
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Correlation flow : robust optical flow using kernel
cross‑correlators

Wang, Chen; Ji, Tete; Nguyen, Thien‑Minh; Xie, Lihua

2018

Wang, C., Ji, T., Nguyen, T.‑M., & Xie, L. (2018). Correlation flow : robust optical flow using
kernel cross‑correlators. 2018 IEEE International Conference on Robotics and Automation
(ICRA), 836‑841. doi:10.1109/ICRA.2018.8460569

https://hdl.handle.net/10356/143629

https://doi.org/10.1109/ICRA.2018.8460569

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, in any current or future media, including
reprinting/republishing this material for adverstising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. The published version is available
at:https://doi.org/10.1109/ICRA.2018.8460569

Downloaded on 30 Mar 2023 07:31:49 SGT

Correlation Flow: Robust Optical Flow Using Kernel Cross-Correlators

Chen Wang, Tete Ji, Thien-Minh Nguyen, and Lihua Xie

Abstract� Robust velocity and position estimation is crucial
for autonomous robot navigation. The optical �ow based meth-
ods for autonomous navigation have been receiving increasing
attentions in tandem with the development of micro unmanned
aerial vehicles. This paper proposes a kernel cross-correlator
(KCC) based algorithm to determine optical �ow using a
monocular camera, which is named as correlation �ow (CF).
Correlation �ow is able to provide reliable and accurate velocity
estimation and is robust to motion blur. In addition, it can
also estimate the altitude velocity and yaw rate, which are not
available by traditional methods. Autonomous �ight tests on
a quadcopter show that correlation �ow can provide robust
trajectory estimation with very low processing power. The
source codes are released based on the ROS framework.

I. INTRODUCTION

To safely �y in cluttered environments, insects rely on op-
tical �ow (OF), which is generated by their own displacement
relative to the surroundings [1]. Inspired by this, the optical
�ow based �ight capabilities for unmanned aerial vehicles
(UAV) have received increasing attentions, including obstacle
avoidance, speed maintenance, odometry estimation, altitude
regulation, wall following and corridor centring, orientation
control, and landing [1]�[4]. For example, based on optical
�ow, quadcopters can achieve autonomous navigation and
collision avoidance in urban or indoor environments [4].
Optical �ow has also been combined with simultaneous
localization and mapping (SLAM) algorithms to estimate
distances from surrounding environment and stabilize the
drone [3]. In recent years, some compact and low-power
optical �ow sensors have been reported [5]�[7] for micro
drones. This dramatically reduces the requirements for on-
board energy, sensing, and processing capabilities.

However, the existing algorithms heavily rely on features
extracted from the input image, which may be noisy or
challenging to extract in �ight scenarios, especially at high
speed. Therefore, a more accurate and robust method for
computing optical �ow is needed. To this end, we propose a
new optical �ow method for velocity estimation based on our
recently proposed kernel cross-correlator (KCC) [8], which
has been proven to be effective for visual object tracking
and human activity recognition using wearable devices. As
shown in Fig. 1, we propose a kernel translation correlator
(KTC) for horizontal velocity estimation. To achieve robust
orientation control and landing, we further develop a ker-
nel scale-rotation correlator (KSRC) for altitude and yaw

Chen Wang and Tete Ji are joint �rst authors.
The authors are with the School of Electrical and Electronic Engineering,

Nanyang Technological University, 50 Nanyang Avenue, Singapore
639798. wang.chen@zoho.com; fjite0002,e150040g
@e.ntu.edu.sg; elhxie@ntu.edu.sg

Image plane

Ground plane

Translation Correlators

Scale Correlators

Rotation Correlators

!

Height

xv

zw

zv

yv

Fig. 1. The framework for camera velocity estimation based on the pro-
posed correlation �ow. A downward facing camera mounted on a quadcopter
moves arbitrarily in the 3-D space. The horizontal and altitude velocities
and the yaw angular rate are estimated by the kernel translation correlator
(KTC) and the kernel scale-rotation correlator (KSRC), respectively.

velocity estimation. Compared with existing methods, corre-
lation �ow achieves higher accuracy while still possesses a
similar level of computational ef�ciency. Experiments on au-
tonomous �ight of a quadcopter demonstrate the robustness
of correlation �ow.

II. RELATED WORK

One of the earliest methods for optical �ow is the Horn-
Schunck algorithm, that assumes the apparent velocity of the
brightness pattern to vary smoothly almost everywhere in
the image [9]. By approximating each neighborhood of two
consecutive frames using quadratic polynomials, Farneback
method estimates the displacement �elds from the polyno-
mial expansion coef�cients [10]. Using phase correlations,
[11] proposes to compute optical �ow by block matching,
followed by an additional optimization procedure to �nd
smoother motion �elds among several candidates. Although
these methods yield a high density of �ow vectors, they
require complex calculation and are sensitive to noise.

To mitigate noise effect, several methods based on fea-
ture tracking, e.g. Shi-Tomasi [12], FAST [13], and Lucas-
Kanade [14], have been widely used to compute optical
�ow. Nevertheless, those methods still cannot satisfy the
real-time requirements for micro drones [6]. Leveraging
on the ef�ciency of parallel computing, [15] presents an
FPGA-based platform for computing the metric optical �ow.
PX4Flow [5] is an open source and open hardware optical
�ow sensor using a CMOS camera. It is based on the sum of
absolute differences (SAD) block matching algorithm, where
the position of the best match in the search area is selected
as the resulting �ow value. This optical �ow sensor is easy
to use but sensitive to illumination and motion blur. In [6],

the local translation �ow is calculated by matching the edge
histograms that are obtained by the summation of image
gradients in two orthogonal directions. Based on this work,
[7] proposes to combine stereo vision and optical �ow to
estimate velocity and depth for pocket drones.

Deep learning based optical �ow methods have also been
extensively studied. For example, a thresholded loss for
Siamese networks is proposed in [16], where the robustness
of trained features for patch matching for optical �ow is
evaluated. An end-to-end learning strategy is demonstrated
for optical �ow estimation in [17]. By combining a classical
spatial-pyramid method with deep learning, SPyNet trains
one deep network per level to compute the optical �ow [18].
Although the recent trend towards deep learning based meth-
ods mitigates estimation error to an extent, the computation
speed is still too low and the cost of training data acquisition
is too high for real-time robotic applications, especially
micro drones. This opens space for learning techniques that
achieve higher accuracy and yield faster training.

Inspired by the fact that local �ows are averaged to obtain
stable velocity estimation [5], [6], [15], we argue that it may
be faster and more robust to predict global �ow directly
based on learning techniques. To this end, we propose to
learn the kernel translation correlator (KTC) to estimate the
translation �ow. A kernel scale-rotation correlator (KSRC) is
further developed to ef�ciently estimate the scale and rota-
tion �ow. Extensive experiments show that correlation �ow
demonstrates the superiority on accuracy, while still has a
similar computational ef�ciency with traditional algorithms.

III. PRELIMINARY

In this section we brie�y present the de�nition for kernel
cross-correlator on single kernel and single training sample.
With respect to [8], we represent signals as 2-D matrices or
images, i.e. z;x 2 Rnx�ny , where z and x are regarded as
the previous and current frame, respectively. The convolution
theorem states that cross-correlation becomes element-wise
conjugate multiplication in frequency domain. Denote the 2-
D fast Fourier transform (FFT) F : Cnx�ny 7! Cnx�ny as
•̂ , so that the cross-correlation of two images g = x � h
is equivalent to ĝ = x̂ � ĥ�, where the operator � and
superscript � denote the element-wise multiplication and
complex conjugate, respectively. The correlation output ĝ can
be transformed back into spatial domain using the inverse
FFT. Therefore, the bottleneck of cross-correlation is to
compute the forward and backward FFTs, and the complexity
of the entire process has an upper bound O(N logN), where
N = nx � ny . Denote the kernel function as �(• ; •), such
that �(x; z) 2 R. Given a desired output g 2 Rmx�my , the
kernel cross-correlator is de�ned as:

ĝ = �̂z(x)� ĥ�; (1)

where �z(x) 2 Rmx�my is a kernel matrix, with element in
the ith row jth column as �(x; zij), where zij 2 T (z) 2
Rnx�ny is generated from the previous frame z. The trans-
form function T (•) is prede�ned for different objectives.

kernel
vector

KCC
previous

frame

current
frame

correlation
output

Fig. 2. The computation structure of correlation �ow. The position of the
maximum response indicates the transformation of images. Except for the
FFT, all the operations are element-wise, resulting in ef�cient computations.
Due to the introduction of kernels, correlation �ow is robust to noises,
motion blur, and image distortions.

The �lter h that maps z to the desired output g is to
be trained by minimizing the sum of squared errors (SSE)
between the kernel cross-correlator and the desired output.
To be ef�cient, we conduct the training in Fourier domain
to take advantage of the simple element-wise operation:

min
ĥ�
k�̂z(z)� ĥ� � ĝk2 + �kĥ�k2; (2)

where the second term in (2) is a regularization to prevent
over�tting. To solve it we set the �rst derivative to zero, i.e.,

@
@ĥ�

�
k�̂z(z)� ĥ� � ĝk2 + �kĥ�k2

�
= 0: (3)

Since all the operations in (3) are performed in an element-
wise manner, we can obtain a closed-form solution for ĥ�:

ĥ� =
ĝ

�̂z(z) + �
; (4)

where the operator •
• denotes the element-wise division. This

solution generates a KCC using a single training sample
and a single kernel. One of the advantages of KCC is that
any training data z, af�ne transformation function T (•), and
kernel function �(• ; •) can be applied, so that the KCC can
be customized for speci�c applications. The proposed KCC
is in contrast with the correlation �lter proposed in [19],
which only supports training data with circulant structure
and non-weighted kernel functions. Readers may refer to [8]
for more details.

IV. CORRELATION FLOW

In this section we present that the translation, scale-
rotation �ow can be computed by specifying the function
T (•) as translation, scale-rotation transforms, respectively.

A. Translation Flow
Fig. 2 illustrates the computation structure, in which

each prediction takes the previous and current frame as
the training and test sample, respectively. To predict the
translation �ow, the translation transform TT (•) on 2-D
matrix is applied to generate zij . Since z 2 Rnx�ny , the
number of all possible translational shifts jTT (z)j = nxny ,
where the operator j • j returns the number of element in a set,
and TT (z) is the set consisting of all translational shifts of z.
Therefore, the size of h and the kernel matrix �z(x) equals

the size of the image, i.e. nx = mx, ny = my . Without loss
of generality, consider the radial basis function (5):

�(x; zij) = h
�
kx� zijk2� : (5)

Since the complexity of calculating (5) is O(N), where N =
nxny , the complexity of computing a kernel matrix �z(x)
is O(N2), which might be infeasible for embedded systems.
Fortunately, we �nd that the kernel matrix can be computed
in Fourier domain with complexity O(N logN). Firstly, we
expand the norm in (5) as:

�(x; zij) = h
�
kxk2 + kzijk2 � 2 • Tr(xT zi)

�
; (6)

where the operator Tr(•) returns the trace of a square matrix.
Since kxk2 and kzijk2 are constants, the kernel matrix can
be expressed as:

�z(x) = h
�
kxk2 + kzk2 � 2

�
Tr(xT zij)

�
nxny

�
; (7)

where the trace matrix
�
Tr(xT zij)

�
nxny

is de�ned as:

�
Tr(xT zij)

�
nxny

:=

2

4
Tr(xT z11) ��� Tr(xT z1ny)

...
. . .

...
Tr(xT znx1) ��� Tr(xT znxny)

3

5 : (8)

From the 2-D correlation theory, x � z =
�
Tr(xT zij)

�
nxny

.
Substituting this into (7), we can obtain

�z(x) =h
�
kxk2 + kzk2 � 2 • x � z

�
(9a)

=h
�
kxk2 + kzk2 � 2 •F�1(x̂� ẑ�)

�
: (9b)

The bottleneck of (9b) is the forward and backward FFTs,
so that the kernel matrix can be calculated in complexity
O(N logN). For implementation purpose, the matrix norm
in (9b) can be obtained in frequency domain using Parseval’s
theorem, so that there is no need to store the original signals.

�z(x) = h
�
(kx̂k2 + kẑk2)=N � 2F�1(x̂� ẑ�)

�
: (10)

Based on (10), it is not necessary to generate the sample-
based matrices zij explicitly, which decreases both space
and time complexity dramatically.

The kernel translation correlator (KTC) in 2-D case can
then be obtained using (4) and (10). In the experiments, only
the center of the desired output g is set as 1, while all the
other positions are set to 0. Intuitively, due to image noise
and distortion, it is not possible to obtain an exact single peak
for the test sample. Instead, the position of the maximum
value in the output is used to �nd the translation of the test
sample. Speci�cally, the translation (xn; yn) of the current
frame relative to the training frame is obtained in (11), which
is the position of the maximum value in the correlation output
relative to the image center

�nx
2 ;

ny
2

�
.

(xn; yn) = arg max
(i;j)

F�1
(i;j)

�
�̂z(x)� ĥ�

�
�
�nx

2
;
ny
2

�
;

(11)
where F�1

(i;j)(•) is an element of the inverse FFT with index
(i; j). Therefore, the estimated horizontal metric velocity
(vx; vy) can be calculated as:

(vx; vy) = �
h

�t
(
xn
fx
;
xn
fy

); (12)

(a)
(b)

(c)

scale and rotation

Fig. 3. An example of the KSRC. (a) previous image captured at 30Hz;
(b) current image; (c) the response of KSRC. The location of the maximum
response relative to the center indicates the transformation pattern. In this
example, the image is rotated by 9 degrees and scaled with factor 1.2516.

where h is the height measurement that can be obtained from
an altimeter, and �t is the time instant difference between
the previous and the current image. fx and fy are the focal
lengths in x and y direction, respectively.

B. Scale and Rotation Flow

As shown in Fig. 1, the altitude velocity vz and yaw
rate !z can be measured by the image scale and rotation
transformations, respectively, using a downward facing cam-
era. Similar to the 2-D KTC, it is possible to estimate
the scale and rotation using KCC by de�ning the function
T (•) as scale and rotation transformations, respectively.
However, we will show that the complexity is too high for
separately calculating the scale and rotation correlators. To
accelerate the computation, we propose the kernel scale-
rotation correlator (KSRC), which is able to simultaneously
estimate the scale and rotation transformations.

In real applications, rotation and scale transformations
are usually discretized with speci�c resolution. Let zij be
the transformation of z with speci�c scale factor si 2
s
and rotation angle �j 2
�, where
s and
� are the
sets of scale factors and rotation angles, respectively. Let
mx = j
sj and my = j
�j, then calculating the scale
and rotation kernel vectors are of complexity O(mxN) and
O(myN), respectively. Therefore, the complexity of (4) is
O(N logN + mx;yN), which is still bounded by the FFT,
especially when mx or my is small. However, if scale and
rotation are both present in the image, the complexity of
(4) becomes O(N logN +MN), where M = mxmy . This
means that the calculation is bounded by the complexity of
the kernel matrix with O(MN), which is very dif�cult to be
carried out in real-time.

To solve this problem, we propose the KSRC as a faster
method to calculate the kernel matrix. Since pixels on image
boundary are often meaningless and discarded due to the
scale and rotation transformations, the pixels near to the
image center should account for a greater proportion in
the kernel function. Without loss of generality, consider a

0 10 20 30 40 50 60

time [s]

-1

-0.5

0

0.5

1

1.5
ve

lo
ci

ty
 [m

/s
]

Velocity estimation on x direction

PX4Flow
Correlation Flow
Ground Truth

0 10 20 30 40 50 60

time [s]

-1

-0.5

0

0.5

1

ve
lo

ci
ty

 [m
/s

]

Velocity estimation on y direction

PX4Flow
Correlation Flow
Ground Truth

Fig. 4. One example of the velocity estimation from the �rst 60 seconds
of a �ight test. It is obvious that the estimation from correlation �ow is
smoother and more accurate than PX4Flow.

weighted radial basis kernel in (13):

�(x; zij) = h
�
kw � (x� zij)k2� ; (13)

where w 2 Rnx�ny
+ , s.t. kwk1 = nxny is the weight matrix.

Since (13) is weighted, the trace matrix cannot be replaced by
the cross-correlation as used in (9). Therefore, the complexity
of calculating the kernel matrix �z(x) is dominated by the
trace matrix, which is still O(MN). However, we �nd that
this can be solved ef�ciently using a mapping function,
which is de�ned as M : Rnx�ny 7! Rmx�my in (14). For
simplicity, we denote it as ~• , i.e.,

~x =M(x); s.t. Tr(~xT ~y) = Tr((w � x)T (w � y)); (14)

where x;y 2 Rnx�ny . Since kxk2 = Tr(xTx), k~xk2 =
kw � xk2, substituting (14) into (13), we have

�(x; zij) = h
�
k~xk2 + k~zijk2 � 2 • Tr(~xT ~zij)

�
; (15)

where ~zij = M(zij). Therefore, the kernel matrix can be
calculated as:

�z(x) = h
�
k~xk2 + k~zk2 � 2

�
Tr(~xT ~zij)

�
mxmy

�
; (16)

where the trace matrix
�
Tr(~xT ~zij)

�
mxmy

is de�ned similarly
to (8). Inspired by the Fourier-Mellin transform [20], the
trace matrix can be converted to cross-correlation, if the
element of the weight matrix w is set as (17):

w[x;y] /
����

�
(i; j)

����
x = hexp �i cos �ji
y = hexp �i sin �ji

����� ; (17)

where (x; y) are image coordinates relative to the image
center and the operator h • i returns the nearest integer of
a real number. In this sense, M(•) becomes the log-polar
transform with coordinates (�; �), where � = log

p
x2 + y2

and � = atan2(y; x). Therefore, the image mapping ~z in
the log-polar plane satis�es (18), which means that zij is

TABLE I
COMPARISON ON HORIZONTAL VELOCITY WITH PX4FLOW. (m/s)

Test Correlation Flow PX4Flow
RMSE MAE RMSE MAE

01 0.069 0.054 0.145 0.117
02 0.072 0.058 0.167 0.138
03 0.074 0.057 0.148 0.123
04 0.069 0.053 0.140 0.110
05 0.076 0.064 0.132 0.100

Mean 0.072 0.057 0.146 0.118

the transformation of z with scale factor si = exp �i and
rotation angle �j .

~zij(�; �) = ~z(� � �i; � � �j): (18)

It is easy to verify that the weight matrix w de�ned in (17)
satis�es the intuitive idea that pixels near to the center weigh
more than those near to the boundary. Substituting (18) into
(16) and ignoring the boundary effect, we can approximate
the trace matrix in (16) by cross-correlation in (19a) and
element-wise multiplication in (19b).

�z(x) = h
�
k~xk2 + k~zk2 � 2 • ~x � ~z

�
(19a)

= h
�

(k~̂xk2 + k~̂zk2)=M � 2F�1(~̂x� ~̂z)
�
: (19b)

Dominated by the forward and backward FFTs in (19b), the
complexity of calculating the kernel matrix is reduced to
O(M logM+M), which is much smaller than O(N logN+
MN). An example of KSRC is shown in Fig. 3. Assuming
that (xm; ym) is the translation of the maximum value in the
correlation output, which is obtained similarly to (11), we
can compute the altitude velocity vz and yaw rate !z as:

vz =
(s� 1)h

�t
; !z =

2�ym
my�t

; (20)

where s is the estimated scale factor:

s = exp
�

log(my=2)
mx

xm
�
: (21)

Note that we can also obtain the altitude velocity by differen-
tiating the altimeter measurements, but it is very noisy. One
possible solution is to fuse the two sources of information,
however, it is out of the scope of this paper.

V. EXPERIMENTS

Successful autonomous navigation of drones depends on a
robust optical �ow system, which is used to provide accurate
velocity estimation, and hence improve the position estima-
tion [2], [3], [5], [6]. In this section, extensive experiments
on velocity estimation, autonomous �ight, and battery life
hovering test demonstrate the superior performance of the
proposed correlation �ow system.

A. Implementation
1) Software: Since g is not changed during the training

stage, ĝ only needs to be calculated once when starting the
program. The regularization parameter � in (4) is set as 0:1

0 1 2 3 4 5 6 7 8 9 10

time [s]

-0.3

-0.2

-0.1

0

0.1

0.2
ve

lo
ci

ty
 [m

/s
]

Velocity estimation on z direction

Correlation Flow
Ground Truth

0 1 2 3 4 5 6 7 8 9 10

time [s]

-0.5

0

0.5

1

1.5

ya
w

 r
at

e
[r

ad
/s

]

Yaw rate estimation

Correlation Flow
Ground Truth

Fig. 5. The estimated yaw rate and altitude velocity compared with ground
truth from Vicon system.

to prevent over�tting. The Gaussian kernel (22), which is
proved to be robust to noise and distortion is used:

�(x; z) = exp
�
�
kx� zk2

2�2

�
; (22)

where � is set as 0:2. In the experiments, we found that these
parameters are not sensitive to the test environments, since
the results are not much affected by different choices of these
parameters in different test scenarios. Note that to obtain a
higher update rate, the optical �ow systems in [5] and [6]
only process gray scale images with size 64�64 and 128�96,
respectively. However, because of the high ef�ciency of FFT
and element-wise operation, our correlation �ow is able to
process images with size 320�240, resulting in much higher
�ow resolution, yet still with high update rate (real-time) on
an ultra-low-power processor. We implement and test our
framework on Ubuntu with robot operating system (ROS).
The source codes are released at https://github.com/
wang-chen/correlation_flow.

2) Platform: Limited by the payloads and power con-
sumption, we choose a credit card-sized computing board,
UP, that is equipped with an ultra-low-power processor
x5-Z8350 with scenario design power of only 2W. Tests
conducted on this computing board show that correlation
�ow leaves enough computational resources for other tasks,
such as localization, path planning, graph optimization [21],
and Non-Iterative SLAM [22]. Together with the computing
board, an industrial IDS uEye UV-1551LE CMOS camera is
mounted ventrally on a micro-quadcopter as shown in Fig. 7.
All the experiments are performed in a Vicon-equipped room,
that can provide very accurate pose and velocity estimation
at 50Hz as the ground truth. The experimental results are
recorded on-board during fully autonomous �ight.

B. Velocity Estimation and Comparison

The velocity estimation is compared with one of the
state-of-the-art methods, PX4Flow [5], which integrates a
gyroscope and a sonar altimeter. It might be one of the most

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x [m]

-1.5

-1

-0.5

0

0.5

1

1.5

y
[m

]

Position estimation by integrating velocity

Correlation Flow
Ground Truth
START
END

Fig. 6. The estimated position by integrating the velocity estimation during
fully autonomous �ight. The drone tries to �y along rectangular paths.

suitable methods to compare, since it has been commercial-
ized, fully tuned and tested by the robotic community. To
be fair, it is mounted on the same platform mentioned in
Section V-A.2. Limited by the bandwidth of serial port, the
images from PX4Flow cannot be recorded with full rate.
Hence, only the estimation results are saved for comparison.
Five on-board �ight tests, each of which lasts more than 2
minutes, are performed in order to cover distinct traveling
distances, speeds, dynamics, and illumination conditions.
Both PX4Flow and correlation �ow have an update rate
of 30Hz. Table I shows the accuracy comparison in terms
of root mean squared error (RMSE) and median absolute
error (MAE). It is obvious that correlation �ow outperforms
PX4Flow in every �ight test, resulting in improving the
accuracy (RMSE) by more than 100%. Fig. 4 shows the plot
of velocity estimation from one of the �ight tests. It can be
seen that correlation �ow is able to provide more accurate
and smoother velocity estimation than PX4Flow.

Since most of the existing methods, including [5] and [6],
are unable to provide the estimation on altitude and yaw
change, we only compare the scale and rotation �ow with
the ground truth from the Vicon system. Fig. 5 presents an
example of the estimation results of the scale and rotation
�ow. Note that the ground truth of yaw rate is obtained
by differentiating the attitude estimation from Vicon since
it cannot estimate yaw rate directly. The altitude and yaw
velocity estimation is crucial for robust orientation control
and landing, but this is out of the scope of this paper.

C. Autonomous Flight

The main objective of this section is to show the potential
of correlation �ow for fully autonomous �ight. The estima-
tion from correlation �ow can be fused by the state estimator
in the �ight controller based on an extended Kalman �lter.
Hence, we can estimate the position by integrating the esti-
mated velocity. Fig. 7 illustrates this simple control scheme.
The velocity command is sent to the controller, for which the
quadcopter tries to follow a simple rectangular trajectory.
Fig. 6 presents the estimated trajectory which is obtained

Fig. 7. The �ight environment and the control scheme.

in real-time �ight lasting about 127s. It can be seen that
fully autonomous �ight is enabled without other positional
device, except for an inertial measurement unit (IMU) in
the controller. The mean trajectory estimation error is about
0:085m with standard deviation of 0:051m, which is accept-
able for most of the �ight applications. This demonstrates
the feasibility of correlation �ow for autonomous �ight.

D. Hovering Test
As the same as all the other optical �ow methods, the

position estimation of correlation �ow will also drift due
to long-term integration. This section presents the limit test
for drifting, in which the maximum hovering time indicates
the drifting speed and is measured for demonstration. The
timer is stopped if the quadcopter drifts too much when
the autonomous mode is switched back to manual control.
Testing environment is shown in Fig. 7, which is a screen-
shot during the �ight. Limited by the payloads including
the sensors, the battery life of the platform mentioned in
Section V-A.2 is about 5 min. The quadcopter can hover
within the �ight area during the whole battery life, which
further demonstrates the robustness of correlation �ow.

VI. CONCLUSION

In this paper we propose a robust and computationally
ef�cient optical �ow method, called correlation �ow for robot
velocity estimation using a monocular camera. We introduce
a kernel translation correlator and a kernel scale-rotation
correlator for the camera motion prediction. Due to the high
ef�ciency of fast Fourier transform, our method is able to run
in real-time on an ultra-low-power processor. Experiments on
velocity estimation show that correlation �ow provides more
reliable results than PX4Flow. Autonomous �ight and hover-
ing tests demonstrate that correlation �ow is able to provide
robust trajectory estimation at very low computational cost.
The source codes are released for research purpose.

ACKNOWLEDGMENTS
The authors would like to thank Mr. Junjun Wang, Hoang

Minh-Chung, and Xu Fang for their help in the experiments.
This research was partially supported by the ST Engineering-
NTU Corporate Lab funded by the NRF Singapore.

REFERENCES

[1] D. Floreano and R. J. Wood, �Science, technology and the future of
small autonomous drones,� Nature, vol. 521, no. 7, pp. 460�466, May
2015.

[2] D. Watman and H. Murayama, �Design of a miniature, multi-
directional optical �ow sensor for micro aerial vehicles,� in Robotics
and Automation (ICRA), 2011 IEEE International Conference on.
IEEE, 2011, pp. 2986�2991.

[3] F. Kendoul, I. Fantoni, and K. Nonami, �Optic �ow-based vision
system for autonomous 3d localization and control of small aerial
vehicles,� Robotics and Autonomous Systems, vol. 57, no. 6, pp. 591�
602, 2009.

[4] S. Zingg, D. Scaramuzza, S. Weiss, and R. Siegwart, �Mav navigation
through indoor corridors using optical �ow,� in 2010 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2010,
pp. 3361�3368.

[5] D. Honegger, L. Meier, P. Tanskanen, and M. Pollefeys, �An open
source and open hardware embedded metric optical �ow CMOS
camera for indoor and outdoor applications,� in IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2013, pp.
1736�1741.

[6] K. McGuire, G. de Croon, and C. De Wagter, �Local histogram
matching for ef�cient optical �ow computation applied to velocity
estimation on pocket drones,� in IEEE International Conference on
Robotics and Automation (ICRA), 2016.

[7] K. McGuire, G. de Croon, C. de Wagter, K. Tuyls, and H. Kappen,
�Ef�cient Optical Flow and Stereo Vision for Velocity Estimation and
Obstacle Avoidance on an Autonomous Pocket Drone,� IEEE Robotics
and Automation Letters, vol. 2, no. 2, pp. 1070�1076, Feb. 2017.

[8] C. Wang, L. Zhang, L. Xie, and J. Yuan, �Kernel Cross-Correlator,�
in AAAI Conference on Arti�cial Intelligence, Feb. 2018.

[9] B. K. Horn and B. G. Schunck, �Determining optical �ow,� Arti�cial
intelligence, vol. 17, no. 1-3, pp. 185�203, 1981.

[10] G. Farneb¤ack, �Two-frame motion estimation based on polynomial
expansion,� Image analysis, pp. 363�370, 2003.

[11] A. Alba, E. Arce-Santana, and M. Rivera, �Optical �ow estimation
with prior models obtained from phase correlation,� Advances in Visual
Computing, pp. 417�426, 2010.

[12] J. Shi and Tomasi, �Good features to track,� in IEEE Conference on
Computer Vision and Pattern Recognition. IEEE Comput. Soc. Press,
1994, pp. 593�600.

[13] E. Rosten and T. Drummond, �Fusing points and lines for high
performance tracking,� in IEEE International Conference on Computer
Vision (ICCV), vol. 2. IEEE, 2005, pp. 1508�1515.

[14] J.-Y. Bouguet, �Pyramidal implementation of the af�ne lucas kanade
feature tracker description of the algorithm,� Intel Corporation, vol. 5,
no. 1-10, p. 4, 2001.

[15] D. Honegger, P. Greisen, L. Meier, P. Tanskanen, and M. Pollefeys,
�Real-time velocity estimation based on optical �ow and dispar-
ity matching,� in IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2012, pp. 5177�5182.

[16] C. Bailer, K. Varanasi, and D. Stricker, �Cnn-based patch matching
for optical �ow with thresholded hinge embedding loss,� in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[17] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
�Flownet 2.0: Evolution of optical �ow estimation with deep net-
works,� IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[18] A. Ranjan and M. J. Black, �Optical �ow estimation using a spatial
pyramid network,� IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[19] J. F. Henriques, R. Caseiro, and P. Martins, �High-Speed Tracking
with Kernelized Correlation Filters,� IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583�596, 2015.

[20] Q.-S. Chen, M. Defrise, and F. Deconinck, �Symmetric phase-only
matched �ltering of Fourier-Mellin transforms for image registration
and recognition,� IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 16, no. 12, pp. 1156�1168, 1994.

[21] C. Wang, H. Zhang, T.-M. Nguyen, and L. Xie, �Ultra-Wideband
Aided Fast Localization and Mapping System,� in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Sep.
2017, pp. 1602�1609.

[22] C. Wang, J. Yuan, and L. Xie, �Non-Iterative SLAM,� in 2017 18th
International Conference on Advanced Robotics (ICAR). IEEE, Jul.
2017, pp. 83�90.

View publication statsView publication stats

