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A Dilated Inception Network for Visual
Saliency Prediction

Sheng Yang , Guosheng Lin , Qiuping Jiang , and Weisi Lin , Fellow, IEEE

Abstract—Recently, with the advent of deep convolutional
neural networks (DCNN), the improvements in visual saliency
prediction research are impressive. One possible direction to
approach the next improvement is to fully characterize the multi-
scale saliency-influential factors with a computationally-friendly
module in DCNN architectures. In this work, we propose an
end-to-end dilated inception network (DINet) for visual saliency
prediction. It captures multi-scale contextual features effectively
with very limited extra parameters. Instead of utilizing parallel
standard convolutions with different kernel sizes as the existing
inception module, our proposed dilated inception module (DIM)
uses parallel dilated convolutions with different dilation rates which
can significantly reduce the computation load while enriching
the diversity of receptive fields in feature maps. Moreover, the
performance of our saliency model is further improved by using a
set of linear normalization-based probability distribution distance
metrics as loss functions. As such, we can formulate saliency
prediction as a global probability distribution prediction task for
better saliency inference instead of a pixel-wise regression problem.
Experimental results on several challenging saliency benchmark
datasets demonstrate that our DINet with proposed loss functions
can achieve state-of-the-art performance with shorter inference
time.

Index Terms—Visual attention, saliency detection, eye fixation
prediction, convolutional neural networks, dilated convolution,
inception module.

I. INTRODUCTION

V ISUAL attention mechanism refers to the ability of Hu-
man Vision System (HVS) to automatically select the most

salient or interested regions from natural scenes by filtering out
redundant and unimportant visual information for further pro-
cessing. Around 108–109 bits per second of visual data enters
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into our eyes as reported in [1]. Without the help of visual atten-
tion mechanism, the HVS is impossible to handle and process
this large volume of data in real-time. Therefore, it is important
to understand and simulate the behavior of visual attention to ad-
vance a wide range of visual-oriented multimedia applications
such as image retrieval [2], image retargeting [3], video sum-
marization [4], image and video compression [5], [6], visual
quality assessment [7]–[9], object detection [10]–[12], virtual
reality content design [13], and more.

In general, visual attention is stimulated by two types of fac-
tors: bottom-up and top-down. Bottom-up saliency-driven at-
tention, which is derived directly from the distinctiveness of
visual stimuli, helps people to rapidly focus on conspicuous
points/regions automatically. In contrast, top-down attention is
task-driven and usually can help people to deal with specific
visual tasks.

This paper focuses on modeling the task-free bottom-up vi-
sual attention mechanism by predicting human eye fixations on
natural images. The study of this visual attention modeling, com-
monly referred as visual saliency prediction/detection, is an ac-
tive problem in the field of computer vision and neuroscience.
Typically, a saliency map, where a pixel with brighter intensity
indicates a higher probability of attracting human attention, is
generated as the output of the developed visual saliency detec-
tion models.

Most of classic bottom-up saliency prediction models [14]–
[16] are biologically inspired. They mainly adopt multiple
low-level hand-crafted features, such as intensity, color, and
so on, and combine these features in a heuristics way (e.g.
center-surround contrast [14], graph-based random walk [15],
etc.). However, these low-level hand-crafted features and their
heuristics combination are insufficient to represent the wide va-
riety of factors that contribute to visual saliency [17]–[19].

With the advent of Deep Convolutional Neural Networks
(DCNN), the feature extraction and combination could be for-
mulated in a data-driven manner through fully end-to-end train-
ing. At present, DCNN-based saliency models have defeated the
classical saliency prediction models in all challenging saliency
datasets [20]–[22]. Within these DCNN-based models, the use
of multi-scale contextual features [17], [18], [23], [24], which
aims to characterize the diverse saliency-influential factors at
different receptive field sizes, makes them stand out. However,
these state-of-the-art saliency models suffer from the huge com-
putation cost by fully exploiting these comprehensive feature
representations.
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In this work, we propose a DCNN architecture called Dilated
Inception Network (DINet) for bottom-up visual saliency pre-
diction. In order to fully exploit the multi-scale contextual fea-
tures, an efficient yet effective dilated inception module (DIM)
is involved. The original inception module [25] utilizes multi-
ple convolutional layers with different kernel sizes to serve as
multi-scale feature extractors with various receptive fields. In
contrast, our DIM uses parallel dilated convolutions with dif-
ferent dilation rates [26] to capture more comprehensive and
effective multi-scale contextual features with much less com-
putation cost. In general, our DINet can be decomposed into
two parts: encoder and decoder networks. The DCNN-based
backbone network is paired with our DIM to serve as the en-
coder. Then, the multi-scale features are forwarded to a simple
yet effective fully convolutional decoder network for saliency
inference.

A recent study [27] shows that training a DCNN-based
saliency model with their softmax normalization-based prob-
ability distribution (PD) distance metrics results in superior
performance with respect to commonly-used pixel-wise regres-
sion loss functions. Instead, we further propose a set of linear
normalization-based PD distance metrics as the new learning
objectives to outperform both of them. As demonstrated in our
ablation experiments, the saliency prediction model trained with
our loss functions achieves better performance than the same ar-
chitecture trained with either softmax normalization-based loss
functions or standard regression loss functions.

The performance of our DINet is evaluated on various saliency
benchmark datasets. The peer comparison results indicate that
our DINet can achieve state-of-the-art performance in terms of
both efficiency and efficacy. The source code of the DINet and
its pre-trained model are publicly available.1

In summary, our main contributions are threefold:
� We propose an efficient and effective dilated inception

module (DIM) to capture the multi-scale contextual fea-
tures. The scale diversity is enriched by introducing par-
alleled dilated convolutions with various dilation ratios at
lower computation cost. Moreover, the effectiveness of this
DIM can be verified by our proposed visualization method
and ablation analysis.

� A set of linear normalization-based probability distribution
distance metrics are proposed as loss functions to optimize
our DINet. They provide an additional linear regularization
leading to a promising performance gain.

� The computation cost is further reduced by replacing the
deconvolution layers with a fully convolutional decoder
structure. As a result, the whole model is efficient to achieve
real-time performance.

The rest of this paper is organized as follows. The re-
lated works on visual saliency prediction are summarized in
Section II. The proposed DINet and optimization method are
illustrated in Section III. The detail analysis and the peer com-
parison on public benchmarks will be provided in Section IV,
and the conclusion is given in Section V.

1[Online]. Available: https://github.com/ysyscool/DINet

II. RELATED WORK

In this section, we first review the previous saliency prediction
models with deep learning architectures. Then, we particularly
summarize the existing deep saliency models with multi-scale
feature extraction modules.

A. Deep Learning-Based Visual Saliency Prediction

Nowadays, the advances in deep learning have already
boosted the progress in saliency prediction. To the best of our
knowledge, the first attempt to use convolutional neural net-
works to predict visual saliency was introduced by Vig et al. in
2014 [28]. Their model, called eDN, consists of three individ-
ual and different shallow networks (from 1 layer to 3 layers) for
feature extraction. However, this model is inferior to some tradi-
tional unsupervised saliency models [15], [16] mainly due to the
limited depth of their networks. After that, researchers seek to
use deeper models (e.g. AlexNet [29] in [30], [31], VGGNet [32]
in [17], [24], and ResNet [33] in [18], [19].) and utilize the fully
convolutional network (FCN) [34] framework for fully lever-
aging the powerful capabilities of DCNN models in contextual
feature extraction.

Currently, DCNN models utilize some down-sampling opera-
tions (e.g. max pooling and convolutions with strides) to reduce
the computation cost and enlarge the receptive field in their sub-
sequent layers. Here, we denote the ratio of the input image spa-
tial resolution to the output resolution of DCNN by output_stride
for simplification. The more usage of down-sampling opera-
tions, the higher output_stride is. However, higher output_stride
also means the feature maps in the top layers have a relatively
smaller spatial resolution. Such limited spatial information can-
not support effective dense prediction of saliency [18], [19]. A
naive approach, presented in ML-Net [35] and MxSalNet [23],
to increase the spatial resolution in top layers is simply remov-
ing some down-sampling operations in some of the layers. But
this approach will unavoidably reduce the receptive field size
in subsequent layers. Since the size of the receptive field af-
fects the amount of contextual information which is essential
to the final saliency inference, such reduction in receptive field
size is suboptimal. Therefore, a trade-off between the spatial
resolution of feature maps and the computation cost should
be guaranteed while maintaining suitable receptive field sizes.
Therefore, several state-of-the-art deep saliency prediction mod-
els [17]–[19] adopt dilated convolution [26], [36], [37] strategy
to increase the receptive field sizes of the top layers, compensat-
ing for the reduction in receptive field size induced by removing
down-sampling operations.

Previous studies [17], [24] demonstrated that multi-scale con-
textual features are essential to the visual saliency prediction
problem. In fact, the foundation for this conclusion is from the
intuition that visual information is processed at various scales by
human eyes [25], [40]. Table I provides a comparison of recent
deep saliency models and our proposed model. The models with
multi-scale inputs will integrate multi-scale contextual features
while some models with single input still can capture these due
to their architectures, as detailed in the next section.

 



TABLE I
OVERALL COMPARISON OF RECENT DEEP SALIENCY PREDICTION MODELS

KLD: Kullback-Leibler divergence, PD: probability distribution, BCE: binary cross entropy, N/A: not available, NSS: normalized scanpath saliency, CCE: categorical cross entropy.

Fig. 1. The illustration of existing deep learning architectures to capture multi-
scale information in saliency prediction.

As for loss function, most of the existing DCNN-based
saliency models directly use the typical pixel-wise classifica-
tion or regression loss functions whereas saliency prediction
is evaluated on the whole saliency maps. In [27], Jetley et al.
propose to use loss functions based on PD distances with soft-
max normalization for training saliency models. Their results
demonstrate the improvement by considering saliency maps as
probability distributions.

Regarding the center-bias phenomenon, some of the saliency
models learn the center-bias explicitly by their designed
modules, such as the location biased convolutional layer in
DeepFix [17]. However, with the help of large-scale dataset–
SALICON [20], DCNN-based saliency models can learn this
bias implicitly and solely from the training data [27], [41].

B. Existing Multi-Scale Feature Extraction Deep
Learning Architectures

In Fig. 1, we summarize the existing deep architectures aim-
ing at capturing multi-scale contextual features in saliency pre-
diction. These models can be roughly classified into three cate-
gories: i) Image Pyramid Network; ii) Skip-layer Network; and
iii) Inception based Network.

1) Image Pyramid Network: The most straightforward way
to learn multi-scale feature representations can be found in [31],
[42]. Their idea is to apply duplicate or multiple feature extractor
networks with the multi-scale inputs, as shown in Fig. 1(a). The
outputs of this image pyramid network (IPN) are merged and fed
into the following decoder network to generate the final saliency
map. Such architectures with multi-scale inputs indeed can learn
the multi-scale contextual features. Nevertheless, training and

testing these models are not economic in both computation cost
and memory usage.

2) Skip-Layer Network: Due to the down-sampling opera-
tions in the common backbone networks, the output of each
convolutional blocks is usually in different spatial resolution.
The first several convolutional blocks learn the low-level im-
age features while the features learned from the deeper blocks
will contain semantic information and discriminative pattern
with various receptive fields [43]. Based on this principle, ar-
chitectures with skip-layers have been proposed in [24], [30],
[35]. Skip-layer network captures multi-scale contextual fea-
tures by concatenating the outputs of different layers with in-
creasingly larger receptive fields and output_stride, as illustrated
in Fig. 1(b). More importantly, the skip-layer network can effi-
ciently utilize intermediate features while the conventional way
only utilizes the topmost features. Despite the high efficiency,
a main problem in the skip-layer network is that spatial infor-
mation gradually reduced in the higher layers due to the useage
of down-sampling operations. Direct up-sampling and concate-
nating these feature maps from different layers without feature
adaptation will bring uncertainty and ambiguity into the saliency
inference.

3) Inception-Based Network: As demonstrated in Fig. 1(c),
inception-based network, as discussed in the DeepFix
model [17], avoid the above problem by utilizing the dilated con-
volutions and removing some down-sampling operations in the
backbone network. Therefore, its output still has sufficient spa-
tial information to support the dense prediction. Inception mod-
ules, proposed in the well-known GoogleNet [25], are attached
to the top of the backbone network to capture multi-scale contex-
tual features. The main idea of inception module is to use convo-
lutions with multiple kernel sizes. However, existing inception
module is not very economic in both computation and optimiza-
tion. Our work is based on this type of network. Specifically,
we revise the original inception module to have more power-
ful multi-scale feature extraction capacity in a computationally-
friendly manner, as will be presented in Section III-C. It should
be noted that, in addition to the GoogleNet [25], our dilated
inception module also take the advantage of the atrous spatial
pyramid pooling (ASPP) module in the DeepLab model [26],
which has succeeded in semantic segmentation. We apply those
parallel dilated convolutional layers to form our dilated inception
module and thus obtain the state-of-the-art performance in
saliency prediction.

 



Fig. 2. The architecture of our proposed DINet saliency prediction model.

III. OUR APPROACH

In this section, we illustrate the architecture of our DCNN-
based saliency prediction model–DINet (Dilated Inception Net-
work). The whole model is depicted in Fig. 2. Our model starts
from the Dilated Residual Network (DRN) [37] which is used
as the primary feature extractor to extract dense feature maps
with relatively larger spatial resolution. We propose to attach an
effective dilated inception module to the top of DRN for cap-
turing the multi-scale features. A simple yet effective decoder
network is employed at the end for converting these features
into the saliency maps. Furthermore, since the saliency map can
be viewed as a probability distribution, we propose a set of lin-
ear normalization-based probability distribution distance met-
rics for training our DINet to better measure the gaps between
our saliency predictions and ground-truths.

A. Dilated Convolution and Dilated Residual Network

1) Dilated Convolution: The main idea of dilated convolu-
tion is to insert holes(zeros) in convolutional kernels to increase
the receptive field, thus enabling dense feature extraction in
DCNN. Since the usage of dilated convolutions is the core of
our model, we simply revisit its concept and properties here.

In general, for each spatial location i, dilated convolution is
defined as:

y[i] =
∑

l

x[i+ r · l]w[l], (1)

Fig. 3. A comparison between standard convolution (a) and dilated convolu-
tion (b).

where y[i] and x[i] denote the output and input on location i,
respectively. w is the convolutional filter and r is the dilation
rate to sample the input. Dilated convolution is implemented by
inserting r − 1 zeros between two consecutive spatial positions
in the original filter w along each spatial dimension. For a k × k
convolutional kernel, the actual size of the dilated convolutional
kernel is kd × kd, where kd = k + (k − 1) · (r − 1). It should
be noted that dilated convolution still only have k × k meaning-
ful kernel parameter. The standard convolution is a special case
of dilated convolution with r = 1. A comparison between stan-
dard convolution and dilated convolution is illustrated in Fig. 3.
It is obvious that a dilated 3× 3 convolutional kernel with r = 2
sample the feature maps like a 5× 5 standard convolutional ker-
nel, which means the receptive field of the outputs after these
two kernels is roughly the same. With this observation, we can
arbitrarily change the field-of-view of dilated convolutional ker-
nels via choosing different dilation rate under the same number
of parameters. By incorporating dilated convolutions into the
encoder network, the dilated encoder network is capable of pre-
serving the spatial resolution and compensate the receptive field
reduction caused by removing some pooling or stride convolu-
tional layers in the original encoder network.

2) Dilated Residual Network: There are two commonly used
pre-trained backbone networks for saliency prediction: VGG-16
and ResNet-50. In addition, both of these two backbone net-
works have their corresponding dilated versions. Thanks to the
residual learning introduced by He et al. in [33], the ResNet can
be trained very deeply for more comprehensive feature extrac-
tion. Existing works also support that (dilated/plain) ResNet-50
based saliency models perform better than those based on (di-
lated/plain) VGG-16. In this work, we employ the commonly
used ResNet-50 as our backbone network.

ResNet-50 backbone network has five blocks of convolutional
layers. The output_stride of the plain ResNet-50 network is 32
which will lead to some ambiguities in dense predictions. In
dilated ResNet-50 [18], [19], to obtain relatively larger spatial
resolution without too much computation cost increase, the orig-
inal three convolutional blocks are kept fixed while the Conv4
and Conv5 blocks are modified by removing down-sampling
operations and replacing the standard convolutions inside these
blocks by dilated convolutions with dilation rate of 2 and 4, re-
spectively. As a result, the output_stride of dilated ResNet-50

 



is 8 which results in a good compromise between the spatial
resolution and computation cost.

B. Decoder Network

In our framework, the DRN acts as a basic encoder net-
work. Note that a decoder network is needed to generate the
saliency map from the encoded features in DRN. One conven-
tional decoder network is built by stacking deconvolutional lay-
ers which can also help in up-sampling the coarse feature maps
into dense ones. However, up-sampling these non-dense fea-
ture maps by deconvolutions inevitably need extra heavy com-
putations and also bring some non-smoothing patterns inside
them [44]. Thanks to the DRN backbone network, the encoded
feature maps have relatively denser spatial information. There-
fore, the deconvolutional layers are no longer used in our decoder
network.

Instead, our decoder network is very simple since it only
consists of three stacked standard convolutional layers with
one bilinear up-sampling operation in the end. This number
of convolutional layers is determined by our experiments in
Section IV-F2. The first two layers have 256 3× 3 convolutional
kernels with the ReLU activation. The last convolutional layer is
the prediction layer. It has only one 3× 3 convolutional kernel
with the sigmoid activation to generate the down-sampled ver-
sion of the saliency map. The reason for using sigmoid activation
function in this layer is related to the range of saliency value
where each pixel belongs to [0, 1]. The outputs can be rescaled
into this target interval by this function. After these three convo-
lutions, the resolution of the outputs is still lower than the inputs
since no up-sampling operations are involved. We simply apply a
bilinear up-sampling operation in the end to reduce the computa-
tion cost. Compared to the existing efforts, our decoder network
is simple yet effective. The baseline model for this paper is the
combination of DRN and this decoder network. In fact, we insert
a 2048× 1× 1× 256 convolutional layer between the DRN
and decoder network to reduce the number of parameters in this
baseline model. To our surprise, the performance of our baseline
model has no visible change with such modification. When
constructing the DINet, we replace this newly inserted layer by
our dilated inception module, as presented in the next section.

C. Proposed Dilated Inception Module

The proposed module is derived from the inception module
which intends to capture the multi-scale contextual information
from the inputs [25]. The principal idea of the original inception
module is to utilize multiple convolutional layers with differ-
ent kernel sizes working as multi-scale feature extractors with
various receptive field sizes, as shown in Fig. 4(a). Unlike the
well-known GoogLeNet [25] which is stacked by several cus-
tomized inception modules with carefully designed topologies,
inception module acts as a single plug-in module in our model
to diversify the receptive fields of those encoded features from
the output of DRN.

The filter numbers in our inception modules are all fixed to
256. By inserting the inception module between the DRN and
decoder network, the performance of our new model is improved

Fig. 4. The inception module with its variations and the ASPP module. Module
(a) is the original inception module [25]. Module (b), (c), and (d) are three vari-
ants. Module (e) is our final proposed dilated inception module (DIM). Module
(f) is the DeepLab-ASPP module [26]. The yellow 1× 1 convolutional blocks
have the ability of dimensionality reduction.

obviously with acceptable extra parameters and computations.
However, we find that the branch of 1× 1 convolutional block
has limited influence on final results. Besides, we replace the
max-pooling branch by one 7× 7 convolutional layer after
one 1× 1 convolutional layer to only investigate and explore
the convolutional layers within inception module, as shown
in Fig. 4(b). With the help of 7× 7 convolutional block, the
modified inception module can extract more diverse and wider
field-of-view (FOV) features. For simplification, we denote
the parameters number of a 256× 1× 1× 256 convolutional
layer (without bias term) as W . Therefore, 7× 7 convolutional
layer in inception module (b) has 72 W = 49W parameters
to be determined, which is much more than 5× 5 convolution
(25W parameters) and 3× 3 convolution (9W parameters).
The total number of parameters in the modified inception model
needs an additional 32W parameters compared to the original
inception model, which result in larger computation cost and
longer inference time.

Recall the dilated convolutions introduced in Section III-A,
dilated convolutions can be used to replace the large kernel stan-
dard convolutions under the same receptive field, as shown in
Fig. 4(c). 7× 7 and 5× 5 convolutions in the modified incep-
tion module can be replaced by 3× 3 dilated convolutions with
dilation rate of 3 and 2, respectively. After this replacement,
the dilated inception module (DIM) can perform the similar

 



TABLE II
THE COMPARISON OF THE BASELINE MODEL AND OTHER MODELS WITH DIFFERENT MULTI-SCALE CONTEXT FEATURE EXTRACTION MODULES.

THE MODEL (BASELINE + INCEPTION(E)) IN BOLD IS OUR FINAL PROPOSED DINET MODEL

or even better results as the modified inception module with
(72 + 52 − 2× 32)W = 56W parameters less. It is worth not-
ing that dilated convolutions in DRN are used in a cascaded way
to preserve the spatial resolution and compensate the reduction
in receptive fields. While in DIM, dilated convolutions are used
in a parallel way to enhance the encoded features with diverse
and comprehensive field-of-views.

Furthermore, the dilation rate of these three parallel dilated
convolutions can be arbitrarily changed, as denoted by [α, β, γ].
Considering that the last convolutional block of the DRN has
set the dilation rate equal to 4, our DIM can be viewed as an ex-
tended convolutional block of the DRN with a combination of
three parallel dilated convolutions inside. In our experiments, we
set [α, β, γ] = [4, 8, 16] which show a great improvement from
the primary dilated or original inception module. The receptive
fields of the outputs after our dilated inception module are di-
verse and relatively large which contribute to incorporate various
contextual information at different scales. This DIM with larger
FOV is depicted in Fig. 4(d). We further reduce the computa-
tional complexity of our model by building a bottleneck type
of DIM, as shown in Fig. 4(e). On the one hand, we use one
single 1× 1 convolutional layer in the top to replace the exist-
ing individual ones in the different branches for dimensionality
reduction. On the other hand, the filter concatenation is replaced
by sum-fusion (element-wise addition) which can also help in
dimensionality reduction and efficient computation. As a result,
this final DIM only brings an additional 27W parameters which
indicate only three extra 3× 3 convolutional layers are added,
compared to the baseline model. Furthermore, with the help of
this computationally-friendly module, our proposed DINet can
reach more than 50 FPS inference time for input images of size
240× 320.

In the literature, the atrous spatial pyramid pooling (ASPP)
module [26] also utilize parallel dilated convolutions for learn-
ing multi-scale feature representations, as shown in Fig. 4(f). In
this module, the features extracted at different dilation rates are
further processed in separate branches and sum-fused to gener-
ate the final results. In contrast, our DIM is just a single plug-in
module and its outputs are still features, rather than the final re-
sults. Since these two modules share the same idea of using the
parallel dilated convolutions, it is also reasonable to use ASPP
module to replace our DIM and its followed decoder network
for saliency prediction. Directly insert this ASPP module on

the top of DRN cannot guarantee that every pixel in the final
results is in the range of [0,1]. We add an extra linear scaling
operation after sum-fusion to solve this. ASPP module has two
variants: ASPP-S and ASPP-L. The only difference in these
two is the setting of dilation rates. ASPP-S has smaller dila-
tion rates ([α, β, γ, θ] = [2, 4, 8, 12]) while ASPP-L has larger
rates ([6,12,18,24]). The information of these two ASPP-based
saliency models is reported in the last two rows in Table II. As
observed from this table, with the help of huge extra parameters,
model (DRN+ASPP-S) can obtain a similar performance to our
DINet. Compared to the ASPP module, our DIM only need one
decoder network to generate the saliency predictions since we
have the sum-fusion before the decoder rather than after it. An-
other reason for longer inference time in the ASPP-based model
is that our DIM performs the 1× 1 convolution before the di-
lated convolutions for dimension reduction while ASPP directly
uses dilated convolutions to process these features from DRN.
Specifically, the difference between the dilated convolutions part
of ASPP and our DIM in #parameters is 8× 32 × 4 = 288W
versus 8 + 32 × 3 = 35W .

Besides, we also investigate other existing multi-scale context
feature extraction frameworks, such as image pyramid network
(IPN) with shared backbone network and skip-layer network,
into our baseline model. The overall comparison among these
models is listed in Table II. Extra params (%) term indicates
the percentage of the number of additional parameters involved
when using this model compared to the baseline model. The best
validation loss term means that the smallest loss results of the
models on SALICON validation dataset [20]. The loss function
used in here is the linear normalization-based total variation dis-
tance, as discussed in the next section. The detailed evaluation
results corresponding to these loss values are reported in Ta-
ble V. Average inference time term is the average time of these
models for predicting 5,000 validation images with 5 repeats un-
der the same experimental conditions. Among these models in
Table II, our DINet achieves a relatively good trade-off between
the validation performance and inference speed.

D. Loss Function

Most saliency models directly predict saliency maps via
optimizing loss functions designed for pixel-wise regression/
classification. However, saliency map can be viewed as a

 



probability distribution (PD) of human fixations over the whole
image [27]. Pixel-wise prediction, where each pixel is predicted
individually, may suffer from the global inconsistency problem
as it ignores the inter-pixel relationship. Therefore, it is reason-
able to use off-the-shelf PD distance metrics as loss functions. In
order to convert the predicted saliency map and its correspond-
ing ground-truth into probability distributions, a normalization
method should be applied first. Here, we improve the existing
method [27] by replacing their softmax normalization with a
simple linear regularization.

Base on the validation experimental results, we select the total
variation distance as the loss function. Besides, the unnormal-
ized version of total variation distance is the �1-norm which is a
commonly used regression loss. Due to these two factors, we use
this loss function as an example to illustrate the differences be-
tween our proposed linear normalization-based loss function and
the existing two types. The total variation distance or �1-norm
can be broadly formulated by the following equation:

L(p, g) =
∑

i

|pi − gi|, (2)

where p is the predicted result and g is the ground-truth. The
definitions of these two terms are different in each loss function,
as listed in the following:

In �1-norm (unnormalized loss function),

pi = xp
i , gi = xg

i . (3)

In softmax normalization-based loss function,

pi =
exp(xp

i )∑N
i=1 exp(x

p
i )
, gi =

exp(xg
i )∑N

i=1 exp(x
g
i )
. (4)

In linear normalization-based loss function,

pi =
xp
i∑N

i=1 x
p
i

, gi =
xg
i∑N

i=1 x
g
i

, (5)

where x = (x1, . . ., xi, . . ., xN ) is the set of unnormalized
saliency response values for either the predicted saliency map
(xp) and the ground-truth saliency map (xg).

The experiments in Section IV-D illustrate that proposed lin-
ear normalization-based loss functions perform better than both
softmax normalization-based and unnormalized ones. The target
output in saliency prediction is an array xg ∈ [0, 1]N . Accord-
ing to the following theorem, for an array whose values between
0 and 1, the softmax will de-emphasize the maximum values
among them [45] while the linear normalization still maintains
their initial proportion. Therefore, the existing loss functions
coupled with softmax normalization cannot measure the gaps be-
tween the predicted probability distribution and its correspond-
ing ground-truth very well.

Theorem 1: Given an array x ∈ [0, 1]N , using Equation (4)
and Equation (5) to normalize this array separately, denote the
range of the elements of this two normalized arrays as [as, bs]
and [al, bl], respectively. Then, we have:

[as, bs] ⊂ [al, bl].

Proof: It is obvious that both these normalization func-
tions are monotonic increasing functions. We also note that

x ∈ [0, 1]N . So, we get the minimum normalized response when
xi = 0 and get the maximum when xi = 1. Considering that
we have as =

exp(0)∑
i exp(xi)

= 1∑
i e

xi
> 0 = 0∑

i xi
= al. Now we

only need to prove bl ≥ bs. In fact, we have:

bl − bs =
1∑
i xi

− e∑
i e

xi
=

∑
i(e

xi − exi)∑
i xi

∑
i e

xi
.

Recall that xi ∈ [0, 1], it is easy to prove that exi − exi ≥ 0 for
every xi ∈ [0, 1]. So we have bl ≥ bs. �

IV. EXPERIMENTS

In this section, we apply our proposed DINet for saliency
prediction and report its experimental results on several public
saliency benchmark datasets. The effectiveness and efficiency
of our model is validated qualitatively and quantitatively.

A. Saliency Benchmark Datasets

For evaluating the saliency prediction model, we adopt three
popular saliency benchmark datasets with different image con-
tents and experimental settings.

1) SALICON [20]: It contains 10,000 training images, 5,000
validation images, and 5,000 testing images, taken from the Mi-
crosoft COCO dataset [46]. The spatial resolution of each image
in this dataset is 480× 640. At present, it is the largest public
dataset for visual saliency prediction. The ground-truths of train-
ing and validation datasets are available while the ground-truths
of test dataset are held out. For evaluation on its test dataset,
researchers need to submit their results on the SALICON chal-
lenge website.2 Besides, the evaluation protocols and codes are
available in the website.3

2) MIT1003 [21]: It contains 1,003 images collected from
Flickr and LabelMe. The ground-truths for this dataset are cre-
ated from eye-tracking data of 15 users. The evaluation codes
for this dataset are available in the MIT Saliency Benchmark
website.4

3) MIT300 [22]: It contains 300 images, including both in-
door and outdoor scenarios. The ground-truths for this entire
dataset are held out. Researchers can only submit the results of
their models to the MIT Saliency Benchmark website4 for eval-
uation. Currently, the MIT1003 dataset is usually used as the
training and validation sets for this dataset.

B. Evaluation Metrics for Saliency Prediction

There exists a large variety of metrics to measure the agree-
ment between model predictions and human eye fixations. Fol-
lowing existing works [47], [48], we conduct our quantitative
experiments by adopting four widely used saliency evaluation
metrics, including AUC, shuffled AUC (sAUC), Normalized
Scanpath Saliency (NSS), and Linear Correlation Coefficient
(CC). For the sake of simplification, we denote the predicted
saliency map as P, the ground-truth saliency map as G, and the

2[Online]. Available: https://competitions.codalab.org/competitions/3791
3[Online]. Available: https://github.com/NUS-VIP/salicon-evaluation
4[Online]. Available: http://saliency.mit.edu/

 



TABLE III
SALIENCY EVALUATION METRICS

ground-truth fixation map as Q. The saliency evaluation metrics
are listed in Table III according to their characteristics.

1) AUC and sAUC: AUC means the Area Under the ROC
curve. This metric evaluates the binary classification perfor-
mance of the predicted saliency map P, where fixation and
non-fixation points in its corresponding Q are divided into the
positive set and negative set, respectively. By using a threshold,
P can be binary classified into the salient and non-salient regions.
ROC curve will be obtained by varying this threshold from 0 to
1. Finally, the AUC metric can be calculated by using this ROC
curve. Shuffled AUC (sAUC) is introduced to alleviate the influ-
ence of center-bias. Differ in AUC, the fixation points of other
images in this dataset is used as the negative set in computing
sAUC values. However, these two AUC-based metrics have the
limitation in penalizing false positives, as reported in [17]–[19].

2) NSS: Normalized Scanpath Saliency (NSS) is a specific
value-based saliency evaluation metric. This metric is computed
by taking the mean of P̄ at the human eye fixations Q:

NSS =
1

N

N∑

i=1

P̄ (i)×Q(i), (6)

where N is the total number of human eye fixations, P̄ is the
unit normalized saliency map P .

3) CC: The Linear Correlation Coefficient (CC) is a statis-
tical metric for measuring the linear correlation between two
random variables. For saliency prediction evaluation, the pre-
dicted saliency maps (P) and ground-truth density maps (G) are
treated as two random variables. Then, CC is calculated by the
following equation:

CC =
cov(P,G)

σ(P )× σ(G)
, (7)

where cov(·, ·) and σ(·) refer to the covariance and standard
deviation, respectively.

C. Implementation Details

Our proposed DINet is implemented by Keras with Tensor-
Flow backend [49], [50]. During training, the weights in Dilated
ResNet-50 Network (DRN) are initialized from the ImageNet-
pretrained ResNet-50 Network. The weights of remaining layers
are initialized by the default setting of Keras. The whole model
is trained with widely used Adam optimizer [51] with an initial
learning rate of 10−4. This learning rate will be scaled down by a
factor of 0.1 after every two epochs. A mini-batch of 10 images
is used in each iteration.

We train our model on the training set of SALICON [20] with
10,000 training images and use its validation datasets (5,000
validation images) to validate the model. For the MIT1003

TABLE IV
PERFORMANCE COMPARISON OF THE BASELINE MODELS WITH DIFFERENT

LOSS FUNCTIONS ON SALICON VALIDATION DATASET [20]

dataset [21], we directly use the model trained on the SALI-
CON dataset to evaluate the generalization performance of our
model on this dataset. For testing on the MIT300 dataset [22],
we fine-tune our model in the MIT1003 dataset with the same
evaluation protocol in [18], [19]. The fine-tuned results of the
MIT1003 dataset are also presented. For the latter two datasets,
the input images are all resized to 320× 480 with zero padding
to keep the original content aspect ratio. This input image size is
decided by our validation experiments on SALICON dataset. It
is worth mentioning that our model can achieve processing speed
as little as 0.02 s and 0.03 s for one input image of size 240× 320
and 320× 480, respectively, by using one single GTX 1080 Ti
GPU.

D. Loss Function Analysis

We compare the performance of our baseline models trained
by our proposed probability distribution (PD) distance metrics
with linear normalization to those trained on standard regres-
sion loss functions and existing softmax normalization based
statistical distances.

Table IV presents the experimental results for each loss func-
tion, as measured by the overall performance with respect to
four aforementioned evaluation metrics on SALICON validation
dataset. These results support that: (i) generally, the loss func-
tions based on PD distance metrics perform better than standard
regression loss functions, such as BCE, �1-norm, and �2-norm
in our experiments; (ii) for a specific statistical distance based
loss function, our proposed linear normalization method is more
compatible than the softmax normalization as it can measure the
distance between the predicted PD and its target in a more proper
way; (iii) Using NSS loss function alone can obtain an extremely
high NSS score while this loss function is not very good at other
three evaluation metrics.

The first two conclusions have been discussed in section III-D.
The reason for (iii) can be illustrated by Table III. NSS is a
value-based saliency evaluation metric since it is computed by
the average of the normalized saliency values at eye fixation lo-
cations. In other words, a saliency map with a higher NSS score
is more like a fixation map which is not similar to the fixation



Fig. 5. The influence of each dilated convolutional branch in the DIM to
visual saliency. In each col, images are the saliency prediction results by using
the features captured from the above indicated branch. GT: Ground Truth.

density map, i.e. saliency map. Conversely, another three evalu-
ation metrics (CC, AUC, sAUC) prefer the latter one. Therefore,
it is difficult to use one single loss function to train the DCNN
model for obtaining a promising result on both NSS and other
evaluation metrics.

E. Model Visualization

We verify the effectiveness of DIM by individually visual-
izing the responses of each dilated convolutional branch. This
visualization experiment is realized by adding an additional de-
coder network without non-linear activation at the end of our
DIM. Both of this additional decoder and the original decoder
are jointly trained with the same loss and the same inputs from
the DIM. Since the additional decoder is a linear operator applied
to input feature maps, the joint decoded output in this decoder
can be decoupled into a linear combination of the outputs com-
ing from individual branches. Moreover, the input dimension
of our decoder is the same as the output dimension of every
branch in our DIM (all are equal to 256). The responses of each
branch can be easily obtained by feeding this additional decoder
with the features learned in this specific branch. By visualizing
both joint and individual saliency prediction results, we can an-
alyze the contribution of these dilated convolutional branches in
our DIM.

Fig. 5 demonstrates the saliency prediction results of five val-
idation images. The first three columns show the saliency maps
independently predicted by branch −α, −β and −γ, and the
fourth column shows the final saliency maps by sum-fusing the
outputs produced by mentioned branches. All of these predicted
saliency maps are generally consistent with the ground-truth. As
demonstrated in the second and the third rows, branches with dif-
ferent receptive fields learn to focus on different parts of an input
image. Specifically, the branch γ, i.e. bγ , with the largest dila-
tion rate, learns the center-bias implicitly without any additional

TABLE V
MODEL ABLATION ANALYSIS ON SALICON VALIDATION DATASET [20]

TABLE VI
DILATED INCEPTION MODULE ABLATION ANALYSIS WITHIN A TRAINED

DINET WITH TWO DECODERS ON SALICON VALIDATION DATASET [20]

supervision. These learned center-bias patterns compensate the
negligence on the center salient regions from other two branches,
bα and bβ , and produce a more accurate saliency prediction re-
sult. On the other hand, bγ sometimes generates false alarms in
the center regions with low confidence. In this case, as shown in
the last two rows of Fig. 5, the previous two branches bα and bβ
can help in reducing this unwanted side-effect on the final fusion
results. These three branches in our DIM work in a collaborative
manner. The results by using the features from a single branch
are no need to be perfect for all possible cases. These incom-
plete predictions will be ensembled by the sum-fusion to become
more comprehensive and reliable final results, which can be also
supported by our ablation analysis in Table VI.

F. Model Ablation Analysis

In this section, we conduct ablation analysis for our DINet on
the SALICON validation dataset. The complete ablation results
are presented in Table V. It should be noted that all of models in



this table are trained by the proposed linear normalization-based
total variation distance loss function.

1) Influence of the Backbone Network: Our baseline model is
built on DRN where the output_stride is equal to 8. As mentioned
in Section II-A, the output_stride of original ResNet is 32 which
means that less spatial information are included in the output
of this backbone network and thus leads to the unsatisfactory
performance. To verify this statement, we compare our baseline
model (DRN + decoder) with a more basic model (ResNet +
decoder). From the first part of Table V, we can conclude that
output_stride is one of the key elements for the dense prediction
tasks. There is a significant performance gain by replacing the
original ResNet with DRN.

2) Influence of the Decoder Network: In our baseline model,
our designed decoder network is just three convolutional layers
plus sigmoid activation in the end. The reason for using three
layers is determined by the experiments. We have tried to use
different number of convolutional or deconvolutional layers be-
fore the prediction layer (one convolutional layer followed by
a sigmoid activation) to form other decoder networks. Their re-
sults are reported in the second part of Table V. As we can see
that the models with these decoders cannot get good results as
our original decoder, i.e. Decoder(3 conv layers).

3) Effectiveness of Multi-Scale Features: DINet uses the pro-
posed DIM to capture multi-scale contextual features. To support
the conclusions in [17], [18], [31] that integrating multi-scale
features can further improve saliency detection performance,
we incorporate existing alternative multi-scale feature extrac-
tion modules, including IPN, skip-layer, inception and ASPP,
into our baseline or backbone network. From the third part of
Table V, we can observe that the saliency prediction performance
indeed boosted by incorporating the multi-scale features. Espe-
cially, when the backbone network is not DRN, the multi-scale
features can compensate the performance drop significantly, by
comparing two models with the plain ResNet backbone net-
work. In all these multi-scale saliency prediction framework, our
proposed inception(d) and (e) obtain the optimal results among
them. For the reason that inception(e) is more efficient in terms
of #parameters and inference time, as illustrated by Table II, we
pick this DIM to form our DINet.

4) Ablation Analysis on DIM: We further verify the effective-
ness of our DIM by conducting two quantitative experiments.
In the first experiment, we evaluate the performance of a trained
DINet with two decoders mentioned in the visualization experi-
ment to investigate the contribution of each dilated convolutional
branch in our DIM respectively. In the second experiment, we
make a comparison among a set of variants of DINet to explore
the impact of the number of parallel dilated convolutional layers.

Table VI shows the results of the first experiment. Each row in
this table represents the evaluation results by using the outputs
from the indicated branch(es) as the input to a trained decoder.
As we can see that, 1 branch type of DIM will learn different
bias under its specific receptive fields to help in predicting visual
saliency. Specifically, bα prefers the results with higher sAUC
score, while bβ is more interested in the NSS metric. By com-
paring the results between the row of 3 branches-sum and the
rows in 2 branches-sum type on the first part of this table, we can

TABLE VII
DILATED INCEPTION MODULE ABLATION ANALYSIS WITH INDIVIDUAL

TRAINED VARIANTS OF DINET ON SALICON VALIDATION DATASET [20]

observe that the performance drop dramatically with the absence
of any one branch, which means every branch in our DIM has its
irreplaceable impact on the final results. These three branches
in our DIM work in a collaborative manner. Even if the perfor-
mance by using any individual branch is not comparable to the
performance of our baseline model, their fused results can deal
with the diverse images with different patterns of salient regions.
Moreover, the results on the last row show that the features used
in the additional decoder can still be decoded by our original de-
coder with only a little bit performance drop in the NSS metric.
It can guarantee the generality of the above conclusions.

Table VII compares the performance of several variants of
DINet. Each row in this table means the evaluation results by
testing the individual trained variant which has the indicated
branch(es). Especially, the model in 3 branches-sum type is the
proposed DINet, while the model in 0 branch type is our base-
line model. This table shows that using more branches (from 0 to
3), which means using more comprehensive features, will lead
to a higher performance on evaluation metrics. Besides, in the
1 branch type of DINet, using dilated convolution with larger
dilation rate before the decoder network can achieve a better
performance than using a smaller one. It can be credited to the
larger size of receptive fields which represent the longer range
of dependencies in captured features. Moreover, using concate-
nation to replace our element-wise addition has a limited impact
on the final results, as presented in the last two rows in this table.
Mathematically, element-wise addition followed by a convolu-
tion layer is a special case of concatenation followed by another
convolution layer [52], which can be used to explain this lim-
ited difference on evaluation results. In summary, both of these
two experiments can verify that the performance gain of our
DIM is realized by the corporation of these three parallel dilated
convolutional branches.

5) Influence of Training Image Size: The previous experi-
mental results on SALICON validation dataset are all obtained
from 240× 320 images, whose size is the half resolution
of the original SALICON images. Here we want to see the
performance of our DINet models which are trained by images
with different spatial resolution. From Table V, we find that the
DINet trained by input images of size 320× 480 can obtain the
best performance among these three models. This model will
be directly fine-tuned in the MIT1003 dataset for the evaluation
of the MIT300 dataset. Note that these evaluation results are the
average scores, there are some validation images which perform
better in other DINets (240× 320 or 480× 640). In order to



TABLE VIII
PERFORMANCE COMPARISON OF OUR DINET MODELS WITH DIFFERENT LOSS

FUNCTIONS ON SALICON VALIDATION DATASET [20]

TABLE IX
COMPARISON RESULTS ON THE SALICON TEST DATASET [20]

characterize this phenomenon, we adopt a simple ensemble
learning metric, i.e. average voting, to further improve the
performance of our model. By using the average results from
these three different models, this ensemble model obtain the
best scores in our model ablation analysis.

6) Ensemble Learning for Improving NSS: However, our best
model, which is trained by a single total variation distance loss
function, still cannot beat two state-of-the-art models [18], [19]
in NSS metrics, as shown in Table VIII. These two models use
the NSS itself as one of the loss functions for training. To fur-
ther improve our performance on NSS metrics, we use the same
ensemble learning method as above to combine the results of
two DINet models which are trained by using two different loss
function (total variation distance with linear normalization and
NSS) separately. The last ensemble model in this table is our final
submission to the SALICON test dataset which results in a good
comprise between NSS and another three evaluation metrics.

G. Comparison With State-of-the-Arts

To demonstrate the effectiveness of our proposed DINet
model in predicting visual saliency, we quantitatively com-
pare our method with state-of-the-art models on SALICON,
MIT1003, and MIT300 datasets.

Table IX shows the evaluation results on the SALICON
dataset. The results of other models come from their papers or
the leaderboard of this dataset. In this table, the results in bold
indicate the best performance method on each evaluation metric.
As it can be observed, our DINet outperforms all competitors on
CC, AUC, and NSS three metrics. The DeepGazeII [38] model
get the best sAUC score and relatively lower scores on other
metrics. The saliency maps generated by this model actually are
very blurred/hazy and visually different from the ground-truth,
as shown in the left part of Fig. 6x. This is because AUC-based
metrics mainly relied on true positives without significantly pe-
nalizing false positives [17], [19].

TABLE X
COMPARISON RESULTS ON THE MIT1003 DATASET [21]

TABLE XI
COMPARISON RESULTS ON THE MIT1003 VALIDATION DATASET [21]

TABLE XII
COMPARISON RESULTS ON THE MIT300 DATASET [22]

The results on MIT1003 are reported in Table X. We directly
use the DINet trained on the SALICON dataset to evaluate the
generalization performance of our model on the whole MIT1003
dataset, as the DVA model [24]. Our model also achieves promis-
ing results on this dataset which verifies its robustness and gen-
erality. Qualitative comparison results of our model with other
state-of-the-art saliency models on SALICON validation and
MIT1003 datasets can be found in Fig. 6. This figure can also
support that our results match the ground-truth saliency maps
best among all the compared models in both two datasets.

In order to evaluate the MIT300 dataset, we fine-tune our
DINet on the MIT1003 dataset. The fine-tuned results are shown
in Table XI, As we can see that, the performance of our model
improves significantly after fine-tuning which can also outper-
form other existing fine-tuned models. The results on MIT300
dataset are presented in Table XII. Different in the previous
two datasets, our DINet can not outperform the DSCLRCN
model [18]. Our model may over-fitted on the MIT1003 dataset
which leads to lower generalization performance on MIT300
dataset. Both DSCLRCN model and our DINet use multi-scale



Fig. 6. Qualitative comparison results on two datasets. Left images are from SALICON validation dataset [20], while right images are from MIT1003 dataset [21].
GT: Ground Truth.

TABLE XIII
COMPREHENSIVE COMPARISON WITH THE STATE-OF-THE-ARTS

a: The codes for these models are from the authors’ github website. We test its inference time in our experimental environment.
b: This model has many customized operations which is hard to count their trainable parameters completely and reimplement in the Keras framework. 0.27 s is adopted from their paper.
It is certain that this model need more parameters and longer inference time than our method.
c: This model is reimplemented by ours and tested in our experimental environment. Its deconvolutions-based decoder network slow down the whole model and thus it has similar
inference time as our model.

features to further improve saliency prediction performance. Be-
sides, DSCLRCN model incorporates the global context and
scene context by using spatial LSTM [57] method and addi-
tional Places-CNN [58] backbone network to achieve this per-
formance. Consequently, their model is more complex and much
slower than our method. When testing one image with size
480× 640, the DSCLRCN model needs 0.27 s while our DINet
needs only 0.06 s.

A comprehensive summary of our model and other three
state-of-the-art competitors, i.e. SAM [19], DSCLRCN [18], and
DVA [24], are listed in Table XIII. Apart from achieving supe-
rior performance on the SALICON and MIT1003 datasets, our
model also has the obvious advantages in terms of both #param-
eters and inference time compared to the SAM and DSCLRCN
models.

However, despite the good results, there are still a small num-
ber of failure cases, as shown in Fig. 7. These bad cases are
caused by the fact that so many objects are cumulated in a sin-
gle image. Within them, the relative importance of these ob-
jects cannot be fully learned by simply utilizing the multi-scale
contextual features without higher level visual understanding.
Therefore, some non-salient regions are highlighted (like the
first row) or some salient regions are missed, as shown in the
second row. Note that SAM and DSCLRCN models suffer from

Fig. 7. Some failure cases of our DINet and two state-of-the-arts. Images are
from SALICON validation dataset [20].

the same problem as ours. It can be concluded that even the
state-of-the-art saliency models still cannot fully understand the
relative importance of image regions in such semantically rich
scenes. To further approach human-level performance, saliency
models will need to discover increasingly higher-level concepts
in images for determining an appropriate amount of visual at-
tention on a certain image region.

V. CONCLUSION

We have proposed a dilated inception network for visual
saliency prediction. The multi-scale saliency-influential factors
are captured by an efficient and effective dilated inception



module. The whole model works in a fully convolutional
encoder-decoder architecture, which is trained end-to-end and
lightweight for time-efficiency. Furthermore, we adopted a set
of linear normalization-based probability distribution distance
metrics as loss functions to formulate the saliency prediction
problem as a probability distribution prediction task. With
such loss functions, our models can perform better than those
trained by using either standard regression loss functions or
existing softmax normalization-based probability distribution
distance metrics. Experimental results on the challenging
saliency benchmark datasets have demonstrated the outstanding
performance of our model with respect to other relevant saliency
prediction methods.
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