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Abstract

Point clouds are useful in many applications like au-
tonomous driving and robotics as they provide natural 3D
information of the surrounding environments. While there
are extensive research on 3D point clouds, scene under-
standing on 4D point clouds, a series of consecutive 3D
point clouds frames, is an emerging topic and yet under-
investigated. With 4D point clouds (3D point cloud videos),
robotic systems could enhance their robustness by leverag-
ing the temporal information from previous frames. How-
ever, the existing semantic segmentation methods on 4D
point clouds suffer from low precision due to the spatial
and temporal information loss in their network structures.
In this paper, we propose SpSequenceNet to address this
problem. The network is designed based on 3D sparse con-
volution, and it includes two novel modules, a cross-frame
global attention module and a cross-frame local interpola-
tion module, to capture spatial and temporal information
in 4D point clouds. We conduct extensive experiments on
SemanticKITTI, and achieve the state-of-the-art result of
43.1% on mIoU, which is 1.5% higher than the previous
best approach.

1. Introduction

Scene understanding is a basic problem in computer vi-
sion. For autonomous driving cars and robotic systems that
work in the real world, the performance and robustness of
scene understanding is extremely crucial, since wrong deci-
sions may result in fatal accidents. Researchers are trying
to use more information to improve the performance and
robustness. 3D point clouds, collected by Lidar or Depth
cameras, provide more natural geometry information than
2D images. Further more, auto-driving cars and robots al-
ways work continuously within a period of time, thus the

�Corresponding author: G. Lin (e-mail: gslin@ntu.edu.sg)

(a) Frame t = 0.

(b) Frame t = 1.

Figure 1: Two-frame samples of normal camera video
and point cloud sequence. In each frame, the �rst row is
collected with the normal front camera, and the second row
is a projection of the annotated LiDAR point cloud. The
point cloud is 360� around the car captured by the LiDAR
sensors, which has broader perception �elds than the nor-
mal camera video.

environments change continuously. Under this constraint,
the systems could utilize temporal information from previ-
ous timestamps as hints and restrictions.

Semantic segmentation is a fundamental task in scene
understanding. On 2D images, the task is a per pixel clas-
si�cation problem that assign corresponding categories to
every pixel in the image. Inspired by the FCN [13], great
acchievements have been made in this area, such as Deeplab



V3+[3], Re�neNet [12] and PSPNet [27]. Also, many tasks
are developed based on image semantic segmentation, such
as point cloud segmentation, video segmentation and etc.
Our work combines point cloud semantic segmentation and
video semantic segmentation to improve the performance of
scene understanding. 4D semantic segmentation is a more
challenging task since both spatial and temporal informa-
tion are involved.

The 4D datasets have rich real-world information. Se-
manticKITTI [2] (Figure 1) is one of the biggest 4D point
cloud datasets, containing about 44,000 point cloud frames
in total. The SemanticKITTI baseline method simplify the
4D semantic segmentation setting into a 3D one, where they
combine multi point cloud frames into one point cloud, and
apply the 3D segmentation method on the transitioned 3D
point cloud. It causes temporal and spatial information loss
during the combination of multiple point clouds frames. To
resolve this problem, we propose SpSequenceNet to manip-
ulate the 4D point cloud data in the 3D cube style, which
reduces the spatial information loss. Meanwhile, we design
a cross-frame global attention module and a novel cross-
frame local interpolation module to extract the temporal
features from different frames. We evaluate our network
on SemanticKITTI [2]. The main contributions are:

� We design a network SpSequenceNet to directly cap-
ture spatial and temporal information from 4D point
clouds (3D point cloud video) for semantic segmenta-
tion.

� We introduce the Cross-frame Global Attention (CGA)
module to generate a global mask from previous point
cloud frame and use the generated mask for the current
point cloud frame segmentation.

� We propose the Cross-frame Local Interpolation (CLI)
to fuse the information between two point cloud
frames. It combines the temporal and spatial informa-
tion together and improves the semantic segmentation
quality.

� We achieve a new state-of-the-art result on Se-
manticKITTI [2], which is 1.5% higher than the ex-
isting methods.

2. Related work
Currently, there are few research works on 4D semantic

segmentation. 4D semantic segmentation requires the net-
work to extract both spatial information and temporal infor-
mation. Thus, we separate the 4D semantic segmentation
task into two sub tasks, i.e. spatial perception in 3D seman-
tic segmentation and temporal perception, which is a novel
area to explore. We will cover these two related parts in the
following sections.

2.1. 3D Semantic Segmentation

A point cloud is collected by the depth sensors to re-
�ect the objects’ shape in the real world. The predica-
ment in mining the semantics from point clouds is the
sparsity and disorder of point cloud data. In previous re-
searches, traditional 3D convolution [20] use a dense cal-
culation and the complexity reaches O(n3). The sparsity
of point cloud leads to high computation consumption and
high resource waste for 3D convolution.Therefore, many
works are done on point cloud processing and there are
still many divergences on the utilization of point cloud
data. Generally, there are three major ways for processing
point cloud, namely projection-based method, PointNet-
like method, and 3D convolution.

First, projection-based methods are the extension of the
2D semantic segmentation [24, 25, 23]. These methods per-
form projections, usually spherical projections, to transform
the 3D points onto a surface. Then, they apply an image se-
mantic segmentation network on the projected surface. The
projection-based methods reach the real-time requirement
(SqueezeSeg[24] reaches 13.5ms/per frame) while the �nal
performance of projection-based methods is typically lower
than other methods.

PointNet-like methods are developed from the novel
structure PointNet [15]. This series of methods manipu-
late raw point cloud data directly, and treat the coordinate
and RGB feature of the points as the input features. Then,
the network applies a shared MLP on each point individu-
ally to generate the predictions. The performance is limited
as it drops the local spatial relationship. PointNet++ [16]
restricts a small region to extract the the local spatial rela-
tionship. PointCNN [11] rede�nes a convolution operation
with MLP and neighbor weights to get a �exible local spa-
tial information. KPConv [21] apply a more �exible neigh-
bour mechanism and get the state-of-the-art performance in
PointNet-like methods. Pointwise CNN [9] uses the kernel
weights with voxel bins to combine the local information.
KPConv [21] is followed by the PointCNN and PCNN and
acchieve the state-of-the-art performance in PointNet-like
methods.

The last method is the 3D convolution network. As
stated in the beginning of this section, the computation con-
sumption of 3D convolution is high. The major researches
in this area focus on effectiveness. In OctNet [17], an oc-
tree structure is enrolled to represent 3D space, and guide
the network on convolutions. Many works [18, 6] are de-
veloped based on this method. They arrange point cloud
data into cubes and index them with Octree, Kdtree and etc
so the convolution can be easily performed using this index.
Furthermore, sparse 3D convolution based methods [8, 4]
execute the 3D convolutions only along the active voxels in
the inputs. Sparse 3D convolution can accelerate the convo-
lution operations and share the knowledge base with dense



Figure 2: Sparse sequence network structure. The input data is the point cloud frames Pt�1 and Pt. The output is the
semantic label for Pt. In addition, we use colors to represent the different functions. The yellow blocks are the basic neural
network blocks, which is a 3D residual network. Grey blocks are the Cross-frame Global Attention (CGA) modules, which
is designed to fuse the comprehensive information from the last frame. The red blocks is the Cross-frame Local Interpolation
(CLI) module, which is proposed to combine the local information from previous frames and current frames. The Blue blocks
are the decoder modules for segmentation outputs respectively.

convolutions.

2.2. 4D Temporal Feature Extraction

4D temporal feature extraction focuses on min-
ing the information in a time series. One re-
cent research is Minkowski Convolutional Neural Net-
works(MinkowskiNet) [4]. It generalizes convolution func-
tion from 2D to 4D so that the theory of deep neural net-
work is shared no matter the number of dimensions. The
4D MinkowskiNet lacks scalability since the computation
consumption increase rapidly with the increases of points
and frames.

There are some other researches on the 4D temporal fea-
ture extraction aside from semantic segmentation. In ST-
CNN [28], a 3D U-Net and a 1-D encoder for time infor-
mation are enrolled to auto-encode brain fMRI images. ST-
CNN locates sight on the auto-encoder with a 4D temporal
feature, which cannot be generalized to semantic segmenta-
tion tasks. OpenPose [10] focuses on a task to track human
pose with the 4D point clouds. It uses 4D volumetric data
to detect human hands’ position in real-time with human
detection and 2-D regression. PointFlowNet [1] is based on
the pointNet-like method and fuses two features from frame
t and t � 1 to infer the motion of each point. Then, different

losses are designed to extract the ego motion.
Overall, there are few methods which directly manipu-

late 4D point clouds on segmentation tasks. Therefore, we
also explore some ideas from video semantic segmentation
methods. MaskTrack and the network modulation [14, 26]
use the the information and prediction from last frame to
guide the current prediction.

3. Sparse Sequence Network

We show our proposed model structure in Figure 2. Gen-
erally, the problem setting of the 4D point cloud segmen-
tation is similar to the normal 3D semantic segmentation.
We built up the dataset based on the sensors, which are two
sources, i.e. RGB-D camera (r; g; b) and LiDAR (r) Note
that we take the coordinates (x; y; z) of each point and the
point features fi;t as the model inputs, whose dimension is
shaped as (X;Y; Z; 3) (RGB-D) or (X;Y; Z; 1) (LiDAR).
The group of point clouds with n frames Pt; t 2 n is com-
posed of pi;t = f xi;t; yi;t; zi;tg; i 2 mt. In our setting,
we use a voxel method, and all the points are projected
into a 3D tensor. As a result, (x; y; z) will be projected to
(x0; y0; z0), which represents the point position in the cube.
We set the fi;t as the value of each voxel. Our goal is to



Figure 3: A simple example for Cross-frame Global At-
tention (CGA). There is a sample point in the current frame
to show the process of the CGA.

predict the label li;t of each pi;t when t is given. In our pro-
posed framework, we use two frames, Pt�1 and Pt, to do
the predictions.

3.1. Network Architecture Overview

Our network is based on 3D convolution, which utilizes
the voxel method. We predict the label pi;t with the inputs
Pt and Pt�1, which are two 3D tensors.

The design of the proposed network follows the style
of U-net, implemented by Submanifold Sparse Convolu-
tion Network (SSCN) [7]. To balance the speed and per-
formance of training and inference, we made some modi�-
cations to the backbone network. Speci�cally, in the orig-
inal version of SSCN, there are seven encoder blocks with
skip paths to the deconvolution blocks, which forms a sym-
metrical structure.However, there are some drawbacks in
the symmetrical desing, such as the limited representation
abilities and the massive wastes of computation. There-
fore, we reduce the number of skip paths. Besides, we add
some blocks into the encoder, which is aimed to increase
the expression ability and adjust the network. The decoder
is streamlined, which contains the reduction of skip paths.

After the construction of our model, the next step is to
build up our blocks to fuse the information from different
frames. In the encoder phase, our network receives Pt and
Pt�1 with two different branches. It is described in the Fig-
ure 2. To construct better fused features, we de�ne the in-
formation with two parts, global information and local in-
formation. Firstly, the cross-frame global attention mod-
ule is designed for global information. In general, there
are several cross-frame global attention modules in differ-
ent phases. The cross-frame global attention module selects
the features so that the backbone network can pay more at-

Figure 4: The structure of Cross-frame Global Attention
(CGA) in our network.

tention to the key features. Secondly, cross-frame local in-
terpolation focuses on local information, which is applied
to fuse the information from both Pt�1 and Pt at the end of
encoder.

3.2. Cross›frame Global Attention

As stated above, we extract the temporal global seman-
tics with our Cross-frame Global Attention (CGA) mod-
ule. We show a simple explanation of the cross-frame
global attention module in Figure 3. Inspired by the self-
attention mechanism, we design the cross-frame global at-
tention module to generate a mask for current frame Pt. The
mask concludes the appearance information on the features
of Pt�1. To highlight the crucial part of features Ft and in-
hibit irrelevant features, cross-frame global attention mod-
ule uses the appearance information from t � 1 to guide the
model.

The global semantics are distributed to each level of the
features. We select layers which are involved in the skip
path and apply the cross-frame global attention. It reduces
the computation complexity and brings precision improve-
ment. Firstly, an adapter turns all feature vectors fi;t�1 into
f 0i;t�1 and applies a global average pooling on f 0i;t�1:

vj =
P mt � 1
i (gj(fi;j;t�1))

mt�1
: (1)

Here, mt�1 is the total number of points from the previous
frame Pt�1. gj is a speci�c adapter function in the net-
work and it is required to turn the features into a suitable
one for attention. In our network, the adapter consists of
two (1,1,1) 3D convolution layer, when a 3D ReLU layer



Figure 5: The structure of Cross-frame Local Interpola-
tion (CLI) in our network. The process happens at every
points in the current point cloud frame.

and a 3D batch normalization are in the middle of them.
The global information is obtained by the average pooling.
Then, we generate channel-wise attention maps aj , which
can be formulated as:

aj = h�(vj) =
1

1 + e��T vj
: (2)

When aj is determined, the output features F 0t can be ob-
tained by F 0t = aj � Ft, where Ft is the input features of
current point cloud frame. With cross-frame global atten-
tion, some channels in the features is set to zero. Therefore,
it reduces the value in ft, and keep the value of parts with
high values in f 0t . Pt�1 plays a role as a tutor. It teaches the
network to focus on the true important part in Pt. A brief
structure of this function is available in Figure 4.

3.3. Cross›frame Local Interpolation

At the end of the encoder phase, we design a cross-frame
local interpolation (CLI) module to combine the informa-
tion locally and capture the temporal information between
two point cloud frames. Optic �ow methods [22, 29] use
the nearest pixel from two different frames to generate local
optic �ow and achieve signi�cant performance. Inspired by
these methods, cross-frame local interpolation is designed
to extract partial difference between point clouds Pt�1 and
Pt. The basic idea of cross-frame local interpolation is

shown in Figure 5, which is to seek the k nearest neigh-
bors pi0;t�1 of pi;t, and generate a new local feature to help
the model fuse the temporal information. At the same time,
cross-frame local interpolation summarizes the area of near-
est points and fuses the spatial information with the feature
of selected points.

Firstly, distance metrics Dt�1;t is calculated as follow-
ing:

Dt�1;t =
Ct � CTt + Ct�1 � CTt�1 � 2Ct�


; (3)

where C is the metric which consists of the points coor-
dinates.  is a hyper-parameter for re-scaling the distance
to a approximating scale [0; 1]. It is based on the shape
of input data. We set  as 32 when the shape of input is
32 � 32 � 32. Dt�1;t is an approximate Euclid distance
matrix, which subsides the square operation to speed up the
calculation. Based on Dt�1;t, the top k nearest fj;t�1 is
obtained, representing the area features. The weight wi;t�1
for each point is

wi;t�1 = (� � min(di;j;t;t�1; �)) � �; (4)

where � and � are handcrafted parameters to adjust wi;t�1.
Note that � has an in�uence on the weights of distance. A
low value of � makes network only considers the adjoining
pi;t�1 as the valid features. � modi�es the range of �nal
features to avoid gradient vanishing. In the experiment, we
de�ne � and � as 0.5 and 2. di;j;t;t�1 is the distance of
position i,j in Dt�1;t. The min operation con�rms no neg-
ative weight. wi;t�1 is a weight for neighbour point pi;t�1.
Because of the point cloud’s sparsity, the possibility of k
nearest neighbours containing the points from another ob-
ject remains high, while wi;t�1 reduces this effect of fea-
tures.The CLI features Li;t�1 are calculated by:

Li;t�1 =
kX

i

fi;t�1 � wi;t�1: (5)

Based on Li;t�1, we concatenate Li;t�1 and feature fi;t
from current frames, and use a residual block to extract out-
put features as Figure 5. We believe the network is capable
to learn the relation between Li;t�1 and fi;t and improve
the segmentation quality.

4. Experiments

This section is divided into several parts. We �rst in-
troduce the SemanticKITTI [2] dataset, the method and the
experiment results. Then, we compare the results from dif-
ferent versions of the system. At last, we give some further
discussions.
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TangentConv [19] 34.1 84.9 2.0 18.2 21.1 18.5 1.6 0.0 0.0 83.9 38.3 64.0 15.3 85.8 49.1 79.5 43.2 56.7 36.4 31.2 40.3 1.1 6.4 1.9 30.1 42.2
DarkNet53Seg 41.6 84.1 30.4 32.9 20.0 20.7 7.5 0.0 0.0 91.6 64.9 75.3 27.5 85.2 56.5 78.4 50.7 64.8 38.1 53.3 61.5 14.1 15.2 0.2 28.9 37.8
Backbone 41.9 89.9 20.6 23.3 23.4 24.6 3.5 0.0 0.0 89.8 59.9 73.5 29.6 90.2 65.0 82.3 63.6 64.1 50.9 49.6 66.1 40.7 21.6 7.5 7.5 1.0
Backbone+CGA 42.6 89.6 27.5 23.8 26.5 23.3 7.5 0.0 0.0 89.5 58.2 73.2 28.0 91.0 66.2 83.0 63.8 65.3 43.6 47.5 61.7 35.7 25.8 31.0 3.2 0.4
Backbone+CGA+CLI 43.1 88.5 24.0 26.2 29.2 22.7 6.3 0.0 0.0 90.1 57.6 73.9 27.1 91.2 66.8 84.0 66.0 65.7 50.8 48.7 53.2 41.2 26.2 36.2 2.3 0.1

Table 1: Our results on the SemanticKITTI. All the models were trained on the training set of SemanticKITTI, and evalu-
ated on the testing set of SemanticKITTI. The performances of two state-of-the-art methods, TangentConv and DarkNet53Seg
are from [2]. The evaluation metric for each column is mIoU. In the table, we list our three proposed methods. Our back-
bone network reaches 41.9% mIoU. The model in the fourth row is the backbone network with cross-frame global attention
module. Cross-frame global attention module achieves a 0.7% improvement for the vanilla backbone network. The last row
is the result from our proposed network SpSequenceNet, which apply the cross-frame local interpolation on the model in the
fourth row. The network achieves +1.5% improvement with the DarkNet53Seg.

4.1. Dataset

We use the SemanticKITTI dataset, which is based on
the data from the odometry task of KITTI [5]. In the Se-
manticKITTI paper [2], they built up a tool to manually
annotate the semantic data on each frame. There are 22
3D point cloud videos, which contain 43,551 frames in to-
tal. In the experiment, the dataset is split into train (19,130
frames), validation (4,071), and test (20,351). In each
scan, data is a series of points collected by LiDAR. The
coordinates of points are related to the LiDAR’s position.
The test set is used for the �nal evaluations on their web-
site1. The challenge in SemanticKITTI contains two parts,
i.e. single-frame semantic segmentation and multi-frame
semantic segmentation. Single-frame semantic segmenta-
tion is for the single-frame task, which contains 19 classes.
Multi-frame semantic segmentation contains 6 more target
categories than the single-frame task to distinguish between
moving objects and stationary ones for these categories, in-
cluding car, trunk, other-vehicle, person, bicyclist, motor-
cyclist. As mentioned before, our job is to predict the label
at time t with the additional information from t � 1, t � 2:::.
We evaluate our model on 25 classes for the multi-frame
semantic segmentation task.

4.2. Implementation Details

In the pre-possessing phase, we turn the coordinate sys-
tem of previous framePt�1 into that of the current framePt.
Then, we apply a random rotation and scale on both Pt and
Pt�1 with the same random seeds, so that Pt and Pt�1 are
con�rmed to be in the same coordinate system. Next, We
use 0:05m as a unit to turn the coordinate of points Pt�1 and
Pt into the voxel format. The maximum scale of coordinate
in the dataset is around 150m, and the input cube in our

1https://competitions.codalab.org/competitions/
20331

network consists of 2048 � 2048 � 2048 voxels. When the
unit is set as 0:05m, the input cube is capable of containing
enough points. As a result, setting the unit to be 0:05m can
achieve the best trade-off between computation and perfor-
mance. Note that when t = 0, it is a special case for current
point cloud frame Pt, which means it does not have a previ-
ous frame Pt�1. We simply build a cube with one point at
(0; 0; 0) and Ft�1 is �lled with 0. When the input is ready,
we train SpSequenceNet with Adam optimizer and set the
batch size as 14, which requires about 10GB GPU mem-
ory. The maximum number of the epoch is 40. We train
the model with one Nvidia RTX 2080Ti. Each model takes
about �ve days for training. In the inference phase, we ap-
ply the same process except data augmentation on the test
data. In some cases, it is impossible to put all the points in
the cube. The labels of points, which are unable to be put
in the cube, are set as ignored label because the percentage
of these points is below 1%, and the cost of covering these
points is high.

4.3. Main Results

Baselines. The results are listed in Table 1. Baselines in
SemanticKITTI are TangentConv [19] and DarkNet53Seg.
They adjusted the coordinate system from Pt�4 to Pt�1 and
combined all the frames into one point cloud as the input.
TangentConv is a PointNet-like method, and DarkNet53Seg
is a projection-based method.
Backbone Network. Backbone Network removes all the
additional functions, and the input is just current point cloud
frame Pt. The result is close to the best baseline Dark-
Net53Seg in SemanticKITTIs and is 7.9% higher than Tan-
gentConv [19].
Backbone + CGA. Here we adopt the backbone network
and the cross-frame global attention. The input is based on
two point cloud frames Pt and Pt�1. Compared to the back-

https://competitions.codalab.org/competitions/20331
https://competitions.codalab.org/competitions/20331


mIoU
backbone 41.9
backbone+CGA 42.6
backbone+CGA+CLI-1 42.0
backbone+CGA+CLI-3 43.1

Table 2: Comparison between different top k for Cross-
frame Local Interpolation (CLI). The performance for
top 3 CLI achieves a 0.5% improvement for the backbone
network with cross-frame global attention, but top 1 CLI
causes a performance decrease.

bone network, the performance has a 0.7% improvement on
mIoU.
Backbone + CGA + CLI. The structure is shown in Fig-
ure 2. The network contains the backbone network, the
cross-frame global attention and the cross-frame local in-
terpolation, which uses top 3 nearest neighbour to gener-
ate the area features. Our network achieves +1.5% mIoU
with the DarkNet53Seg and achieves +1.2% mIoU with the
backbone network.

In summary, compared with other advanced methods in
the Table 1, our proposed methods are more sensitive with
the movements of small objects and large static objects,
while insensitive about the moving large objects. This phe-
nomenon is caused by the characteristics of our proposed
method. Speci�cally, in the proposed network, it detects
the shifts of the features in the same voxel system between
t � 1 and t. When the object is moving, there are signi�-
cant changes in the area of the small objects, while the large
object areas do not change much.

4.4. Result Comparisons

Discussion of the methods in SemanticKITTI. The pro-
cessing method for point cloud combination consume more
resources than expected. Since the computation costs are
highly related to the scope of the points, in our experiments,
the batch size is forced to be set to lower than 10. At the
same time, the training time reaches over 6 hours per epoch
when the reasonable minimum number of training epochs
is 30, which spends about 8 days for the training process. It
makes the training duration unacceptable. Therefore, we do
not use this method on our backbone.
The effectiveness of the SpSequenceNet. We show a visu-
alization for comparisons in Figure 6. For the backbone
network, we can compare Figure 6b with Figure 6c and
observe that the area in the red box of Figure 6b shows
noisy predictions. To be speci�c, Figure 6b represents
vanilla backbone network. In Figure 6c, the previously
mentioned area is more unitary. Therefore, cross-frame
global attention and cross-frame local interpolation improve
the smoothness of the results.

Single mIoU Move mIoU
Backbone 54.4 -
Backbone+CGA+CLI-3+Multi-head 56.0 39.9
Backbone+CGA+CLI-3+Reorganized 57.l 37.9

Table 3: Single-Frame Task and Motion Status Segmen-
tation. The second column is single mIoU, which is the per-
formance of the single-frame semantic segmentation task.
The third column is the performance of the motion status
segmentation.

Cross-frame global attention. As shown in Table 1, the
improvement of cross-frame global attention is of great sig-
ni�cance. Speci�cally, cross-frame global attention en-
hances the performance of the vanilla backbone in some
classes, because it helps the backbone track better on the
small objects.
Top k cross-frame local interpolation. We chooseK near-
est neighbours from last frame Pt�1 for point pi;t of current
frame to generate the features of the cross-frame local inter-
polation. We train the model with the top 1, 3, and 5 nearest
neighbours for the cross-frame local interpolation, which is
named as top k CLI in the following part. For top 1 CLI and
top 3 CLI, we submit the results to the SemanticKITTI for
testing. The result shows that top 1 CLI causes the decrease
in mIoU, which is in line with expectations. The precision
of top 1 CLI in Table 1 is even poorer than backbone+CGA.
For the points on the boundaries, the possibility of the near-
est point with the same correct label is low, resulting in a 6%
drop. At the same time, the setting of top 3 CLI achieves the
best performance. The performance of top 5 CLI is similar
to that of top 3 CLI, as we observe that the top 5 CLI shows
similar performance to the top 3 CLI in every epoch on the
validation set. Considering the computation cost and the ac-
curacy, we use 3 nearest neighbors as the best setting for the
cross-frame local interpolation module.

4.5. Single›Frame and Motion Status Experiment

We design an experiment to verify the effectiveness of
our methods on the 4D point cloud semantic segmentation.
The multi-frame task of SemanticKITTI is to predict the se-
mantics and the motion status for several speci�c objects.
For objects within the same class, the gradients from mov-
ing and static objects may affect each other and degrade the
training results. Therefore, the performance on the single-
frame task can better re�ect the overall performance of the
networks. At the same time, for better illustration about the
effect of motion status labels in the training process, we also
compare the segmentation performance of motion status in
different settings.

Accordingly, we train a backbone network for the single-
frame task as a baseline. Then, Backbone+CGA+CLI-3
model is modi�ed with a multi-head prediction in the end
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