ) ≤ 4(n+ 4)D̂
N∑
i=1

αk‖xik − z̄k‖

+N(‖z̄k − x?µ‖2 − E[‖z̄k+1 − x?µ‖2|Fk]) + 2V2,k + 2V3,k

+
1

N
(G2α2

k + V1,k) +
2

N
G(G+ (n+ 4)ND̂)α2

k

+ 2(G+ (n+ 4)D̂)
N∑
i=1

αkE[‖z̄k+1 − xik+1‖|Fk]. (3.23)
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Taking the total expectation in (3.23) and summing up from k = 0 to t− 1, we have

t−1∑
k=0

αk(E[fµ(z̄k)]− f ?µ) ≤ NB1

2
+

V̂1

2N
+ V̂2 + V̂3

+ 2(n+ 4)D̂
N∑
i=1

t−1∑
k=0

αkE[‖xik − z̄k‖]

+ (G+ (n+ 4)D̂)
N∑
i=1

t−1∑
k=0

αkE[‖xik+1 − z̄k+1‖]

+
G

2N
(3G+ 2(n+ 4)ND̂)

t−1∑
k=0

α2
k, (3.24)

where B1 = E[‖z̄0 − x?µ‖2]. V̂1, V̂2 and V̂3 are the upper bounds of
∑∞

k=0 V1,k,∑∞
k=0 V2,k and

∑∞
k=0 V3,k, respectively.

Considering
∑t−1

k=1 αkE[‖zik− z̄k‖] and
∑t−1

k=0 αkE[‖zik+1− z̄k+1‖] for 1 ≤ i ≤ N , from

(3.14) we have

t−1∑
k=1

αkE[‖zik − z̄k‖] ≤ 2NΓ max
j

E[‖zj0‖]
t−1∑
k=1

αkγ
k

+GΓ
t−1∑
k=1

k−1∑
r=1

γk−rαkαr−1 +G
t−1∑
k=1

αkαk−1,

t−1∑
k=0

αkE[‖zik+1 − z̄k+1‖] ≤ 2NΓ max
j

E[‖zj0‖]
t−1∑
k=0

αkγ
k+1

+GΓ
t−1∑
k=0

k∑
r=1

γk−r+1αkαr−1 +G
t−1∑
k=0

α2
k.

Following the results from [66, Lemma 3], we have

t−1∑
k=0

αkE[‖xik − z̄k‖] ≤ NΓ max
j

E[‖zj0‖]
( γ2

1− γ2

)
+B2

+

( t−1∑
k=0

α2
k

)[
NΓ max

j
E[‖zj0‖] +G

(
1 +

Γγ

1− γ

)]
, (3.25)
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and

t−1∑
k=0

αkE[‖xik+1 − z̄k+1‖] ≤ NΓ max
j

E[‖zj0‖]
( γ2

1− γ2

)
+

( t−1∑
k=0

α2
k

)[
NΓ max

j
E[‖zj0‖] +G+

GΓγ

1− γ

]
, (3.26)

where we have applied the results from [66, Lemma 3] and let B2 = maxi α0E[‖xi0−

z̄0‖]. Substituting (3.25) and (3.26) to (3.24), we have

t−1∑
k=0

αk(E[fµ(z̄k)]− f ?µ) ≤
t−1∑
k=0

α2
k

[
G(3G+ 2(n+ 4)ND̂)

2N

+
(
G+ 3(n+ 4)D̂

)
N

(
NΓ max

j
E[‖zj0‖] +G+

GΓγ

1− γ

)]
+

[(
G+ 3(n+ 4)D̂

)
N2Γ max

j
E[‖zj0‖]

(
γ2

1− γ2

)
+ 2(n+ 4)ND̂B2 +

NB1

2
+

V̂1

2N
+ V̂2 + V̂3

]
. (3.27)

Taking the limit as t → ∞ and the fact that E[fµ(z̄k)] ≥ f ?µ,
∑∞

k=0 αk = ∞ and∑∞
k=0 α

2
k <∞, we have

lim inf
k→∞

E[fµ(z̄k)] = f ?µ. (3.28)

Dividing both sides of (3.23) by N and dropping the non-negative term 2αk
N

(fµ(z̄k)−

f ?µ), we have

E[‖z̄k+1 − x?µ‖2|Fk] ≤ ‖z̄k − x?µ‖2 + Z(k) (3.29)

where Z(k) denotes the sum of all remaining terms. Following the analysis in (3.25)

and (3.26) and the fact that
∑∞

k=0 α
2
k < ∞, we can show that

∑∞
k=0 Z(k) < ∞.

Applying [25, Lemma 9 in Ch. 2] to (3.29), we obtain that the sequence ‖z̄k − x?µ‖

converges almost surely for any x?µ ∈ X ?
µ . In view of (3.28) and the continuity

of fµ, there exists a convergent subsequence of z̄k, denoted by z̄k1 , such that its

limit (denoted by z̄?) exists and belongs to X ?
µ , i.e., limk1→∞ z̄k1 = z̄? ∈ X ?

µ with
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probability 1. Now, letting x?µ = z̄? and considering the convergent sequence ‖z̄k −

z̄?‖, it has a subsequence ‖z̄k1 − z̄?‖ converging to 0 almost surely, which implies

that it should also converge to 0 almost surely, i.e., limk→∞ ‖z̄k − z̄?‖ = 0 with

probability 1. Thus, we have z̄k converges to its limit limk→∞ z̄k = z̄? almost surely,

which implies that limk→∞ E[fµ(z̄k)] = f ?µ.

According to Lemma 3.1-1), for any x? ∈ X ? and x?µ ∈ X ?
µ , it can be obtained that

f ?µ = fµ(x?µ) ≤ fµ(x?) ≤ f(x?) +
√
nD̂

∑N
i=1 µ

i = f ? +
√
nD̂

∑N
i=1 µ

i. Together with

the fact that f(z̄k) ≤ fµ(z̄k), we obtain the desired result.

Remark 3.3. Theorem 3.2 shows that the cost value of the multiagent system will

converge to its optimal value with an error bound due to the use of gradient-free

oracle instead of the true gradient information, which can be moderated by smaller

µi.

3.3.3 Convergence Rate

In this part, we discuss the convergence rate of the proposed algorithm under dif-

ferent cases of step-size. As discussed in Theorem 3.2, the algorithm is guaranteed

to achieve an inexact convergence to a neighborhood of the optimal value with a

bounded error. Hence, we are referring the convergence rate as the rate of con-

vergence to the neighborhood of the optimal solution instead of the exact optimal

solution. The following theorem summarizes the main result.

Theorem 3.3. Suppose Assumptions 3.1 and 3.2 hold. Let {zik}k≥0 be the sequence

generated by (3.6) with step-size sequence αk = α
(k+2)a

, where α > 0 is a constant

and a ∈ (0, 1). Then we have

1) for a ∈ (0, 1
2
), ft − f ? ≤ C0 +O

(
1

ta

)
;

2) for a = 1
2
, ft − f ? ≤ C0 +O

(
ln t√
t

)
;
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3) for a ∈ (1
2
, 1), ft − f ? ≤ C0 +O

(
1

t1−a

)
;

where C0 is a constant.

Proof: The proof follows the flow of the convergence rate analysis in [35]. Since

ft = min0<k≤t E[f(z̄k)], we can write (3.27) as the following inequality with some

positive constants C0, C1 and C2 by dividing both sides by
∑t−1

k=0 αk:

ft − f ? ≤ C0 +
C1∑t−1
k=0 αk

+
C2

∑t−1
k=0 α

2
k∑t−1

k=0 αk
, (3.30)

where

C0 =
√
nD̂

N∑
i=1

µi,

C1 =
(
G+ 3(n+ 4)D̂

)
N2Γ max

j
E[‖zj0‖]

(
γ2

1− γ2

)
+ 2(n+ 4)ND̂B2 +

NB1

2
+

V̂1

2N
+ V̂2 + V̂3,

C2 =
(
G+ 3(n+ 4)D̂

)
N

(
NΓ max

j
E[‖zj0‖] +G+

GΓγ

1− γ

)
+

G

2N

(
3G+ 2(n+ 4)ND̂

)
.

For a ∈ (0, 1
2
), it follows from (3.30) that

ft − f ? ≤ C0 +
C1(1− a)

α[(t+ 2)1−a − 21−a]
+ +

C2α(1− a)

1− 2a

(t+ 1)1−2a − 1

(t+ 2)1−a − 21−a

= C0 +O

(
1

ta

)
.

For a = 1
2
, by the same arguments, (3.30) leads to

ft − f ? ≤ C0 +
C1

2α[
√
t+ 2−

√
2]

+
αC2 ln (t+ 1)

2(
√
t+ 2−

√
2)

= C0 +O

(
ln t√
t

)
.

Nanyang Technological University Singapore



44 3.4. Numerical Simulation

For a ∈ (1
2
, 1), by the same arguments, (3.30) leads to

ft − f ? ≤ C0 +
C1(1− a)

α[(t+ 2)1−a − 21−a]

+
C2α(1− a)

2a− 1

1− 1
(t+1)2a−1

(t+ 2)1−a − 21−a = C0 +O

(
1

t1−a

)
.

Remark 3.4. As can be seen in Theorem 3.3, the rate of convergence to the neigh-

borhood of the optimal value is dependent on the selection of the step-size. Compared

with all three cases, we have the fastest rate of convergence O(ln t/
√
t) by choosing

αk = α/
√
k + 2, which is the same as most distributed gradient method with a di-

minishing step-size (e.g., [27, 28, 35, 38]).

3.4 Numerical Simulation

3.4.1 Numerical Example

In this part, we consider a canonical distributed estimation problem in a multi-agent

system with N agents under a strongly connected directed graph:

min f(x) =
N∑
i=1

(‖φi −Mix‖2 + λi‖x‖2), x ∈ X ,

where each agent is assumed to measure certain unknown parameter x ∈ X ⊆ Rn

with Gaussian noise ωi, i.e., φi = Mix + ωi. Mi ∈ Rm×n is the measurement

matrix of agent i and φi ∈ Rm is the measurement data collected by agent i. The

proposed randomized gradient-free distributed projected gradient descent method

will be used to solve this problem. In the following, the influence of the number

of agents N , smoothing parameter µi and step-size αk on the convergence property

were investigated, followed by the comparison with the state-of-the-art methods.
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Throughout the simulation, we set ε = 0.1, µi = 10−2, X = [x,x] unless specified.

3.4.1.1 Influence of the Number of Agents N

The simulation was conducted by setting αk = 0.1/
√
k + 1. The number of agents

was set at N = 50, 100, 500 and 1000. The convergence result of the total optimality

gap
∑N

i=1 ‖xik − x?‖ was plotted in Fig. 3.1. As can be seen, these lines are almost

parallel with the only shift in the vertical axis. This implies that the convergence

speed is the same regardless of the number of agents, but the time to reach conver-

gence is longer when the number of agents is larger. In fact, the larger the number

of agents is, the more discrepancies between agents we have in the iteration due to

the larger problem size. The total sum of these errors to the optimal solution is

larger, hence it takes longer time to converge to the optimal solution.

0 1000 2000 3000 4000 5000

Iteration steps

10
0

10
2

∑
N i=

1
|x

i k
−
x
⋆
|

N = 50

N = 100

N = 500

N = 1000

Figure 3.1: Influence of the number of agents on the optimality (xik → x?)

3.4.1.2 Influence of Smoothing Parameter µi

The simulation was conducted by setting µi = 1, 10−2, 10−4 and 1/(k + 1). The

step-size αk was set to 0.1/
√
k + 1. Then, the optimality gap

∑N
i=1 ‖xik−x?‖ under

these four cases was plotted in Fig. 3.2. As can be seen, the optimality gap is slightly

smaller for smaller µi due to the additional penalty term
√
nD̂

∑N
i=1 µ

i caused by

Gaussian-smoothing as discussed in Theorem 3.2. For diminishing smoothing pa-

rameter sequence (dotted line), the optimality gap is smaller than its constant case

(blue line), which implies that changing the constant smoothing parameter to a di-
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minishing sequence can improve the convergence result. However, since the smooth-

ing parameter is small in general, the impact of the smoothing parameter on the

convergence is not significant.
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10
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∑
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1
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⋆
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µ
i
= 1

µ
i
= 10

−2

µ
i
= 10

−4

µ
i

k
= 1/(t+ 1)

Figure 3.2: Influence of µi on the optimality (xik → x?)

3.4.1.3 Influence of Step-Size αk

The simulation was conducted by setting αk = α/(k + 1)a, where α = 0.1, a =

0, 0.2, 0.5, 0.7 and 1. The results for the influence of different αk on both the con-

sensus property and the optimality property were plotted in Fig. 3.3 and 3.4. As

can be seen from Fig. 3.3, with the increase of a, the consensus gap indicated by∑N
i=1 ‖xik−z̄k‖ decreases faster, which implies a smaller error at each fixed time-step.

This result can also be seen from Fig. 3.4 where the line showing the optimality gap∑N
i=1 ‖xik − x?‖ is relatively smoother with less oscillations for larger a. Further-

more, it can also be observed from Fig. 3.4 that the yellow line (a = 0.5) decreases

faster than the rest of the cases, which refers to the best rate of convergence given

by the step-size αk = α/
√
k + 1 as deduced in Theorem 3.3.
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10
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10
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Figure 3.3: Influence of αk on the consensus (xik → z̄k)
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Figure 3.4: Influence of αk on the optimality (xik → x?)

3.4.1.4 Comparison with the State-of-the-Art Algorithms

We compared our randomized gradient-free distributed projected gradient descent

method (RGF-DPGD) with the randomized gradient-free subgradient method (RGF-

SG) in [62] and the directed-distributed projected subgradient method (D-DPS)

in [35]. We set the step-size αk = 0.1/
√
k + 1. The adjacency matrices Ac, Ar for

our method and D-DPS were set to be the same while the adjacency matrix P in

RGF-SG was set to be doubly-stochastic. The convergence of xik to their optimal

solutions x? was plotted in Fig. 3.5. As can be seen, the randomized gradient-free

methods achieve similar performance. The gradient-available method achieves the

best performance as expected, since it has full access to the gradient information at

each iteration. Overall, the three methods exhibit the same convergence speed, but

our method is gradient-free and simpler in terms of the implementation in directed

graphs, which does not require a doubly-stochastic adjacency matrix.
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Figure 3.5: Comparison between RGF-DPGD, RGF-SG & D-DPS methods.
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3.4.2 Temperature Control in HVAC Systems

In this part, we consider a 10-zone HVAC system where the temperature control is

formulated as the following distributed Model Predictive Control problem:

min J =
10∑
j=1

( K∑
k=1

λ‖T jk − T
j
ref‖+

K−1∑
k=0

‖mj
s,k‖
)
, mL ≤ mj

s,k ≤ mU

T jk+1 =

(
1− ∆t

Cj

(
1

Rj
a

+
∑
i∈N j

1

Rij

))
T jk +

∆t

Cj
P j
d

+
∆t

Cj
cpm

j
s,k(T

j
s,k − T

j
k ) +

∆t

Cj

(
Ta

Rj
a

+
∑
i∈N j

T ik
Rij

)
,

where T j and mj
s are the temperature (degrees) and air mass flow (kg/s) of zone

j, respectively. Cj and P j
d are the lumped mass of air and lumped thermal load

including all the external factors, such as the occupancy, solar radiation of zone j,

respectively. Rj
a and Rij are the thermal resistances between the air from outside

and zone j, and the neighboring zone i and zone j, respectively. cp is the specific heat

capacity of air. ∆t and K are the sampling time and receding horizon, respectively.

λ is a weighting parameter. mL and mU are the lower and upper bounds of the

input (air mass flow), respectively. The proposed algorithm is implementated in to

solve the problem.

In this simulation, we setmL = 0, mU = 3 kg/s, the initial zone temperature T j0 = 30

degrees, the reference temperature for all zones T 1
ref = T 2

ref = 24, T 3
ref = T 4

ref = 24.5,

T 5
ref = T 6

ref = 25, T 7
ref = T 8

ref = 25.5, T 9
ref = T 10

ref = 26. The rest of the model

parameters were set according to [117]. Figures 3.6 and 3.7 plotted the trajectories

of the air mass flow and the zone temperature for all zones. It can be seen that all

the inputs are kept within the constraints, while all the zone temperature can be

maintained at their corresponding reference levels. Hence, the effectiveness of the

proposed algorithm is verified.
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Figure 3.6: Air mass flow (kg/s).
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Figure 3.7: Zone temperature (degrees).

3.5 Conclusions

This chapter has presented a randomized gradient-free distributed optimization al-

gorithm for a set constrained problem where the explicit expressions of the cost func-

tions are unknown. A gradient-free oracle in replace of the true gradient information

has been developed to guide the update of decision variables. The convergence prop-

erty and rate analysis of the algorithm have been provided. Numerical simulations

have been conducted to verify the performance as compared to the state-of-the-art

algorithms.
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Chapter 4

Distributed Optimization via

Pseudo-Gradient Operator

4.1 Introduction

Distributed optimization of a sum of cost functions have been extensively studied

over decades, such as the work in [27–47]. A common underlying assumption in

all these methods is that the derivative term of the local cost functions and the

constraints can be directly accessed. However, there are many applications in the

fields of bio-chemistry, aircraft design, hydro-dynamics, earth sciences, etc., where

the relation between the variables and the cost functions are unknown, the gradient

information is not available for usage, or the derivative is not possible to determine,

these methods are no longer applicable. Hence, researchers start to draw attention

to the gradient-free optimization.

As reviewed in Chapter 1, recent studies on this topic have been reported in [60–67].

Shamir et al. in [60] investigated the performance of stochastic gradient descent

method for non-smooth optimization problems. An averaging scheme was proposed

to attain the minimax-optimal rates. On the other hand, Nesterov et al. in [61]
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provided an explicit way of computing the stochastic gradient information known as

gradient-free oracle and investigated the convergence property for both convex and

non-convex problems. This idea was extended to minimize a sum of non-smooth

but Lipschitz continuous functions in [62–64], where the Gaussian smoothing tech-

nique was introduced to obtain the gradient-free oracle to replace the derivative

in the standard subgradient methods. However, all these methods are endowed

with a doubly-stochastic weighting matrix requirement, which is restrictive in a dis-

tributed setting. The doubly-stochastic assumption was removed in [65] by adopting

a push-sum technique and [66, 67] by introducing a surplus variable, respectively.

However, all these derivative-free methods are based on the Gaussian smoothing

technique, where the introduced smoothing parameter imposes an additional penalty

term along reaching the convergence. Thus, only an approximate convergence to a

neighborhood of the optimal solution can be achieved with an error bound that

cannot be eliminated. To achieve the convergence to the exact optimal solution,

Duchi et al. in [68] introduced a smoothing technique which used two point gradi-

ent estimation to close the optimality gap between the final iterate and the optimal

point by choosing appropriate parameters. This technique was extended to the dis-

tributed scenario in [69], but restricted by the doubly-stochastic assumption on the

weighting matrix. The work in [70] proposed a gradient-free method to achieve the

exact convergence with only row- or column-stochastic weighting matrix. In fact, all

these optimization methods need to rely on the square-summable condition on the

step-size to establish the exact convergence property. The square-summable con-

dition is a typical setting to achieve the convergence to the exact optimal solution

in distributed optimization algorithms, but is generally not practical in the actual

applications due to the slow convergence rate.

In this chapter, we propose an exact gradient-free method to solve the set con-

strained distributed optimization problem without the square-summable condition

on the step-size. Specifically, a pseudo-gradient operator is proposed to estimate

the gradient and an optimal averaging scheme is introduced at each time-step to
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achieve the convergence to the exact optimal solution.

The main contributions of this chapter are summarized as follows.

• A gradient-free distributed protocol is proposed to solve a distributed opti-

mization problem with possibly non-smooth cost functions, which requires no

knowledge on their explicit forms but only the local measurements. Moreover,

different from the consensus-based approaches in most existing distributed

optimization literature, e.g., [30, 32, 33, 39, 41, 43–45, 62–64], the proposed

algorithm removes the doubly-stochastic requirement on the weighting ma-

trix, and hence enables the implementation in any strongly connected and

fixed digraphs. Furthermore, in contrast to most gradient-free approaches,

e.g., [61–67], where only an approximate convergence was achieved, the pro-

posed algorithm is able to obtain the asymptotic convergence to the exact

optimal solution, and hence improves the convergence results.

• We introduce an optimal averaging scheme locally, after the decision variable

updates at each time-step. It seems that this averaging scheme is straightfor-

ward in terms of the implementation, but we shall highlight that it is non-

trivial, especially in terms of the theoretical results. Most existing literature,

e.g., [27–29, 33–35, 39, 41–43, 64, 67, 70] needs to rely on the square-summable

condition of the step-size to achieve the asymptotic convergence to the exact

optimal solution. However, by introducing the averaging scheme, the proposed

algorithm enables the step-size to take any positive, non-summable and non-

increasing sequence, but still obtains the convergence to the exact optimal

solution, which increases the range of the step-size selection.

• The detailed theoretical analysis and numerical simulations are provided to

justify the convergence of the proposed algorithm. For the theoretical results,

in addition to the standard convergence analysis, we also investigate the con-

vergence rate of the proposed algorithm with respect to different cases of the

step-size. For the numerical simulations, we illustrate the performance of the
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proposed algorithm from different perspectives, including the influence on the

convergence results with respect to different factors, such as the topology of

the communication graph, the number of agents, and the step-size and pa-

rameters selections. The effectiveness of the proposed method is verified by

comparing with the state-of-the-art algorithms including a gradient-free push-

sum protocol and a subgradient-based algorithm.

The rest of the chapter is organized as follows. Some notations and the problem

formulation are given in Section 4.2. Section 4.3 covers the main results where the

proposed algorithm is described first, followed by the detailed analysis of convergence

properties. The numerical simulations are presented in Section 4.4 to illustrate the

performance of the algorithm. Section 4.5 concludes the chapter.

4.2 Problem Formulation

For a set constrained distributed optimization problem in a multi-agent system, the

objective is to cooperatively solve the following optimization problem:

min f(x) =
N∑
i=1

fi(x), x ∈ X , (4.1)

where X ⊆ Rn is a convex and closed set, and fi is a local cost function of agent

i and x = [x1, . . . , xn]> is a global decision vector. The explicit expression of the

local cost function fi is unknown, but the measurements can be made by agent i

only. The optimal solution of (4.1) is denoted by x? with optimal value f ? = f(x?).

Remark 4.1. From practical point of view, the settings of different set constraints Xi
for different agents will be more realistic and interesting. In terms of the theoretical

analysis, whether the set constraints are the same or not does not have a significant

influence, as long as the optimal solution set still lies in the intersection of these set

constraints (i.e., x? ∈ X = ∩Ni Xi). Hence, similar to the work in [34, 35, 42, 62–64,
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67, 69, 70], we consider the identical set constraint X for simplicity.

Throughout this chapter, we suppose the following assumptions hold:

Assumption 4.1. The directed graph is strongly connected.

Assumption 4.2. Each local cost function fi is convex, but not necessarily differ-

entiable. Its subgradient ∂fi(x) is bounded, i.e., ∀x ∈ X , there exists a positive

constant D̂ such that ‖∂fi(x)‖ ≤ D̂.

4.3 Main Results

In this section, we will develop the projected pseudo-gradient descent method for

the optimization problem defined in (4.1), followed by the detailed analysis on the

convergence.

4.3.1 Distributed Projected Pseudo-Gradient Descent

The proposed distributed projected pseudo-gradient descent method for solving the

optimization problem defined in (4.1) is described in details as follows.

At time-step k, each agent j delivers its state information xjk with a weighted aux-

iliary variable [Ac]ijy
j
k to its out-neighbor i ∈ N out

j . Then, agent i updates its

variables xik+1 and yik+1 with the information received from its in-neighbor j ∈ N in
i .

Finally, each agent i adopts an optimal averaging scheme to trace the average of

xi`, ` = 0, 1, . . . , k + 1 weighted by the step-size sequence, defined by x̂ik+1. The
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updating law is given as follows.

xik+1 = PX
[ N∑
j=1

[Ar]ijx
j
k + εyik − αkgi(xik)

]
, (4.2a)

yik+1 = xik −
N∑
j=1

[Ar]ijx
j
k +

N∑
j=1

[Ac]ijy
j
k − εy

i
k, (4.2b)

x̂ik+1 = x̂ik +
αk+1∑k+1
`=0 α`

(xik+1 − x̂ik), (4.2c)

where Ar, Ac are the row-stochastic and column-stochastic weighting matrices, re-

spectively, i.e.,
∑N

j=1[Ar]ij = 1 for all i ∈ V , and
∑N

i=1[Ac]ij = 1 for all j ∈ V .

For any directed graphs, they can be obtained by letting [Ar]ij = 1/|N in
i | and

[Ac]ij = 1/|N out
j |. αk > 0 is a non-increasing step-size satisfying

∑∞
k=0 αk =∞. ε is

a small positive number. gi(xik) is a pseudo-gradient motivated from [68], given as

gi(xik) =
1

β2,k

[fi(x
i
k + β1,kξ

i
1,k + β2,kξ

i
2,k)− fi(xik + β1,kξ

i
1,k)]ξ

i
2,k, (4.3)

β1,k, β2,k are two positive non-increasing sequences with their ratio defined as

β̃k = β2,k/β1,k. (4.4)

ξi1,k and ξi2,k ∈ Rn are two random variables satisfying the following assumption:

Assumption 4.3. (Assumption F in [68]) The random variables ξi1,k and ξi2,k ∈ Rn

are generated by any one of the following: (a) both ξi1,k and ξi2,k are standard normal

in Rn with identity covariance; (b) both ξi1,k and ξi2,k are uniform on the `2-ball of

radius
√
n+ 2; (c) the distribution of ξi1,k is uniform on the `2-ball of radius

√
n+ 2

and the distribution of ξi2,k is uniform on the `2-ball of radius
√
n.

Similar to the gradient-free oracle in [61], at each time k, the pseudo-gradient opera-

tor (4.3) estimates the gradient in a random direction ξi2,k with a parameter β2,k, but

the function difference is taken at a perturbed point xik+β1,kξ
i
1,k instead of xik, where

the amount of perturbation is determined by the parameter β1,k and the random
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variable ξi1,k. As compared to the gradient-free oracle where the function difference

is evaluated at xik which may not be differentiable for non-smooth problems, the

extra perturbation step in pseudo-gradient operator allows the function difference

to be evaluated at a point which is less likely to be non-smooth. In fact, we can

define a smoothed function of fi(x) based on the convolution of this perturbation,

given by [68]

fi,β1,k
(x) = E[f(x + β1,kξ

i
1,k)] =

∫
Rn
fi(x + β1,kξ

i
1,k)dµ(ξi1,k),

with the random variable ξi1,k ∈ Rn having density µ with respect to Lebesgue

measure1. β1,k is a positive non-increasing sequence. Then, some properties of

function fi,β1,k
(x) and the pseudo-gradient gi(xik) are summarized in the following

lemma:

Lemma 4.1. (see [68]) Suppose Assumptions 4.2 and 4.3 hold. Then, for each

i ∈ V, the following properties of the function fi,β1,k
(x) are satisfied:

1) fi,β1,k
(x) is convex and differentiable, and it satisfies

fi(x) ≤ fi,β1,k
(x) ≤ fi(x) + β1,kD̂

√
n+ 2,

2) the pseudo-gradient gi(xik) satisfies

E[gi(xik)|Fk] = ∇fi,β1,k
(xik) + β̃kD̂v,

3) there is a universal constant Q such that

E[‖gi(xik)‖|Fk] ≤
√

E[‖gi(xik)‖2|Fk] ≤ QTk,

where β1,k and β̃k are defined in (4.4), v ∈ Rn is a vector satisfying ‖v‖ ≤ n
√

3n/2,

1Here, we slightly abuse the notation of ξ for both a random variable and its instances.

Nanyang Technological University Singapore



58 4.3. Main Results

and Tk = D̂

√
n
[
n

√
β̃k + 1 + lnn

]
. If β̃k is bounded, then Tk is bounded by a con-

stant T̂ .

The procedures are summarized in Algorithm 4.1.

Algorithm 4.1 DPPGD with optimal averaging scheme

1: Initialize: i ∈ V
randomly select xi0,y

i
0 ∈ X , x̂i0 ← xi0

randomly generate {ξi1,k}k≥0, {ξi2,k}k≥0 independently
2: Iteration (k ≥ 0): i ∈ V

compute gi(xik) based on (4.3)
update variables xik+1 based on (4.2a)
update variables yik+1 based on (4.2b)
update variables x̂ik+1 based on (4.2c)

3: Output: i ∈ V
x̂ik → x?

Remark 4.2. The proposed method is a gradient-free algorithm where a psuedo-

gradient operator gi(xik) is used instead of the true gradient ∇fi(xik). The row-

stochastic Ar and column-stochastic Ac instead of doubly-stochastic weighting ma-

trix make it possible to be implemented in any strongly connected and fixed directed

graphs.

4.3.2 Convergence Analysis

In this part, we proceed to the analysis on the convergence properties of the proposed

algorithm. We denote the σ-field generated by the entire history of the random

variables from step 0 to k − 1 by Fk, i.e., Fk = {(xi0, i ∈ V); (ξi1,s, ξ
i
2,s, i ∈ V); 0 ≤

s ≤ k − 1} with F0 = {xi0, i ∈ V}.

Equation (4.2) can be written as the following equivalent form

zik+1 =
2N∑
j=1

[A]ijz
j
k + gik, (4.5)
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where zik = xik for i ∈ {1, . . . , N}, zik = yi−Nk for i ∈ {N + 1, . . . , 2N}, gik =

xik+1−
∑N

j=1[Ar]ijx
j
k − εyik for i ∈ {1, . . . , N}, gik = 0n for i ∈ {N + 1, . . . , 2N}, and

A = [ Ar εI
I−Ar Ac−εI ]. Define z̄k = 1

N

∑2N
i=1 zik = 1

N

∑N
i=1 xik + 1

N

∑N
i=1 yik, which is an

average of xik + yik over all agents at time-step k; and

ẑk =

∑k
`=0 α`z̄`∑k
`=0 α`

, (4.6)

which is an average of z̄ weighted by the step-size sequence α` over time duration k.

The following lemma states an important result on the weighting matrix A defined

in (4.5).

Lemma 4.2. (Lemma 1 in [35]) Suppose Assumption 4.1 holds. Let ε be the con-

stant in the weighting matrix A such that ε ∈ (0, ε̄) with ε̄ = ( 1−|λ3|
20+8N

)N , where λ3

is the third largest eigenvalue of the weighting matrix A by setting ε = 0. Then

∀i, j ∈ {1, . . . , 2N}, the entries [Ak]ij converge to their limits as k → ∞ at a geo-

metric rate, i.e., ∥∥∥∥∥∥Ak −
1N1TN

N

1N1TN
N

0 0

∥∥∥∥∥∥
∞

≤ Γγk, k ≥ 1,

where Γ > 0 and 0 < γ < 1 are some constants.

Now, we can quantify the bounds of the consensus terms xik − z̄k and yik − 0n as

shown in the following lemma:

Lemma 4.3. Suppose Assumptions 4.1, 4.2 and 4.3 hold. Let ε be the constant such

that ε ≤ ε̄, where ε̄ is defined in Lemma 4.2. Let {zik}k≥0 be the sequence generated

by (4.5). Then, it holds that

1) for i = {1, . . . , N} and k ≥ 1

E[‖zik − z̄k‖|Fk−1] ≤ 2NΓγk max
j
‖zj0‖+ Γ

k−1∑
r=1

γk−r
N∑
j=1

E[‖gjr−1‖|Fr−1]
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+
N∑
j=1

E[‖gjk−1‖|Fk−1];

2) for i = {N + 1, . . . , 2N} and k ≥ 1

E[‖zik‖|Fk−1] ≤ 2NΓγk max
j
‖zj0‖+ Γ

k−1∑
r=1

γk−r
N∑
j=1

E[‖gjr−1‖|Fr−1],

where Γ > 0 and 0 < γ < 1 are the constants defined in Lemma 4.2.

Proof: For k ≥ 1, we have

zik =
2N∑
j=1

[Ak]ijz
j
0 +

k−1∑
r=1

2N∑
j=1

[Ak−r]ijg
j
r−1 + gik−1. (4.7)

by applying (4.5) recursively. Then we can obtain that

z̄k =
1

N

2N∑
j=1

zj0 +
1

N

k−1∑
r=1

2N∑
j=1

gjr−1 +
1

N

2N∑
j=1

gjk−1, (4.8)

where we have used column-stochastic property of A, i.e., for k ≥ 1, it holds that∑2N
i=1[Ak]ij = 1.

For part (1), subtracting (4.8) from (4.7) and taking the norm and conditional

expectation on F` from ` = 0 to k − 1, we have that for 1 ≤ i ≤ N and k ≥ 1,

E[‖zik − z̄k‖|Fk−1] ≤
2N∑
j=1

∥∥∥∥[Ak]ij −
1

N

∥∥∥∥maxj ‖zj0‖

+
k−1∑
r=1

N∑
j=1

∥∥∥∥[Ak−r]ij −
1

N

∥∥∥∥E[‖gjr−1‖|Fr−1]

+
N − 1

N
E[‖gik−1‖|Fk−1] +

1

N

∑
j 6=i

E[‖gjk−1‖|Fk−1].

(4.9)
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Noting that the last two terms

N − 1

N
E[‖gik−1‖|Fk−1] +

1

N

∑
j 6=i

E[‖gjk−1‖|Fk−1]

≤ N − 1

N

N∑
i=1

E[‖gik−1‖|Fk−1] +
1

N

N∑
j=1

E[‖gjk−1‖|Fk−1] =
N∑
j=1

E[‖gjk−1‖|Fk−1],

and applying the property of [Ak]ij from Lemma 4.2 to (4.9), we complete the proof

of part (1).

For part (2), taking the norm and conditional expectation on F` from ` = 0 to k−1

in (4.7) for N + 1 ≤ i ≤ 2N and k > 1, we have

E[‖zik‖|Fk−1] ≤
2N∑
j=1

∥∥[Ak]ij
∥∥maxj ‖zj0‖+

k−1∑
r=1

N∑
j=1

∥∥[Ak−r]ij
∥∥E[‖gjr−1‖|Fk−1]. (4.10)

By applying the property of [Ak]ij from Lemma 4.2 to (4.10), the result holds with

similar arguments to part (1).

It can be seen from Lemma 4.3 that the bound for the consensus terms is a function

of the combined pseudo-gradient term gik. Thus, in the following lemma, we give

the property on the boundedness of gik.

Lemma 4.4. Suppose Assumptions 4.1, 4.2 and 4.3 hold. Let ε be the constant such

that ε ≤ min(ε̄, 1−γ
2NΓγ

), where ε̄, Γ and γ are the constants defined in Lemma 4.2.

Let β̃k defined in (4.4) be bounded. Then, there exists a bounded constant G > 0,

such that for all k ≥ 0, the augmented randomized gradient-free oracle gjk satisfies

N∑
j=1

E[‖gjk‖|Fk] ≤ Gαk,

where αk is the non-increasing step-size used in the algorithm.

Nanyang Technological University Singapore



62 4.3. Main Results

Proof: By the projection’s non-expansive property, we have

∥∥∥∥PX[ N∑
j=1

[Ar]ijx
j
k + εyik − αkgi(xik)

]
−

N∑
j=1

[Ar]ijx
j
k

∥∥∥∥ ≤ ‖εyik − αkgi(xik)‖.
Thus,

‖gik‖ ≤ ‖εyik‖+

∥∥∥∥xik+1 −
N∑
j=1

[Ar]ijx
j
k

∥∥∥∥ ≤ ε‖yik‖+ ‖εyik − αkgi(xik)‖

≤ 2ε‖yik‖+ αk‖gi(xik)‖. (4.11)

where the first inequality comes from the definition of gik in (4.5). Taking the

conditional expectation on F` from ` = k−1 to k in (4.11) and applying Lemma 4.1-

3) on E[‖gi(xik)‖|Fk], Lemma 4.3-2) on E[‖yik‖|Fk−1], we have

E[‖gik‖|Fk] ≤ αkQT̂ + 4NεΓγk max
j
‖zj0‖+ 2εΓ

k−1∑
r=1

γk−r
N∑
j=1

E[‖gjr−1‖|Fr−1].

Summing over i = 1, . . . , N , we have

N∑
i=1

E[‖gik‖|Fk] ≤ αkNQT̂ + 4N2εΓγk max
j
‖zj0‖

+ 2NεΓ
k−1∑
r=1

γk−r
N∑
j=1

E[‖gjr−1‖|Fr−1]. (4.12)

Thus, it follows from (4.12) that

K∑
k=1

αk

N∑
i=1

E[‖gik‖|Fk] ≤ NQT̂
K∑
k=1

α2
k + 4N2εΓ max

j
‖zj0‖

K∑
k=1

γkαk

+ 2NεΓ
K∑
k=1

αk

k−1∑
r=1

γk−r
N∑
j=1

E[‖gjr−1‖|Fr−1]. (4.13)
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Noting that the step-size is non-increasing, the last term holds that

K∑
k=1

αk

k−1∑
r=1

γk−r
N∑
j=1

E[‖gjr−1‖|Fr−1] ≤
K∑
k=1

k−1∑
r=1

γk−rαr−1

N∑
j=1

E[‖gjr−1‖|Fr−1]

≤ γ

1− γ

K∑
k=1

αk

N∑
j=1

E[‖gjk‖|Fk].

Combining this result with [66, Lemma 3], it follows from (4.13) that

K∑
k=1

αk

N∑
i=1

E[‖gik‖|Fk] ≤ NQT̂
K∑
k=1

α2
k + 4N2εΓ max

j
‖zj0‖

(
1

2

K∑
k=1

α2
k +

γ2

2(1− γ2)

)

+
2NεΓγ

1− γ

K∑
k=1

αk

N∑
j=1

E[‖gjk‖|Fk].

Rearranging the last term to the left hand side and noticing that ε ≤ 1−γ
2NΓγ

, we can

obtain that

K∑
k=1

αk

N∑
j=1

E[‖gjk‖|Fk] ≤ Φ
K∑
k=1

α2
k + Ψ, (4.14)

where Φ > 0 and Ψ are some bounded constants given by

Φ =
(1− γ)(NQT̂ + 2N2εΓ maxj ‖zj0‖)

1− (2NεΓ + 1)γ
,

Ψ =
2N2εΓ maxj ‖zj0‖γ2

(1− (2NεΓ + 1)γ)(1 + γ)
.

Next, we prove the desired result by contradiction. Suppose the conclusion is not

true, then there exists some k, such that (
∑N

j=1 E[‖gjk‖|Fk])/αk =∞. Since αk 6= 0,

there are two cases where (
∑N

j=1 E[‖gjk‖|Fk])/αk = ∞. Case 1 : at some finite kf ,∑N
j=1 E[‖gjk‖|Fk] =∞; Case 2 : (

∑N
j=1 E[‖gjk‖|Fk])/αk =∞ when k goes to infinity.

Next, we show that both cases lead to contradiction.

Case 1 : Suppose at some finite kf ,
∑N

j=1 E[‖gjkf‖|Fkf ] = ∞. Since kf is finite, we
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can always find a finite constant K > kf . From (4.14), we have

K∑
k=1

αk

N∑
j=1

E[‖gjk‖|Fk] ≤ Φ
K∑
k=1

α2
k + Ψ <∞,

which implies every term αk
∑N

j=1 E[‖gjk‖|Fk], k = 1, . . . , K is bounded. Since αk 6=

0, then every term
∑N

j=1 E[‖gjk‖|Fk] is bounded for k = 1, . . . , K, which contradicts

to
∑N

j=1 E[‖gjkf‖|Fkf ] =∞.

Case 2: Suppose (
∑N

j=1 E[‖gjk‖|Fk])/αk = ∞ when k goes to infinity. Taking the

limsup on both sides of (4.12), and noting that

lim sup
k→∞

k−1∑
r=1

γk−r
N∑
j=1

E[‖gjr−1‖|Fr−1] ≤ γ

1− γ
lim sup
k→∞

N∑
j=1

E[‖gjk‖|Fk],

limk→∞ γ
k = 0 and limk→∞ αk = α∞, we obtain

(
1− 2NεΓγ

1− γ

)
lim sup
k→∞

N∑
j=1

E[‖gjk‖|Fk] ≤ NQT̂ α∞.

Since ε ≤ 1−γ
2NΓγ

, we have lim supk→∞
∑N

j=1 E[‖gjk‖|Fk] ≤
NQT̂

1− 2NεΓγ
1−γ

α∞. Hence,

lim sup
k→∞

∑N
j=1 E[‖gjk‖|Fk]

αk
=

lim supk→∞
∑N

j=1 E[‖gjk‖|Fk]
α∞

≤ NQT̂
1− 2NεΓγ

1−γ
<∞,

which leads to a contradiction.

Therefore, combining both cases, we can conclude that the desired result is true.

With the above lemmas, we are ready to establish the main results consisting of

two theorems – one for consensus and the other for optimality. We first show the

boundedness of lim supk→∞ E[‖x̂ik − ẑk‖] for i ∈ V depending on the selection of the

step-size, followed by the boundedness of lim supk→∞ E[f(ẑk)]− f ? as k →∞ in the

following two theorems.
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Theorem 4.1. Suppose Assumptions 4.1, 4.2 and 4.3 hold. Let {x̂ik}k≥0 be the

sequence generated by (4.2c) with a positive and non-increasing step-size sequence

{αk}k≥0 satisfying limk→∞ αk = α∞. Let ε be the constant such that ε ≤ min(ε̄, 1−γ
2NΓγ

),

where ε̄, Γ and γ are the constants defined in Lemma 4.2. Let β̃k defined in (4.4) be

bounded. Then, x̂ik satisfies

lim sup
k→∞

E[‖x̂ik − ẑk‖] ≤
[
NΓ max

j
E[‖zj0‖] +G+

GΓγ

1− γ

]
α∞.

where G > 0 is the constant defined in Lemma 4.4, and ẑk is defined in (4.6).

Proof: We first provide a bound for E[‖xik− z̄k‖|Fk−1], k ≥ 1. Applying Lemma 4.4

to the result in Lemma 4.3-1), we have

E[‖xik − z̄k‖|Fk−1] ≤ 2NΓγk max
j
‖zj0‖+GΓ

k−1∑
r=1

γk−rαr−1 +Gαk−1. (4.15)

By the definitions of x̂ik and ẑk, we know that

‖x̂ik − ẑk‖ ≤
∑k

`=0 α`‖xi` − z̄`‖∑k
`=0 α`

.

For k ≥ 1, taking conditional expectation on F`−1 from ` = 1 to k, and applying

(4.15), we obtain that

E[‖x̂ik − ẑk‖|Fk−1] ≤ B0 +
∑k

`=1 α`E[‖xi` − z̄`‖|F`−1]∑k
`=0 α`

≤ 1∑k
`=0 α`

(
B0 + 2NΓ max

j
‖zj0‖

k∑
`=1

α`γ
` +G

k∑
`=1

α`α`−1 +GΓ
k∑
`=1

`−1∑
r=1

γ`−rα`αr−1

)
,

where B0 = maxi α0‖xi0 − z̄0‖ is bounded. Following the results in [66, Lemma 3],

it can be obtained that

E[‖x̂ik − ẑk‖|Fk−1] ≤ 1∑k
`=0 α`

[
B0 + 2NΓ max

j
‖zj0‖

(
1

2

k∑
`=1

α2
` +

γ2

2(1− γ2)

)
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+G

k∑
`=0

α2
` +GΓ

(
γ

1− γ

k∑
`=1

α2
`

)]
≤
∑k

`=0 α
2
`∑k

`=0 α`

[
NΓ max

j
‖zj0‖+G

(
1 +

Γγ

1− γ

)]
+

1∑k
`=0 α`

[
NΓγ2

1− γ2
max
j
‖zj0‖+B0

]
.

Taking the total expectation and letting k → ∞, we complete the proof by noting

the result of limk→∞
∑k

`=0 α
2
`/
∑k

`=0 α` = α∞ from [66, Lemma 4].

Remark 4.3. Theorem 4.1 characterizes the consensus property of the algorithm;

namely, all agents x̂ik, i ∈ V will converge to the same point ẑk with an error bounded

by a constant depending on the limit of the step-size α∞. If α∞ = 0, then the exact

convergence can be achieved.

Theorem 4.2. Suppose Assumptions 4.1, 4.2 and 4.3 hold. Let {x̂ik}k≥0 be the

sequence generated by (4.2c) with a positive and non-increasing step-size sequence

{αk}k≥0 satisfying limk→∞ αk = α∞ and
∑∞

k=0 αk = ∞. Let ε be the constant such

that ε ≤ min(ε̄, 1−γ
2NΓγ

), where ε̄, Γ and γ are the constants defined in Lemma 4.2.

Let β1,k and β̃k defined in (4.4) satisfy limk→∞ β1,k = 0 and
∑∞

k=0 β̃k < ∞. Then,

we have

lim sup
k→∞

E[f(ẑk)]− f ? ≤ α∞(B1 +B2)

[
NΓ max

j
E[‖zj0‖] +G+

GΓγ

1− γ

]
+ α∞B4

+ α∞

∞∑
k=0

β̃k

[
ND̂‖v‖εγ

1− γ
+B3 + 2N2D̂‖v‖

(
NΓ max

j
E[‖zj0‖] +G+

GΓγ

1− γ

)]
,

where B1, B2, B3, B4 are some positive constants, G > 0 is the constant defined in

Lemma 4.4, v ∈ Rn is a vector satisfying ‖v‖ ≤ n
√

3n/2, and ẑk is defined in (4.6).

Proof: Considering (4.5), and due to the fact that A is column-stochastic, we have

z̄k+1 =
1

N

2N∑
j=1

[ 2N∑
i=1

[A]ij

]
zjk +

1

N

2N∑
i=1

gik = z̄k +
1

N

N∑
i=1

gik.
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Thus, for any x?β1,k
∈ X ?

β1,k
, we can derive that

‖z̄k+1 − x?β1,k
‖2 = ‖z̄k − x?β1,k

‖2 +

∥∥∥∥ 1

N

N∑
i=1

gik

∥∥∥∥2

+
2

N

N∑
i=1

〈gik, z̄k − x?β1,k
〉

= ‖z̄k − x?β1,k
‖2 +

1

N2

∥∥∥∥ N∑
i=1

gik

∥∥∥∥2

(4.16a)

− 2αk
N

N∑
i=1

〈gi(xik), z̄k − x?β1,k
〉 (4.16b)

+
2

N

N∑
i=1

〈gik + αkg
i(xik), z̄k − x?β1,k

〉. (4.16c)

Noting that for the second term in (4.16a), we take conditional expectation on Fk,

yielding

E
[∥∥∥∥ N∑

i=1

gik

∥∥∥∥2∣∣∣∣Fk] ≤ N∑
i=1

E[‖gik‖2|Fk] =
N∑
i=1

(E[‖gik‖|Fk])2 +
N∑
i=1

Cov(‖gik‖, ‖gik‖)

≤
( N∑

i=1

E[‖gik‖|Fk]
)2

+ V1,k,

where we have applied Lemma 4.4 on
∑N

i=1 E[‖gik‖|Fk] and used E[xy] = E[x]E[y] +

Cov(x, y). V1,k > 0 is an upper bound of the covariance term
∑N

i=1Cov(‖gik‖, ‖gik‖).

Thus, we obtain

E
[∥∥∥∥ N∑

i=1

gik

∥∥∥∥2∣∣∣∣Fk] ≤ G2α2
k + V1,k, (4.17)

Noting that for (4.16b), we take conditional expectation on Fk and apply Lemma 4.1-

(2)

N∑
i=1

〈E[gi(xik)|Fk], z̄k − x?β1,k
〉 =

N∑
i=1

〈∇fi,β1,k
(xik) + β̃kD̂v, z̄k − x?β1,k

〉. (4.18)

Noting that

〈∇fi,β1,k
(xik) + β̃kD̂v, z̄k − x?β1,k

〉
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=〈∇fi,β1,k
(xik) + β̃kD̂v, z̄k − xik〉+ 〈∇fi,β1,k

(xik) + β̃kD̂v,xik − x?β1,k
〉

≥ −
(
‖∇fi,β1,k

(xik)‖+ β̃k‖v‖D̂
)
‖xik − z̄k‖

+ fi,β1,k
(xik)− fi,β1,k

(x?β1,k
)− β̃kD̂‖v‖‖xik − x?β1,k

‖

≥ −
(
‖∇fi,β1,k

(xik)‖+ β̃k‖v‖D̂
)
‖xik − z̄k‖+ (fi,β1,k

(xik)− fi,β1,k
(z̄k))

+ fi,β1,k
(z̄k)− fi,β1,k

(x?β1,k
)− β̃kD̂‖v‖‖xik − x?β1,k

‖

≥ −
(
‖∇fi,β1,k

(xik)‖+ ‖∇fi,β1,k
(z̄k)‖+ β̃k‖v‖D̂

)
‖xik − z̄k‖

+ (fi,β1,k
(z̄k)− fi,β1,k

(x?β1,k
))− β̃kD̂‖v‖‖xik − x?β1,k

‖

≥ −
(
2QT̂ + β̃k‖v‖D̂

)
‖xik − z̄k‖+ (fi,β1,k

(z̄k)− fi,β1,k
(x?β1,k

))

− β̃kD̂‖v‖‖xik − x?β1,k
‖,

where we have used

fi,β1,k
(xik)− fi,β1,k

(z̄k) ≥ −‖∇fi,β1,k
(z̄k)‖‖xik − z̄k‖

due to the convexity of fi,β1,k
(·) and

‖∇fi,µi(·)‖ = ‖E[gi(·)|Fk]‖ ≤ E[‖gi(·)‖|Fk]

with E[‖gi(·)‖|Fk] bounded by applying Lemma 4.1-(3). Thus, we have

〈∇fi,β1,k
(xik)+β̃kD̂v, z̄k − x?β1,k

〉 ≥ fi,β1,k
(z̄k)− fi,β1,k

(x?β1,k
)

−
(
2QT̂ + β̃k‖v‖D̂

)
‖xik − z̄k‖ − β̃kD̂‖v‖‖xik − x?β1,k

‖.
(4.19)

For the term ‖xik − x?β1,k
‖, we can provide the following bound:

‖xik − x?β1,k
‖ =

∥∥∥∥PX[ N∑
j=1

[Ar]ijx
j
k−1 + εyik−1 − αk−1g

i(xik−1)

]
− x?β1,k

∥∥∥∥
≤
∥∥∥∥ N∑
j=1

[Ar]ijx
j
k−1 + εyik−1 − αk−1g

i(xik−1)− x?β1,k

∥∥∥∥
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≤
∥∥∥∥ N∑
j=1

[Ar]ijx
j
k−1 − x?β1,k

∥∥∥∥+ ε‖yik−1‖+ αk−1‖gi(xik−1)‖

≤
N∑
j=1

[Ar]ij‖xjk−1 − x?β1,k
‖+ ε‖yik−1‖+ αk−1‖gi(xik−1)‖

≤
N∑
j=1

[Ar]ij‖xik−1 − x?β1,k
‖+ ε‖yik−1‖+ αk−1‖gi(xik−1)‖

+
N∑
j=1

[Ar]ij‖xik−1 − xjk−1‖

=‖xik−1 − x?β1,k
‖+ ε‖yik−1‖+ αk−1‖gi(xik−1)‖

+
N∑
j=1

[Ar]ij(‖xik−1 − z̄k−1‖+ ‖xjk−1 − z̄k−1‖).

Thus, applying the above relation recursively, and taking conditional expectation

on Fk, we have

‖xik − x?β1,k
‖ = ε

k−1∑
τ=0

‖yiτ‖+
k−1∑
τ=0

ατE[‖gi(xiτ )‖|Fτ ]

+
k−1∑
τ=0

N∑
j=1

[Ar]ij(‖xiτ − z̄τ‖+ ‖xjτ − z̄τ‖) + ‖xi0 − x?β1,k
‖.

(4.20)

Combining (4.19) and (4.20), and substituting to (4.18), we obtain

N∑
i=1

〈E[gi(xik)|Fk], z̄k − x?β1,k
〉 ≥ −

(
QT̂ + (β̃k‖v‖+ 1)D̂

) N∑
i=1

‖xik − z̄k‖

+ fβ1,k
(z̄k)− f ?β1,k

− β̃kD̂‖v‖
[ N∑
i=1

‖xi0 − x?β1,k
‖+ ε

k−1∑
τ=0

N∑
i=1

‖yiτ‖

+NQT̂
k−1∑
τ=0

ατ + 2N
k−1∑
τ=0

N∑
i=1

‖xiτ − z̄τ‖
]
,

(4.21)

where we have applied Lemma 4.1-(3) on E[‖gi(xiτ )‖|Fτ ]. Noting that for term
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(4.16c), we have

N∑
i=1

〈gik + αkg
i(xik), z̄k − x?β1,k

〉 =
N∑
i=1

〈gik + αkg
i(xik), z̄k − z̄k+1〉 (4.22a)

+
N∑
i=1

〈gik + αkg
i(xik), z̄k+1 − xik+1〉 (4.22b)

+
N∑
i=1

〈gik + αkg
i(xik),x

i
k+1 − x?β1,k

〉. (4.22c)

For (4.22a), we have

N∑
i=1

〈gik + αkg
i(xik), z̄k − z̄k+1〉 ≤

N∑
i=1

‖gik + αkg
i(xik)‖

∥∥∥∥ 1

N

N∑
i=1

gik

∥∥∥∥
≤ 1

N

( N∑
i=1

‖gik‖
)2

+
αk
N

N∑
i=1

‖gik‖
N∑
i=1

‖gi(xik)‖.

Taking the conditional expectation on Fk, we obtain

N∑
i=1

E[〈gik + αkg
i(xik), z̄k − z̄k+1〉|Fk] ≤

G

N
(G+NQT̂ )α2

k + V2,k, (4.23)

where we have applied Lemma 4.1-(3) on the term E[‖gi(xik)‖|Fk] and Lemma 4.4

on the term
∑N

i=1 E[‖gik‖|Fk]. V2,k > 0 is an upper bound of the sum of covariance

terms Cov(
∑N

i=1 ‖gik‖,
∑N

i=1 ‖gik‖) and Cov(
∑N

i=1 ‖gik‖,
∑N

i=1 ‖gi(xik)‖).

For (4.22b), we have

N∑
i=1

〈gik + αkg
i(xik), z̄k+1 − xik+1〉 ≤

N∑
i=1

‖gik + αkg
i(xik)‖‖z̄k+1 − xik+1‖

≤
N∑
i=1

(‖gik‖+ αk‖gi(xik)‖)‖z̄k+1 − xik+1‖.
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Taking the conditional expectation on Fk, we obtain

N∑
i=1

E[〈gik + αkg
i(xik), z̄k+1 − xik+1〉|Fk]

≤ (G+QT̂ )αk

N∑
i=1

E[‖z̄k+1 − xik+1‖|Fk] + V3,k,

(4.24)

where we have applied Lemma 4.1-(3) on the term E[‖gi(xik)‖|Fk] and Lemma 4.4

on the term
∑N

i=1 E[‖gik‖|Fk]. V3,k > 0 is an upper bound of the sum of covariance

terms Cov(
∑N

i=1 ‖gik‖, ‖z̄k+1 − xik+1‖) and Cov(
∑N

i=1 ‖gi(xik)‖, ‖z̄k+1 − xik+1‖).

For (4.22c), it follows from the projection’s non-expansive property that

〈gik + αkg
i(xik),x

i
k+1 − x?β1,k

〉 ≤ 0. (4.25)

Thus, taking the conditional expectation on Fk in (4.22) and substituting (4.23),

(4.24) and (4.25), we obtain

N∑
i=1

E[〈gik + αkg
i(xik), z̄k − x?β1,k

〉|Fk] ≤
G(G+NQT̂ )α2

k

N

+ (G+QT̂ )
N∑
i=1

αkE[‖z̄k+1 − xik+1‖|Fk] + V2,k + V3,k.

(4.26)

Taking the conditional expectation on Fk in (4.16), and substituting (4.17), (4.21)
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and (4.26), we obtain that

2αk(fβ1,k
(z̄k)− f ?β1,k

) ≤ 2
(
2QT̂ + β̃k‖v‖D̂

) N∑
i=1

αk‖xik − z̄k‖

+
1

N
(G2α2

k + V1,k) +N(‖z̄k − x?β1,k
‖2 − E[‖z̄k+1 − x?β1,k

‖2|Fk])

+ 2β̃kD̂‖v‖
[
αk

N∑
i=1

‖xi0 − x?β1,k
‖+ εαk

k−1∑
τ=0

N∑
i=1

‖yiτ‖

+NQT̂ αk
k−1∑
τ=0

ατ + 2Nαk

k−1∑
τ=0

N∑
i=1

‖xiτ − z̄τ‖
]

+
2G

N
(G+NQT̂ )α2

k

+ 2(G+QT̂ )
N∑
i=1

αkE[‖z̄k+1 − xik+1‖|Fk] + 2V2,k + 2V3,k.

(4.27)

Taking the total expectation in (4.27) and summing up from k = 0 to t− 1, we have

t−1∑
k=0

αk(E[f(z̄k)]−fβ1,k
(x?))

≤
t−1∑
k=0

(
QT̂ + (β̃k‖v‖+ 1)D̂

) N∑
i=1

αkE[‖xik − z̄k‖] (4.28a)

+
t−1∑
k=0

(G+QT̂ )
N∑
i=1

αkE[‖xik+1 − z̄k+1‖] (4.28b)

+ D̂‖v‖
t−1∑
k=0

αkβ̃k

N∑
i=1

E[‖xi0 − x?‖] (4.28c)

+ D̂‖v‖ε
N∑
i=1

t−1∑
k=0

αkβ̃k

k−1∑
τ=0

E[‖yiτ‖] (4.28d)

+NQD̂‖v‖T̂
t−1∑
k=0

αkβ̃k

k−1∑
τ=0

ατ (4.28e)

+ 2ND̂‖v‖
N∑
i=1

t−1∑
k=0

αkβ̃k

k−1∑
τ=0

E[‖xiτ − z̄τ‖] (4.28f)

+
G

2N

t−1∑
k=0

(3G+ 2NQT̂ )α2
k (4.28g)
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+
N

2
E[‖z̄0 − x?‖2] +

V̂1

N
+ 2V̂2 + 2V̂3, (4.28h)

where V̂1, V̂2 and V̂3 are positive constants representing the upper bounds of some

covariance terms.

Next, we divide both sides of (4.28) by
∑t−1

k=0 αk and taking the limit superior as

t→∞,

lim sup
t→∞

(4.28a)∑t−1
k=0 αk

≤ α∞B1

[
NΓ max

j
E[‖zj0‖] +G+

GΓγ

1− γ

]
, (4.29)

where we have combined Lemma 4.3-1) with (4.28a) and denoted (QT̂ + (β̃k‖v‖+

1)D̂)N by B1.

lim sup
t→∞

(4.28b)∑t−1
k=0 αk

≤ α∞B2

[
NΓ max

j
E[‖zj0‖] +G+

GΓγ

1− γ

]
, (4.30)

where we have combined Lemma 4.3-1) with (4.28b) and denoted (G + QT̂ )N by

B2.

lim sup
t→∞

(4.28c)∑t−1
k=0 αk

≤ ND̂‖v‖max
i

E[‖xi0 − x?‖]β̃∞, (4.31)

where β̃∞ denotes the limit of β̃k.

lim sup
t→∞

(4.28d)∑t−1
k=0 αk

≤ N2D̂‖v‖ε
1− γ

[
(1− γ) max

j
E[‖yj0‖]

+ 2Γγmax
j

E[‖zj0‖]
]
β̃∞ +

ND̂‖v‖εγ
1− γ

α∞

∞∑
k=0

β̃k, (4.32)

where we have combined Lemma 4.3-2) with (4.28d).

lim sup
t→∞

(4.28e)∑t−1
k=0 αk

≤ B3α∞

∞∑
k=0

β̃k, (4.33)
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where NQD̂‖v‖T̂ is denoted by B3.

lim sup
t→∞

(4.28f)∑t−1
k=0 αk

≤ 2N2D̂‖v‖
[

max
i

E[‖xi0 − z̄0‖]β̃∞

+

(
NΓ max

j
E[‖zj0‖] +G+

GΓγ

1− γ

)
α∞

∞∑
k=0

β̃k

]
, (4.34)

where we have combined Lemma 4.3-1) with (4.28f).

lim sup
t→∞

(4.28g)∑t−1
k=0 αk

≤ B4 lim
t→∞

∑t−1
k=0 α

2
k∑t−1

k=0 αk
= B4α∞, (4.35)

where G
2N

(3G+ 2NQT̂ ) is denoted by B4.

Then, substituting the results of (4.29)-(4.35) to (4.28), we obtain

lim sup
t→∞

∑t−1
k=0 αkE[f(z̄k)]∑t−1

k=0 αk
≤ lim sup

t→∞

∑t−1
k=0 αkfβ1,k

(x?)∑t−1
k=0 αk

+ α∞(B1 +B2)

[
NΓ max

j
E[‖zj0‖] +G+

GΓγ

1− γ

]
+ α∞B4

+ND̂‖v‖β̃∞
[

max
i

E[‖xi0 − x?‖] +Nεmax
j

E[‖yj0‖] (4.36)

+
2NεΓγ

1− γ
max
j

E[‖zj0‖] + 2N max
i

E[‖xi0 − z̄0‖]
]

+ α∞

∞∑
k=0

β̃k

[
ND̂‖v‖εγ

1− γ
+B3 + 2N2D̂‖v‖

(
NΓ max

j
E[‖zj0‖] +G+

GΓγ

1− γ

)]
,

The detailed derivations can be found in our previous work [70, Theorem 2].

According to Lemma 4.1-1), it obtains that

f ? ≤
∑t−1

k=0 αkfβ1,k
(x?)∑t−1

k=0 αk
≤ f ? +

D̂
√
n+ 2

∑t−1
k=0 αkβ1,k∑t−1

k=0 αk
.

Taking the limit superior as t→∞, we have

lim sup
t→∞

∑t−1
k=0 αkfβ1,k

(x?)∑t−1
k=0 αk

= f ?.
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by noting that limt→∞
∑t−1

k=0 αkβ1,k/
∑t−1

k=0 αk = limk→∞ β1,k from [66, Lemma 4-2)]

and limk→∞ β1,k = 0. Moreover,

E[f(ẑt)] ≤
∑t−1

k=0 αkE[f(z̄k)]∑t−1
k=0 αk

,

due to the convexity of f . Therefore, the desired result directly follows from (4.36)

by noting that limk→∞ β̃k = β̃∞ = 0.

Remark 4.4. Theorem 4.2 shows that the cost value of the multi-agent system

will finally converge to a neighborhood of its optimal value with an error bounded

by some terms, which are dependent on the step-size αk and parameters β1,k, β2,k.

Appropriate choice of the step-size and parameters will lead to exact convergence to

the optimum. In particular, if the step-size αk is set to 1/(k+ 1)a, where a ∈ (0, 1);

the parameters β1,k, β2,k are set to 1/(k + 1)p1 and 1/(k + 1)p2, respectively, where

p1 > 0 and p2 − p1 > 1; then α∞ = 0 and
∑∞

k=0 β̃k <∞, which means all the error

terms will converge to 0.

Different from most subgradient methods where the square-summable step-size con-

dition (i.e.,
∑∞

k=0 α
2
k <∞) is utilized, the proposed algorithm is able to obtain the

exact convergence result as in Theorem 4.2 without the square-summable step-size

condition. It should be noted that the convergence of those algorithms are estab-

lished with respect to the original decision variable xik of each agent i ∈ V , where

the optimality is based on the results in convex optimization [25, Lemma 11 in Ch.

2]. Instead, this chapter proposed a scheme to average the decision variable along

the time 0 ≤ ` ≤ k, and the convergence analysis is conducted with respect to

the time-averaged decision vairable x̂ik of each agent i ∈ V , which helps remove

the square-summable step-size condition. It is found that even though the exact

convergence to the optimal solution cannot be guaranteed for the original decision

variable xik, it can be guaranteed for the averaged decision variable x̂ik. An intuitive

explanation is as follows.

The feature of a non-summable but square-summable step-size is that it decreases
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not too fast or too slow. It should decrease fast enough to avoid a very large up-

date by the gradient term, which may cause over-correction; It cannot decrease too

fast, which makes the update by the gradient term too small. For most subgradient

algorithms without averaging scheme, if the step-size is not square-summable, the

trajectory of the agent’s decision variable will oscillate around the optimal solution

since the step-size does not decrease fast enough to eliminate the overshoot. How-

ever, the proposed averaging scheme, which averages the decision variable along its

trajectory, has an effect of neutralizing the overshoot along the trajectory. This

effect is visualized in a simple convex optimization setup as follows.

Considering a simple convex optimization problem

min f(x), x ∈ Rn.

The typical gradient-based optimization algorithms are usually in the following form

xk+1 = xk − αkgk,

where gk is the gradient or subgradient of f at xk. That gives

xk − x? = x0 − x? − (α0g0 + α1g1 + . . .+ αk−1gk−1). (4.37)

By introducing our proposed optimal averaging scheme

x̂k =

∑k
`=0 α`x`∑k
`=0 α`

,

we can obtain that

x̂k − x? =
α0(x0 − x?) +

∑k
`=1 α`(x` − x?)∑k

`=0 α`
= x0 − x? −

∑k
`=1 α`

∑`−1
r=0 αrgr∑k

`=0 α`

= x0 − x? −
α1(α0g0) + . . .+ αk(α0g0 + α1g1 + . . .+ αk−1gk−1)∑k

`=0 α`
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= x0 − x? −
[(∑k

`=1 α`∑k
`=0 α`

)
α0g0 + . . .+

(
αk∑k
`=0 α`

)
αk−1gk−1

]
= x0 − x? − (ηk0α0g0 + ηk1α1g1 + . . .+ ηkk−1αk−1gk−1), (4.38)

where ηkl =
∑k

`=l α`/
∑k

`=0 α`. Comparing the terms in (4.37) for typical gradient-

based optimization algorithms and (4.38) for our proposed method, it can be seen

that the ratio sequence {ηk0 , ηk1 , ηk1 , . . . , ηkk−1} is getting smaller and smaller, which

implies that the proposed averaging scheme is able to produce a similar effect to the

square-summable condition even if the step-size αk in (4.38) is not square-summable.

4.3.3 Convergence Rate

In this part, we analyze the speed of convergence of the proposed algorithm for

various step-size cases. The results are summarized in the following theorem.

Theorem 4.3. Suppose Assumptions 4.1, 4.2 and 4.3 hold. Let {x̂ik}k≥0 be the

sequence generated by (4.2c) with a step-size sequence αk = α
(k+2)a

, where α > 0

is a constant and a ∈ [0, 1]. Let the parameters β1,k, β2,k be set to 1/(k + 2)p1 and

1/(k+2)p2, respectively, where p1 > 1 and p = p2−p1 > 1. Let ε be the constant such

that ε ≤ min(ε̄, 1−γ
2NΓγ

), where ε̄, Γ and γ are the constants defined in Lemma 4.2.

Then, we have

1) for a = 0, E[f(ẑt)]− f ? ≤ Cα +O

(
1

t

)
;

2) for a ∈ (0, 1
2
), E[f(ẑt)]− f ? ≤ O

(
1

ta

)
;

3) for a = 1
2
, E[f(ẑt)]− f ? ≤ O

(
ln t√
t

)
;

4) for a ∈ (1
2
, 1), E[f(ẑt)]− f ? ≤ O

(
1

t1−a

)
;

5) for a = 1, E[f(ẑt)]− f ? ≤ O

(
1

ln t

)
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where C is a constant.

Proof: By noting that

E[f(ẑt)] ≤
∑t−1

k=0 αkE[f(z̄k)]∑t−1
k=0 αk

from the convexity of f , and

∑t−1
k=0 αkfβ1,k

(x?)∑t−1
k=0 αk

≤ f ? +
D̂
√
n+ 2

∑t−1
k=0 αkβ1,k∑t−1

k=0 αk

from Lemma 4.1-1), we divide both sides of (4.28) by
∑t−1

k=0 αk, which gives

E[f(ẑt)] ≤ f ? +
C0∑t−1
k=0 αk

+
C1

∑t−1
k=0 α

2
k∑t−1

k=0 αk
+
C2

∑t−1
k=0 αkβ1,k∑t−1
k=0 αk

+
C3

∑t−1
k=0 αkβ̃k∑t−1
k=0 αk

+
C4(
∑t−1

k=0 α
2
k)(
∑t−1

k=0 β̃k)∑t−1
k=0 αk

,

where C0, C1, C2, C3 and C4 some constants.

1) For a = 0, the step-size is a constant, i.e., αk = α. Then, we have

E[f(ẑt)]− f ? ≤
C0

tα
+ C1α +

C2α(1− 1
(t+1)p1−1 )

t(p1 − 1)
+
C3α(1− 1

(t+1)p−1 )

t(p− 1)

+
C4α(1− 1

(t+1)p−1 )

p− 1
= Cα +O

(
1

t

)
.

2) For a ∈ (0, 1
2
), we have

E[f(ẑt)]− f ? ≤
C0(1− a)

α[(t+ 2)1−a − 21−a]
+
C1α(1− a)

1− 2a

(t+ 1)1−2a − 1

(t+ 2)1−a − 21−a

+
C2(1− a)(1− 1

(t+1)a+p1−1 )

α[(t+ 2)1−a − 21−a](a+ p1 − 1)
+

C3(1− a)(1− 1
(t+1)a+p−1 )

α[(t+ 2)1−a − 21−a](a+ p− 1)

+
C4α(1− a)(1− 1

(t+1)p−1 )

(1− 2a)(p− 1)

(t+ 1)1−2a − 1

(t+ 2)1−a − 21−a = O

(
1

t1−a

)
+O

(
1

ta

)
= O

(
1

ta

)
.
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3) For a = 1
2
, we have

E[f(ẑt)]− f ? ≤
C0

2α[
√
t+ 2−

√
2]

+
αC1 ln (t+ 1)

2(
√
t+ 2−

√
2)

+
C2(1− 1

(t+1)p1−0.5 )

α[
√
t+ 2−

√
2](2p1 − 1)

+
C3(1− 1

(t+1)p−0.5 )

α[
√
t+ 2−

√
2](2p− 1)

+
αC4 ln (t+ 1)(1− 1

(t+1)p−1 )

2(
√
t+ 2−

√
2)(p− 1)

= O

(
1√
t

)
+O

(
ln t√
t

)
= O

(
ln t√
t

)
.

4) For a ∈ (1
2
, 1), we have

E[f(ẑt)]− f ? ≤
C0(1− a)

α[(t+ 2)1−a − 21−a]
+
C1α(1− a)

2a− 1

1− 1
(t+1)2a−1

(t+ 2)1−a − 21−a

+
C2(1− a)(1− 1

(t+1)a+p1−1 )

α[(t+ 2)1−a − 21−a](a+ p1 − 1)
+

C3(1− a)(1− 1
(t+1)a+p−1 )

α[(t+ 2)1−a − 21−a](a+ p− 1)

+
C4α(1− a)(1− 1

(t+1)p−1 )

(2a− 1)(p− 1)

1− 1
(t+1)2a−1

(t+ 2)1−a − 21−a = O

(
1

t1−a

)
.

5) For a = 1, we have

E[f(ẑt)]− f ? ≤
C0 + α2C1(1− 1

t+1
)

α[ln (t+ 2)− ln 2]
+

C2(1− 1
(t+1)p1

)

αp1[ln (t+ 2)− ln 2]

+
C3(1− 1

(t+1)p
)

αp[ln (t+ 2)− ln 2]
+
C4(1− 1

t+1
)(1− 1

(t+1)p−1 )

α(p− 1)[ln (t+ 2)− ln 2]
= O

(
1

ln t

)
.

Remark 4.5. Theorem 4.3 shows that the proposed optimal averaging scheme allows

us to achieve the optimal rate of convergence O(ln k/
√
k), in which the optimal step-

size αk = 1/
√

1 + k does not satisfy the square-summable condition.
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4.4 Numerical Simulation

4.4.1 Numerical Example

In this part, we investigate the performance of the proposed algorithm through

a numerical example. In particular, we consider a non-smooth test problem in a

multi-agent system with N agents originated from [61]:

min f(x) =
N∑
i=1

(
li|x1 − 1|+

n−1∑
d=1

|1 + xd+1 − 2xd|2
)
, x ∈ X ,

where x = [x1, . . . , xn]> ∈ X ⊆ Rn, li, i = 1, 2, . . . , N is a positive constant.

In the simulation, the performance of the proposed algorithm is investigated from

the following perspectives: the topology of the communication graph (in Section IV-

A), the step-size and parameters selections (in Section IV-B), the number of agents

(in Section IV-C), and comparison with both state-of-the-art gradient-free algorithm

and gradient-based algorithm (in Section IV-D). We characterize the performance

by the following merit: the optimality gap defined by x̂ik − x? for agent i ∈ V .

Throughout the simulation, we let [Ar]ij = 1/|N in
i | and [Ac]ij = 1/|N out

j |, where

|N | denotes the number of elements in N . li is randomly set in [0.5, 1.5].

4.4.1.1 Influence of Communication Topology

In this part, we tested the performance of the algorithm under three different graphs

as shown in Fig. 4.1. As can be seen, the number of edges in the graph is increasing

from G1, G2 to G3. In this experiment, we set the dimension of the problem n = 2,

the number of agents N = 10, the step-size αk = 0.1/
√

1 + k, parameters β1,k =

0.1/(1 + k)1.5, β2,k = 0.1/(1 + k)2.5. The plot to show consensus and optimality

results was shown in Fig. 4.2. As can be seen, the convergence result is better for

the graph with more edges, which is reasonable because more information exchanges
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are allowed.

(a) G1 (b) G2 (c) G3

Figure 4.1: Three different communication topologies.
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Figure 4.2: Influence of communication topology on the convergence property.

4.4.1.2 Influence of the Number of Agents N

Next, we tested the performance of the algorithm for the cases of different number

of agents N under the communication graph as shown in Fig. 4.3. Specifically, we

set the number of agents N = 10, 20, 30 and 40. The rest of the parameters were set

the same as in Section IV-A. The convergence result was plotted in Fig. 4.4. It can

be observed that the convergence time for the case with larger number of agents is

longer, which is as expected due to the larger number of error terms in the decision

variable updates.

Figure 4.3: Communication topology.
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Figure 4.4: Influence of the Number of agents on the convergence property.

4.4.1.3 Influence of Step-Size αk and Parameters β1,k, β2,k

In this part, we set the dimension of the problem n = 1, the number of agents

N = 10 under the directed graph G1 shown in Fig. 4.1-(a). Then, we investigated

the performance of the algorithm for the cases of different step-size αk and two

positive parameter sequences β1,k, β2,k, respectively.

To test the influence of the step-size on the convergence, we set the step-size αk =

0.1/(1 + k)a, where a = 0, 0.2, 0.5, 0.7 and 1. It should be noted that the step-

size αk is not square-summable for a = 0, 0.2, 0.5. Two positive sequences were set

to β1,k = 1/(1 + k)1.5 and β2,k = 1/(1 + k)2.5. The plots of both consensus and

optimality results were shown in Figs. 4.5-(a) and 4.5-(b). As can be seen from both

figures, both the consensus and optimality errors decrease for diminishing step-size,

which are consistent with our findings in Theorems 4.1 and 4.2. Moreover, it can

be observed that faster convergence result is attained with slower diminishing step-

size (i.e., smaller a), but larger errors (oscillations in the plot) are incurred. The

optimal rate of convergence is achieved at a = 0.5, which coincides with our analysis

in Theorem 4.3.

To test the influence of the two positive parameter sequences on the convergence,

we set β1,k = 1/(1 + k)1.5, β̃k = β2,k/β1,k = 1/(1 + k)b, where b = 1, 3, 5, 7 and 9.

The step-size αk was set to 0.1/
√
k + 1. The convergence result under these five
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(a) Consensus (x̂i
k → ẑk)
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(b) Optimality (ẑk → x?)

Figure 4.5: Influence of step-size αk on the convergence property.

cases was plotted in Fig. 4.6. As can be seen, typical b values (ranging from 1 to 3)

do not have much influence on the speed of convergence. However, it can also be

observed that when b is increasing, the convergence performance is downgraded.
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Figure 4.6: Influence of β̃k on the convergence property.
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4.4.1.4 Comparison with the State-Of-The-Art Algorithms

In the final experiment, we compared our proposed method with the state-of-the-

art algorithms, including the randomized gradient-free push-sum protocol (RGF-

Push) proposed in [65] using diminishing smoothing parameter and a subgradient-

based method (D-DPS) proposed in [35]. All these three methods can work for

directed graphs. We set the dimension of the problem n = 2, the number of agents

N = 10 under the directed graph G1 shown in Fig. 4.1-(a). The step-size was set

to αk = 0.1/(k + 1)0.5. The convergence results of all three methods were shown

in Fig. 4.7. As can be seen, our proposed method shows a similar performance to

the RGF-Push protocol, where both methods exhibit a theoretical convergence rate

of ln k/
√
k. The gradient-based algorithm (D-DPS) outperforms the two gradient-

free methods as expected due to the use of the true gradient information. For the

advantages of our proposed algorithm over push-sum protocol, our proposed method

only performs linear operations in the decision variable updates, while the nonlinear

operation (i.e., dividing the decision variable by an auxiliary variable) is required

in the push-sum protocol. Hence, our proposed method is simpler in terms of the

computation and more reliable without the risk of being divided by zero.
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Figure 4.7: Comparison between D-DPS, RGF-Push and the proposed method.
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4.4.2 Temperature Control in HVAC Systems

In this part, we consider a 10-zone HVAC system where the temperature control is

formulated as the following distributed Model Predictive Control problem:

min J =
10∑
j=1

( K∑
k=1

λ‖T jk − T
j
ref‖+

K−1∑
k=0

‖mj
s,k‖
)
, mL ≤ mj

s,k ≤ mU

T jk+1 =

(
1− ∆t

Cj

(
1

Rj
a

+
∑
i∈N j

1

Rij

))
T jk +

∆t

Cj
P j
d

+
∆t

Cj
cpm

j
s,k(T

j
s,k − T

j
k ) +

∆t

Cj

(
Ta

Rj
a

+
∑
i∈N j

T ik
Rij

)
,

where T j and mj
s are the temperature (degrees) and air mass flow (kg/s) of zone

j, respectively. Cj and P j
d are the lumped mass of air and lumped thermal load

including all the external factors, such as the occupancy, solar radiation of zone j,

respectively. Rj
a and Rij are the thermal resistances between the air from outside

and zone j, and the neighboring zone i and zone j, respectively. cp is the specific heat

capacity of air. ∆t and K are the sampling time and receding horizon, respectively.

λ is a weighting parameter. mL and mU are the lower and upper bounds of the

input (air mass flow), respectively. The proposed algorithm is implementated in to

solve the problem.

In this simulation, we setmL = 0, mU = 3 kg/s, the initial zone temperature T j0 = 30

degrees, the reference temperature for all zones T 1
ref = T 2

ref = 24, T 3
ref = T 4

ref = 24.5,

T 5
ref = T 6

ref = 25, T 7
ref = T 8

ref = 25.5, T 9
ref = T 10

ref = 26. The rest of the model

parameters were set according to [117]. Figures 4.8 and 4.9 plotted the trajectories

of the air mass flow and the zone temperature for all zones. It can be seen that all

the inputs are kept within the constraints, while all the zone temperature can be

maintained at their corresponding reference levels. Hence, the effectiveness of the

proposed algorithm is verified.
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Figure 4.9: Zone temperature (degrees).

4.5 Conclusions

This chapter has considered a set constrained distributed optimization problem with

possibly non-smooth cost functions. A distributed projected pseudo-gradient de-

scent algorithm with an optimal averaging scheme has been proposed to solve the

problem. In particular, a pseudo-gradient operator has been developed locally to

estimate the gradient information to guide the decision variable updates. The pro-

posed optimal averaging scheme has enabled the step-size to take any positive,

non-summable and non-increasing sequence. Theoretical analysis on the conver-

gence of the proposed algorithm including the convergence rate has been provided.

To illustrate its performance, the proposed algorithm has been tested in a non-

smooth problem. The convergence properties have been investigated from different

perspectives, such as communication topology, number of agents, step-size and pa-

rameters selections, while its effectiveness has been verified by comparing with the

state-of-the-art algorithms.
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Chapter 5

Distributed Online Optimization

with Time-Varying Costs

5.1 Introduction

Many scenarios regarding the coordination of multi-agent systems can be modeled as

optimization problems where agents collaboratively optimize a global cost function.

The main characteristic of this problem is that agents are allowed to exchange

information with their neighbors over a communication graph. One type of such

optimization problems is the well-known consensus-based distributed optimization

problem, where the global objective is often cast as a sum of local cost functions with

each one assigned to an agent in the network, to achieve the convergence to the set of

minimizers of the global cost function. The problem has various applications, such as

parameter estimation and detection [2,3], source localization in sensor networks [4,5],

utility maximization [6], resource allocation [7,8], path-planning of mobile robots [9].

The distributed algorithms for such problem have been widely studied, where recent

works have been reported in [28,32,33,35,36,41] and the references therein.

The cost functions considered in the above mentioned works are fixed with respect
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to time. However, in some situations, the uncertainties in the environment may

influence the cost functions, which in turn, affect the performance of the designed

algorithms. One approach to cater such issues is through stochastic methods, which

has been studied in [13–15]. However, in many practical cases, especially when

mobile agents are involved, the optimization problem is often in a highly dynamic

environment, resulting in a time-varying objective. Thus, the techniques used in

fixed or static distributed optimization cannot be formally applied, leading to the

study of online optimization framework, where the cost functions assigned to agents

vary with time and these variations are revealed to agents only in hindsight.

Recent works on distributed online optimization have been studied in [71–79]. In

[71], general gradient-based methods were proposed to solve both unconstrained and

set constrained time-varying quadratic optimization problems from the perspective

of continuous-time domain. For discrete-time methods, in [72], a distributed au-

tonomous online learning based on dual averaging where agents communicate over

a weighted strongly connected graph was investigated. A regret bound of O(lnT )

was derived for strongly convex cost functions. The same problem was studied

in [73], where a distributed online subgradient push-sum algorithm was presented

without the doubly-stochastic requirement on the weighting matrix, and was found

to achieve a regret bound of O((lnT )2). As for the agents with general convex cost

functions interacting over a switching network, distributed dual-subgradient aver-

aging algorithms were studied in [74] and [75], showing a regret bound of O(
√
T ).

Besides, Mateos-Nunez et al. in [76] introduced distributed online subgradient de-

scent algorithms with proportional-integral disagreement feedback, proving a regret

bound of O(
√
T ) for convex cost functions and O(lnT ) for strongly convex cost

functions. The work in [79] presented two decentralized stochastic methods based

on Nesterov’s dual averaging techniques, and achieved the regret bound of O(
√
T )

for Lipschitz continuous convex functions. It is worth noting that the regret used

in all the aforementioned methods is defined as the difference between the incurred

network cost and the cost of the best fixed decision in hindsight, which is known as
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static regret. On the other hand, to study the scenario where the functions and the

decision variables evolve simultaneously instead of a single best fixed decision, the

notion of dynamic regret was brought forward to characterize how much one regrets

working in an online setting as opposed to the offline solution with full knowledge

of past and future observations. With this concept, Shahrampour et al. in [77, 78]

proposed a decentralized mirror descent method for an online optimization prob-

lem, where the minimizer follows an known linear dynamics corrupted by unknown

unstructured noise, and established a regret bound as a function of the deviation of

minimizer sequence.

It should be noted that all these methods make use of the derivatives in the process

of the optimization, which implicitly presumes that the derivatives can be obtained

directly. However, there are many applications where the gradient information is not

available to use, then these methods cannot be applied. This inspires the study of

gradient-free optimization, which has been studied in the field of static optimization,

e.g., [61–67,70], to list a few. A Gaussian-smoothing technique was firstly proposed

in [61] to solve the general unconstrained optimization problem. This technique

was applied to a distributed optimization problem in [62, 63] and further improved

in [64, 65]. The variants of this technique were also adopted in [66, 67, 70] to solve

the static distributed optimization problems. For online optimization, the works

in [77–79] considered the scenarios where the gradient of the cost function is coupled

with noise, hence proposed stochastic gradient methods. However, gradient-free

optimization schemes have received little attention in online optimization problems

in general.

In this chapter, we investigate an online optimization problem where the explicit

form of the cost function is not available, but its value is measurable, and only re-

vealed after the decision is made at each time-step. Thus, one cannot calculate the

derivative based on the expression of the cost function, leading to the gradient-free

settings. Motivated by our previous work in [66,67], we propose an online random-

ized gradient-free distributed projected gradient descent (oRGF-DPGD) algorithm,
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in which a randomized gradient-free oracle is built locally to approximate the local

function derivative, followed by the update of the state variables at each time-step.

With some standard assumptions on the graph connectivity and the local cost func-

tions, we are able to provide the bounds for both static and dynamic regrets as

a small error term plus a sublinear function of the time duration. The following

summarizes the major contributions of this chapter.

• To the best of the our knowledge, this work is the first attempt to address

the distributed online optimization problem with time-varying cost functions

in gradient-free settings. Specifically, the proposed algorithm solves the dis-

tributed optimization problem where the cost function can be time-varying;

and its implementation does not require the explicit expression of the cost

function, but only the measurements at each time-step, making it suitable for

those applications where finding the gradient is costly or not practical. Thus,

this gradient-free feature naturally subsumes the scenario where the gradient

can be computed but coupled with unstructured noise, e.g., [77–79].

• Different from most consensus-based approaches where the weighting matrix

is doubly-stochastic [72, 74–78], we associate the communication graph with

a row-stochastic and a column-stochastic matrices. This setting is less re-

strictive, and is feasible to any directed graphs [113, 114]. In addition, this

algorithm is allowed to take any positive and non-increasing step-size as com-

pared to those using diminishing and square summable step-size [72,73]. The

wider range of step-size selection implies a wider range of stability.

• Both the static and the dynamic regrets are studied in this chapter. Moreover,

for the static regret, we establish a bound consisting of a small error term plus

a sublinear function of the time duration; for the dynamic regret, we provide

a bound consisting of a small error term plus a product of a term depending

on the variation of the optimal solution sequence and a sublinear function of

the time duration. With appropriate assumptions, we are able to show that

Nanyang Technological University Singapore



Chapter 5. Distributed Online Optimization with Time-Varying Costs 91

both types of regrets are sublinear, and their averages over the time duration

are convergent to a small neighborhood of zero with the convergence rate of

O(1/
√
T ), respectively, which is comparable to the state-of-the-art algorithms

with available gradient information e.g., [74–76,79].

In the subsequent sections, the problem studied in this chapter is introduced in

Section 5.2. The main results are presented in Section 5.3, which includes the

detailed description of the proposed agorithm and the convergence analysis. We

verify the effectiveness of the proposed algorithm by some numerical simulations in

Section 5.4. Section 5.5 concludes the chapter.

5.2 Problem Formulation

For each agent i ∈ V , it is associated with a set of local cost functions {f ti }t≥0,

whose explicit expressions are assumed to be unknown, but the measurement f ti of

agent i’s decision at time-step t (i.e., f ti (x
i(t))) can be made by agent i at time-step

t. The objective of the multi-agent system is to cooperatively solve the following

constrained optimization problem at each time-step t:

min f t(x(t)) =
N∑
i=1

f ti (x(t)), x(t) ∈ X , (5.1)

where X ⊆ Rn is a convex and compact set.

As the cost function is time-varying, the optimal solution to (5.1) may vary at

different time-step t. Different from the typical algorithms for optimization problem

with time-invariant cost functions, the algorithm for online optimization problem

is not neccessary to reach the optimal solution at every time-step t; however, its

performance should be quantified by comparing with its offline counterpart over a

period of time, which leads to the concept of regret.
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Denoting the best fixed decision of problem (5.1) over a time duration T ∈ N by x?s,

i.e., x?s = arg minx∈X
∑T

t=0 f
t(x), then the static regret associated with agent i ∈ V

can be formally defined as follows:

Rs
i (T ) =

T∑
t=0

E[f t(xi(t))]−
T∑
t=0

f t(x?s),

where xi(t) is the decision variable of agent i at time t. The static regret is the most

commonly used benchmark in online optimization literatures (see [72–76]), which

characterizes the difference between the incurred network cost and the cost of the

best fixed decision in hindsight. On the other hand, to study the scenario where

the functions and the decision variables evolve simultaneously instead of a single

best fixed decision, the notion of dynamic regret was brought forward. At time-step

t, the optimal solution to (5.1) is denoted by x?d(t), i.e., x?d(t) = arg minx∈X f
t(x).

Thus, the dynamic regret associated with agent i ∈ V can be formally defined as

follows:

Rd
i (T ) =

T∑
t=0

E[f t(xi(t))]−
T∑
t=0

f t(x?d(t)).

The dynamic regret measures how much network cost being incurred in an online

setting as opposed to the offline solution with full knowledge of past and future

observations. In general, an online optimization algorithm performs well if the static

or dynamic regret is sublinear with respect to T . However, the sublinear dynamic

regret is usually not possible unless the optimal solution sequence {x?d(t)}Tt=0 does

not change significantly with time. Thus, we define the deviation of the consecutive

optimal solution sequence as follows:

ΘT =
T∑
t=0

‖x?d(t+ 1)− x?d(t)‖. (5.2)

To establish the gradient-free method, we introduce a smoothed version of (5.1)

Nanyang Technological University Singapore



Chapter 5. Distributed Online Optimization with Time-Varying Costs 93

given by

min f tµ(x(t)) =
N∑
i=1

f ti,µi(x(t)), x(t) ∈ X ,

where f ti,µi(x(t)) is the Gaussian approximation of f ti (x(t)) [61]

f ti,µi(x(t)) =
1

κ

∫
Rn
f ti (x(t) + µiξ)e−

1
2
‖ξ‖2dξ,

with κ =
∫
Rn e

− 1
2
‖ξ‖2dξ = (2π)n/2 and µi ≥ 0 is a smoothing parameter of function

f ti,µi(x(t)). Based on [61], the randomized gradient-free oracle of f ti (x(t)) at time-

step t can be designed as follows:

gtµi(x(t)) =
f ti (x(t) + µiξi)− f ti (x(t))

µi
ξi,

where ξi ∈ Rn is uniformly generated over a unit ball. The properties of the functions

gtµi(x(t)) and f ti,µi(x(t)) are presented in Lemma 5.1.

The following assumptions are made throughout the chapter:

Assumption 5.1. The directed graph G is strongly connected.

Assumption 5.2. Each local cost function f ti at time-step t is convex, but not

necessarily differentiable. Its subgradient ∂f ti (x(t)) is bounded, i.e., ∀x(t) ∈ X ,

there exists a positive constant D̂ such that ‖∂f ti (x(t))‖ ≤ D̂.

5.3 Main Results

In this section, we present an online randomized gradient-free distributed projected

gradient descent method for the problem defined in (5.1), followed by the conver-

gence analysis.
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5.3.1 Online Randomized Gradient-Free DPGD Method

The main steps of randomized gradient-free distributed projected gradient descent

method are described in this part.

At time-step t, each agent j delivers its state information xj(t) with a weighted

auxiliary variable [Ac]ijy
j(t) to its out-neighbor i ∈ N out

j . Then, at time-step t+ 1,

agent i updates its variables xi(t + 1) and yi(t + 1) with the information received

from its in-neighbor j ∈ N in
i as follows

xi(t+ 1) = PX
[ N∑
j=1

[Ar]ijx
j(t) + εyi(t)− α(t)gtµi(x

i(t))

]
, (5.3a)

yi(t+ 1) = xi(t)−
N∑
j=1

[Ar]ijx
j(t) +

N∑
j=1

[Ac]ijy
j(t)− εyi(t), (5.3b)

where gtµi(x
i(t)) is the random gradient-free oracle, given by

gtµi(x
i(t)) =

f ti (x
i(t) + µiξi(t))− f ti (xi(t))

µi
ξi(t), (5.4)

Ar, Ac are the row-stochastic and column-stochastic adjacency matrices, respec-

tively, i.e.,
∑N

j=1[Ar]ij = 1 for all i ∈ V , and
∑N

i=1[Ac]ij = 1 for all j ∈ V , α(t) > 0

is a non-increasing step-size, and ε is a small positive number. The procedures are

summarized in Algorithm 5.1.

Algorithm 5.1 Online randomized gradient-free DPGD

1: Initialize: i ∈ V
arbitrarily select xi(0),yi(0) ∈ X
randomly generate {ξi(t)}t≥0 over a unit ball independently

2: Iteration (t ≥ 0): i ∈ V
compute gtµi(x

i(t)) based on (5.4)

update variables xi(t+ 1) based on (5.3a)
update variables yi(t+ 1) based on (5.3b)

3: Output: i ∈ V
xi(t)
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For the convenience of analysis, we may write (5.3) in a compact form as

zi(t+ 1) =
2N∑
j=1

[A]ijz
j(t) + gi(t), (5.5)

where zi(t) = xi(t) for i ∈ {1, . . . , N} and zi(t) = yi−N(t) for i ∈ {N + 1, . . . , 2N};

gi(t) = xi(t + 1) −
∑N

j=1[Ar]ijx
j(t) − εyi(t) for i ∈ {1, . . . , N} and gi(t) = 0n for

i ∈ {N +1, . . . , 2N}; and A = [ Ar εI
I−Ar Ac−εI ]. As X is compact and convex, we denote

ρ = supx∈X ‖x‖. Thus, ‖xi(t)‖ or ‖zi(t)‖ ≤ ρ, for i ∈ {1, . . . , N}, t ≥ 0.

5.3.2 Convergence Analysis

In this part, we provide the detailed analysis on the convergence properties of our

proposed algorithm. We denote the σ-field generated by the entire history of the

random variables from step 0 to t− 1 by Ft, i.e.,

Ft =

{x
i
0, i ∈ V}, t = 0,

{(xi0, i ∈ V); (ξi(r), i ∈ V); 0 ≤ r ≤ t− 1}, t ≥ 1.

Before proceeding to the main results, we first introduce some important lemmas.

The following lemma provides some properties of the functions gtµi(x) and f ti,µi(x),

which is a variation of Lemma 2.1 stated in Chapter 2.

Lemma 5.1. (see [61]) Suppose Assumption 5.2 holds. For each i ∈ V, the following

properties of the functions gtµi(x(t)) and f ti,µi(x(t)) are satisfied.

1) Function f ti,µi(x(t)) is convex, and it satisfies

f ti (x(t)) ≤ f ti,µi(x(t)) ≤ f ti (x(t)) +
√
nµ̂D̂,

where µ̂ = maxi∈V µi.
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2) Function f ti,µi(x(t)) is differentiable and its gradient satisfies

∇f ti,µi(x(t)) = E[gtµi(x(t))],

and is Lipschitz continuous with a Lipschitz constant L̂, i.e.,

‖∇f ti,µi(x(t))−∇f ti,µi(y(t))‖ ≤ L̂‖x(t)− y(t)‖,

where L̂ = maxi∈V
√
nD̂
µi

.

3) The random gradient-free oracle gtµi(x(t)) satisfies

E[‖gtµi(x(t))‖] ≤
√
E[‖gt

µi
(x(t))‖2] ≤ (n+ 4)D̂.

An important result on the weighting matrix A is presented in the following lemma:

Lemma 5.2. (Lemma 1 in [35]) Suppose Assumption 5.1 holds. A is the weighting

matrix defined in (5.5). Let the constant ε in A be chosen such that ε ∈ (0, ε̄).

Then ∀i, j ∈ {1, . . . , 2N}, the entries [At]ij converge to their limits as t → ∞ at a

geometric rate, i.e., ∥∥∥∥∥∥At −
1N1TN

N

1N1TN
N

0 0

∥∥∥∥∥∥
∞

≤ Γγt, t ≥ 1,

where ε̄ = ( 1−|λ3|
20+8N

)N , λ3 is the third largest eigenvalue of A by setting ε = 0. Γ > 0

and 0 < γ < 1 are some constants.

Now, we denote that z̄(t) = 1
N

∑2N
i=1 zi(t). Then, we can obtain from (5.5) that

z̄(t+ 1) =
1

N

2N∑
i=1

2N∑
j=1

[A]ijz
j(t) +

1

N

2N∑
i=1

gi(t)

=
1

N

2N∑
j=1

zj(t) +
1

N

2N∑
i=1

gi(t)
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= z̄(t) +
1

N

2N∑
i=1

gi(t), (5.6)

where we have used column-stochastic property of A, i.e., for t ≥ 1, it holds that∑2N
i=1[At]ij = 1.

Similar to the common assumption on the boundness of the gradient/subgradient

in distributed optimization problems, the following lemma provides a bound on the

augmented gradient-free oracle gi(t):

Lemma 5.3. Suppose Assumptions 5.1 and 5.2 hold. Let the constant ε be chosen

such that ε ≤ min(ε̄, 1−γ
2NΓγ

). Then, there exists some bounded constant G > 0, such

that for all t ≥ 0, the augmented gradient-free oracle gj(t) satisfies

N∑
j=1

E[‖gj(t)‖|Ft] ≤ Gα(t),

where ε̄ > 0, Γ > 0 and 0 < γ < 1 are the constants defined in Lemma 5.2. α(t) is

the non-increasing step-size.

Proof: Step 1: For any K ≥ 2, the following relation holds

K∑
t=1

α(t)
N∑
j=1

E[‖gj(t)‖|Ft] ≤ Φ
K∑
t=1

α2(t) + Ψ, (5.7)

where Φ and Ψ are positive constants.

By the projection’s non-expansive property, we have

∥∥∥∥PX[ N∑
j=1

[Ar]ijx
j(t) + εyi(t)− α(t)gtµi(x

i(t))

]
−

N∑
j=1

[Ar]ijx
j(t)

∥∥∥∥
≤ ‖εyi(t)− α(t)gtµi(x

i(t))‖,
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which implies

‖gi(t)‖ ≤
∥∥∥∥xi(t+ 1)−

N∑
j=1

[Ar]ijx
j(t)

∥∥∥∥+ ‖εyi(t)‖

≤ ‖εyi(t)− α(t)gtµi(x
i(t))‖+ ε‖yi(t)‖

≤ α(t)‖gtµi(xi(t))‖+ 2ε‖yi(t)‖. (5.8)

For the boundedness of ‖yi(t)‖, it follows from (5.5) that for t ≥ 1

zi(t) =
2N∑
j=1

[At]ijz
j
0 +

t−1∑
r=1

2N∑
j=1

[At−r]ijg
j(r − 1) + gi(t− 1). (5.9)

Thus, we can obtain from (5.9) that for i = {N + 1, . . . , 2N} and t > 1

E[‖zi(t)‖|Ft−1] ≤
2N∑
j=1

∥∥[At]ij
∥∥ρ+

t−1∑
r=1

N∑
j=1

∥∥[At−r]ij
∥∥E[‖gj(r − 1)‖|Fr−1]. (5.10)

Applying Lemma 5.2 to (5.10) yields

E[‖yi(t)‖|Ft−1] ≤ 2NρΓγt + Γ
t−1∑
r=1

γt−r
N∑
j=1

E[‖gj(r − 1)‖|Fr−1].

Thus, with the above result, it can be obtained from (5.8) that

E[‖gi(t)‖|Ft] ≤ 4NρεΓγt + (n+ 4)D̂α(t) + 2εΓ
t−1∑
r=1

γt−r
N∑
j=1

E[‖gj(r − 1)‖|Fr−1],

where Lemma 5.1-(3) is used. Thus, we have

N∑
i=1

E[‖gi(t)‖|Ft] ≤ 4N2ρεΓγt + (n+ 4)ND̂α(t)

+ 2NεΓ
t−1∑
r=1

γt−r
N∑
j=1

E[‖gj(r − 1)‖|Fr−1]. (5.11)
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Thus, it follows from (5.11) that

K∑
t=1

α(t)
N∑
i=1

E[‖gi(t)‖|Ft] ≤ 4N2ρεΓ
K∑
t=1

γtα(t) + (n+ 4)ND̂
K∑
t=1

α2(t)

+ 2NεΓ
K∑
t=1

α(t)
t−1∑
r=1

γt−r
N∑
j=1

E[‖gj(r − 1)‖|Fr−1]. (5.12)

Noting that

K∑
t=1

γtα(t) ≤ 1

2

K∑
t=1

α2(t) +
γ2

2(1− γ2)
,

and the step-size is non-increasing, it holds that

K∑
t=1

α(t)
t−1∑
r=1

γt−r
N∑
j=1

E[‖gj(r − 1)‖|Fr−1] ≤ γ

1− γ

K∑
t=1

α(t)
N∑
j=1

E[‖gj(t)‖|Ft].

Applying the above results, it follows from (5.12) that

K∑
t=1

α(t)
N∑
i=1

E[‖gi(t)‖|Ft] ≤ (n+ 4)ND̂
K∑
t=1

α2(t)

+ 4N2ρεΓ

(
1

2

K∑
t=1

α2(t) +
γ2

2(1− γ2)

)

+
2NεΓγ

1− γ

K∑
t=1

α(t)
N∑
j=1

E[‖gj(t)‖|Ft].

Thus, the result (5.7) follows by moving the last term to the left hand side and

ε ≤ 1−γ
2NΓγ

.

Step 2: Prove the final result by contradiction.

Suppose the statement is not true. Then, (
∑N

j=1 E[‖gj(t)‖|Ft])/α(t) =∞ holds for

some t. Since α(t) 6= 0, there are two cases where (
∑N

j=1 E[‖gj(t)‖|Ft])/α(t) = ∞.

Case 1 : at some finite tf , (
∑N

j=1 E[‖gj(tf )‖|Ftf ])/α(tf ) =∞; Case 2 : when t goes

to infinity, (
∑N

j=1 E[‖gj(t)‖|Ft])/α(t) = ∞. Next, we show that both cases lead to
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contradiction.

Case 1 : If there exists some finite tf such that
∑N

j=1 E[‖gj(tf )‖|Ftf ] =∞, then we

can always find a finite constant K > tf in (5.7) such that

K∑
t=1

α(t)
N∑
j=1

E[‖gj(t)‖|Ft] ≤ Φ
K∑
t=1

α2(t) + Ψ <∞,

which implies every term α(t)
∑N

j=1 E[‖gj(t)‖|Ft], t = 1, . . . , K is bounded. Since

α(t) 6= 0, every term
∑N

j=1 E[‖gj(t)‖|Ft] is bounded for t = 1, . . . , K, which contra-

dicts to
∑N

j=1 E[‖gj(tf )‖|Ftf ] =∞.

Case 2: Suppose (
∑N

j=1 E[‖gj(t)‖|Ft])/α(t) = ∞ when t goes to infinity. Taking

the limit superior on both sides of (5.11) and noting that ε ≤ 1−γ
2NΓγ

, we can prove

that

lim sup
t→∞

N∑
j=1

E[‖gj(t)‖|Ft] ≤
(n+ 4)ND̂

1− 2NεΓγ
1−γ

lim
t→∞

α(t) <∞.

Then we have

lim sup
t→∞

∑N
j=1 E[‖gj(t)‖|Ft]

α(t)
=

lim supt→∞
∑N

j=1 E[‖gj(t)‖|Ft]
limt→∞ α(t)

≤ (n+ 4)ND̂

1− 2NεΓγ
1−γ

<∞,

leading to a contradiction. This completes the entire proof.

With the above lemmas, we are ready to establish the main results. We first provide

a bound for E[‖zi(t)− z̄(t)‖], 1 ≤ i ≤ N .

Theorem 5.1. Suppose Assumptions 5.1 and 5.2 hold. Let {zi(t)}t≥0 be the se-

quence generated by (5.5) with non-increasing step-size sequence {α(t)}t≥0. Then,

for i = {1, . . . , N}, zi(t) satisfies

E[‖zi(t)− z̄(t)‖] ≤ 2NρΓ̂γt +GΓ̂
t∑

r=1

γt−rα(r − 1),
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where Γ̂ = max{Γ, 1} > 0, 0 < γ < 1 and G > 0 are some constants.

Proof: We can obtain from (5.6) that

z̄(t) =
1

N

2N∑
j=1

zj0 +
1

N

t∑
r=1

2N∑
j=1

gj(r − 1). (5.13)

Subtracting (5.13) from (5.9) and taking the norm, we have that for 1 ≤ i ≤ N and

t ≥ 1,

‖zi(t)− z̄(t)‖ ≤
2N∑
j=1

∥∥∥∥[At]ij −
1

N

∥∥∥∥ρ+
t−1∑
r=1

N∑
j=1

∥∥∥∥[At−r]ij −
1

N

∥∥∥∥‖gj(r − 1)‖

+
N − 1

N
‖gi(t− 1)‖+

1

N

∑
j 6=i

‖gj(t− 1)‖.

Noting that

N − 1

N
‖gi(t− 1)‖+

1

N

∑
j 6=i

‖gj(t− 1)‖

≤ N − 1

N

N∑
i=1

‖gi(t− 1)‖+
1

N

N∑
j=1

‖gj(t− 1)‖ =
N∑
j=1

‖gj(t− 1)‖.

By applying Lemma 5.2 and denoting Γ̂ = max{Γ, 1}, we can obtain that

‖zi(t)− z̄(t)‖ ≤ 2NρΓγt +
N∑
j=1

‖gj(t− 1)‖+ Γ
t−1∑
r=1

γt−r
N∑
j=1

‖gj(r − 1)‖

≤ 2NρΓ̂γt + Γ̂
t∑

r=1

γt−r
N∑
j=1

‖gj(r − 1)‖.

Taking the conditional expectation on F` from ` = 0 to t − 1 and using the result

of Lemma 5.3 yields

E[‖zi(t)− z̄(t)‖|Ft−1] ≤ 2NρΓ̂γt +GΓ̂
t∑

r=1

γt−rα(r − 1). (5.14)

Taking the total expectation for (5.14), we complete the proof.
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Remark 5.1. Theorem 5.1 characterizes the consensus property of the algorithm.

Denoting limt→∞ α(t) by α̃, then it is not difficult to show that

lim
t→∞

t∑
r=1

γt−rα(r − 1) =
α̃

1− γ
,

which means lim supt→∞ E[‖zi(t) − z̄(t)‖] ≤ (GΓ̂α̃)/(1 − γ); namely, all agents

zi(t), i ∈ V approximately converge to z̄(t) with the error gap proportional to the

limit of the step-size α̃. If α̃ = 0, then the exact convergence can be attained.

Next, we provide a bound for the static regret Rs
i (T ), which is summarized in the

following theorem.

Theorem 5.2. Suppose Assumptions 5.1 and 5.2 hold. Let {zi(t)}t≥0 be the se-

quence generated by (5.5) with the step-size sequence α(t) = 1/
√
t+ 1. Then, for

any i ∈ V and time duration T > 0, the static regret Rs
i (T ) satisfies

Rs
i (T ) ≤ (T + 1)

√
nNµ̂D̂ + Cs1 + Cs2

√
T + 1,

where

Cs1 = 2(G+ 2(n+ 5)D̂)N2ρΓ̂/(1− γ)

Cs2 = BsT +NV̂ s +G(3G+ 2(n+ 4)ND̂)/N + 2(G+ 2(n+ 5)D̂)NGΓ̂/γ(1− γ),

V̂ s is a positive constant, BsT =
∑T

t=0(Bscov,1/2N + Bscov,2 + Bscov,3), Bscov,1, Bscov,2 and

Bscov,3 are the upper bounds of some covariance terms.

Proof: Based on (5.5) and the fact that A is column-stochastic, we have

z̄(t+ 1) = z̄(t) +
1

N

N∑
i=1

gi(t).
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Thus, we can derive that

‖z̄(t+ 1)− x?s‖2 =‖z̄(t)− x?s‖2 +

∥∥∥∥ 1

N

N∑
i=1

gi(t)

∥∥∥∥2

+
2

N

N∑
i=1

〈gi(t), z̄(t)− x?s〉

=‖z̄(t)− x?s‖2 +
1

N2

∥∥∥∥ N∑
i=1

gi(t)

∥∥∥∥2

(5.15a)

− 2α(t)

N

N∑
i=1

〈gtµi(xi(t)), z̄(t)− x?s〉 (5.15b)

+
2

N

N∑
i=1

〈gi(t) + α(t)gtµi(x
i(t)), z̄(t)− x?s〉. (5.15c)

For the second term in (5.15a), taking the conditional expectation on Ft yields

E
[∥∥∥∥ N∑

i=1

gi(t)

∥∥∥∥2∣∣∣∣Ft] ≤ N∑
i=1

E[‖gi(t)‖2|Ft]

=
N∑
i=1

(E[‖gi(t)‖|Ft])2 +
N∑
i=1

Cov(‖gi(t)‖, ‖gi(t)‖)

≤
( N∑

i=1

E[‖gi(t)‖|Ft]
)2

+ Bscov,1 ≤ G2α2(t) + Bscov,1,

(5.16)

where we have applied Lemma 5.3 on
∑N

i=1 E[‖gi(t)‖|Ft] and used E[xy] = E[x]E[y]+

Cov(x, y). The upper bound of the covariance term
∑N

i=1Cov(‖gi(t)‖, ‖gi(t)‖) is

denoted by Bscov,1 > 0.

For (5.15b), taking the conditional expectation on Ft and applying Lemma 5.1-(2)

gives
∑N

i=1〈E[gtµi(x
i(t))|Ft], z̄(t)− x?s〉 =

∑N
i=1〈∇f ti,µi(xi(t)), z̄(t)− x?s〉. Noting that

〈∇f ti,µi(xi(t)), z̄(t)− x?s〉 = 〈∇f ti,µi(xi(t)), z̄(t)− xi(t)〉+ 〈∇f ti,µi(xi(t)),xi(t)− x?s〉

≥ −‖∇f ti,µi(xi(t))‖‖xi(t)− z̄(t)‖+ f ti,µi(x
i(t))− f ti,µi(x?s)

≥ −(n+ 4)D̂‖xi(t)− z̄(t)‖+ f ti (x
i(t))− f ti,µi(x?s)

≥ −(n+ 4)D̂‖xi(t)− z̄(t)‖+ f ti (x
i(t))− f ti (z̄(t)) + f ti (z̄(t))− f ti,µi(x?s)

≥ −(n+ 5)D̂‖xi(t)− z̄(t)‖+ f ti (z̄(t))− f ti,µi(x?s),
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where ‖∇f ti,µi(xi(t))‖ can be bounded using Lemma 5.1-(3), particularly,

‖∇f ti,µi(xi(t))‖ = ‖E[gtµi(x
i(t))|Ft]‖ ≤ E[‖gtµi(xi(t))‖|Ft] ≤ (n+ 4)D̂;

and

f ti (x
i(t))− f ti (z̄(t)) ≥ 〈∂f ti (z̄(t)),xi(t)− z̄(t)〉 ≥ −D̂‖xi(t)− z̄(t)‖

based on Assumption 5.2. Thus, we obtain

N∑
i=1

〈E[gtµi(x
i(t))|Ft], z̄(t)− x?s〉

≥ −(n+ 5)D̂
N∑
i=1

‖xi(t)− z̄(t)‖+ f t(z̄(t))− f tµ(x?s).

(5.17)

Noting that for (5.15c), we have

N∑
i=1

〈gi(t) + α(t)gtµi(x
i(t)), z̄(t)− x?s〉

=
N∑
i=1

〈gi(t) + α(t)gtµi(x
i(t)), z̄(t)− z̄(t+ 1)〉 (5.18a)

+
N∑
i=1

〈gi(t) + α(t)gtµi(x
i(t)), z̄(t+ 1)− xi(t+ 1)〉 (5.18b)

+
N∑
i=1

〈gi(t) + α(t)gtµi(x
i(t)),xi(t+ 1)− x?s〉. (5.18c)

For (5.18a), we have

N∑
i=1

〈gi(t) + α(t)gtµi(x
i(t)), z̄(t)− z̄(t+ 1)〉

≤
N∑
i=1

‖gi(t) + α(t)gtµi(x
i(t))‖

∥∥∥∥ 1

N

N∑
i=1

gi(t)

∥∥∥∥
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≤ 1

N

( N∑
i=1

‖gi(t)‖
)2

+
α(t)

N

N∑
i=1

‖gi(t)‖
N∑
i=1

‖gtµi(xi(t))‖.

Taking the conditional expectation on Ft gives

N∑
i=1

E[〈gi(t) + α(t)gtµi(x
i(t)), z̄(t)− z̄(t+ 1)〉|Ft]

≤ 1

N

( N∑
i=1

E[‖gi(t)‖|Ft]
)2

+
α(t)

N

N∑
i=1

E[‖gi(t)‖|Ft]
N∑
i=1

E[‖gtµi(xi(t))‖|Ft] + Bscov,2

≤ 1

N
G(G+ (n+ 4)ND̂)α2(t) + Bscov,2, (5.19)

where we have applied Lemma 5.1-(3) on E[‖gtµi(xi(t))‖|Ft] and Lemma 5.3 on∑N
i=1 E[‖gi(t)‖|Ft]. Bscov,2 > 0 is an upper bound of the sum of the covariance terms

Cov(
∑N

i=1 ‖gi(t)‖,
∑N

i=1 ‖gi(t)‖) and Cov(
∑N

i=1 ‖gi(t)‖,
∑N

i=1 ‖gtµi(xi(t))‖).

For (5.18b), we have

N∑
i=1

〈gi(t) + α(t)gtµi(x
i(t)), z̄(t+ 1)− xi(t+ 1)〉

≤
N∑
i=1

‖gi(t) + α(t)gtµi(x
i(t))‖‖z̄(t+ 1)− xi(t+ 1)‖

≤
N∑
i=1

(‖gi(t)‖+ α(t)‖gtµi(xi(t))‖)‖z̄(t+ 1)− xi(t+ 1)‖.

Taking the conditional expectation on Ft yields

N∑
i=1

E[〈gi(t) + α(t)gtµi(x
i(t)), z̄(t+ 1)− xi(t+ 1)〉|Ft]

≤
N∑
i=1

(E[‖gi(t)‖|Ft] + α(t)E[‖gtµi(xi(t))‖|Ft])E[‖z̄(t+ 1)− xi(t+ 1)‖|Ft] + Bscov,3

≤ (G+ (n+ 4)D̂)α(t)
N∑
i=1

E[‖z̄(t+ 1)− xi(t+ 1)‖|Ft] + Bscov,3, (5.20)

where we have applied Lemma 5.1-(3) on E[‖gtµi(xi(t))‖|Ft] and Lemma 5.3 on
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∑N
i=1 E[‖gi(t)‖|Ft]. Bscov,3 > 0 is an upper bound of the sum of the covariance terms

Cov(
∑N

i=1 ‖gi(t)‖, ‖z̄(t+1)−xi(t+1)‖) and Cov(
∑N

i=1 ‖gtµi(xi(t))‖, ‖z̄(t+1)−xi(t+

1)‖).

For (5.18c), it follows from the projection’s non-expansive property that

〈gi(t) + α(t)gtµi(x
i(t)),xi(t+ 1)− x?s〉 ≤ 0. (5.21)

Thus, taking the conditional expectation on Ft in (5.18) and substituting (5.19),

(5.20) and (5.21), we obtain

N∑
i=1

E[〈gi(t) + α(t)gtµi(x
i(t)), z̄(t)− x?s〉|Ft] ≤

1

N
G(G+ (n+ 4)ND̂)α2(t)

+ (G+ (n+ 4)D̂)α(t)
N∑
i=1

E[‖z̄(t+ 1)− xi(t+ 1)‖|Ft] + Bscov,2 + Bscov,3.

(5.22)

Taking the conditional expectation on Ft in (5.15), and substituting (5.16), (5.17)

and (5.22), we obtain that

α(t)(f t(z̄(t))− f tµ(x?s)) ≤
Bscov,1
2N

+ Bscov,2 + Bscov,3 + (n+ 5)D̂
N∑
i=1

α(t)‖xi(t)− z̄(t)‖

+
N

2
(‖z̄(t)− x?s‖2 − E[‖z̄(t+ 1)− x?s‖2|Ft]) +

G

2N
(3G+ 2(n+ 4)ND̂)α2(t)

+ (G+ (n+ 4)D̂)
N∑
i=1

α(t)E[‖z̄(t+ 1)− xi(t+ 1)‖|Ft]. (5.23)

Since α(t) is positive, dividing both sides of (5.23) by α(t), we have

f t(z̄(t))− f tµ(x?s) ≤
1

α(t)

(Bscov,1
2N

+ Bscov,2 + Bscov,3
)

+ (n+ 5)D̂
N∑
i=1

‖xi(t)− z̄(t)‖

+
N

2α(t)
(‖z̄(t)− x?s‖2 − E[‖z̄(t+ 1)− x?s‖2|Ft]) +

G

2N
(3G+ 2(n+ 4)ND̂)α(t)

+ (G+ (n+ 4)D̂)
N∑
i=1

E[‖z̄(t+ 1)− xi(t+ 1)‖|Ft].
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Taking the total expectation, and combining the result in Theorem 5.1, we have

E[f t(z̄(t))]− f tµ(x?s) ≤
1

α(t)

(Bscov,1
2N

+ Bscov,2 + Bscov,3
)

+ 2(G+ (2n+ 9)D̂)N2ρΓ̂γt

+
N

2α(t)
(E[‖z̄(t)− x?s‖2]− E[‖z̄(t+ 1)− x?s‖2]) +

G

2N
(3G+ 2(n+ 4)ND̂)α(t)

+ (G+ (2n+ 9)D̂)NGΓ̂
t+1∑
r=1

γt−rα(r − 1).

Summing up from t = 0 to T , and denoting by BsT =
∑T

t=0(Bscov,1/2N+Bscov,2+Bscov,3),

we obtain

T∑
t=0

(E[f t(z̄(t))]− f tµ(x?s)) ≤
BsT
α(T )

+ 2(G+ (2n+ 9)D̂)N2ρΓ̂
T∑
t=0

γt

+ (G+ (2n+ 9)D̂)NGΓ̂
T∑
t=0

t+1∑
r=1

γt−rα(r − 1)

+
T∑
t=0

N

2α(t)
(E[‖z̄(t)− x?s‖2]− E[‖z̄(t+ 1)− x?s‖2])

+
G

2N
(3G+ 2(n+ 4)ND̂)

T∑
t=0

α(t). (5.24)

where we have used the fact that α(t) is non-increasing. It is obvious that E[‖z̄(t)−

x?s‖2] is bounded due to the bounded domain. Denoting its bound by V̂ s, we have

T∑
t=0

1

α(t)
(E[‖z̄(t)− x?s‖2]− E[‖z̄(t+ 1)− x?s‖2])

≤ E[‖z̄(0)− x?s‖2]

α(0)
+

T∑
t=1

(
1

α(t)
− 1

α(t− 1)

)
E[‖z̄(t)− x?s‖2]

≤ V̂ s

α(0)
+ V̂ s

T∑
t=1

(
1

α(t)
− 1

α(t− 1)

)
≤ 2V̂ s

α(T )
.

Substituting the above relation to (5.24) and using the result of f tµ(x) ≤ f t(x) +
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√
nNµ̂D̂ from Lemma 5.1-(1), yields

T∑
t=0

(E[f t(z̄(t))]− f t(x?s)) ≤ (T + 1)
√
nNµ̂D̂

+
BsT +NV̂ s

α(T )
+ 2(G+ (2n+ 9)D̂)N2ρΓ̂

T∑
t=0

γt

+ (G+ (2n+ 9)D̂)NGΓ̂
T∑
t=0

t+1∑
r=1

γt−rα(r − 1)

+
G

2N
(3G+ 2(n+ 4)ND̂)

T∑
t=0

α(t). (5.25)

Considering the static regret Rs
i (T )

Rs
i (T ) =

T∑
t=0

(
E[f t(zi(t))]− f t(x?s)

)
=

T∑
t=0

(
E[f t(zi(t))− f t(z̄(t))])

)
+

T∑
t=0

(
E[f t(z̄(t))]− f t(x?s)

)
≤ ND̂

T∑
t=0

E[‖zi(t)− z̄(t)‖] +
T∑
t=0

(
E[f t(z̄(t))]− f t(x?s)

)
≤ 2N2ρD̂Γ̂

T∑
t=0

γt +ND̂GΓ̂
T∑
t=0

t∑
r=1

γt−rα(r − 1) +
T∑
t=0

(
E[f t(z̄(t))]− f t(x?s)

)
,

where the first inequality follows from f ti (z
i(t)) − f ti (z̄(t)) ≤ ∂f ti (z

i(t))T (zi(t) −

z̄(t)) ≤ D̂‖zi(t) − z̄(t)‖ based on Assumption 5.2, and the second inequality is a

consequence of Theorem 5.1. Combining the result of (5.25), we have

Rs
i (T ) ≤ (T + 1)

√
nNµ̂D̂ +

BsT +NV̂ s

α(T )
+ 2(G+ 2(n+ 5)D̂)N2ρΓ̂

T∑
t=0

γt

+ (G+ 2(n+ 5)D̂)NGΓ̂
T∑
t=0

t+1∑
r=1

γt−rα(r − 1)

+
G

2N
(3G+ 2(n+ 4)ND̂)

T∑
t=0

α(t)

≤ (T + 1)
√
nNµ̂D̂ +

BsT +NV̂ s

α(T )
+

2(G+ 2(n+ 5)D̂)N2ρΓ̂

1− γ
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+

(
(G+ 2(n+ 5)D̂)NGΓ̂

γ(1− γ)
+
G(3G+ 2(n+ 4)ND̂)

2N

) T∑
t=0

α(t)

where we have used the result that
∑T

t=0

∑t+1
r=1 γ

t−rα(r−1) ≤ 1
γ(1−γ)

∑T
t=0 α(t) in the

second inequality. Let α(t) = 1/
√
t+ 1. Noting that

∑T
t=0

1√
t+1
≤ 1 +

∫ T+1

0
dt√
t+1
≤

2
√
T + 1, we have

Rs
i (T ) ≤ (T + 1)

√
nNµ̂D̂ +

√
T + 1(BsT +NV̂ s)

+
√
T + 1

(
2(G+ 2(n+ 5)D̂)NGΓ̂

γ(1− γ)
+
G(3G+ 2(n+ 4)ND̂)

N

)
+

2(G+ 2(n+ 5)D̂)N2ρΓ̂

1− γ
,

which immediately leads to the desired result.

Remark 5.2. Theorem 5.2 quantifies the bound of the static regret Rs
i (T ). It is

obvious that Cs1 and Cs2 are bounded when T approaches ∞, as long as BsT is not

increasing too fast with respect to T , i.e., limT→∞ BsT/
√
T = 0. Then it can be further

obtained that Rs
i (T )/T =

√
nNµ̂D̂ + O(1/

√
T ). It implies that if the cumulative

covariance sum is not increasing too fast, the average static regret over a period of

time T will be bounded by two parts. The first part is the penalty due to the use of

gradient-free oracle instead of the true gradient information, which can be moderated

by choosing small smoothing parameter µ̂. The second part measures how fast the

proposed algorithm converges, which will be in the order of O(1/
√
T ). As the time

duration T goes to infinity, the average static regret approximately converges to zero

with an error bounded by a constant depending on the smoothing parameters µ̂.

Last, we establish a bound for the dynamic regret Rd
i (T ), which is summarized in

the following theorem.

Theorem 5.3. Suppose Assumptions 5.1 and 5.2 hold. Let {zi(t)}t≥0 be the se-

quence generated by (5.5) with the step-size sequence α(t) = 1/
√
t+ 1. Then, for
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any i ∈ V and time duration T > 0, the dynamic regret Rd
i (T ) satisfies

Rd
i (T ) ≤ (T + 1)

√
nNµ̂D̂ + Cd1 + Cd2

√
T + 1,

where

Cd1 = (2NρGΓ̂ + 4N2ρ2L̂Γ̂ + 2(n+ 5)N2ρD̂Γ̂)/(1− γ)

Cd2 = NV̂ d + 2NρΘT +NBdT +N(n+ 4)2D̂2/2 + (G2Γ̂

+ 2NρL̂GΓ̂ + (n+ 5)ND̂GΓ̂)/γ(1− γ),

V̂ d is a positive constant, ΘT is defined in (5.2), BdT =
∑T

t=0(Bdcov,1 + Bdcov,2), Bdcov,1
and Bdcov,2 are the upper bounds of some covariance terms.

Proof: Let us define a positive scalar function V (t) as

V (t) =
1

2
〈z̄(t)− x?d(t), z̄(t)− x?d(t)〉,

where z̄(t) is defined in (5.6) and x?d(t) is the optimal solution of (5.1) at time-step

t. Then, it can be obtained that

∆V (t) = V (t+ 1)− V (t)

= −1

2
‖z̄(t+ 1)− z̄(t)‖2 +

1

2
〈x?d(t+ 1) + x?d(t)

− 2z̄(t+ 1),x?d(t+ 1)− x?d(t)〉+ 〈z̄(t+ 1)− z̄(t), z̄(t+ 1)− x?d(t)〉

≤ −1

2
‖z̄(t+ 1)− z̄(t)‖2 + 2ρ‖x?d(t+ 1)− x?d(t)‖

+ 〈z̄(t+ 1)− z̄(t), z̄(t+ 1)− x?d(t)〉, (5.26)

where we have used ρ = supx∈X ‖x‖. Then, we will bound the dynamic regretRd
i (T )

in the following two steps.

Step 1. Bound of function ∆V (t):
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According to (5.6), we can further expand the last term in (5.26) as follows

〈z̄(t+ 1)− z̄(t), z̄(t+ 1)− x?d(t)〉 =

〈
1

N

N∑
i=1

gi(t), z̄(t+ 1)− x?d(t)

〉

=
1

N

N∑
i=1

〈gi(t), z̄(t+ 1)− zi(t+ 1)〉 (5.27a)

+
1

N

N∑
i=1

〈gi(t), zi(t+ 1)− x?d(t)〉. (5.27b)

For (5.27a), we have

1

N

N∑
i=1

〈gi(t), z̄(t+ 1)− zi(t+ 1)〉 ≤ 1

N

N∑
i=1

‖gi(t)‖‖z̄(t+ 1)− zi(t+ 1)‖.

Taking the conditional expectation on Ft on both sizes, we have

E
[

1

N

N∑
i=1

〈gi(t), z̄(t+ 1)− zi(t+ 1)〉
∣∣∣∣Ft]

≤ 1

N

N∑
i=1

E[‖gi(t)‖|Ft]E[‖z̄(t+ 1)− zi(t+ 1)‖|Ft] + Bdcov,1,

where Bdcov,1 > 0 is an upper bound of the covariance term Cov(gi(t), z̄(t+1)−zi(t+

1)). Applying Lemma 5.3 on
∑N

i=1 E[‖gi(t)‖|Ft] and taking the total expectation,

we have

E
[

1

N

N∑
i=1

〈gi(t), z̄(t+ 1)− zi(t+ 1)〉
]

≤ 1

N
Gα(t)E[‖z̄(t+ 1)− zi(t+ 1)‖] + Bdcov,1

≤ 1

N
Gα(t)

(
2NρΓ̂γt+1 +GΓ̂

t+1∑
r=1

γt−r+1α(r − 1)

)
+ Bdcov,1

≤ 2ρGΓ̂α(t)γt+1 +
G2Γ̂

N
α(t)

t+1∑
r=1

γt−r+1α(r − 1) + Bdcov,1, (5.28)

where we have applied Theorem 5.1.

Nanyang Technological University Singapore



112 5.3. Main Results

For (5.27b), we have

1

N

N∑
i=1

〈gi(t), zi(t+ 1)− x?d(t)〉

=
1

N

N∑
i=1

〈gi(t) + α(t)gtµi(z
i(t)), zi(t+ 1)− x?d(t)〉 (5.29a)

+
1

N

N∑
i=1

〈α(t)gtµi(z
i(t)),x?d(t)− zi(t+ 1)〉. (5.29b)

For (5.29a), it follows from the projection’s non-expansive property that

〈gi(t) + α(t)gtµi(z
i(t)), zi(t+ 1)− x?d(t)〉 ≤ 0. (5.30)

For (5.29b), it can be further expanded as

1

N

N∑
i=1

〈α(t)gtµi(z
i(t)),x?d(t)− zi(t+ 1)〉

=
1

N

N∑
i=1

〈α(t)gtµi(z
i(t)),x?d(t)− z̄(t)〉 (5.31a)

+
1

N

N∑
i=1

〈α(t)gtµi(z
i(t)), z̄(t)− z̄(t+ 1)〉 (5.31b)

+
1

N

N∑
i=1

〈α(t)gtµi(z
i(t)), z̄(t+ 1)− zi(t+ 1)〉. (5.31c)

For (5.31a), it can be further expanded as

1

N

N∑
i=1

〈α(t)gtµi(z
i(t)),x?d(t)− z̄(t)〉

=
1

N

N∑
i=1

〈α(t)
(
gtµi(z

i(t))−∇f ti,µi(z̄(t))
)
,x?d(t)− z̄(t)〉

+
1

N

N∑
i=1

〈α(t)∇f ti,µi(z̄(t)),x?d(t)− z̄(t)〉

Taking the conditional expectation on Ft and applying Lemma 5.1-(2) on E[gtµi(z
i(t))|Ft],
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we have

E
[

1

N

N∑
i=1

〈α(t)gtµi(z
i(t)),x?d(t)− z̄(t)〉

∣∣∣∣Ft]

=
1

N

N∑
i=1

〈α(t)
(
∇f ti,µi(zi(t))−∇f ti,µi(z̄(t))

)
,x?d(t)− z̄(t)〉

+
1

N

N∑
i=1

〈α(t)∇f ti,µi(z̄(t)),x?d(t)− z̄(t)〉

≤ 1

N

N∑
i=1

α(t)‖∇f ti,µi(zi(t))−∇f ti,µi(z̄(t))‖‖x?d(t)− z̄(t)‖

+
1

N

N∑
i=1

〈α(t)∇f ti,µi(z̄(t)),x?d(t)− z̄(t)〉.

Noting that ‖x?d(t) − z̄(t)‖ ≤ 2ρ and applying Lemma 5.1-(2) on ‖∇f ti,µi(zi(t)) −

∇f ti,µi(z̄(t))‖, we have

E
[

1

N

N∑
i=1

〈α(t)gtµi(z
i(t)),x?d(t)− z̄(t)〉

∣∣∣∣Ft]

≤ 2ρL̂α(t)

N

N∑
i=1

‖zi(t)− z̄(t)‖+
1

N

N∑
i=1

α(t)
(
f ti,µi(x

?
d(t))− f ti,µi(z̄(t))

)
≤ 2ρL̂α(t)

N

N∑
i=1

‖zi(t)− z̄(t)‖+
1

N
α(t)

(
f tµ(x?d(t))− f t(z̄(t))

)
,

where we have used the convex property of f ti,µi(x) in the first inequality and

Lemma 5.1-(1) in the second inequality. Taking the total expectation and applying
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Theorem 5.1 on E[‖zi(t)− z̄(t)‖], we have

E
[

1

N

N∑
i=1

〈α(t)gtµi(z
i(t)),x?d(t)− z̄(t)〉

]

≤ 2ρL̂α(t)

N

N∑
i=1

(
2NρΓ̂γt +GΓ̂

t∑
r=1

γt−rα(r − 1)

)
+

1

N
α(t)

(
f tµ(x?d(t))− f t(z̄(t))

)
≤ 4Nρ2L̂Γ̂α(t)γt + 2ρL̂GΓ̂α(t)

t∑
r=1

γt−rα(r − 1)

+
1

N
α(t)

(
f tµ(x?d(t))− f t(z̄(t))

)
.

(5.32)

For (5.31b), it can be obtained that

1

N

N∑
i=1

〈α(t)gtµi(z
i(t)), z̄(t)− z̄(t+ 1)〉

≤ 1

2

∥∥∥∥ 1

N

N∑
i=1

α(t)gtµi(z
i(t))

∥∥∥∥2

+
1

2
‖z̄(t)− z̄(t+ 1)‖2

≤ 1

2N
α2(t)

N∑
i=1

‖gtµi(zi(t))‖2 +
1

2
‖z̄(t)− z̄(t+ 1)‖2.

Taking the total expectation and applying Lemma 5.1-(3) on E[gtµi(z
i(t))‖2] yields

E
[

1

N

N∑
i=1

〈α(t)gtµi(z
i(t)), z̄(t)− z̄(t+ 1)〉

]
≤ (n+ 4)2D̂2

2
α2(t) +

1

2
E[‖z̄(t)− z̄(t+ 1)‖2]. (5.33)

For (5.31c), it can be obtained that

1

N

N∑
i=1

〈α(t)gtµi(z
i(t)), z̄(t+ 1)− zi(t+ 1)〉

≤ 1

N

N∑
i=1

α(t)‖gtµi(zi(t))‖‖z̄(t+ 1)− zi(t+ 1)‖
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Taking the total expectation and applying Lemma 5.1-(3) on E[gtµi(z
i(t))‖2] and

Theorem 5.1 on E[‖z̄(t+ 1)− zi(t+ 1)‖] yields

E
[

1

N

N∑
i=1

〈α(t)gtµi(z
i(t)), z̄(t+ 1)− zi(t+ 1)〉

]

≤ (n+ 4)D̂α(t)

(
2NρΓ̂γt+1 +GΓ̂

t+1∑
r=1

γt−r+1α(r − 1)

)
+ Bdcov,2 (5.34)

≤ 2(n+ 4)NρD̂Γ̂α(t)γt+1 + (n+ 4)D̂GΓ̂α(t)
t+1∑
r=1

γt−r+1α(r − 1) + Bdcov,2,

where Bdcov,2 > 0 is an upper bound of the covariance term Cov(gtµi(z
i(t)), z̄(t+ 1)−

zi(t + 1)). Taking the total expectation for (5.29), and combining the results of

(5.30) and (5.31) with substitutions of (5.32), (5.33) and (5.34), we have

E
[

1

N

N∑
i=1

〈gi(t), zi(t+ 1)− x?d(t)〉
]

≤ 4Nρ2L̂Γ̂α(t)γt + 2ρL̂GΓ̂α(t)
t∑

r=1

γt−rα(r − 1)

+
1

N
α(t)(f tµ(x?d(t))− f t(z̄(t))) +

(n+ 4)2D̂2

2
α2(t)

+
1

2
E[‖z̄(t)− z̄(t+ 1)‖2] + 2(n+ 4)NρD̂Γ̂α(t)γt+1

+ (n+ 4)D̂GΓ̂α(t)
t+1∑
r=1

γt−r+1α(r − 1) + Bdcov,2

≤ (4Nρ2L̂Γ̂ + 2(n+ 4)NρD̂Γ̂)α(t)γt

+ (2ρL̂GΓ̂ + (n+ 4)D̂GΓ̂)α(t)
t+1∑
r=1

γt−rα(r − 1)

+
1

N
α(t)(f tµ(x?d(t))− f t(z̄(t))) +

(n+ 4)2D̂2

2
α2(t)

+
1

2
E[‖z̄(t)− z̄(t+ 1)‖2] + Bdcov,2. (5.35)

Taking the total expectation for (5.27), and substituting (5.28) and (5.35) into
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(5.27a) and (5.27b), we have

E[〈z̄(t+ 1)− z̄(t), z̄(t+ 1)− x?d(t)〉]

≤ 2ρGΓ̂α(t)γt+1 +
G2Γ̂

N
α(t)

t+1∑
r=1

γt−r+1α(r − 1)

+ (4Nρ2L̂Γ̂ + 2(n+ 4)NρD̂Γ̂)α(t)γt

+ (2ρL̂GΓ̂ + (n+ 4)D̂GΓ̂)α(t)
t+1∑
r=1

γt−rα(r − 1)

+
1

N
α(t)(f tµ(x?d(t))− f t(z̄(t))) +

(n+ 4)2D̂2

2
α2(t)

+
1

2
E[‖z̄(t)− z̄(t+ 1)‖2] + Bdcov,1 + Bdcov,2

≤ (2ρGΓ̂ + 4Nρ2L̂Γ̂ + 2(n+ 4)NρD̂Γ̂)α(t)γt

+

(
G2Γ̂

N
+ 2ρL̂GΓ̂ + (n+ 4)D̂GΓ̂

)
α(t)

t+1∑
r=1

γt−rα(r − 1)

+
1

N
α(t)(f tµ(x?d(t))− f t(z̄(t))) +

(n+ 4)2D̂2

2
α2(t)

+
1

2
E[‖z̄(t)− z̄(t+ 1)‖2] + Bdcov,1 + Bdcov,2. (5.36)

Taking the total expectation for (5.26), and substituting (5.36) into it, we can obtain

E[∆V (t)] ≤ −1

2
E[‖z̄(t+ 1)− z̄(t)‖2] + 2ρ‖x?d(t+ 1)− x?d(t)‖

+ E[〈z̄(t+ 1)− z̄(t), z̄(t+ 1)− x?d(t)〉]

≤ 2ρ‖x?d(t+ 1)− x?d(t)‖+
1

N
α(t)(f tµ(x?d(t))− E[f t(z̄(t))])

+ (2ρGΓ̂ + 4Nρ2L̂Γ̂ + 2(n+ 4)NρD̂Γ̂)α(t)γt

+

(
G2Γ̂

N
+ 2ρL̂GΓ̂ + (n+ 4)D̂GΓ̂

)
α(t)

t+1∑
r=1

γt−rα(r − 1)

+
(n+ 4)2D̂2

2
α2(t) + Bdcov,1 + Bdcov,2. (5.37)

It is obvious that V (t) = 1
2
‖z̄(t)− x?d(t)‖2 is bounded due to the bounded domain.

Nanyang Technological University Singapore



Chapter 5. Distributed Online Optimization with Time-Varying Costs 117

Denoting the bound of V (t) by V̂ d, we have

−
T∑
t=0

E[∆V (t)]

α(t)
=

T∑
t=0

E[V (t)]− E[V (t+ 1)]

α(t)

≤ E[V (0)]

α(0)
+

T∑
t=1

(
1

α(t)
− 1

α(t− 1)

)
E[V (t)]

≤ V̂ d

α(0)
+ V̂ d

T∑
t=1

(
1

α(t)
− 1

α(t− 1)

)
=

V̂ d

α(T )
,

where we have used the fact that α(t) is positive and non-increasing. Dividing both

sides of (5.37) by α(t), summing up from t = 0 to T and combining the above

relation, we have

T∑
t=0

(E[f t(z̄(t))]− f tµ(x?d(t))) ≤
NV̂ d

α(T )
+

2NρΘT

α(T )
+
N(n+ 4)2D̂2

2

T∑
t=0

α(t)

+
(
2NρGΓ̂ + 4N2ρ2L̂Γ̂ + 2(n+ 4)N2ρD̂Γ̂

) T∑
t=0

γt

+
(
G2Γ̂ + 2NρL̂GΓ̂ + (n+ 4)ND̂GΓ̂

) T∑
t=0

t+1∑
r=1

γt−rα(r − 1)

+
N

α(T )

T∑
t=0

(Bdcov,1 + Bdcov,2),

where we have used that α(t) is positive and non-increasing.

Step 2. Bound of dynamic regret Rd
i (T ):

Denoting
∑T

t=0(Bdcov,1+Bdcov,2) by BdT and using the result of f tµ(x) ≤ f t(x)+
√
nNµ̂D̂

from Lemma 5.1-(1), we can obtain

T∑
t=0

(E[f t(z̄(t))]− f t(x?d(t)) ≤ (T + 1)
√
nNµ̂D̂

+
NV̂ d + 2NρΘT +NBdT

α(T )
+
N(n+ 4)2D̂2

2

T∑
t=0

α(t)
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+ (2NρGΓ̂ + 4N2ρ2L̂Γ̂ + 2(n+ 4)N2ρD̂Γ̂)
T∑
t=0

γt

+G(GΓ̂ + 2NρL̂Γ̂ + (n+ 4)ND̂Γ̂)
T∑
t=0

t+1∑
r=1

γt−rα(r − 1). (5.38)

Considering the dynamic regret Rd
i (T )

Rd
i (T ) =

T∑
t=0

(
E[f t(zi(t))]− f t(x?d(t))

)
=

T∑
t=0

(
E[f t(zi(t))− f t(z̄(t))])

)
+

T∑
t=0

(
E[f t(z̄(t))]− f t(x?d(t))

)
≤ ND̂

T∑
t=0

E[‖zi(t)− z̄(t)‖] +
T∑
t=0

(
E[f t(z̄(t))]− f t(x?d(t))

)
≤ 2N2ρD̂Γ̂

T∑
t=0

γt +ND̂GΓ̂
T∑
t=0

t∑
r=1

γt−rα(r − 1)

+
T∑
t=0

(
E[f t(z̄(t))]− f t(x?d(t))

)
,

where the first inequality follows from f ti (z
i(t)) − f ti (z̄(t)) ≤ 〈∂f ti (zi(t)), zi(t) −

z̄(t)〉 ≤ D̂‖zi(t) − z̄(t)‖ based on Assumption 5.2, and the second inequality is a

consequence of Theorem 5.1. Combining the result of (5.38), we have

Rd
i (T ) ≤ (T + 1)

√
nNµ̂D̂ +

NV̂ d + 2NρΘT +NBdT
α(T )

+ (G2Γ̂ + 2NρL̂GΓ̂ + (n+ 5)ND̂GΓ̂)
T∑
t=0

t+1∑
r=1

γt−rα(r − 1)

+ (2NρGΓ̂ + 4N2ρ2L̂Γ̂ + 2(n+ 5)N2ρD̂Γ̂)
T∑
t=0

γt

+
N(n+ 4)2D̂2

2

T∑
t=0

α(t)

≤ (T + 1)
√
nNµ̂D̂ +

NV̂ d + 2NρΘT +NBdT
α(T )

+

(
N(n+ 4)2D̂2

2
+
G2Γ̂ + 2NρL̂GΓ̂ + (n+ 5)ND̂GΓ̂

γ(1− γ)

) T∑
t=0

α(t)
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+
2NρGΓ̂ + 4N2ρ2L̂Γ̂ + 2(n+ 5)N2ρD̂Γ̂

1− γ
,

where we have used the result that
∑T

t=0

∑t+1
r=1 γ

t−rα(r−1) ≤ 1
γ(1−γ)

∑T
t=0 α(t) in the

second inequality. Let α(t) = 1/
√
t+ 1. Noting that

∑T
t=0

1√
t+1
≤ 1 +

∫ T+1

0
dt√
t+1
≤

2
√
T + 1, we have

Rd
i (T ) ≤ (T + 1)

√
nNµ̂D̂ +

√
T + 1(NV̂ d + 2NρΘT +NBdT )

+
√
T + 1

(
N(n+ 4)2D̂2 +

2G2Γ̂ + 4NρL̂GΓ̂ + 2(n+ 5)ND̂GΓ̂

γ(1− γ)

)
+

2NρGΓ̂ + 4N2ρ2L̂Γ̂ + 2(n+ 5)N2ρD̂Γ̂

1− γ
,

which immediately leads to the desired result.

Remark 5.3. Theorem 5.3 quantifies the bound of the dynamic regret Rd
i (T ). It is

obvious that Cd1 is bounded when T approaches ∞. For Cd2 , it is generally unbounded

due to the terms ΘT and BdT when T approaches ∞. However, if both ΘT and

BdT are not increasing too fast with respect to T , i.e., limT→∞ΘT/
√
T = 0 and

limT→∞ BdT/
√
T = 0, then it can be further obtained that Rd

i (T )/T =
√
nNµ̂D̂ +

O(1/
√
T ). It implies that if the variation of the optimal solution sequence and the

cumulative covariance sum are not increasing too fast, the average dynamic regret

over a period of time T will be bounded by two parts. The first part is the penalty due

to the use of gradient-free oracle instead of the true gradient information, which can

be moderated by choosing small smoothing parameter µ̂. The second part measures

how fast the proposed algorithm converges, which will be in the order of O(1/
√
T ).

As the time duration T goes to infinity, the average dynamic regret approximately

converges to zero with an error bounded by a constant depending on the smoothing

parameters µ̂.
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5.4 Numerical Simulation

5.4.1 Numerical Example

In this part, we use a numerical example to verify the derived properties. In partic-

ular, we consider the following online distributed optimization problem in a multi-

agent system with 10 agents under a directed communication graph:

min f t(x) =
10∑
i=1

f ti (x), x ∈ X ,

where f ti (x) = aix
2 − 2bix + ci(

2 sin(0.008t)
t

)2 at time-step t, X = [−1, 1], ai, bi, ci > 0

and
∑10

i=1 ai =
∑10

i=1 bi =
∑10

i=1 ci = 10. Our proposed online randomized gradient-

free DPGD method will be used to solve this problem. For the weighting matrix Ar

and Ac, we let [Ar]ij = 1/|N in
i | and [Ac]ij = 1/|N out

j |. Throughout the simulation,

we set ε = 0.1, µ̂ = 10−4 and the step-size α(t) = 1/
√

1 + t.

For any t > 0, it is obvious that the best fixed decision for a given time duration

T > 0 is x?s = 1
T

∑T
t=1

2 sin(0.008t)
t

; and the optimal solution at time-step t is x?d(t) =

2 sin(0.008t)
t

, which is time-varying. As t increases, the deviation of the optimal solution

x?d(t) decreases gradually. We applied the proposed algorithm (Algorithm 5.1) to the

problem. The trajectories of each agent’s decision variable and the optimal solution

were plotted in Fig. 5.1. As can be seen from Fig. 5.1, all agents converge to a

single trajectory, which verifies the consensus property established in Theorem 5.1.

Besides, the consensus trajectory formed by all agents gradually conincides with the

trajectory of the optimal solution, which verifies the optimality property established

in Theorems 5.2 and 5.3.

On the other hand, the average static regret Rs
i (T )/T and dynamic regret Rd

i (T )/T

were shown in Figs. 5.2 and 5.3, respectively. It can be observed that both average

static and dynamic regrets descend to zero asymptotically, which is consistent with
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Figure 5.1: Trajectories of xi(t).

our analysis in Remarks 5.2 and 5.3.
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5.4.2 Temperature Control in HVAC Systems

In this part, we consider a 10-zone HVAC system where the temperature control is

formulated as the following distributed Model Predictive Control problem:

min J t =
10∑
j=1

( T∑
t=1

λ‖T j(t)− T jref‖+
K−1∑
k=0

‖mj
s(t)‖

)
, mL ≤ mj

s(t) ≤ mU
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T j(t+ 1) =

(
1− ∆t

Cj

(
1

Rj
a

+
∑
i∈N j

1

Rij

))
T j(t) +

∆t

Cj
P j
d

+
∆t

Cj
cpm

j
s(t)(T

j
s,t − T j(t)) +

∆t

Cj

(
Ta,t

Rj
a

+
∑
i∈N j

T i(t)

Rij

)
,

where T j and mj
s are the temperature (degrees) and air mass flow (kg/s) of zone

j, respectively. Cj and P j
d are the lumped mass of air and lumped thermal load

including all the external factors, such as the occupancy, solar radiation of zone j,

respectively. Rj
a and Rij are the thermal resistances between the air from outside

and zone j, and the neighboring zone i and zone j, respectively. cp is the specific heat

capacity of air. ∆t and K are the sampling time and receding horizon, respectively.

λ is a weighting parameter. mL and mU are the lower and upper bounds of the

input (air mass flow), respectively. The proposed algorithm is implementated in to

solve the problem.

In this simulation, we setmL = 0, mU = 3 kg/s, the initial zone temperature T j0 = 30

degrees, the reference temperature for all zones T 1
ref = T 2

ref = 24, T 3
ref = T 4

ref = 24.5,

T 5
ref = T 6

ref = 25, T 7
ref = T 8

ref = 25.5, T 9
ref = T 10

ref = 26 from t = 0 to 2.5 hours

and 1 degree off from t = 2.5 to 5 hours. Hence the cost function is time-varying.

The rest of the model parameters were set according to [117]. Figures 5.4 and 5.5

plotted the trajectories of the air mass flow and the zone temperature for all zones.

It can be seen that all the inputs are kept within the constraints, while all the zone

temperature can be maintained at their corresponding reference levels. Hence, the

effectiveness of the proposed algorithm is verified.
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Figure 5.4: Air mass flow (kg/s).
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5.5 Conclusions

In this chapter, we have investigated the problem of online optimization where the

cost functions can be time-varying. To address this problem, we have developed an

online randomized gradient-free distributed projected gradient descent algorithm in

a multi-agent system where the underlying communication network is directed. The

implementation of this algorithm does not require the explicit expressions of the

cost functions, but only the measurements. A local randomized gradient-free oracle

is built as a replacement of the gradient information in guiding the update of the

decision variables. With some standard assumptions on graph connectivity and the

cost function, we have characterized the bounds of both static and dynamic regrets

for any agent as a small error term plus a sublinear function of the time duration.

Finally, numerical simulations have been conducted to verify the effectiveness of the

algorithm.
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Chapter 6

Distributed Nash Equilibrium

Seeking in Non-Cooperative

Games

6.1 Introduction

Over the decades, game theory, as a power tool of analyzing the strategic inter-

actions between rational decision-makers, has found its great potential in various

application fields such as social science, economics, electricity markets, power sys-

tems, to list a few. An important concept in game theory, Nash equilbrium, named

after John Forbes Nash Jr., is a proposed solution in non-cooperative games involv-

ing two or more players. Recently, with the emergence of multi-agent system, Nash

equilibrium seeking in multi-player non-cooperative games has received increasing

attention. More precisely, this type of games involves a number of players, who

selfishly minimize their own cost functions by making decisions in response to other

players’ actions.

Recently, a large number of studies on Nash equilibrium computation in non-cooperative
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games have been reported, such as [80–84, 88, 91, 92, 96, 98] to list a few. The chal-

lenge of such problem settings is the requirement of global knowledge on all players’

actions, which is not practical if the underlying communication network is not fully

connected. In such cases, players have to make decisions based only on a limited set

of information, such as the information from the neighbors. Therefore, a distributed

information sharing protocol is usually adopted to disseminate the local information

among players. For example, a dynamic average consensus protocol was adopted

in [85], where a primal-dual dynamic based seeking strategy was developed to find

Nash equilibrium in set constrained aggregate games. It was also utilized in [87]

with the help of differential inclusions and differentiated projections for aggregative

games, where the players’ actions are coupled by linear constraints. The dynamic av-

erage consensus protocol was also proposed to achieve simultaneous social cost mini-

mization and Nash equilibrium in a class of N -coalition games in [93]. Different from

these works, the work in [89] considered a continuous time generalized convex game

with shared inequality constraints among players, and proposed a leader-following

consensus protocol with gradient descent method to compute the generalized Nash

equilibrium. This protocol was also employed in [90] to estimate the other players’

actions for the generalized games, where the players’ action sets are constrained

by nonlinear inequality and linear equations. Apart from the leader-following con-

sensus and dynamic average consensus protocols, gossip-based averaging techniques

were also commonly utilized in Nash equilibrium computations, such as [99, 101].

Most of the existing literature including the aforementioned works are model-based

approaches, i.e., the implementation of the algorithms relies on the knowledge of

the explicit form of the players’ cost functions, such as the derivative computation.

However, the requirement of the knowledge on the explicit expression of players’ cost

functions is restrictive in the cases where the input/output relationship is difficult

to model.

There are non-model based approaches, which utilize the players’ local measure-

ments without the requirement on the information of the functional form. For
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example, the work in [104] considered a generalized convex game with both con-

vex coupling inequality constraints and local set constraints. A finite-differencing

method with two-way perturbations was proposed to approximate the partial gradi-

ent. The perturbation parameter needs to be chosen carefully to match the selected

step-size. Different from that, the work in [105] proposed a distributed payoff-based

algorithm for a class of convex games with and without coupling constraints. This

technique was further extended in [106] where the algorithm convergence was proved

under mere monotonicity assumption. Overall, the payoff-based learning strategy

proposed in these two works enables players to sample their actions in a Gaussian

distribution. Then, the mean of this distribution is iteratively updated using only

local payoff values. Another typical non-model based approaches are extremum

seeking-based methods, such as [57, 107–111]. Specifically, the work in [107] pro-

posed a continuous time multi-input stochastic extremum seeking algorithm for the

Nash equilibrium seeking in non-cooperative games with general nonlinear cost func-

tions. In [108], a discrete time stochastic extremum seeking method was presented

in non-cooperative games where the players’ cost functions are strictly convex, but

the actions are subject to a linear dynamic constraint. The work in [109] developed

an integrator-type extremum seeking algorithm in non-cooperative games with both

quadratic payoffs and general non-quadratic payoffs as the output of a dynamic sys-

tem. More extremum seeking algorithms have been proposed in potential games with

unstable dynamics [110], dynamical constraints [111], and non-cooperative games

with time-varying Nash equilibrium [57]. In general, the extremum seeking strategy

makes use of the cost value together with some sinusoidal dither signals for pertur-

bation, such that the gradient of the cost function is extractable. Even though all

the aforementioned works need no explicit model information during the implemen-

tation, they assume the players’ cost functions to be smooth to some extent, which

can be restrictive if the players’ cost functions are generally non-differentiable. This

motivates the study of gradient-free technique, which is free of the knowledge on the

explicit expressions of the players’ cost functions and applicable to non-differentiable

problems. In fact, gradient-free algorithms have been studied in distributed opti-
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mization problems [62–64,66,67,70]. However, they have received little attention in

non-cooperative games.

In this chapter, we focus on the research of non-model based Nash equilibrium

seeking methods. Specifically, a gradient-free distributed algorithm is proposed to

solve the Nash equilibrium seeking problem in a multi-player non-cooperative static

game under a directed communication graph. As compared to the existing literature,

the major contributions of this chapter are twofold.

• The proposed algorithm does not rely on the knowledge of the explicit form of

the players’ cost functions. Different from non-model based approaches such

as payoff-based learning [105, 106] and extremum seeking [57, 107–111], the

proposed algorithm allows the cost functions to be non-smooth. Unlike the

finite-differencing method in [104] where the perturbation parameter needs to

match the step-size, the proposed algorithm establishes the convergence to the

Nash equilibrium with only the requirement of a small smoothing parameter.

• The convergence of the proposed algorithm to the Nash equilibrium is rig-

orously studied for both diminishing and constant step-sizes, respectively.

Specifically, for the diminishing case, an exact convergence to the Nash equi-

librium is attained, while for the constant case, an approximate convergence

to the Nash equilibrium with the gap proportional to the step-size is achieved.

The chapter is organized as follows. The problem is defined in Section 6.2. Main

procedures of the proposed algorithm are described in Section 6.3. The convergence

analysis of the proposed algorithm for both diminishing step-size and constant step-

size is presented in Section 6.4. In Section 6.5, the performance of the proposed

algorithm is illustrated through a numerical example. Section 6.6 concludes the

chapter.
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6.2 Problem Formulation

Consider a multi-player non-cooperative game, denoted by Γ(N, {fi}, {Ωi},G), with

N players under a directed communication graph G = {V , E}. A matrix A associated

with the directed graph G is known as the adjacency matrix, which is designed such

that [A]ij > 0 if (j, i) ∈ E and [A]ij = 0 otherwise. In particular, the set E includes

(i, i) for all i ∈ V . If player j is not an out-neighbor of player i (i.e., j /∈ N out
i ), then

player j does not have direct access to player i’s action. Game Γ is played such that

for given x−i ∈ Ω−i, the objective of each player i ∈ V is to minimize its own cost

function, i.e.,

min
xi∈Ωi

fi(xi,x−i), i ∈ V . (6.1)

It should be highlighted that the solution set of player i to the problem (6.1) is

dependent on the other players’ action x−i, which may not be directly accessible.

Thus, the objective is to develop a distributed strategy such that all players’ actions

converge to a Nash equilibrium under the communication graph G.

The following standard assumptions are made throughout the chapter.

Assumption 6.1. The directed graph G is strongly connected and its associated

adjacency matrix A is doubly-stochastic, i.e.,
∑N

j=1[A]ij = 1 for all i ∈ V, and∑N
i=1[A]ij = 1 for all j ∈ V.

Assumption 6.2. For each player i ∈ V, its action set Ωi is non-empty, con-

vex and compact. The cost function fi(xi,x−i) is convex in xi for every x−i, and

jointly continuous in x but not necessarily differentiable. Also, fi(xi,x−i) is Lips-

chitz continuous in xi (respectively, x−i) for every fixed x−i (respectively, xi), i.e.,

∀xi, yi ∈ Ωi (respectively, ∀x−i,y−i ∈ Ω−i), there exists a positive constant D1

(respectively, D2) such that ‖fi(xi,x−i) − fi(yi,x−i)‖ ≤ D1‖xi − yi‖ (respectively,

‖fi(xi,x−i)− fi(xi,y−i)‖ ≤ D2‖x−i − y−i‖).

Remark 6.1. Both Assumptions 6.1 and 6.2 are standard and commonly assumed in
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distributed Nash equilibrium seeking problems. In particular, Assumption 6.2 implies

that game Γ(N, {fi}, {Ωi},G) admits a Nash equilibrium [118,119], [120, Prop.2.2].

6.3 Gradient-Free Distributed NE Seeking

In this section, we describe our proposed distributed Nash equilibrium (NE) seeking

algorithm in details.

At time k, each player i ∈ V maintains an estimate of all players’ actions, denoted

by yik = [yi1,k, . . . , y
i
N,k]

> ∈ RN , where yij,k, j ∈ V represents player i’s estimate of

player j’s action. Hence, at time k, every player l ∈ V passes its estimate of all

players’ actions ylj,k, j ∈ V and its own action xl,k to its out-neighbors. Then, each

player i ∈ V , on receiving the information from its in-neighbors, updates its own

action and the estimate of all players’ actions (including the estimate of its own

local action) based on the following updating laws:

xi,k+1 = PΩi [xi,k − αkgiµi(yik)], (6.2a)

yij,k+1 =
∑
l∈N in

i

[A]ily
l
j,k + δi[A]ij(xj,k − yij,k), j ∈ V (6.2b)

where giµi(y
i
k) is the randomized gradient-free oracle

giµi(y
i
k) =

fi(y
i
i,k + µiξik,y

i
−i,k)− fi(yii,k,yi−i,k)
µi

ξik, (6.3)

The parameter δi > 0 is a constant parameter, and αk ≥ 0 is a step-size sequence.

The initial values xi,0 and yij,0 for i, j ∈ V can be any real numbers. The adjacency

matrix A is doubly-stochastic as supposed in Assumption 6.1. It should be noted

that the design of a doubly-stochastic adjacency matrix A for a given directed graph

is non-trivial. The detailed procedures can be referred to the work in [114], where two

distributed strategies (imbalance-correcting algorithm and load-pushing algorithm)
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have been developed to construct such matrix under different conditions. With

the well-constructed matrix A, each player i selects the parameter δi such that

0 ≤ δi[A]ij < 2[A]ii for all j ∈ V . The above mentioned procedures are summarized

in Algorithm 6.1.

Algorithm 6.1 Gradient-free distributed NE seeking

1: Initialize: i ∈ V
arbitrarily generate xi,0 ∈ R,yi0 ∈ RN

randomly generate {ξik}k≥0 ∼ N (0, 1) independently
set δi such that 0 ≤ δi[A]ij < 2[A]ii, ∀j ∈ V

2: Iteration (k ≥ 0): i ∈ V
compute giµi(y

i
k) based on (6.3)

update variables xi,k+1 based on (6.2a)
update variables yij,k+1 based on (6.2b)

3: Output: i ∈ V
xi,k → x?

Remark 6.2. In (6.2b), it should be noted that [A]ij = 0 if player j is NOT an

in-neighbor of player i, which implies that player i updates the estimate of player

j’s action only based on the estimates ylj,k from its in-neighbors l ∈ N in
i . On the

other hand, if player j is an in-neighbor of player i, then [A]ij 6= 0 giving rise to an

additional error term δi[A]ij(xj,k − yij,k) in the update of the estimate on player j’s

action.

6.4 Convergence Analysis

In this section, we study the convergence of the algorithm to the Nash equilibrium

for the scenarios of diminishing step-size and constant step-size, respectively. We let

Fk denote the σ-field generated by the entire history of the random variables from

step 0 to k − 1, i.e.,

Fk =

{xi,0, y
i
j,0, i, j ∈ V}, k = 0,

{xi,0, yij,0, ξis, i, j ∈ V ; 0 ≤ s ≤ k − 1}, k ≥ 1.
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Since the cost function fi(xi,x−i) may not be partially differentiable in xi as in

Assumption 6.2, we introduce a Gaussian-smoothed version of the cost function

fi(xi,x−i) given by [61]

fi,µi(xi,x−i) =
1

κ

∫
R
fi(xi + µiξi,x−i)e

− 1
2
‖ξi‖2dξi,

with ξi ∈ R is a normally distributed random variable, κ =
∫
R e
− 1

2
‖ξi‖2dξi = (2π)1/2,

and µi ≥ 0 is a smoothing parameter of function fi,µi(xi,x−i). Then, the randomized

gradient-free oracle of fi(xi,x−i) can be designed as [61]

giµi(xi,x−i) =
fi(xi + µiξi,x−i)− fi(xi,x−i)

µi
ξi.

From the results in [61], some properties of functions giµi(xi,x−i) and fi,µi(xi,x−i)

are summarized in the following lemma, which is a variation of Lemma 2.1 stated

in Chapter 2.

Lemma 6.1. (see [61]) Suppose Assumption 6.2 holds. The functions giµi(xi,x−i)

and fi,µi(xi,x−i), ∀i ∈ V satisfy the following properties:

1. The function fi,µi(xi,x−i) is convex in xi due to the convexity of fi in xi.

Moreover, fi,µi(xi,x−i) satisfies

fi(xi,x−i) ≤ fi,µi(xi,x−i) ≤ fi(xi,x−i) + µiD1.

2. The function fi,µi(xi,x−i) is partially differentiable in xi and its partial deriva-

tive with respect to xi satisfies

∇xifi,µi(xi,x−i) = E[giµi(xi,x−i)],

and is Lipschitz continuous in xi with a constant L1 = maxi∈V
D1

µi
, and Lips-
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chitz continuous in x−i with a constant L2 = maxi∈V
D2

µi
, i.e.,

‖∇xifi,µi(xi,x−i)−∇xifi,µi(yi,x−i)‖ ≤ L1‖xi − yi‖,

‖∇xifi,µi(xi,x−i)−∇xifi,µi(xi,y−i)‖ ≤ L2‖x−i − y−i‖.

Further, ∇xifi,µi(xi,x−i) always belongs to some ε-subdifferential of function

fi(xi,x−i), i.e.,

∇xifi,µi(xi,x−i) ∈ ∂εxifi(xi,x−i), ε = µiD1.

Specifically, we have ∇xifi,0(xi,x−i) ∈ ∂xifi(xi,x−i), when µi tends to 01.

3. The random gradient-free oracle giµi(xi,x−i) satisfies

E[‖giµi(xi,x−i)‖] ≤
√

E[‖gi
µi

(xi,x−i)‖2] ≤ B,

where B =
√
n+ 4D1, n is the dimension of xi.

To facilitate the gradient-free method, we formulate a smoothed version of game Γ

with the Gaussian-smoothed cost function fi,µi , denoted by Γµ(N, {fi,µi}, {Ωi},G).

Under Assumption 6.2, Lemma 6.1 implies that the smoothed cost functions fi,µi

have similar properties to fi stated in Assumption 6.2. Hence, game Γµ(N, {fi,µi}, {Ωi},G)

admits a Nash equilibrium for the same reasoning as in Remark 6.1. Next, the equiv-

alence of the original game Γ and its smoothed version Γµ under certain conditions

is introduced in the following result:

Lemma 6.2. Suppose Assumption 6.2 holds. Games Γ and Γµ are equivalent and

share the same Nash equilibria when the smoothing parameter µi, ∀i ∈ V tends to 0.

Proof: From Remark 6.1 and previous discussion, Assumption 6.2 implies the ex-

istence of Nash equilibrium in both games Γ and Γµ. Moreover, applying Squeeze

1In this paper, we slightly abuse the notation µi to represent the sequence µi
k just for easy

presentation without the loss of generality. We mean µi tending to 0 by limk→∞ µi
k = 0
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Theorem to Lemma 6.1-1), we have

lim
µi→0

fi,µi(xi,x−i) = fi(xi,x−i), ∀i ∈ V .

Then, games Γ and Γµ share the same number of players, cost functions, action sets

and communication graph. Hence the result holds.

Next, we make some definitions on the game mappings of games Γ(N, {fi}, {Ωi},G)

and Γµ(N, {fi,µi}, {Ωi},G). For game Γ, since the cost function fi in game Γ is

not necessarily differentiable, so the game mapping of game Γ refers to a set-valued

map F(x), which is defined as the map of the subdifferentials of all players’ cost

functions:

F(x) =
∏
i∈V

∂xifi(xi,x−i).

If the cost function fi is differentiable, then the game mapping F(x) reduces to a

single-valued map. For game Γµ, since the cost function fi,µi is differentiable, so

the game mapping of game Γµ refers to a single-valued map Fµ, which is defined by

stacking the partial derivatives of all smoothed cost functions:

Fµ(x) = [∇x1f1,µ1(x1,x−1), . . . ,∇xNfN,µN (xN ,x−N)]>.

When µi tends to 0 for all i ∈ V , we denote the game mapping Fµ by F0(x), i.e.,

F0(x) = lim
µi→0,∀i∈V

Fµ(x) = [∇x1f1,0(x1,x−1), . . . ,∇xNfN,0(xN ,x−N)]>.

Thus, based on Lemma 6.1-2), we have F0(x) ∈ F(x).

Next, we introduce an important property related to the adjacency matrix A sum-

marized in the following lemma:

Lemma 6.3. Suppose Assumption 6.1 holds. Let δl > 0, l ∈ V be selected such that

0 ≤ δl[A]li < 2[A]ll for all i ∈ V, where A is the adjacency matrix. Then, there
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exists a constant C > 0 and γ ∈ (0, 1) such that, for k ≥ 1, the matrix Ãi given by

[Ãi]lm =

[A]lm if l 6= m

|[A]ll − δl[A]li| if l = m

holds that ‖Ãki ‖∞ < Cγk.

Proof: We first show that all the row sums of Ãi are always less than or equal

to 1. For any l ∈ N , if 0 ≤ δl[A]li ≤ [A]ll, since A is doubly-stochastic, we

have
∑N

n=1[Ãi]ln = 1 − δl[A]li ≤ 1; if [A]ll < δl[A]li < 2[A]ll, similarly, we have∑N
n=1[Ãi]ln = 1 + δl[A]li− 2[A]ll < 1. Hence, we always have

∑N
n=1[Ãi]ln ≤ 1 for any

l ∈ N where the equal sign holds only if [A]li = 0.

Next, we show that all the eigenvalues of Ãi have magnitude less than or equal to 1.

Let λ be an eigenvalue of the matrix Ãi, and let v = [v1, . . . , vN ]> be a corresponding

eigenvector. Then we have λv = Ãiv, i.e., for each row j ∈ V

λvj = [Ãi]j1v1 + [Ãi]j2v2 + · · ·+ [Ãi]jNvN .

Suppose the k-th entry of v has the maximal absolute value (denoted by |v̂|) among

all |vj|, j ∈ V . Then, letting j = k in the above equation, and noting that all the

entries of Ãi are non-negative and the row sums are less than or equal to 1, we have

|λ||v̂| = |λ||vk| =
∣∣∣∣ N∑
n=1

[Ãi]knvn

∣∣∣∣ ≤ ( N∑
n=1

[Ãi]kn

)
|v̂| ≤ |v̂|, (6.4)

which leads to |λ| ≤ 1 as |v̂| > 0.

Next, we show |λ| 6= 1 by contradiction. Suppose |λ| = 1, then the relation (6.4) is

true if the equal signs in both inequalities are satisfied, which implies the following

properties:

1) (first equal sign) if [Ãi]kn 6= 0, then |vn| = |v̂|;
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2) (second equal sign) [A]ki = 0.

If player k has an in-neighbour, say player n 6= k, then [Ãi]kn = [A]kn 6= 0. From

property 1), we have |vn| = |v̂|. Thus, the n-th entry of v also has the maximal

absolute value. That means if player n ∈ V is a direct in-neighbor of the player k ∈ V

with |vk| = |v̂|, then |vn| = |v̂|. Since the graph is strongly connected, thus we can

always find a path for each player n ∈ V linking to player k, i.e., n → · · · → k.

Thus, from the above analysis, we have |vn| = · · · = |vk| = |v̂| along this path.

Therefore, we have |vn| = |v̂| for all n ∈ V . From property 2), |vn| = |v̂| for all

n ∈ V implies that [A]ni = 0 for all n ∈ V , which is impossible due to the strong

connectivity of the graph. Therefore, the eigenvalues of Ãi can only have magnitude

strictly less than 1, i.e., |λ| < 1.

Finally, we represent Ãki in the Jordan canonical form for some Pm, Jm and Qm.

Since all the eigenvalues of Ãi have magnitude smaller than 1, then the diagonal

entries in Jm are smaller than 1, for all m. Thus, there exists a constant C > 0 and

γ ∈ (0, 1) such that

‖Ãki ‖ =

∥∥∥∥ N∑
m=1

PmJ
k
mQm

∥∥∥∥ ≤ N∑
m=1

‖Pm‖‖Qm‖‖Jkm‖ ≤ Cγk,

which completes the proof.

Remark 6.3. Similar to the result in [121, Corollary 1], constants C and γ in

Lemma 6.3 depend on the minimum weight (denoted by φ) that each player gives to

its own value and the values of its neighbors (i.e., if [A]ij > 0, then [A]ij ≥ φ), the

number of players N , and the parameters {δl}l∈V selected by all players. Moreover,

for larger N and smaller φ, constant γ gets closer to 1, implying a slower convergence

rate; for δl → 0 or δl[A]li → 2[A]ll, ∀l ∈ V, matrix Ãi reduces to A and constant γ

gets closer to 1, implying a slower convergence rate.
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6.4.1 Diminishing Step-Size

In this part, we adopt the diminishing step-size sequence in the proposed algorithm,

i.e., the step-size sequence αk satisfies that
∑∞

k=0 αk =∞ and
∑∞

k=0 α
2
k <∞.

Now, we present the result on the consensus property: for any i ∈ V , each player

l’s estimate of player i’s action yli,k, l ∈ V converges to player i’s real action xi,k as

k goes to infinity, which is formally stated in the following theorem.

Theorem 6.1. Suppose Assumptions 6.1 and 6.2 hold. Let {xi,k}k≥0, {yli,k}k≥0,

i, l ∈ V be the sequences generated by (6.2a) and (6.2b), respectively, with a step-

size sequence {αk}k≥0 satisfying
∑∞

k=0 αk = ∞ and
∑∞

k=0 α
2
k < ∞, and a positive

constant δl, l ∈ V satisfying 0 ≤ δl[A]li < 2[A]ll for all i ∈ V, where A is the

adjacency matrix. Then, we have

lim
k→∞

E[‖xi,k − yli,k‖] = 0, i, l ∈ V .

Proof: It can be obtained from (6.2a) and (6.2b) that

xi,k+1 = PΩi [xi,k − αkgiµi(yik)],

yli,k+1 =
N∑
m=1

[A]lmy
m
i,k + δl[A]li(xi,k − yli,k).

Then, taking the subtraction and applying the norm

‖xi,k+1 − yli,k+1‖ ≤
∥∥∥∥ N∑
m=1

[A]lm(xi,k − ymi,k)− δl[A]li(xi,k − yli,k)
∥∥∥∥+ αk‖giµi(yik)‖

=

∥∥∥∥ N∑
m=1

[Ãi]lm(xi,k − ymi,k)
∥∥∥∥+ αk‖giµi(yik)‖

≤
N∑
m=1

[Ãi]lm‖xi,k − ymi,k‖+ αk‖giµi(yik)‖,

where the first inequality follows from the projection’s non-expansive property, and
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the equality holds by the defintion of Ãi as in Lemma 6.3. Hence, we obtain that

‖xi,k − yli,k‖ ≤
N∑
m=1

[Ãki ]lm‖xi,0 − ymi,0‖+
k−1∑
r=1

N∑
m=1

[Ãk−ri ]lmαr−1‖giµi(yir−1)‖

+ αk−1‖giµi(yik−1)‖.

Then, taking the total expectation, it follows from Lemmas 6.1-3) and 6.3 that

E[‖xi,k − yli,k‖] ≤ NCσ̂γk +NCB
k−1∑
r=1

γk−rαr−1 + Bαk−1, (6.5)

where σ̂ = maxi∈V σi and σi = maxm∈V |xi,0 − ymi,0|. Taking the limit k → ∞ and

noting that limk→∞ αk = 0, the desired result follows from [66, Lemma 4-1)].

Remark 6.4. Theorem 6.1 is a characterization of the consensus property of the

algorithm. For any i ∈ V, each player l’s estimate of player i’s action yli,k, l ∈ V

converges to player i’s real action xi,k as k goes to infinity.

Next, we introduce a result from [25, Lemma 11 in Ch. 2] to facilitate the convergence

analysis.

Lemma 6.4. (see [25, Lemma 11 in Ch. 2]) Let uk, vk, wk, ηk be non-negative ran-

dom variables satisfying that

E[uk+1|Fk] ≤ (1 + ηk)uk − vk + wk a.s.,

∞∑
k=0

ηk <∞ a.s.,
∞∑
k=0

wk <∞ a.s.,

where E[uk+1|Fk] denotes the conditional expectation for the given u0, . . . , uk, v0, . . . ,

vk, w0, . . . , wk, η0, . . . , ηk, and ‘a.s.’ means ‘almost surely’. Then,

1) {uk}k≥0 converges a.s.;

2)
∞∑
k=0

vk <∞ a.s.

Nanyang Technological University Singapore



Chapter 6. Distributed Nash Equilibrium Seeking in Non-Cooperative Games 139

Now, we make a mild assumption on the uniqueness of the Nash equilibrium in game

Γ as follows.

Assumption 6.3. The game mapping F of game Γ is strictly monotone on Ω, i.e.,

for any x,y ∈ Ω, x 6= y, f(x), f(y) ∈ F, we have 〈f(x)− f(y),x− y〉 > 0.

Remark 6.5. Assumption 6.3 ensures the uniqueness of the Nash equilibrium in

game Γ and is commonly adopted in many existing works, e.g., [94, 100–103].

Now, we are ready to establish the convergence of all players’ actions to the unique

Nash equilibrium of game Γ, which is formally stated in the following theorem.

Theorem 6.2. Suppose Assumptions 6.1, 6.2 and 6.3 hold. Let x? = (x?i ,x
?
−i) be

the action profile at the unique Nash equilibrium of game Γ. Let {xi,k}k≥0, {yli,k}k≥0,

i, l ∈ V be the sequences generated by (6.2a) and (6.2b), respectively, with a step-

size sequence {αk}k≥0 satisfying
∑∞

k=0 αk = ∞ and
∑∞

k=0 α
2
k < ∞, and a positive

constant δl, l ∈ V satisfying 0 ≤ δl[A]li < 2[A]ll for all i ∈ V, where A is the

adjacency matrix. Then, the sequence {xk}k≥0 converges to x? almost surely when

the smoothing parameter µi,∀i ∈ V tends to 0.

Proof: Noting that there might be multiple Nash equilibria in game Γµ, we let

x?µ = (x?i,µi ,x
?
−i,µ−i) be an action profile at one of them. Applying [101, Lemma 1]

yields

x?i,µi = PΩi [x
?
i,µi − αk∇xifi,µi(x

?
µ)], i ∈ V .

Thus, subtracting (6.2a) by the above equation, and taking the norm

‖xi,k+1 − x?i,µi‖2 ≤‖(xi,k − x?i,µi)− αk(giµi(yik)−∇xifi,µi(x
?
µ))‖2

=‖xi,k − x?i,µi‖2 + α2
k‖giµi(yik)−∇xifi,µi(x

?
µ)‖2

− 2αk〈xi,k − x?i,µi , giµi(yik)−∇xifi,µi(x
?
µ)〉,

Nanyang Technological University Singapore



140 6.4. Convergence Analysis

where we have applied the projection’s non-expansive property. Taking the condi-

tional expectation on Fk, we obtain

E[‖xi,k+1 − x?i,µi‖2|Fk] ≤‖xi,k − x?i,µi‖2 + α2
kE[‖giµi(yik)−∇xifi,µi(x

?
µ)‖2|Fk]

− 2αk〈xi,k − x?i,µi ,∇xifi,µi(y
i
k)−∇xifi,µi(x

?
µ)〉

=‖xi,k − x?i,µi‖2 + α2
kE[‖giµi(yik)−∇xifi,µi(x

?
µ)‖2|Fk]

− 2αk〈xi,k − x?i,µi ,∇xifi,µi(y
i
k)−∇xifi,µi(xk)〉

− 2αk〈xi,k − x?i,µi ,∇xifi,µi(xk)−∇xifi,µi(x
?
µ)〉. (6.6)

It is noted that

E[‖giµi(yik)−∇xifi,µi(x
?
µ)‖2|Fk] ≤ 2E[‖gµi(yik)‖2|Fk] + 2‖∇xifi,µi(x

?
µ)‖2 ≤ 4B2

and

− 2αk〈xi,k − x?i,µi ,∇xifi,µi(y
i
k)−∇xifi,µi(xk)〉

= −2αk〈xi,k − x?i,µi ,∇xifi,µi(y
i
k)−∇xifi,µi(y

i
k,x−i,k)〉

− 2αk〈xi,k − x?i,µi ,∇xifi,µi(y
i
k,x−i,k)−∇xifi,µi(xk)〉

≤ 2L1αk‖xi,k − x?i,µi‖‖yik − xi,k‖+ 2L2αk‖xi,k − x?i,µi‖‖yi−i,k − x−i,k‖

≤ L1(1 + ‖xi,k − x?i,µi‖2)αk‖yik − xik‖+ L2(1 + ‖xi,k − x?i,µi‖2)αk‖yi−i,k − x−i,k‖

≤ L̂(1 + ‖xi,k − x?i,µi‖2)

(
NCσ̂αkγ

k +NCB
k−1∑
r=1

γk−rαkαr−1 + Bαkαk−1

)
,

where L̂ = L1+
√
N − 1L2, we have applied 2‖a‖ ≤ 1+‖a2‖ in the second inequality

and (6.5) in the third inequality. Thus, combining the above results to (6.6) and

summing over i ∈ V

E[‖xk+1 − x?µ‖2|Fk] ≤ (1 + ηk)‖xk − x?µ‖2 + wk

− 2αk〈xk − x?µ, Fµ(xk)− Fµ(x?µ)〉, (6.7)
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where

ηk = L̂

(
NCσ̂αkγ

k +NCB
k−1∑
r=1

γk−rαkαr−1 + Bαkαk−1

)

wk = 4NB2α2
k + L̂

(
N2Cσ̂αkγ

k +N2CB
k−1∑
r=1

γk−rαkαr−1 +NBαkαk−1

)
.

Taking the limit µi → 0 for ∀i ∈ V , it follows from Lemma 6.2 that limµi→0,∀i∈V x?µ =

x?. Thus, it can be obtained from (6.7) that

E[‖xk+1 − x?‖2|Fk] ≤ (1 + ηk)‖xk − x?‖2 + wk

− 2αk〈xk − x?, F0(xk)− F0(x?)〉. (6.8)

Following the results in [66, Lemma 3] and the step-size
∑∞

k=0 αk =∞,
∑∞

k=0 α
2
k <

∞, we have

∞∑
k=0

ηk <∞,
∞∑
k=0

wk <∞.

Applying Lemma 6.4 to (6.8), we can obtain that ‖xk−x?‖ converges almost surely,

and
∑∞

k=0 αk〈xk − x?, F0(xk) − F0(x?)〉 < ∞. From Assumption 6.3 and the fact

that F0(x) ∈ F(x), we have 〈xk − x?, F0(xk) − F0(x?)〉 ≥ 0. Together with the

step-size
∑∞

k=0 αk =∞,
∑∞

k=0 α
2
k <∞, we obtain

lim inf
k→∞

xk = x?.

Since ‖xk − x?‖ converges almost surely, we obtain the desired result.

Remark 6.6. Theorem 6.2 shows that the players’ action profile xk will converge

to the unique Nash equilibrium x? of game Γ by selecting the diminishing smoothing

parameter sequence.
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6.4.2 Constant Step-Size

In this part, we suppose the step-size αk = α, which is a positive constant.

A similar result to Theorem 6.1 on the consensus property can be established. In-

stead of achieving the exact convergence, for any i ∈ V , each player l’s estimate

of player i’s action yli,k, l ∈ V approximately converges to player i’s real action xi,k

with an error proportional to the step-size. The following theorem formally states

the result.

Theorem 6.3. Suppose Assumptions 6.1 and 6.2 hold. Let {xi,k}k≥0, {yli,k}k≥0, i, l ∈

V be the sequences generated by (6.2a) and (6.2b), respectively, with a constant step-

size sequence αk = α, and a positive constant δl, l ∈ V satisfying 0 ≤ δl[A]li < 2[A]ll

for all i ∈ V, where A is the adjacency matrix. Then, we have

lim sup
k→∞

E[‖xi,k − yli,k‖] ≤
(
γNCB
1− γ

+ B
)
α.

Proof: Following same arguments as in Theorem 6.1, the result holds by taking the

limsup on both sides of (6.5).

Next, we introduce a slightly stronger assumption compared to Assumption 6.3 on

the uniqueness of the Nash equilibrium in game Γ.

Assumption 6.4. The game mapping F of game Γ is strongly monotone on Ω with a

constant χ > 0, i.e., for any x,y ∈ Ω, f(x), f(y) ∈ F, we have 〈f(x)−f(y),x−y〉 ≥

χ‖x− y‖2.

Remark 6.7. Assumption 6.4 also ensures the uniqueness of the Nash equilibrium

in game Γ and is commonly supposed in the literature on Nash equilibrium seeking,

[96, 100, 101, 104].

Now, we are ready to characterize the approximate convergence of all players’ actions

to the Nash equilibrium of game Γ, which is formally stated in the following theorem.
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Theorem 6.4. Suppose Assumptions 6.1, 6.2 and 6.4 hold. Let x? = (x?i ,x
?
−i) be

the action profile at the unique Nash equilibrium of game Γ. Let {xi,k}k≥0, {yli,k}k≥0,

i, l ∈ V be the sequences generated by (6.2a) and (6.2b), respectively, with a constant

step-size sequence αk = α satisfying the following condition

0 < 2χα− L̂
(
γNCB
1− γ

+ B
)
α2 < 1, (6.9)

and a positive constant δl, l ∈ V satisfying 0 ≤ δl[A]li < 2[A]ll for all i ∈ V, where

A is the adjacency matrix. Then, with the smoothing parameter µi,∀i ∈ V tending

to 0, the sequence {xk}k≥0 satisfies

lim sup
k→∞

E[‖xk − x?‖2] ≤
[4NB2 + L̂(γN

2CB
1−γ +NB)]α

2χ− L̂(γNCB
1−γ + B)α

.

Proof: From Assumption 6.4 and the fact that F0(x) ∈ F(x), we have 〈xk −

x?, F0(xk) − F0(x?)〉 ≥ χ‖xk − x?‖. Following the same arguments as in Theo-

rem 6.2, and applying the above results to (6.8), we obtain

E[‖xk+1 − x?‖2|Fk] ≤ (1 + ηk − 2χα)‖xk − x?‖2 + wk,

where

ηk = L̂

(
NCσ̂αγk +NCBα2

k−1∑
r=1

γk−r + Bα2

)

wk = 4NB2α2 + L̂

(
N2Cσ̂αγk +N2CBα2

k−1∑
r=1

γk−r +NBα2

)
.

Taking the total expectation, followed by the limsup on both sides, we complete the

proof based on the step-size condition (6.9).

Remark 6.8. In general, if the constant step-size α is set small, then the step-

size condition (6.9) can be satisfied. Theorem 6.4 shows that all players’ actions

approximately converge to the Nash equilibrium of game Γ with an error depending
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on the step-size α, the number of players N , the cost function parameters D1, D2 (L̂

and B are functions of D1, D2) and the communication topology γ. It should also be

noted that if the step-size α is small, then the error bound is close to 0.

6.5 Numerical Simulations

In this section, we demonstrate the performance of the proposed algorithm by a

numerical example. Consider an energy consumption game of N players for Heating

Ventilation and Air Conditioning (HVAC) system (see [122]), where the cost function

of each player i can be modeled by the following quadratic function:

fi(x) = ai(xi − xri )2 +

(
b

N∑
j=1

xj + c

)
xi, xi ∈ Ωi,

where ai > 0, b > 0, c and xri are constants for i ∈ V . It is easy to verify that

Assumptions 2, 3 and 4 are satisfied. Throughout the simulation, we let ai = 1 for

i ∈ V , b = 0.1, c = 10 and Ωi = [−30, 30] for i ∈ V . In the following simulation,

we investigate the effectiveness of the proposed algorithm from the perspectives

of network topology and number of players, followed by a comparison with the

gradient-based counterpart.

6.5.1 Network Topology

In this part, we first consider N = 5 players under three different communica-

tion graphs as shown in Fig. 6.1. Obviously, all these digraphs are strongly con-

nected, hence Assumption 1 is satisfied. Constant xri for i ∈ {1, . . . , 5} is set to

10, 15, 20, 25, 30, respectively. For the implementation of the algorithm, the step-

size αk is set to 0.1/
√
k + 1. Besides, we let the smoothing parameter sequence to

be diminishing, e.g., µik = 10−2/k + 1 and δi = 0.5 for i ∈ {1, . . . , 5}. The initial

values of all players’ actions x0 and the estimates of all players’ actions yi0 from
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(a) G1 (b) G2 (c) G3

Figure 6.1: Three different network topologies.

player i for i ∈ {1, . . . , 5} are all set to 0. The relative errors of all players’ actions

(‖xk − x?‖/‖x?‖) produced by the proposed gradient-free method with diminishing

step-size for three different network topologies are plotted in Fig. 6.2. As can be
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Figure 6.2: The relative errors of all players’ actions produced by the proposed
gradient-free method (αk = 0.1/

√
k + 1) under three different communication net-

works.

observed, convergence can be achieved under all three network topologies. Specifi-

cally, the performance is better for the graph with more edges due to the increased

number of communication channels.

6.5.2 Number of Players

In this part, we increase the number of players to N = 10, 20, 30 and 40 under a

strongly connected communication graph as shown in Fig. 6.3. We set xri = 2i for

i ∈ {1, . . . , N}. The rest of parameters are set the same as in section 6.5-A. It is
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Figure 6.3: Network topology for N players.

shown in Fig. 6.4 that the relative errors of all players’ actions (‖xk − x?‖/‖x?‖)

produced by the proposed gradient-free method with diminishing step-size for N =

10, 20, 30 and 40. As can be seen, the algorithm is scalable to different number of
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Figure 6.4: The relative errors of all players’ actions produced by the proposed
gradient-free method (αk = 0.1/

√
k + 1) with different number of players.

players, and the convergence result is better for smaller number of players, which is

as expected.

6.5.3 Gradient-Free vs. Gradient-Based Algorithm

In this part, we compare the performance of the proposed gradient-free algorithm

with its gradient-based counterpart. Specifically, the gradient-based algorithm adopts

the same updating laws as in (6.2a) and (6.2b), but the gradient-free oracle is re-

placed with the true gradient information. We consider the same problem settings

as in section 6.5-A under the communication graph as shown in Fig. 6.1-(a). For

the implementation of the algorithm, the step-size αk is set to 0.1/
√
k + 1 and

0.1, respectively. Figs. 6.5 and 6.6 present the players’ actions generated by the

proposed gradient-free algorithm with both diminishing step-size and constant step-
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size, respectively. For the gradient-based counterpart, the convergence results of

the players’ actions with both diminishing step-size αk = 0.1/
√
k + 1 and constant

step-size αk = 0.1 are plotted in Figs. 6.7 and 6.8, respectively.

Figure 6.5: The plot of all players’ actions produced by the proposed gradient-free
method with diminishing step-size αk = 0.1/

√
k + 1.
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Figure 6.6: The plot of all players’ actions produced by the proposed gradient-free
method with constant step-size αk = 0.1.
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Figure 6.7: The plot of all players’ actions produced by the gradient-based method
with diminishing step-size αk = 0.1/

√
k + 1.

Comparing Figs. 6.5 and 6.7 for diminishing step-size, and Figs. 6.6 and 6.8 for

constant step-size, it can be observed that the convergence speed of the gradient-

based algorithm is generally faster than its gradient-free counterpart for both di-
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Figure 6.8: The plot of all players’ actions produced by the gradient-based method
with constant step-size αk = 0.1.

minishing and constant step-size scenarios. This result is reasonable because the

gradient-based algorithm has direct access to the true gradient, where the structure

information is included. On the other hand, the faster speed implies more aggres-

sive updates in the process, leading to a relatively larger overshoot, which can be

moderated by a smaller step-size.

6.6 Conclusions

We have developed a gradient-free distributed Nash equilibrium seeking algorithm

for non-cooperative games among a group of players under a directed and strongly

connected communication graph. The proposed algorithm does not require the

knowledge on the explicit analytical expression of the cost function and allows the

problem to be non-smooth. The convergence of the proposed algorithm to the Nash

equilibrium has been rigorously studied for both diminishing and constant step-sizes,

respectively. Specifically, by choosing a diminishing smoothing parameter, we have

shown the convergence to the exact Nash equilibrium for diminishing step-size, and

the neighborhood of the Nash equilibrium for constant step-size, in which the gap

is proportional to the step-size. Finally, we have illustrated the performance of the

algorithm through a numerical example in the application of HVAC system.
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Chapter 7

Conclusions and

Recommendations

7.1 Conclusions

In this dissertation, the distributed optimization and Nash equilibrium (NE) seeking

problems in the framework of multi-agent system have been studied. In particular,

we have considered a set constrained distributed static optimization problem first.

Two gradient-free distributed optimization algorithms have been proposed to solve

the problem. Then, a distributed online optimization problem has been investi-

gated, where the cost functions are time-varying. To solve the problem, an online

gradient-free distributed algorithm has been developed. Lastly, a multi-player non-

cooperative game has been studied, where the players are assumed to have limited

knowledge on their cost functions. A gradient-free distributed Nash equilibrium

seeking algorithm has been presented. The convergence properties of all proposed

algorithms have been justified from both theoretical proofs and numerical simula-

tions. Details of the achieved results are listed as below.

• In Chapter 3, we have considered a set constrained distributed optimization
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problem with possibly non-smooth cost functions. In this problem, we have

assumed the explicit expressions of the cost functions are unknown, but the

values can be measured locally by the agents. A randomized gradient-free

(RGF) based distributed optimization algorithm has been proposed to solve

the problem. This algorithm is equipped with row/column stochastic weight-

ing matrices, which removes the requirement of doubly-stochastic condition.

The convergence properties of the algorithm has been rigorously proved. It

has been shown that the algorithm is able to converge to the neighborhood of

the optimal solution with a gap depending on the smoothing parameter. The

effectiveness of the algorithm has been verified through numerical simulations.

• The same set constrained distributed optimization problem has been consid-

ered in Chapter 4. To improve the convergence results, we have developed

a gradient-free distributed optimization algorith, where the pseudo-gradient

operator is constructed locally to estimate the gradient. An optimal averag-

ing scheme has been introduced in the updating procedures. The convergence

results including the convergence rate analysis of the algorithm has been de-

rived. It has been shown that the algorithm achieves the convergence to the

exact optimal solution without the square-summable condition on the step-

size, which increases the range of the step-size selection. The performance of

the algorithm has also been illustrated in the numerical simulations.

• Chapter 5 has formulated a distributed online optimization, where the cost

functions are allowed to vary with time, but the values are only revealed to

the agents after the decisions are made at each time-step. For this problem,

a gradient-free distributed online optimization algorithm based on RGF has

been presented. To analyze the performance of the algorithm, the notions

of both static and dynamic regrets have been introduced. With some mild

assumptions, we have characterized both regrets as sublinear functions of time,

and their corresponding averages over time are approximately convergent to

zero with a rate that is comparable to the state-of-the-art algorithms.

Nanyang Technological University Singapore



Chapter 7. Conclusions and Recommendations 151

• In Chapter 6, a multi-player non-cooperative game has been investigated,

where the players have been assumed to have limited knowledge on their

local cost functions. An average consensus protocol has been leveraged to

estimate the information among the players, and a gradient-free distributed

algorithm has been proposed to find the NE. The convergence properties of the

algorithm for both diminishing and constant step-sizes have been established,

respectively. Specifically, we have attained an exact convergence to the NE

for the diminishing case, and an approximate convergence to the NE with a

gap proportional to the step-size for the constant case.

7.2 Recommendations for Further Research

Besides the achievements presented in the dissertation, there are still many concerns

in the distrbuted optimization and NE seeking remaining to be solved. Further

research on this topic can be attempted in the following aspects.

7.2.1 Convexity

In distributed optimization, the gradient descent technique takes the advantages

of its well-established properties and straightforward implementation, and hence is

most commonly adopted in optimization problems. However, the performance of

this technique is restricted to the convexity of the problem due to the existence of

multiple minima. Most literature presumes the cost functions to be convex, implying

a unique solution in the problem, which makes the analysis much easier. Finding the

global minimum in a general optimization problem is known as global optimization,

which is a hard problem in general.

In fact, almost all the applications in our living world are non-convex. Thus, those

gradient-based methods generally cannot be directly applied in such cases, or have
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to be conditionally applied with some assumptions on the problem or the optimal

solution set, see [123]. There are non-gradient based methods which can be used

for global optimization problems, such as search-based methods [124–128], particle

swarm optimization methods (PSO) [129], ant colony optimization methods [130]

and genetic algorithms (GA) [131]. These methods are more problem specific and

require much work of parameters tunings, which makes the analysis of these methods

difficult. Moreover, these methods need to access the value of the global cost func-

tion, which is supposed to be unknown in the settings of distributed optimization.

Hence, it is difficult to implement these methods in a distributed mannar.

Therefore, it is of great importance to investigate some novel techniques with guar-

anteed performance which can be applied for general distributed non-convex opti-

mization problems.

7.2.2 Convergence

Currently, the convergence result established by almost all existing works on dis-

tributed optimization and NE seeking is in the sense of asymptotic: either asymptot-

ically convergent to a neighborhood of the optimal solution/NE, or asymptotically

convergent to the exact optimal solution/NE. Theoretically, asymptotic convergence

is good, but is not much useful in real applications since the algorithm has to stop

at a particular time-step. What the asymptotic convergence can achieve is that for

a specific accuracy criteria, it can only be guaranteed that the algorithm is able

to meet this criteria at a particular time-step which can be estimated by the rate

analysis. However, it will be more interesting and expected with more application

backgrounds if one can achieve the exact or true optimal solution at some finite time

depending on the initial conditions, known as finite-time convergence or at a fixed

time independent of the initial conditions, known as fixed-time convergence.

Finite-time and fixed-time convergence have been extensively studied in control
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fields of continuous-time multi-agent systems with dynamic systems using sliding

mode control e.g., [132–136]. Lyapunov tools are commonly used to design the con-

trol protocols and analyze the performances. However, for discrete-time distributed

optimization and NE seeking problems, very little attention has been received for

the finite-time or fixed-time convergence.

Therefore, it is of great interests to investigate some novel distributed optimization

and NE seeking algorithms which can reach the optimal solution in finite time or

fixed time steps.

7.2.3 Robustness

A well-designed control law for a given system can work perfectly well in the nominal

condition, but may fail if some parameters of the system change, which may be due

to the aging effect or environmental changes. The ability of an algorithm to resist

the change of a system without adapting its initial stable configurations is known as

robustness, which is well-known in many application fields including statistics, eco-

nomics, control theory, computer science, etc. The algorithm with good robustness

is crucial, especially for the applications which are directly related to the humans’

health and safety.

Most literature considered robustness of algorithms with respect to disturbance

rejection, such as [11, 89] and the references therein. Besides, there are works dis-

cussing the robustness of algorithms from the perspective of network unreliability,

which includes [137] with time-varying network, [138] with quantized information

exchange, [139] with data transmission delays, and [104] with package dropouts and

link breaks. The robustness of these algorithms usually comes with the cost of the

performance downgrade, because very little information of the undesirable source is

utilized during the design of these algorithms. In fact, with the emergence of Big

Data, much information from the undesirable source can be collected, analyzed, and
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then leveraged in the design of robust algorithms to improve the performance.

Therefore, it is a trend to develop distributed optimization and NE seeking algo-

rithms which are both robust and effective.
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[121] A. Nedić, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “Distributed Sub-

gradient Methods and Quantization Effects,” in 2008 IEEE 47th Conference

on Decision and Control (CDC), 2008, pp. 4177–4184.

Nanyang Technological University Singapore



Bibliography 173

[122] M. Ye and G. Hu, “Distributed Nash Equilibrium Seeking by a Consensus

Based Approach,” IEEE Transactions on Automatic Control, vol. 62, no. 9,

pp. 4811–4818, 2017.

[123] M. Zhu and S. Martinez, “An Approximate Dual Subgradient Algorithm for

Multi-Agent Non-Convex Optimization,” IEEE Transactions on Automatic

Control, vol. 58, no. 6, pp. 1534–1539, 2013.

[124] R. Hooke and T. A. Jeeves, ““ Direct Search” Solution of Numerical and

Statistical Problems,” Journal of the ACM, vol. 8, no. 2, pp. 212–229, 1961.

[125] F. J. Solis and R. J.-B. Wets, “Minimization by Random Search Techniques,”

Mathematics of Operations Research, vol. 6, no. 1, pp. 19–30, 1981.

[126] R. M. Lewis, V. Torczon, and M. W. Trosset, “Direct search methods: then

and now,” Journal of Computational and Applied Mathematics, vol. 124, no.

1-2, pp. 191–207, 2000.

[127] D. Popovic and A. Teel, “Direct search methods for nonsmooth optimization,”

in 2004 IEEE 43rd Conference on Decision and Control (CDC), 2004, pp.

3173–3178.

[128] S. Kim and D. Zhang, “Convergence properties of direct search methods for

stochastic optimization,” in Proceedings of the 2010 Winter Simulation Con-

ference. IEEE, 2010, pp. 1003–1011.

[129] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings

of ICNN’95 - International Conference on Neural Networks, vol. 4, 1995, pp.

1942–1948.

[130] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE

Computational Intelligence Magazine, vol. 1, no. 4, pp. 28–39, 2006.

[131] D. E. D. E. Goldberg and D. E., Genetic algorithms in search, optimization,

and machine learning. Addison-Wesley Longman Publishing Co., Inc., 1989.

Nanyang Technological University Singapore



174 Bibliography

[132] J. Cortés, “Finite-time convergent gradient flows with applications to network

consensus,” Automatica, vol. 42, no. 11, pp. 1993–2000, nov 2006.

[133] Z.-H. Guan, F.-L. Sun, Y.-W. Wang, and T. Li, “Finite-Time Consensus for

Leader-Following Second-Order Multi-Agent Networks,” IEEE Transactions

on Circuits and Systems I: Regular Papers, vol. 59, no. 11, pp. 2646–2654, nov

2012.

[134] X. Liu, M. Z. Q. Chen, H. Du, and S. Yang, “Further results on finite-time con-

sensus of second-order multi-agent systems without velocity measurements,”

International Journal of Robust and Nonlinear Control, vol. 26, no. 14, pp.

3170–3185, sep 2016.

[135] Y. Cao, W. Ren, D. W. Casbeer, and C. Schumacher, “Finite-Time

Connectivity-Preserving Consensus of Networked Nonlinear Agents With Un-

known Lipschitz Terms,” IEEE Transactions on Automatic Control, vol. 61,

no. 6, pp. 1700–1705, jun 2016.

[136] J.-G. Dong, “Finite-time connectivity preservation rendezvous with distur-

bance rejection,” Automatica, vol. 71, pp. 57–61, sep 2016.

[137] A. Jadbabaie, Jie Lin, and A. Morse, “Coordination of groups of mobile au-

tonomous agents using nearest neighbor rules,” IEEE Transactions on Auto-

matic Control, vol. 48, no. 6, pp. 988–1001, jun 2003.

[138] M. Rabbat and R. Nowak, “Quantized incremental algorithms for distributed

optimization,” IEEE Journal on Selected Areas in Communications, vol. 23,

no. 4, pp. 798–808, apr 2005.

[139] U. Münz, A. Papachristodoulou, and F. Allgöwer, “Delay robustness in con-
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