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Exact Convergence of Gradient-Free Distributed Optimization Method
in a Multi-Agent System*

Yipeng Pang and Guoqiang Hu

Abstract— In this paper, a gradient-free algorithm is pro-
posed for a set constrained distributed optimization problem in
a multi-agent system under a directed communication network.
For each agent, a pseudo-gradient is designed locally and
utilized instead of the true gradient information to guide
the decision variables update. Compared with most gradient-
free optimization methods where a doubly-stochastic weighting
matrix is usually employed, this algorithm uses a row-stochastic
matrix plus a column-stochastic matrix, and is able to achieve
exact asymptotic convergence to the optimal solution.

Index Terms— Distributed optimization, multi-agent system,
gradient-free optimization

I. INTRODUCTION

Gradient-free optimization schemes can be traced back to
the age of developing optimization theory, such as the work
in [1]. Recent researches on this topic have been reported
in [2]–[8], where centralized gradient-free methods have
been investigated in [3]. It was extended to a distributed
version in [4], [5] and further improved in [6], [7]. The
idea of the method is computing some stochastic gradient
information based on the measurements of the function plus
some random variables, to replace the true gradient in the
standard distributed optimization algorithm. In [8], this idea
was extended to a state-of-the-art gradient-based algorithm
reported in [9], which relaxed the requirement of doubly
stochastic adjacency matrix. However, all these derivative-
free methods can only establish the weak convergence results
to a neighborhood of the optimal solution with an error
bounded by some parameters which cannot be eliminated. In
[10], [11], a smoothing technique was developed to solve the
non-smooth optimization problem, where two point gradient
estimation was used to close the optimality gap between the
final iterate and the optimal point by choosing appropriate
step-size. This technique was extended to distributed case in
[12] in a directed communication graph, but restricted by the
assumption of doubly-stochastic weighting matrix.

In this paper, motivated by the gradient-descent method
in [13], we adopt the idea from [11] to construct a
pseudo-gradient, and propose a directed-distributed projected
pseudo-gradient descent (D-DPPGD) method to solve the
set constrained distributed optimization problem without
computing the true gradient. It is worth noting that our
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method achieves the same convergence result as [13] but
with no gradient information requirements.

The major contributions of this paper are summarized as
follows. 1). This paper proposes a distributed optimization
algorithm which does not require any explicit expressions
of the cost functions but only local measurements, making
it suitable for those applications where finding the gradient
is costly or not practical. 2). In contrast to the randomized
gradient-free methods in [3]–[8] where inexact convergence
to the neighborhood of the optimal solution was achieved,
this algorithm establishes the exact convergence to the op-
timal solution. 3). Unlike the consensus-based approaches
in [4]–[6], [14]–[20], this method does not require the
adjacency matrix to be doubly-stochastic, which makes it
possible to be implemented in any directed graphs, since
finding a doubly-stochastic adjacency matrix for a directed
graph is not guaranteed [21], [22].

The rest of the paper is organized as follows. In Section II,
the notations and problem formulation are firstly introduced,
followed by the main results in Section III, where the
proposed algorithm is elaborated first, then the convergence
properties are carefully analyzed in details. The conclusion
is in Section IV.

II. NOTATIONS AND PROBLEM FORMULATION

Throughout the paper, we use R and Rn to denote the
set of real numbers and n-dimensional column vectors,
respectively, and 1n (0n) to represent an n-dimensional
vector with all elements equal to one (zero). For a matrix
A, we denote the element in the i-th row and j-th column
of A by [A]ij , its transpose by AT , and the induced vector
Euclidean norm by ‖A‖. For a vector x, ‖x‖ denotes the
standard Euclidean norm. For a function f , we use ∇f(x)
(∂f(x)) to represent its gradient (subgradient) at the point x.
We write E[x] and Cov(x, y) to denote the expected value
of x and covariance value of x and y, respectively. PX [x]
represents the projection of a vector x on the set X , i.e.,
PX [x] = arg minx̂∈X ‖x̂− x‖2.

For a directed graph G = {V, E}, V = {1, 2, . . . , N} is
the set of agents, and E ⊂ V ×V is the set of ordered pairs,
(i, j), i, j ∈ V , where agent i is able to send information
to agent j. We denote the set of agent i’s in-neighbors by
N in
i = {j ∈ V|(j, i) ∈ E} and out-neighbors by N out

i =
{j ∈ V|(i, j) ∈ E}. Specifically, we allow both N in

i and
N out
i to contain agent i itself, and N in

i 6= N out
i in general.

The objective of the multi-agent system is to cooperatively
solve the following set constrained optimization problem:

min f(x) =
∑N
i=1 fi(x), x ∈ X , (1)



where X ⊆ Rn is a convex and closed set, and fi is a local
cost function of agent i and x ∈ Rn is a global decision
vector. The explicit expression of the local cost function fi
is unknown, but the measurements can be made by agent
i only. The optimal solution of (1) is denoted by x? with
optimal value f? = f(x?).

We introduce a smoothed version of (1), given by
min fβ1,k

(x) =
∑N
i=1 fi,β1,k

(x), x ∈ X ,
where fi,β1,k

(x) is a smoothed function of fi(x) [10], [11]

fi,β1,k
(x) = E[f(x + β1,kξ)] =

∫
Rn

fi(x + β1,kξ)dµ
i(ξ),

with the random variable ξ ∈ Rn having density µi

with respect to Lebesgue measure1. β1,k is a positive non-
increasing sequence. The properties of the function fi,β1,k

(x)
are presented in Lemma 3.

In this paper, we make the following assumptions:
Assumption 1: The directed graph is strongly connected.
Assumption 2: Each local cost function fi is convex,

but not necessarily differentiable. Its subgradient ∂fi(x) is
bounded, i.e., ∀x ∈ X , there exists a positive constant D̂
such that ‖∂fi(x)‖ ≤ D̂.

III. MAIN RESULTS

In this section, we will develop the projected pseudo-
gradient descent method for the optimization problem de-
fined in (1), followed by the convergence analysis.

A. D-DPPGD Method

The D-DPPGD method for solving the optimization prob-
lem defined in (1) is described as follows.

At the k-th step, each agent j delivers its state information
xjk with a weighted auxiliary variable [Ac]ijy

j
k to its out-

neighbor i ∈ N out
j . Then, agent i updates its variables xik+1

and yik+1 with the information received from its in-neighbor
j ∈ N in

i as follows

xik+1 = PX
[∑N

j=1[Ar]ijx
j
k + εyik − αkgi(xik)

]
, (2a)

yik+1 = xik −
∑N
j=1[Ar]ijx

j
k +

∑N
j=1[Ac]ijy

j
k − εyik,

(2b)
where gi(xik) is a pseudo-gradient [11], given as

gi(xik) = 1
β2,k

[fi(x
i
k + β1,kξ

i
1,k + β2,kξ

i
2,k)

− fi(xik + β1,kξ
i
1,k)]ξi2,k,

(3)

Ar, Ac are the row-stochastic and column-stochastic adja-
cency matrices, respectively, i.e.,

∑N
j=1[Ar]ij = 1 for all

j ∈ V , and
∑N
i=1[Ac]ij = 1 for all i ∈ V . For any directed

graphs, they can be obtained by letting [Ar]ij = 1/|N in
i |

and [Ac]ij = 1/|N out
j |. αk > 0 is a diminishing step-size

satisfying ∑∞
k=0 αk =∞,

∑∞
k=0 α

2
k <∞. (4)

ε is a small positive number. β1,k, β2,k are two positive non-
increasing sequences with their ratio defined as

β̃k = β2,k/β1,k. (5)

1Here, we slightly abuse the notation of ξ for both a random variable and
its instances.

ξi1,k and ξi2,k ∈ Rn are random variables satisfying the
following assumption:

Assumption 3: (Assumption F in [11]) The random vari-
ables ξi1,k and ξi2,k ∈ Rn are generated by any one of the
following: (a) both ξi1,k and ξi2,k are standard normal in Rn
with identity covariance; (b) both ξi1,k and ξi2,k are uniform
on the `2-ball of radius

√
n+ 2; (c) the distribution of ξi1,k is

uniform on the `2-ball of radius
√
n+ 2 and the distribution

of ξi2,k is uniform on the `2-ball of radius
√
n.

Remark 1: The proposed algorithm (2) is a gradient-free
algorithm where a psuedo-gradient operator gi(xik) is used
instead of the true gradient ∇fi(xik). The row-stochastic
Ar and column-stochastic Ac instead of doubly-stochastic
adjacency matrix make it possible to be implemented in any
directed graphs.

For the convenience of analysis, we may write (2) in a
compact form as

zik+1 =
∑2N
j=1[A]ijz

j
k + gik, (6)

where zik = xik for i ∈ {1, . . . , N}, zik = yi−Nk for i ∈
{N + 1, . . . , 2N}, gik = xik+1 −

∑N
j=1[Ar]ijx

j
k − εyik for

i ∈ {1, . . . , N}, gik = 0n for i ∈ {N + 1, . . . , 2N}, and

A =

[
Ar εI

I −Ar Ac − εI

]
. Define

z̄k = 1
N

∑2N
i=1 z

i
k = 1

N

∑N
i=1 x

i
k + 1

N

∑N
i=1 y

i
k

as an average of xik + yik over all agents at time-step k.

B. Convergence Analysis
In this part, we proceed to the analysis on the convergence

properties of the proposed algorithm. We denote the σ-field
generated by the entire history of the random variables from
step 0 to k−1 by Fk, i.e., Fk = {(xi0, i ∈ V); (ξi1,s, ξ

i
2,s, i ∈

V); 0 ≤ s ≤ k−1} with F0 = {xi0, i ∈ V}. We first quantify
the bound of the consensus terms xik − z̄k and yik − 0n by
some terms in the following lemma:

Lemma 1: Suppose Assumptions 1, 2 and 3 hold. Let
{zik}k≥0 be the sequence generated by (6). Then, it holds
that

1) for i = {1, . . . , N} and k ≥ 1

E[‖zik − z̄k‖|Fk−1] ≤ 2NΓγk maxj ‖zj0‖
+ Γ

∑k−1
r=1 γ

k−r∑N
j=1 E[‖gjr−1‖|Fr−1]

+
∑N
j=1 E[‖gjk−1‖|Fk−1];

2) for i = {N + 1, . . . , 2N} and k ≥ 1

E[‖zik‖|Fk−1] ≤ 2NΓγk maxj ‖zj0‖
+ Γ

∑k−1
r=1 γ

k−r∑N
j=1 E[‖gjr−1‖|Fr−1],

where Γ > 0 and 0 < γ < 1 are some constants.
Proof: For k ≥ 1, we have
zik =

∑2N
j=1[Ak]ijz

j
0 +

∑k−1
r=1

∑2N
j=1[Ak−r]ijg

j
r−1 + gik−1.

(7)
by applying (6) recursively. Then we can obtain that

z̄k = 1
N

∑2N
j=1 z

j
0 + 1

N

∑k−1
r=1

∑2N
j=1 g

j
r−1 + 1

N

∑2N
j=1 g

j
k−1,

(8)
where we have used column-stochastic property of A, i.e.,
for k ≥ 1, it holds that

∑2N
i=1[Ak]ij = 1.



For part (1), subtracting (8) from (7) and taking the norm
and conditional expectation on F` from ` = 0 to k − 1, we
have that for 1 ≤ i ≤ N and k ≥ 1,
E[‖zik − z̄k‖|Fk−1] ≤

∑2N
j=1

∥∥[Ak]ij − 1
N

∥∥maxj ‖zj0‖

+
∑k−1
r=1

∑N
j=1

∥∥[Ak−r]ij − 1
N

∥∥E[‖gjr−1‖|Fr−1]

+ N−1
N E[‖gik−1‖|Fk−1] + 1

N

∑
j 6=i E[‖gjk−1‖|Fk−1].

(9)
Noting that the last two terms

N−1
N E[‖gik−1‖|Fk−1] + 1

N

∑
j 6=i E[‖gjk−1‖|Fk−1]

≤N−1
N

∑N
i=1 E[‖gik−1‖|Fk−1] + 1

N

∑N
j=1 E[‖gjk−1‖|Fk−1]

=
∑N
j=1 E[‖gjk−1‖|Fk−1],

and applying the property of [Ak]ij from Lemma 1-(b) in
[13] to (9), we complete the proof of part (1).

For part (2), taking the norm and conditional expectation
on F` from ` = 0 to k − 1 in (7) for N + 1 ≤ i ≤ 2N and
k > 1, we have
E[‖zik‖|Fk−1] ≤

∑2N
j=1

∥∥[Ak]ij
∥∥maxj ‖zj0‖

+
∑k−1
r=1

∑N
j=1

∥∥[Ak−r]ij
∥∥E[‖gjr−1‖|Fk−1].

(10)

Applying Lemma 1-(b) in [13] to (10), the result holds with
similar arguments to part (1). �

The following lemma gives a bound for the augmented
pseudo-gradient operator gik defined in (6), which will be
used in the proof of convergence.

Lemma 2: Suppose Assumptions 1, 2 and 3 hold. Let ε
be the constant such that ε ≤ 1−γ

2NΓγ , where Γ > 0 and
0 < γ < 1 are some constants. Let β̃k defined in (5) be
bounded. Then, there exists a bounded constant G > 0, such
that for all k ≥ 0,∑N

j=1 E[‖gjk‖|Fk] ≤ Gαk,
where αk is the step-size used in the algorithm.
Proof: The proof follows similar flow to Lemma 5 in [13]
and is omitted here due to the space limit. �

With the above lemmas, we are ready to establish the main
results consisting of two theorems – one for consensus and
the other for optimality. We first show the boundedness of
lim supk→∞ E[‖zik − z̄k‖] for 1 ≤ i ≤ N , followed by the
boundedness of limk→∞ E[f(z̄k)]− f? as k →∞.

Theorem 1: Suppose Assumptions 1, 2 and 3 hold. Let
{zik}k≥0 be the sequence generated by (6) with a diminishing
step-size sequence {αk}k≥0 satisfying (4). Let β̃k defined in
(5) be bounded. Then, zik satisfies

1) For i = {1, . . . , N}
limk→∞ E[‖zik − z̄k‖] = 0.

2) For i = {N + 1, . . . , 2N}
limk→∞ E[‖zik‖] = 0.

Proof: For part (1), applying Lemma 2 to the result in
Lemma 1-(1) and taking the total expectation, we have

E[‖zik − z̄k‖] ≤ 2NΓγk maxj E[‖zj0‖]
+GΓ

∑k−1
r=1 γ

k−rαr−1 +Gαk−1.
(11)

Thus, it follows from (11) that for any K > 0∑K
k=1 αkE[‖zik − z̄k‖] ≤ 2NΓ maxj E[‖zj0‖]

∑K
k=1 αkγ

k

+GΓ
∑K
k=1

∑k−1
r=1 γ

k−rαkαr−1 +G
∑K
k=1 αkαk−1.

Following the results from Lemma 3 in [8] on
∑K
k=1 αkγ

k,∑K
k=1 αkαk−1 and

∑K
k=1

∑k−1
r=1 γ

k−rαkαr−1, the above
inequality can be further simplified as∑K

k=1 αkE[‖zik − z̄k‖] ≤ NΓ maxj E[‖zj0‖](
∑K
k=1 α

2
k

+ γ2

1−γ2 ) +G( Γγ
1−γ + 1)

∑K
k=0 α

2
k.

Taking K → ∞ and noting that
∑∞
k=0 α

2
k < ∞, we have∑∞

k=1 αkE[‖zik − z̄k‖] < ∞. Together with the fact that∑∞
k=0 αk =∞, we complete the proof of part (1).
For part (2), applying Lemma 2 to the result in Lemma 1-

(2) and taking the total expectation, we have

E[‖zik‖] ≤2NΓγk maxj E[‖zj0‖] +GΓ
∑k−1
r=1 γ

k−rαr−1.
(12)

Following the same reasoning as in part (1), we can obtain
the desired result. �

Remark 2: Theorem 1 characterizes the consensus prop-
erty of the algorithm; namely, all agents xik (respectively yik),
i ∈ V will converge to the same point z̄k (respectively 0n)
asymptotically to achieve the exact convergence.

Theorem 2: Suppose Assumptions 1, 2 and 3 hold. Let
{zik}k≥0 be the sequence generated by (6) with a diminishing
step-size sequence {αk}k≥0 satisfying (4). Let β1,k and β̃k
defined in (5) satisfy limk→∞ β1,k = 0 and

∑∞
k=0 β̃k <∞.

Then, we have
limk→∞ E[f(z̄k)] = f?.

Proof: See Appendix A. �
Remark 3: Theorem 2 shows that the cost value of the

multi-agent system will finally converge to its exact optimal
value with appropriate choice of the step-size αk and pa-
rameters β1,k, β2,k. For instance, if the step-size αk is set to
1/(k + 1)a, where a ∈ (0, 1); the parameters β1,k, β2,k are
set to 1/(k+1)p1 and 1/(k+1)p2 , respectively, where p1 > 0
and p2−p1 > 1; then α∞ = 0, β̃∞ = 0 and

∑∞
k=0 β̃k <∞,

the exact convergence to the optimal value can be achieved.

IV. CONCLUSIONS

In this paper, we have developed a gradient-free distributed
optimization algorithm in a multi-agent system where the
underlying communication network is directed. We construct
a pseudo-gradient for each agent in replace of the gradient
information in the state update. We have analyized the
convergence properties in details and rigorously proved the
exact convergence of this algorithm to the optimal solution.

APPENDIX

A. Proof of Theorem 2

Before the proof of Theorem 2, we first provide some
properties of function fi,β1,k

(x) summarized in the following
Lemma:

Lemma 3: ( [11]) Suppose Assumptions 2 and 3 hold.
Then, for each i ∈ V , the following properties of the function
fi,β1,k

(x) are satisfied:
1) fi,β1,k

(x) is convex and differentiable, and it satisfies

fi(x) ≤ fi,β1,k
(x) ≤ fi(x) + β1,kD̂

√
n+ 2,



2) the pseudo-gradient gi(xik) satisfies

E[gi(xik)|Fk] = ∇fi,β1,k
(xik) + β̃kD̂v,

3) there is a universal constant Q such that

E[‖gi(xik)‖|Fk] ≤
√

E[‖gi(xik)‖2|Fk] ≤ QTk,

where β1,k and β̃k are defined in (5), v ∈ Rn
is a vector satisfying ‖v‖ ≤ n

√
3n/2, and Tk =

D̂

√
n
[
n

√
β̃k + 1 + lnn

]
. If β̃k is bounded, then Tk is

bounded by a constant T̂ .

Next, we proceed to the proof of Theorem 2. Considering
(6), and the fact that A is column-stochastic, we have

z̄k+1 = 1
N

∑2N
j=1

[∑2N
i=1[A]ij

]
zjk + 1

N

∑2N
i=1 g

i
k

= z̄k + 1
N

∑N
i=1 g

i
k.

Thus, we can derive that
‖z̄k+1 − x?‖2 = ‖z̄k − x?‖2 +

∥∥ 1
N

∑N
i=1 g

i
k

∥∥2

+ 2
N

∑N
i=1 g

i
k
T

(z̄k − x?)

= ‖z̄k − x?‖2 + 1
N2

∥∥∑N
i=1 g

i
k

∥∥2
(13a)

− 2αk

N

∑N
i=1 g

i(xik)T (z̄k − x?) (13b)

+ 2
N

∑N
i=1(gik + αkg

i(xik))T (z̄k − x?). (13c)
Noting that for the second term in (13a), we take conditional
expectation on Fk, yielding

E[
∥∥∑N

i=1 g
i
k

∥∥2∣∣Fk] ≤
∑N
i=1 E[‖gik‖2|Fk]

=
∑N
i=1(E[‖gik‖|Fk])2 +

∑N
i=1 Cov(‖gik‖, ‖gik‖)

≤
(∑N

i=1 E[‖gik‖|Fk]
)2

+ V1,

where we have applied Lemma 2 on
∑N
i=1 E[‖gik‖|Fk] and

used E[xy] = E[x]E[y] + Cov(x, y). V1 > 0 is an upper
bound of the covariance term

∑N
i=1 Cov(‖gik‖, ‖gik‖). Thus,

we obtain
E[
∥∥∑N

i=1 g
i
k

∥∥2∣∣Fk] ≤ G2α2
k + V1, (14)

Noting that for (13b), we take conditional expectation on Fk
and apply Lemma 3-(2)∑N

i=1 E[gi(xik)|Fk]T (z̄k − x?)

=
∑N
i=1(∇fi,β1,k

(xik) + β̃kD̂v)T (z̄k − x?).
(15)

Noting that
(∇fi,β1,k

(xik) + β̃kD̂v)T (z̄k − x?)

=(∇fi,β1,k
(xik) + β̃kD̂v)T (z̄k − xik)

+ (∇fi,β1,k
(xik) + β̃kD̂v)T (xik − x?)

≥− ‖∇fi,β1,k
(xik)‖‖xik − z̄k‖ − β̃kD̂‖v‖‖xik − z̄k‖

+ fi,β1,k
(xik)− fi,β1,k

(x?)− β̃kD̂‖v‖‖xik − x?‖
≥ −

(
QT̂ + β̃k‖v‖D̂

)
‖xik − z̄k‖+ (fi(x

i
k)− fi(z̄k))

+ (fi(z̄k)− fi,β1,k
(x?))− β̃kD̂‖v‖‖xik − x?‖,

where we have used fi,β1,k
(xik) ≥ fi(x

i
k) based on

Lemma 3-(1);
‖∇fi,µi(xik)‖ = ‖E[gi(xik)|Fk]‖ ≤ E[‖gi(xik)‖|Fk]

with E[‖gi(xik)‖|Fk] bounded by applying Lemma 3-(3);

and
fi(x

i
k)− fi(z̄k) ≥ ∂fi(z̄k)T (xik − z̄k) ≥ −D̂‖xik − z̄k‖

based on Assumption 2. Thus, we have
(∇fi,β1,k

(xik) + β̃kD̂v)T (z̄k − x?) ≥ fi(z̄k)− fi,β1,k
(x?)

−
(
QT̂ + (β̃k‖v‖+ 1)D̂

)
‖xik − z̄k‖ − β̃kD̂‖v‖‖xik − x?‖,

(16)
For the term ‖xik − x?‖, we can provide the following

bound:
‖xik − x?‖

=
∥∥PX [∑N

j=1[Ar]ijx
j
k−1 + εyik−1 − αk−1g

i(xik−1)
]
− x?

∥∥
≤
∥∥∑N

j=1[Ar]ijx
j
k−1 + εyik−1 − αk−1g

i(xik−1)− x?
∥∥

≤
∥∥∑N

j=1[Ar]ijx
j
k−1 − x?

∥∥+ ε‖yik−1‖+ αk−1‖gi(xik−1)‖

≤
∑N
j=1[Ar]ij‖xjk−1 − x?‖+ ε‖yik−1‖+ αk−1‖gi(xik−1)‖

≤
∑N
j=1[Ar]ij‖xik−1 − x?‖+ ε‖yik−1‖+ αk−1‖gi(xik−1)‖

+
∑N
j=1[Ar]ij‖xik−1 − xjk−1‖

=‖xik−1 − x?‖+ ε‖yik−1‖+ αk−1‖gi(xik−1)‖
+
∑N
j=1[Ar]ij(‖xik−1 − z̄k−1‖+ ‖xjk−1 − z̄k−1‖).

Thus, applying the above relation recursively, and taking
conditional expectation on Fk, we have
‖xik − x?‖ = ε

∑k−1
τ=0 ‖yiτ‖+

∑k−1
τ=0 ατE[‖gi(xiτ )‖|Fτ ]

+
∑k−1
τ=0

∑N
j=1[Ar]ij(‖xiτ − z̄τ‖+ ‖xjτ − z̄τ‖) + ‖xi0 − x?‖.

(17)
Combining (16) and (17), and substituting to (15), we obtain∑N

i=1 E[gi(xik)|Fk]T (z̄k − x?)

≥−
(
QT̂ + (β̃k‖v‖+ 1)D̂

)∑N
i=1 ‖xik − z̄k‖

+ f(z̄k)− fβ1,k
(x?)− β̃kD̂‖v‖

[∑N
i=1 ‖xi0 − x?‖

+ ε
∑k−1
τ=0

∑N
i=1 ‖yiτ‖+NQT̂

∑k−1
τ=0 ατ

+ 2N
∑k−1
τ=0

∑N
i=1 ‖xiτ − z̄τ‖

]
,

(18)

where we have applied Lemma 3-(3) on E[‖gi(xiτ )‖|Fτ ].
Noting that for term (13c), we have∑N

i=1(gik + αkg
i(xik))T (z̄k − x?)

=
∑N
i=1(gik + αkg

i(xik))T (z̄k − z̄k+1) (19a)

+
∑N
i=1(gik + αkg

i(xik))T (z̄k+1 − xik+1) (19b)

+
∑N
i=1(gik + αkg

i(xik))T (xik+1 − x?). (19c)

For (19a), we have∑N
i=1(gik + αkg

i(xik))T (z̄k − z̄k+1)

≤
∑N
i=1 ‖gik + αkg

i(xik)‖‖ 1
N

∑N
i=1 g

i
k‖

≤ 1
N

(∑N
i=1 ‖gik‖

)2
+ αk

N

∑N
i=1 ‖gik‖

∑N
i=1 ‖gi(xik)‖.

Taking the conditional expectation on Fk, we obtain∑N
i=1 E[(gik + αkg

i(xik))T (z̄k − z̄k+1)|Fk]

≤G
N (G+NQT̂ )α2

k + V2,
(20)

where we have applied Lemma 3-(3) on E[‖gi(xik)‖|Fk] and
Lemma 2 on

∑N
i=1 E[‖gik‖|Fk]. V2 > 0 is an upper bound

of the sum of covariance terms Cov(
∑N
i=1 ‖gik‖,

∑N
i=1 ‖gik‖)

and Cov(
∑N
i=1 ‖gik‖,

∑N
i=1 ‖gi(xik)‖).



For (19b), we have∑N
i=1(gik + αkg

i(xik))T (z̄k+1 − xik+1)

≤
∑N
i=1 ‖gik + αkg

i(xik)‖‖z̄k+1 − xik+1‖
≤
∑N
i=1(‖gik‖+ αk‖gi(xik)‖)‖z̄k+1 − xik+1‖.

Taking the conditional expectation on Fk, we obtain∑N
i=1 E[(gik + αkg

i(xik))T (z̄k+1 − xik+1)|Fk]

≤ (G+QT̂ )αk
∑N
i=1 E[‖z̄k+1 − xik+1‖|Fk] + V3,

(21)

where we have applied Lemma 3-(3) on E[‖gi(xik)‖|Fk] and
Lemma 2 on

∑N
i=1 E[‖gik‖|Fk]. V3 > 0 is an upper bound

of the sum of covariance terms Cov(
∑N
i=1 ‖gik‖, ‖z̄k+1 −

xik+1‖) and Cov(
∑N
i=1 ‖gi(xik)‖, ‖z̄k+1 − xik+1‖).

For (19c), it follows from Lemma 1-(a) in [15] that
(gik + αkg

i(xik))T (xik+1 − x?) ≤ 0. (22)
Thus, taking the conditional expectation on Fk in (19) and
substituting (20), (21) and (22), we obtain∑N

i=1 E[(gik + αkg
i(xik))T (z̄k − x?)|Fk] ≤ G(G+NQT̂ )α2

k

N

+ (G+QT̂ )
∑N
i=1 αkE[‖z̄k+1 − xik+1‖|Fk] + V2 + V3.

(23)
Taking the conditional expectation on Fk in (13), and sub-
stituting (14), (18) and (23), we obtain that

2αk(f(z̄k)− fβ1,k
(x?))

≤2
(
QT̂ + (β̃k‖v‖+ 1)D̂

)∑N
i=1 αk‖xik − z̄k‖

+ 1
N (G2α2

k + V1) +N(‖z̄k − x?‖2 − E[‖z̄k+1 − x?‖2|Fk])

+2β̃kD̂‖v‖
[
αk
∑N
i=1 ‖xi0 − x?‖+ εαk

∑k−1
τ=0

∑N
i=1 ‖yiτ‖

+NQT̂ αk
∑k−1
τ=0 ατ + 2Nαk

∑k−1
τ=0

∑N
i=1 ‖xiτ − z̄τ‖

]
+ 2G
N (G+NQT̂ )α2

k

+2(G+QT̂ )
∑N
i=1 αkE[‖z̄k+1 − xik+1‖|Fk] + 2V2 + 2V3.

(24)
Taking the total expectation in (24) and summing up from
k = 0 to t− 1, we have∑t−1

k=0 αk(E[f(z̄k)]− fβ1,k
(x?))

≤
∑t−1
k=0

(
QT̂ + (β̃k‖v‖+ 1)D̂

)∑N
i=1 αkE[‖xik − z̄k‖]

(25a)

+
∑t−1
k=0(G+QT̂ )

∑N
i=1 αkE[‖xik+1 − z̄k+1‖] (25b)

+ D̂‖v‖
∑t−1
k=0 αkβ̃k

∑N
i=1 E[‖xi0 − x?‖] (25c)

+ D̂‖v‖ε
∑N
i=1

∑t−1
k=0 αkβ̃k

∑k−1
τ=0 E[‖yiτ‖] (25d)

+NQD̂‖v‖T̂
∑t−1
k=0 αkβ̃k

∑k−1
τ=0 ατ (25e)

+ 2ND̂‖v‖
∑N
i=1

∑t−1
k=0 αkβ̃k

∑k−1
τ=0 E[‖xiτ − z̄τ‖]

(25f)

+ G
2N

∑t−1
k=0(3G+ 2NQT̂ )α2

k (25g)

+ N
2 E[‖z̄0 − x?‖2] + V1

N + 2V2 + 2V3. (25h)

For (25a), substituting (11), we have
(25a) ≤

(
QT̂ + (β̃k‖v‖+ 1)D̂

)
Nα0 maxi E[‖zi0 − z̄0‖]

+
∑t−1
k=1

(
QT̂ + (β̃k‖v‖+ 1)D̂

)
Nαk

[
2NΓγk maxj E[‖zj0‖]

+GΓ
∑k−1
r=1 γ

k−rαr−1 +Gαk−1

]
.

Noting that β̃k is bounded, then
(
QT̂ + (β̃k‖v‖ + 1)D̂

)
N

is bounded, and can be denoted by B1 > 0. Thus, the above
inequality can be simplified as

(25a) ≤ B1

[
G
∑t−1
k=1(Γ

∑k−1
r=1 γ

k−rαkαr−1 + αkαk−1)

+ 2NΓ maxj E[‖zj0‖]
∑t−1
k=1 αkγ

k + α0 maxi E[‖zi0 − z̄0‖]
]
.

Following the results from Lemma 3 in [8] on
∑t−1
k=1 αkγ

k,∑t−1
k=1 αkαk−1 and

∑t−1
k=1

∑k−1
r=1 γ

k−rαkαr−1, the above
inequality can be further simplified as

(25a) ≤ B1

[
2NΓ maxj E[‖zj0‖]

(
1
2

∑t−1
k=1 α

2
k + γ2

2(1−γ2)

)
+G

(
Γγ

1−γ
∑t−1
k=1 α

2
k +

∑t−1
k=0 α

2
k

)
+ α0 maxi E[‖zi0 − z̄0‖]

]
≤
(∑t−1

k=0 α
2
k

)
B1

[
NΓ maxj E[‖zj0‖] +G

(
1 + Γγ

1−γ

)]
+B1NΓ maxj E[‖zj0‖]

(
γ2

1−γ2

)
+B1α0 maxi E[‖zi0 − z̄0‖].

Taking the limit t→∞ and noting that
∑∞
k=1 α

2
k <∞, we

have
limt→∞ (25a) <∞ (26)

For (25b), substituting (11) and denoting the upper bound
of (G+QT̂ )N by B2 > 0, we have

(25b) ≤ B2

[
2NΓ maxj E[‖zj0‖]

∑t−1
k=0 αkγ

k+1

+GΓ
∑t−1
k=0

∑k
r=1 γ

k−r+1αkαr−1 +G
∑t−1
k=0 α

2
k

]
.

Following the results from Lemma 3 in [8] on
∑t−1
k=0 αkγ

k+1

and
∑t−1
k=0

∑k
r=1 γ

k−r+1αkαr−1, the above inequality can
be simplified as

(25b) ≤ B2

[
2NΓ maxj E[‖zj0‖]

(
1
2

∑t−1
k=0 α

2
k + γ2

2(1−γ2)

)
+GΓ

(
γ

1−γ
∑t−1
k=0 α

2
k

)
+G

(∑t−1
k=0 α

2
k

)]
=
(∑t−1

k=0 α
2
k

)
B2

[
NΓ maxj E[‖zj0‖] +G

(
1 + Γγ

1−γ

)]
+B2NΓ maxj E[‖zj0‖]

(
γ2

1−γ2

)
.

Taking the limit t→∞ and noting that
∑∞
k=1 α

2
k <∞, we

obtain
limt→∞ (25b) <∞. (27)

For (25c), we have
(25c) ≤ ND̂‖v‖maxi E[‖xi0 − x?‖]

∑t−1
k=0 αkβ̃k.

Taking the limit t → ∞ and noting that
∑∞
k=0 αkβ̃k ≤∑∞

k=0 α
2
k +

∑∞
k=0 β̃

2
k ≤

∑∞
k=0 α

2
k + (

∑∞
k=0 β̃k)2 < ∞, we

obtain

limt→∞ (25c) <∞. (28)

For (25d), substituting (12), we have
(25d) ≤ D̂‖v‖ε

∑N
i=1

∑t−1
k=0 αkβ̃k

×
∑k−1
τ=0

[
2NΓγτ maxj E[‖zj0‖] +GΓ

∑τ−1
r=1 γ

τ−rαr−1

]
≤ ND̂‖v‖ε

1−γ
∑t−1
k=0 αkβ̃k

[
2NΓ maxj E[‖zj0‖] + γ

∑k−1
τ=1 ατ

]
≤ ND̂‖v‖ε

1−γ

[
2NΓ maxj E[‖zj0‖]

∑t−1
k=0 β̃k(αk + γ

∑k−1
τ=1 α

2
τ )
]

≤ ND̂‖v‖ε
1−γ

[
2NΓ maxj E[‖zj0‖]

∑t−1
k=0 β̃k(αk + γ

∑t−1
τ=1 α

2
τ )
]
.



Taking the limit t → ∞ and noting that
∑∞
k=0 αkβ̃k < ∞,∑∞

k=0 β̃k <∞ and
∑∞
τ=0 α

2
τ <∞, we obtain

limt→∞ (25d) <∞. (29)
For (25e), denoting the upper bound of NQD̂‖v‖T̂ by

B3 > 0, we have
(25e) ≤ B3

∑t−1
k=0 αkβ̃k

∑k−1
τ=0 ατ ≤ B3

∑t−1
k=0 β̃k

∑k−1
τ=0 α

2
τ

≤ B3

∑t−1
k=0 β̃k

∑t−1
τ=0 α

2
τ .

Taking the limit t→∞ and noting that
∑∞
k=0 β̃k <∞ and∑∞

τ=0 α
2
τ <∞, we obtain

limt→∞ (25e) <∞. (30)
For (25f), substituting (11), we have

(25f) ≤ 2N2D̂‖v‖
∑t−1
k=0 αkβ̃k maxi E[‖xi0 − z̄0‖]

+ 2N2D̂‖v‖
∑t−1
k=0 β̃k

∑k−1
τ=1 ατ

[
2NΓγτ maxj E[‖zj0‖]

+GΓ
∑τ−1
r=1 γ

τ−rαr−1 +Gατ−1

]
≤ 2N2D̂‖v‖maxi E[‖xi0 − z̄0‖]

∑t−1
k=0 αkβ̃k

+ 2N2D̂‖v‖
∑t−1
k=0 β̃k

[
2NΓ maxj E[‖zj0‖]

∑k−1
τ=1 ατγ

τ

+GΓ
∑k−1
τ=1

∑τ−1
r=1 γ

τ−rαταr−1 +G
∑k−1
τ=1 ατατ−1

]
.

Following the results from Lemma 3 in [8] on
∑k−1
τ=1 ατατ−1

and
∑k−1
τ=1

∑τ−1
r=1 γ

τ−rαταr−1, the above inequality can be
simplified as
(25f) ≤ 2N2D̂‖v‖maxi E[‖xi0 − z̄0‖]

∑t−1
k=0 αkβ̃k

+ 2N2D̂‖v‖
∑t−1
k=0 β̃k

[
2NΓ maxj E[‖zj0‖]

(
1
2

∑k−1
τ=1 α

2
τ

+ γ2

2(1−γ2)

)
+GΓ

(
γ

1−γ
∑k−1
τ=1 α

2
τ

)
+G

(∑k−1
τ=0 α

2
τ

)]
≤ 2N2D̂‖v‖maxi E[‖xi0 − z̄0‖]

∑t−1
k=0 αkβ̃k

+ 2N2D̂‖v‖
∑t−1
k=0 β̃k

[(∑k−1
τ=0 α

2
τ

)[
NΓ maxj E[‖zj0‖]

+G
(

1 + Γγ
1−γ

)]
+NΓ maxj E[‖zj0‖]

(
γ2

1−γ2

)]
.

Taking the limit t → ∞ and noting that
∑∞
k=0 αkβ̃k < ∞,∑∞

k=0 β̃k <∞ and
∑∞
τ=0 α

2
τ <∞, we obtain

limt→∞ (25f) <∞. (31)
For (25g), denoting the upper bound of G

2N (3G+2NQT̂ )

by B4 > 0, we have (25g) ≤ B4

∑t−1
k=0 α

2
k. Taking the limit

t→∞ and noting that
∑∞
k=0 α

2
k <∞, we obtain

limt→∞ (25g) <∞. (32)
Now, considering (25), we take the limit t → ∞. Then,

substituting (26)-(32) gives∑∞
k=0 αk(E[f(z̄k)]− fβ1,k

(x?)) <∞. (33)
Together with the fact that

∑∞
k=0 αk =∞, we have

limk→∞ E[f(z̄k)] = limk→∞ fβ1,k
(x?).

According to Lemma 3-(1) that
f? ≤ limk→∞ fβ1,k

(x?) ≤ f? + limk→∞ β1,kD̂N
√
n+ 2,

with limk→∞ β1,k = 0. we obtain the desired result.
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