
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

NOMA‑aided UAV communications over
correlated Rician shadowed fading channels

Tan, Ernest Zheng Hui; Madhukumar, A. S.; Sirigina, Rajendra Prasad; Krishna, Anoop
Kumar

2020

Tan, E. Z. H., Madhukumar, A. S., Sirigina, R. P. & Krishna, A. K. (2020). NOMA‑Aided UAV
communications over correlated Rician shadowed fading channels. IEEE Transactions on
Signal Processing, 68, 3103‑3116. doi:10.1109/TSP.2020.2994781

https://hdl.handle.net/10356/144708

https://doi.org/10.1109/TSP.2020.2994781

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
https://doi.org/10.1109/TSP.2020.2994781

Downloaded on 05 Apr 2024 06:20:22 SGT



1

NOMA-aided UAV Communications over

Correlated Rician Shadowed Fading Channels
Tan Zheng Hui Ernest, A S Madhukumar, Rajendra Prasad Sirigina, and Anoop Kumar Krishna

Abstract—In this paper, non-orthogonal multiple access
(NOMA) is investigated as a viable solution to address spec-
trum scarcity in unmanned aerial vehicle (UAV) communica-
tions. Specifically, the performance analysis of a NOMA-aided
UAV communication system (UCS) with dual-diversity receivers
on UAVs is conducted over bivariate Rician shadowed fading
channels. Using newly obtained closed-form expressions for the
joint probability density function (PDF) and joint cumulative
distribution function (CDF), the outage probability and finite
signal-to-noise ratio (SNR) diversity gain of NOMA-aided UCS
are investigated within a stochastic geometry framework. A
comprehensive analysis reveals that NOMA-aided UCSs can
support more UAVs on the same spectrum than OMA-based
systems, with similar outage probability. It is also shown that the
cross correlation affects the diversity gain of NOMA-aided and
OMA-based UCSs only at low SNR regimes. Therefore, NOMA-
aided UCSs can be an attractive alternative over OMA-based
UCSs in future wireless systems.

Index Terms—Unmanned Aerial Vehicle, NOMA, Outage
Probability, Finite signal-to-noise ratio (SNR), Diversity, Corre-
lation, Bivariate Rician Shadowed Fading.

I. INTRODUCTION

A. Motivation

Unmanned aerial vehicles (UAVs) have received recent

interest in providing next-generation wireless services. How-

ever, the popularity of UAV-based applications presents a

challenge in terms of spectrum utilization. At the moment,

the L-band and C-band, which have been allocated for UAV

communications, concurrently supports other existing systems

as well [1]. Thus, only a limited portion of the L-band and

C-band can be utilized to support UAV communications. If

left unchecked, UAV-aided wireless services may encounter

performance degradations in future wireless systems as a result

of spectrum scarcity [2].

Towards this end, one can consider non-orthogonal multiple

access (NOMA), i.e., power-domain NOMA, as a means

to address spectrum efficiency in UAV communications. As

one of the key enabling technologies being considered for

future wireless systems, NOMA can be employed to support

more UAVs over orthogonal multiple access (OMA) schemes.
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Specifically, in NOMA-aided UAV communication systems

(UCSs), the ground station (GS) employs superposition coding

to communicate with multiple downlink UAVs simultaneously.

Subsequently, the downlink UAV with the strongest channel

gain employs successive interference cancellation (SIC) to

detect the desired signal [3]. On the other hand, downlink

UAVs with weak channel gain employ interference-ignorant

detection, i.e., treating other UAVs’ messages as noise, for

message detection [3].

B. Related Literature

As a result of substantial research interest, a plethora of

works have investigated the reliability of downlink NOMA

in terms of outage probability, e.g., [4]–[11]. However, the

studies mentioned above have primarily focused on cellular

systems. Thus, critical insights from these works cannot be

fully applied for UCSs, owing to a difference in the envi-

ronment and operating constraints between cellular and UAV

communications, as shown in the rest of this section.

1) UAV Channel Models: One of the key differences be-

tween cellular and UAV communications is the channel model.

To illustrate, outage probability analysis have been conducted

for NOMA-aided cellular communications over Rayleigh fad-

ing channels [4], [5], [7], [10], [11], and Nakagami-< fading

channels [8], while the work in [6] only considered large-

scale fading in the channel model. Even for NOMA-aided

UAV communications, the Rayleigh [12], [13] and Nakagami-

< [9] fading models are commonly used in the literature. In

contrast, apart from Rayleigh fading and Nakagami-< fading

channels, UAV communications can also occur over Rician

fading channels [1], [14]–[17], and Rician shadowed fading

channels [15], [18].

The main characteristic separating the Rician fading channel

from the Rician shadowed fading channel is that the line-

of-sight (LOS) component undergoes shadowing in the latter

[18]. In particular, the LOS and non-LOS (NLOS) components

in Rician shadowed fading channels are modeled using the

non-centered Chi-squared distribution. Additionally, shadow-

ing experienced by the LOS component is modeled using

the Nakagami-< distribution. Therefore, in Rician shadowed

fading channel models, the relation between the ratio of the

LOS-to-NLOS components and the degree of LOS shadowing

is defined using the Rician  factor and Nakagami-< shaping

parameter, respectively.

In the literature, such univariate fading models have been

used as the basis of UAV channel models, e.g., [14] and [18],

and are suitable for single-antenna receivers. However, dual-

diversity receivers, i.e., dual-antenna receivers, may experience
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correlation due to insufficient antenna separation, heading

of the UAV, UAV elevation angle, and the received signal’s

angle of arrival [19]–[23]. Therefore, in such cases, dual-

diversity receivers may experience bivariate Rician shadowed

fading when transmissions occur over Rician shadowed fading

channels. Thus far, multivariate and bivariate fading models

have been investigated in diversity combining systems, e.g.,

in [24]–[26], and multi-antenna UAV communication systems

[20]–[22], [27] to model the spatial correlation at the reception

antennas. The study in [28] also followed similar analysis

to investigate the effect of correlation in multi-antenna re-

ceivers for UAV communications. A bivariate Rician shadowed

fading channel was modeled in [19] using a power series

approach, with related performance analysis also conducted for

a downlink NOMA-aided UCS with single-antenna receivers.

However, investigations into the performance of NOMA-aided

dual-diversity UCSs over bivariate Rician shadowed fading

channels remain an open problem.

2) UAV Deployment Characteristics: Apart from channel

modeling, the deployment of UAVs is another distinguishing

feature in UCSs. With UAVs increasingly playing a multitude

of roles, e.g., end-users [29] and aerial BSs [30]–[32], any

effective analysis of UCSs must consider the deployment of

UAVs. In this spirit, one can employ stochastic geometry as

a useful tool to capture the essential characteristics of UAV

deployment. For instance, modeling the spatial location of

terrestrial nodes using a Poisson point process (PPP) is a

widely used technique in the literature. Yet, various studies,

i.e., [29], [30], [32], have noted the unsuitability of the PPP

model for UCSs. Specifically, from a practical perspective, the

PPP model becomes unsuitable when the number of deployed

UAVs in the UCS is fixed [29], [30].

Instead, one can utilize the binomial point process (BPP)

model to provide an accurate characterization of UAV de-

ployment in UCSs [29], [30]. Under the BPP model, a fixed

number of UAVs are uniformly distributed in a finite-sized

cell [29], [30]. Modeling the spatial location of UAVs in

UCSs using BPP have been noted in recent studies, e.g., [29]–

[31], [33]. However, the BPP model has not been extensively

utilized to analyze NOMA-aided UCSs.

3) Analysis of Finite SNR Diversity Gain: Finally, it is

noted that existing NOMA-related studies have largely focused

on outage probability, e.g., [10], [11], and throughput, e.g.,

[34], [35], as key performance metrics. To further complement

the analysis, one can also analyze the finite signal-to-noise

ratio (SNR) diversity gain of NOMA-aided systems. In the

literature, finite SNR diversity gain has been used to evaluate

the outage performance of wireless systems, e.g., in [14], [36]–

[38]. In particular, finite SNR diversity gain is a measure of the

outage probability slope at particular SNR levels [37]. Through

the analysis of finite SNR diversity gain, the outage probability

behaviors that are only observable at non-asymptotic SNR

regimes, i.e., finite SNR regimes, are revealed. Such finite

SNR analysis is particularly useful in providing an accurate

picture of a system’s outage performance since most wireless

systems typically operate at low-to-moderate SNR ranges [38].

For instance, the SNR needed to achieve a particular rate

of error decay, through turbo codes or low-density parity-

check codes, can be estimated via finite SNR analysis [36].

Finite SNR analysis can also be used to determine the upper

and lower limits of bit error rate performance [39], [40],

and also to determine scenarios that can lead to a wireless

system becoming interference-limited [14], [38]. Yet, despite

gaining research interest in recent years, e.g., [14], [38],

[41], [42], only a few NOMA-related studies, e.g., [4], [8],

have quantified the asymptotic diversity gain of NOMA-aided

networks. Thus, to the best of our knowledge, the analysis of

finite SNR diversity gain in NOMA-aided networks remains

an open research problem.

C. Main Contributions

Despite several related studies on correlated UAV commu-

nications, e.g., [9], [12], [13], [28], the viability of NOMA-

aided UCSs operating in realistic operating environments has

not received much attention.

To this end, a comprehensive performance analysis of a

NOMA-aided UCS, comprising selection combining dual-

diversity receivers on UAVs, communicating over bivariate

Rician shadowed fading channels is conducted in this paper.

New closed-form expressions are obtained for the joint proba-

bility density function (PDF), and joint cumulative distribution

function (CDF) of the bivariate Rician shadowed fading model

through a power series approach.

While the joint PDF and joint CDF expressions for the

bivariate Rician shadowed fading are already available in [26],

usage of the exact expressions require numerical methods that

may render certain types of performance analysis intractable.

In contrast, this paper shows that the existing complicated

expressions can be further simplified through power series

manipulations. Thus, resulting in new joint PDF and CDF

expressions that are easy to evaluate. The exact truncation

error and truncation error upper bound are also presented for

the new expressions based on the work in [43]. Compared

to the truncation analysis in [43], which involves two infinite

series, we demonstrate that the truncation analysis approach

seen in [43] can be extended for two nested infinite series.

From the derived joint CDF expression, closed-form outage

probability and finite SNR diversity gain expressions for

NOMA-aided and OMA-based UCSs are presented within a

stochastic geometry framework. An extensive analysis demon-

strates that the NOMA-aided UCS can support a larger

number of UAVs on the same spectrum than OMA-based

systems while achieving highly similar outage probability.

Furthermore, it is shown that cross correlation only affects

the diversity gain of both NOMA and OMA transmissions at

low SNR regimes.

D. Paper Organization

The organization of this paper is as follows. The system

model of the NOMA-aided UCS is introduced in Section II,

while the bivariate Rician shadowed fading model is presented

In Section III. Thereafter, expressions for outage probability

and finite SNR diversity gain are presented in Sections IV and

V, respectively. Finally, the numerical results are discussed in

Section VI before the conclusion of the paper in Section VII.
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II. SYSTEM MODEL

Fig. 1. An illustration of the NOMA-aided UCS operating in a suburban
environment. The GS employs downlink NOMA to transmit data to the UAVs
equipped with dual-diversity receivers, i.e., two reception antennas. At the
UAVs, selection combining is employed to recover the transmitted data from
the GS.

Consider a NOMA-aided UCS operating in a suburban envi-

ronment, comprising one single-antenna GS and #� downlink

UAVs equipped with dual-diversity receivers (Fig. 1). 1 The

GS in the NOMA-aided UCS employs downlink NOMA to

transmit data, while selection combining is employed as the re-

ception strategy at the #� downlink UAVs. 2 However, due to

insufficient spacing between the receive antennas at the UAVs

and the relative position of the UAVs to the GS, the downlink

NOMA transmissions are assumed to occur over correlated

fading channels. Separately, based on studies in [29] and [30],

a BPP model is employed in the present work to account for

the spatial locations of the UAVs. It is also assumed that the

UAVs are operating at a minimum altitude of ℎ<8= [29], [30],

with compensated Doppler shifts [14]. 3 Furthermore, each

UAV is assumed to be operating at different altitudes in order

to consider various UAV deployment scenarios, e.g., high or

low altitude platforms, in multi-tier UAV networks. Lastly, as a

suburban setting is considered in this work, the bivariate Rician

shadowed fading model is assumed for the UAV channels to

account for the correlation between the receive antennas at

the downlink UAVs, and also the small-scale Rician fading

and LOS shadowing in the suburban environment [44], [45].
4 5

1A practical realization of the NOMA-aided UCS can be accomplished
with help from existing cellular infrastructure in suburban places due to the
density of GSs, i.e., base stations.

2Discussions on suitable precoding/beamforming methods are beyond the
scope of the current work and will be investigated in future extensions of this
paper.

3In practice, UAV communications can occur on the L-band [1]. Under such
circumstances, it has been shown that Doppler shifts is not an issue for civil
aircraft, i.e., aeronautical communications, which operate at higher aircraft
velocities than UAVs [38]. Therefore, for UAV communications, Doppler
shifts can be compensated and is not the main performance limiting factor in
UCSs.

4It is worth noting that the analytical approach in this paper is also
extensible to multi-antenna selection combining receivers.

5The Rician  factor of each GS-to-UAV link in the present work is chosen
based on the study in [1]. However, future extensions of this paper can look
into modeling the Rician  factor based on UAV altitude and elevation angle
using the approach in [46].

A. Distribution of UAV Spatial Locations

Let the spatial location of the UAVs follow a uniform

distribution in a disc centered at origin $ above the GS with

radius A0 and angle [0, 2c). Then, the Euclidean distance (km)

between downlink UAV- 9 and the GS is 3 9 =
√

�2
9
+ ℎ2

9
, where

1 ≤ 9 ≤ #� is the index of downlink UAV- 9 , � 9 is the

projected Euclidean distance on the ground plane between the

GS and downlink UAV- 9 , ℎ 9 = ℎ<8= + l 9

#�
is the altitude

of downlink UAV- 9 , l > 0 is the altitude separation factor

between the downlink UAVs.

As the spatial location of downlink UAV- 9 follows a uniform

distribution, the PDF 53 9 (F) of 3 9 is given as [29, eq. (3)],

[33]:

53 9 (F) =
2F

A2
0 ,

(1)

where !<, 9 ≤ F ≤ !?, 9 , !<, 9 = ℎ 9 , and !?, 9 =
√

ℎ2
9
+ A2

0.

Using the PDF 53 9 (F), one can analyze the performance of

correlated downlink NOMA transmissions with the assumption

of the UAV spatial distribution taken into consideration.

B. Instantaneous SINR at Downlink UAV- 9

Following downlink NOMA transmission principles, the GS

uses superposition coding to transmit the signal-of-interest

(SOI) to all downlink UAVs. Specifically, a SIC detector

is employed at downlink UAV- 9 to detect the SOI in the

presence of multi-user interference (MUI) from the SOIs of the

other downlink UAVs. Let ' 9 ,; be the instantaneous channel

envelope of the ;th receive antenna at downlink UAV- 9 for

; ∈ {1, 2}, where ' 9 ,; follows a bivariate Rician shadowed

distribution. Then, the instantaneous signal-to-interference-

plus-noise ratio (SINR) of the ;th receive antenna at downlink

UAV- 9
(

(�#' 9 ,;
)

is:

(�#' 9 ,; =

%A0 93
−!
9 |' 9 ,; |2

1 + %A 3−!9 |' 9 ,; |2
∑ 9−1

8=1
08

(2)

where %A ∝ %C
%! [

is the normalized average received power

[38], %C is the transmit power of the GS, %! =
(

4c ·109

3·108 52
)2

is the pathloss, ! is the pathloss exponent, [ = −174 +
10 log10 (�, ) is the strength of the additive white Gaussian

noise (AWGN) in dBm [47], 52 is the carrier frequency (MHz),

�, is the bandwidth (Hz), and 0 9 is the power allocation

factor for DL UAV- 9 such that
∑#�
9=1
U 9 = 1. 6

III. BIVARIATE RICIAN SHADOWED FADING MODEL

In UAV communications, correlation of the UAV channels

can occur due to insufficient spacing between the UAV’s

receive antenna, UAV heading, and UAV position relative to

the GS [19]–[22]. As such, we introduce the bivariate Rician

shadowed fading model in this section to model the correlated

UAV channels.

6The current work can be extended to consider multi-cell deployments by
treating interfering UAVs as co-channel interference.
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To begin, a pair of bivariate Rician shadowed distributed

random variables (RVs), �E,1 and �E,2, is modeled as [26]:

�E,: = fE
√

1 − dE-: + f
√
dE-0 + /E , (3)

where E is the downlink UAV index, -: , : ∈ {0, 1, 2}
are Gaussian RVs with zero mean and variance 1

2
,

�
{(

fE
√

1 − dE-: +fE
√
dE-0

)2}
= f2

E represents the variance

of the diffuse components [26], 0 ≤ dE ≤ 1 is the cross

correlation coefficient between the diffuse components, and

�{•} is the statistical expectation operator. Finally, the RV

/E follows a Nakagami-< distribution with shaping parameter

<E ≥ 0.5 and �{|/E |2} = Ω# ,E . The RV /E represents the

severity of shadowing on the LOS component [26]. Hence, a

small <E indicates severe LOS shadowing, i.e., small Rician

 factor, while a very large <E corresponds to near-LOS

conditions, i.e., no LOS shadowing and large Rician  factor.

Therefore, conditions captured on LOS links via other channel

models, e.g., Nakagami-m model, can also be captured using

the bivariate Rician shadowed fading model.

A. Derivation of the Joint PDF and Joint CDF

Defining 'E,: = |�E,: |, we note that the RV 'E,: follows a

bivariate Rician shadowed distribution with �{'2
E,:

} = f2
E (1+

 E ) and Rician factor  E =
Ω#,E

f2
E

for downlink UAV-E. From

[26, eq. (4)], the joint PDF 5'E,1 ,'E,2 (AE,1, AE,2) of 'E,: is:

5'E,1 ,'E,2 (AE,1, AE,2) =

8( <EdE
<EdE+ E )

<
E

f6
E dE (1 − dE )2

AE,1AE,2

× exp

(

−
A2
E,1

+ A2
E,2

f2
E (1 − dE )

) ∫ ∞

0

G exp

(

−(1 + dE )
f2
E dE (1 − dE )

G2

)

×�0
(

2AE,1

f2
E (1 − dE )

G

)

�0

(

2AE,2

f2
E (1 − dE )

G

)

×1�1

(

<E , 1;
 E

f2
E dE (dE<E +  E )

G2

)

3G, (4)

where �0 (•) is the modified Bessel function of the first kind

with zero order [48, eq. (9.6.10)] and 1�1 (•) is the confluent

Hypergeometric function [49].

The joint PDF expression in (4) may require the use of

complicated numerical methods when evaluating commonly

used performance metrics, e.g., outage probability or finite

SNR diversity gain. We present an alternative closed-form

expression for 5'E,1 ,'E,2 (AE,1, AE,2) in the following Lemma:

Lemma 1: The closed-form expression for

5'E,1 ,'E,2 (AE,1, AE,2) can be expressed as the following

power series:

5'E,1 ,'E,2 (AE,1, AE,2)

≈
 CA ,1
∑

:=0

:
∑

8=0

8
∑

==0

U(:, 8, =)A2=+1
E,1 A

2(8−=)+1

E,2
exp

(

−
A2
E,1

+ A2
E,2

f2
E (1 − dE )

)

,

(5)

where U(:, 8, =) =
8(<E ):−8

(

 E

f2
E dE (dE<E + E )

) :−8 ( <EdE
<EdE + E

)<E

Γ2 (=+1)Γ2 (8−=+1) [f2
E (1−dE ) ]28 (1):−8 (:−8)!f6

EdE

× :!

2
(

1+dE
f2
E dE (1−dE )

) :+1
(1−dE )2

,  CA , 9 for 9 ∈ {1, 2} is the truncation

order, and (0): =
Γ(0+:)
Γ(0) is the Pochhammer symbol [48, eq.

(6.1.22)].

Proof: The proof is provided in Appendix A

As the subsequent analysis in the rest of this paper are based

on the power series expression in (5), it is crucial to show

that (5) is convergent. In the next Corollary, we show that the

alternative closed-form expression for 5'E,1 ,'E,2 (AE,1, AE,2) in

(5) is convergent.

Corollary 1: The expression for 5'E,1 ,'E,2 (AE,1, AE,2) in (5)

has a convergence radius of ∞.

Proof: The proof is given in Appendix B.

As a result of Corollary 1, term-wise integration and dif-

ferentiation can be performed on the power series expres-

sion in (5) [49], [50]. Therefore, the closed-form joint CDF

�'E,1 ,'E,2 (W1, W2) can also be obtained from (5) as shown in

the following Lemma:

Lemma 2: The closed-form expressions for

�'E,1 ,'E,2 (W1, W2) can be expressed as:

�'E,1 ,'E,2 (W1, W2)

≈
 CA ,1
∑

:=0

:
∑

8=0

8
∑

==0

 CA ,2
∑

;=0

;
∑

@=0

U(:, 8, =)� (;, =, 8, @)

×(W1)2(@+=+1) (W2)2(;−@+8−=+1)
, (6)

where � (;, =, 8, @) = (−1); ( ;@)
[f2
E (1−dE ) ];;!4(@+=+1) (;−@+8−=+1) .

Proof: The proof is provided in Appendix C.

Compared to the expression of �'E,1 ,'E,2 (W1, W2) given in

[26, eq. (23)], (6) demonstrates that �'E,1 ,'E,2 (W1, W2) can be

evaluated in closed-form. Furthermore, (6) is presented in a

desirable form, as term-wise integration and differentiation can

be conducted using the presented power series expression. As

it will be shown, (6) enables the tractable derivation of the

NOMA-aided UCS outage probability and diversity gain under

the BPP model, which may not be possible using [26, eq. (23)].

B. Truncation Analysis of the Joint PDF and Joint CDF

It is worth noting that Corollary 1 is evaluated by applying

the D’Alembert test on : , 8, and = in (5). Since the D’Alembert

test indicates a convergence radius of ∞, the same technique

can also be extended to determine the truncation error
(

Tn
)

of

the joint PDF 5'E,1 ,'E,2 (AE,1, AE,2) in (5). In particular, Tn can

be defined as [43, eq. (92)]:

Tn =

∞
∑

:= CA ,1+1

 CA ,1
∑

8=0

8
∑

==0

U(:, 8, =)

×A2=+1
E,1 A

2(8−=)+1

E,2
exp

(

−
A2
E,1

+ A2
2

f2
E (1 − dE )

)

.

(7)

From (7), we present an upper bound of the truncation error
(

Tn ,D??4A
)

for the joint PDF 5'E,1 ,'E,2 (AE,1, AE,2) in (5) in the

next Lemma:
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Lemma 3: For a sufficiently large truncation order
(

 CA ,1
)

,

the upper bound of the truncation error in (5) is:

Tn ,D??4A =

 CA ,1
∑

8=0

8
∑

==0

U
(

 CA ,1, 8, =
)

1 − Δ
(

 CA ,1
)

×A2=+1
E,1 A

2(8−=)+1

E,2
exp

(

−
A2
E,1

+ A2
E,2

f2
E (1 − dE )

)

,

(8)

where Δ(:) =
(

 E
f2
EdE (dE<E+ E )

)

1
:

.

Proof: The proof is provided in Appendix D

The expression in (8) is useful in determining the necessary

value of  CA ,1 that satisfies Tn ,D??4A < n , where n is an error

threshold value, for varying values of the Rician  factor, <E ,

fE , and dE . It is important to note that the accuracy of Tn and

Tn ,D??4A improves when a sufficiently large  CA ,1 is chosen

[43]. Thus, when the value chosen for  CA ,1 is insufficient,

Tn and Tn ,D??4A may not be accurate and  CA ,1 should be

incremented [43]. From (8), the behavior of Tn ,D??4A with

respect to the Rician  factor, <E , fE , and dE is given in the

following Corollaries:

Corollary 2: Increasing <E , fE , or dE leads to a smaller

Tn ,D??4A .
Proof: From (8), it is noted that <E , fE , and dE are in

the denominator of Δ(:). Therefore, Δ(:) → 0 when <E , fE ,

or dE is increased. This completes the proof.

Corollary 3: As the Rician  factor increases, a sufficiently

large  CA ,1 is needed in order to reduce Tn ,D??4A .
Proof: From (8), it is seen that lim:→∞ Δ(:) =

1
:

lim:→∞
 E

f2
EdE (dE<E+ E )

=
1
:

. Therefore, as the Rician  

factor increases, Δ(:) → 0 only when  CA ,1 is sufficiently

large. This completes the proof.

The impact of the Rician  factor, LOS shadowing severity

(<E ), variance of the diffuse components (f2
E ), and cross

correlation (dE ) on Tn ,D??4A is established in Corollaries 2

and 3. For instance, Corollary 2 shows that the upper bound

of the joint PDF truncation error Tn ,D??4A in (8) decreases

when LOS shadowing is light, i.e., <E is large, variance of

the diffuse components (f2
E ) is large, or when cross correlation

(dE ) is high. Also, Corollary 3 shows that the joint PDF of

bivariate Rician shadowed fading channels with large Rician

 factor requires a sufficiently large truncation order  CA ,1 in

order to attain a lower Tn ,D??4A . Furthermore, smaller  CA ,1
can be used when (5) is used to model a bivariate Rayleigh

shadowed fading environment, i.e., Rician  factor is zero. 7

Furthermore, Corollaries 2 and 3 can also be used to provide

an indication of the necessary  CA ,1 for varying values of the

Rician  factor, <E , fE , and dE .

The approach in Lemma 3 and Corollaries 2 and 3 can also

be used to analyze the truncation error
(

4
)

of the joint CDF

�'E,1 ,'E,2 (W1, W2) in (6). Specifically, 4 can be defined as [43,

eq. (82)]:

4 =

 CA
∑

:=0

:
∑

8=0

8
∑

==0

∞
∑

;= CA+1

;
∑

@=0

`(:, ;)

7To see this, Rician factor  E =
Ω#E

f2
E

= 0 implies that Ω#E = 0, i.e., the

RV /E in (3) is nonexistent.

+
∞
∑

:= CA+1

:
∑

8=0

8
∑

==0

 CA
∑

;=0

;
∑

@=0

`(:, ;)

+
∞
∑

:= CA+1

:
∑

8=0

8
∑

==0

∞
∑

;=:

;
∑

@=0

`(:, ;)

+
∞
∑

;= CA+1

;
∑

@=0

∞
∑

:=;

:
∑

8=0

8
∑

==0

`(:, ;), (9)

where  CA ,1 =  CA ,2 =  CA and `(:, ;) =

U(:, 8, =)� (;, =, 8, @) (W1)2(@+=+1) (W2)2(;−@+8−=+1) . From

(9), the upper bound of the truncation error
(

4D??4A
)

for the

joint CDF �'E,1 ,'E,2 (W1, W2) in (6) is presented in the next

Lemma:

Lemma 4: For a sufficiently large truncation order
(

 CA
)

,

the upper bound of the truncation error in (6) is:

4D??4A =

 CA
∑

:=0

:
∑

8=0

8
∑

==0

 CA+1
∑

@=0

`(:,  CA + 1)
1 − Θ1 (:,  CA + 1)

+
 CA
∑

8=0

8
∑

==0

 CA
∑

;=0

;
∑

@=0

`( CA , ;)
1 − Θ2 ( CA )

+
∞
∑

:= CA+1

:
∑

8=0

8
∑

==0

 CA+1
∑

@=0

`(:,  CA + 1)
1 − Θ1 (:,  CA + 1)

+
 CA+1
∑

@=0

 CA
∑

8=0

8
∑

==0

`( CA ,  CA + 1)
1 − Θ2 ( CA ) ,

(10)

where Θ1(:, ;) = (−1) (W2)2 (;+1) (;−@+8−=+1)
f2
E (1−dE );2 (;−@+8−=+2) and Θ2(:) = Δ(:) =

(

 E
f2
EdE (dE<E+ E )

)

1
:

.

Proof: The proof is provided in Appendix E

Similar to (8), the upper bound in (10) can be used to

identify the necessary value of  CA such that 4D??4A < n ,

where n is an error threshold value, for varying values of the

Rician  factor, <E , fE , dE , and W2. Also, the accuracy of 4

and 4D??4A improves when a sufficiently large  CA ,1 is chosen

[43]. When an insufficient value is chosen for  CA ,1, 4 and

4D??4A may not be accurate and  CA ,1 should be incremented

[43]. From (10), the behavior of 4D??4A with respect to dE
and W2 is given in the following Corollary:

Corollary 4: Increasing dE or decreasing W2 leads to a

smaller 4D??4A .

Proof: From (10), it is noted that dE is in the denominator

of Θ1 (:, ;). Likewise, W2 is in the numerator of Θ1 (:, ;).
Therefore, Θ1 (:, ;) → 0 when dE is increased or when W2

is decreased. This completes the proof.

The impact of dE and W2 on 4D??4A is established in

Corollary 4. Hence, one can now use Corollary 4 to decide

on the choice of  CA to obtain 4D??4A < n based on dE and

W2. It should also be noted that Corollaries 2 and 3 are also

applicable to (10).

IV. OUTAGE PROBABILITY DERIVATIONS

In this section, the NOMA outage probability expression for

downlink UAV- 9 employing selection combining is presented.

The OMA outage probability expression for downlink UAV- 9
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is also provided as a benchmark. Let the transmission rate of

the GS be defined as RG , where G ∈ {#$"�,$"�}. For a

fair comparison between NOMA and OMA, we let R#$"�
=

1
#�

R$"�.

A. Downlink NOMA Outage Probability

At downlink UAV- 9 , let the selection combining NOMA

outage event
(

O#$"�
9

)

be defined as:

O#$"�
9 =

{

' 9 ,; , 3 9 : max
(

' 9 ,1, ' 9 ,2
)

< W#$"�
9

√

3!
9

%A

}

,

(11)

where W#$"�
9

=

√

2R#$"�−1

0 9−
(

∑ 9−1

8=1
08

) (

2R#$"�−1
) is the NOMA

threshold such that '#$"� < log2

(

1 + 0 9
∑ 9−1

8=1
08

)

. 8 Then, the

closed-form downlink NOMA outage probability expression

for UAV- 9 is presented in the following Theorem.

Theorem 1: The NOMA outage probability at downlink

UAV- 9 is:

%A
(

O#$"�
9

)

≈
 CA ,1
∑

:=0

:
∑

8=0

8
∑

==0

 CA ,2
∑

;=0

;
∑

@=0

U(:, 8, =)� (;, =, 8, @)

×Ξ 9
(

;, 8
)

[ (

W#$"�
9

)2

%A

]2+;+8

,

(12)

where Ξ 9

(

;, 8
)

=
2
[ (

!?, 9

)! (2+;+8)+2
−
(

!<, 9

)! (2+;+8)+2]

A2
0 [! (2+;+8)+2] .

Proof: The proof is provided in Appendix F.

In Theorem 1, the effects of correlation, shadowing, and

the Rician  factors on the SOIs at the UAVs are mostly

captured in the functions U(:, 8, =) and � (;, =, 8, @). Similarly,

the effects of the GS transmission rate and NOMA power

allocation factor on outage probability are reflected in W#$"�
9

,

while the function Ξ 9

(

;, 8
)

in Theorem 1 captures the stochastic

geometry behavior of the UAV spatial locations. Specifically,

Ξ 9

(

;, 8
)

reflects the effect of the BPP model in the close-

form outage probability expression. Thus, using Theorem 1,

the reliability of downlink NOMA can be analyzed within the

BPP model for UCSs.

It is also worth emphasizing that the normalized average

received power (%A ) appears in the denominator of (12). As

it will be shown subsequently, (12) indicates the absence of

an outage probability error floor in %A
(

O#$"�
9

)

for downlink

NOMA over correlated Rician shadowed fading channels.

B. Downlink OMA Outage Probability

As compared to NOMA, the GS transmits data to the down-

link UAVs over separate time-frequency resources in OMA

transmission schemes. Let the instantaneous SNR of the ;th

receive antenna at downlink UAV- 9 be (#' 9 ,; = %A 3
−!
9 |' 9 ,; |2.

8It is important to note that the NOMA threshold varies for each UAV due
to the power allocation factors, SIC, and the considered BPP model.

Also, let the selection combining OMA outage event
(

O$"�
9

)

be defined as:

O$"�
9 =

{

' 9 ,; , 3 9 : max
(

' 9 ,1, ' 9 ,2
)

< W$"�
9

√

3!
9

%A

}

,

(13)

where W$"�
9

=

√
2R$"� − 1 is the OMA threshold. Then, the

closed-form OMA outage probability expression for UAV- 9 is

given in the next Theorem.

Theorem 2: The OMA outage probability at downlink UAV-

9 is:

%A
(

O$"�
9

)

≈
 CA ,1
∑

:=0

:
∑

8=0

8
∑

==0

 CA ,2
∑

;=0

;
∑

@=0

U(:, 8, =)� (;, =, 8, @)

×Ξ 9
(

;, 8
)

[ (

W$"�
9

)2

%A

]2+;+8

.

(14)

Proof: The expression in (14) is obtained using the same

approach in Appendix F.

Although one can also invoke [26, eq. (48)] to evaluate

%A
(

O$"�
9

)

, tractable analytical expressions may not be pos-

sible once the BPP model is considered. In contrast, we

demonstrate in (14) that evaluating %A
(

O$"�
9

)

within the

BPP model can be achieved in a straightforward fashion using

Lemma 2.

V. FINITE SNR DIVERSITY GAIN DERIVATIONS

The finite SNR diversity gain expressions for downlink

NOMA and uplink NOMA are presented in this section. We

also present finite SNR diversity gain expressions for OMA

in this section.

The finite SNR diversity gain 3 5 of a given system quanti-

fies the decay of outage probability at low to moderate SNR

regimes [36], [37]. In particular, the finite SNR diversity gain

is defined as [36, eq. (5)]:

3 5 =
−%A
%A

(

O
)

m

m%A
%A

(

O
)

,
(15)

where O and %A
(

O
)

are the considered outage event and out-

age probability, respectively. From [37] and [42], one obtains

the asymptotic diversity gain, defined in [39], by evaluating

(15) at high SNR regimes. In this spirit, finite SNR analysis

is employed to investigate the impact of MUI in downlink

NOMA for UAV communications.

A. Downlink NOMA Finite SNR Diversity Gain

Let the downlink NOMA finite SNR diversity gain at UAV-

9 be 3#$"�
5 , 9

. Then, the closed-form expression for 3#$"�
5 , 9

is presented in the following Proposition.

Proposition 1: The downlink NOMA finite SNR diversity

gain at UAV- 9 is:

3#$"�
5 , 9 ≈ −%A

%A
(

O#$"�
9

)

 CA ,1
∑

:=0

:
∑

8=0

8
∑

==0

 CA ,2
∑

;=0

;
∑

@=0

U(:, 8, =)

×� (;, =, 8, @)Ξ 9
(

;, 8
)

(

W#$"�
9

)2(2+;+8) (−2 − ; − 8)
(%A )3+;+8

.

(16)
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Proof: Equation (16) can be obtained from (12) by apply-

ing (15). It should be noted that the differentiation conducted

as a result of deriving (16) is valid due to Corollary 1 [49],

[50].

As (12) is presented in a desirable form, i.e., as a power

series, one can obtain a closed-form expression of 3#$"�
5 , 9

in (16), which may not be tractable using the expression in

[26, eq. (48)]. Furthermore, the expression in (16) quantifies

the NOMA outage probability decay of downlink UAV- 9 as

a function of %A while Ξ 9

(

;, 8
)

reflects the effect of the BPP

model on finite SNR diversity gain. Thus, a larger 3#$"�
5 , 9

indicates a steeper drop in %A
(

O#$"�
9

)

as %A varies.

Using Proposition 1, one also arrives at the asymptotic

NOMA diversity gain for downlink UAV- 9 in the following

Corollary.

Corollary 5: At asymptotic SNR regimes, NOMA achieves

full diversity gain at downlink UAV- 9 , i.e., 3#$"�
5 , 9

= 2.

Proof: The proof is provided in Appendix G.

Corollary 5 shows that the NOMA-aided UCS is not

interference-limited when employing downlink NOMA, de-

spite the presence of MUI from the SOIs of other downlink

UAVs. Furthermore, 3#$"�
5 , 9

is not affected by dE at high %C
regimes.

B. Downlink OMA Finite SNR Diversity Gain

Let the downlink OMA finite SNR diversity gain at UAV-

9 be 3$"�
5 , 9

. Then, the closed-form expression for 3$"�
5 , 9

is

presented in the following Proposition.

Proposition 2: The downlink OMA finite SNR diversity gain

at UAV- 9 is:

3$"�
5 , 9 ≈ −%A

%A
(

O$"�
9

)

 CA ,1
∑

:=0

:
∑

8=0

8
∑

==0

 CA ,2
∑

;=0

;
∑

@=0

U(:, 8, =)

×� (;, =, 8, @)Ξ 9
(

;, 8
)

(

W$"�
9

)2(2+;+8) (−2 − ; − 8)
(%A )3+;+8

.

(17)

Proof: The closed-form expression in (17) is obtained

using the same approach in Appendix G.

Similar to Proposition 1, one obtains the asymptotic OMA

diversity gain for downlink UAV- 9 using Proposition 2 as

shown in the following Corollary.

Corollary 6: At asymptotic SNR regimes, OMA achieves

full diversity gain at downlink UAV- 9 , i.e., 3$"�
5 , 9

= 2.

Proof: Corollary 6 is proven in the same manner as

Corollary 5.

Using Proposition 2, the finite SNR diversity gain of OMA

transmissions at downlink UAV- 9 with selection combining

can now be analyzed over correlated Rician shadowed fading

channels.

VI. NUMERICAL RESULTS

Numerical and simulation results pertaining to both

NOMA-aided and OMA-based UCSs are presented in this

section. Monte Carlo simulations were also conducted with

106 samples, based on simulation parameters provided in

TABLE I
SIMULATION PARAMETERS

Parameter(s) Value(s)

Number of Downlink UAVs #� = 3 [30], [51]
Rician  Factors 7 dB [1, Table V] for f = 1
Shaping Parameter < = 5 [52]
Transmit Power 0 ≤ %C ≤ 30 (dBm) [51]
Path Loss Exponent ! = 2 [1, Table III], [53]
Cross Correlation Coefficient d = 0.5
Carrier Frequency 52 = 2 GHz [51]
Bandwidth �, = 10 MHz [51]

Transmission rate R$"� = 0.1 b/s/Hz
Radius A0 = 10 km [47]
Minimum UAV Altitude ℎ<8= = 0.1 km [51]
Altitude Separation Factor l = 0.1
Truncation Order  CA ,1 = 30,  CA ,2 = 40

Fig. 2. Joint PDF comparison between the exact expression in [26, eq. (4)]
(denoted in red markers) and the closed-form expression in (5) for < = 10,
 CA ,1 = 150, and Rician  factor of 10 dB.

Table I (unless otherwise stated) for fE = f, dE = d. 9 10

It is also useful to recall that the downlink UAVs operate at

different altitudes, i.e., ℎ 9 < ℎ 9+1. Effectively, the Euclidean

distance (3 9 ) between downlink UAV- 9 and the GS then

becomes ranked such that 3 9 < 3 9+1. For such distance-based

ordering, the ranking of users based on distance enables an

approximation of the respective ranked received signal powers

at the receiver [55]–[57]. Also, in NOMA systems practicing

distance-based user ordering, higher transmit powers are

allocated to users that are further away to facilitate signal

detection via SIC [58].

It should be emphasized that the present work employs

the BPP model in [29], where � 9 is a uniformly distributed

RV, i.e., the horizontal Euclidean distance of all UAVs

are independently and identically distributed. Although all

downlink UAVs will on average have the same horizontal

distance, ℎ 9 < ℎ 9+1 implies that 3 9 < 3 9+1. Accordingly,

downlink UAVs at lower altitudes will on average be closer

to the GS than downlink UAVs at higher altitudes.

9A LOS shadowing severity of < = 5, i.e., shaping parameter, was chosen
to reflect medium shadowing severity in a suburban environment [52].

10Channel measurement campaigns have shown that 1.5 ≤ ! ≤ 2 in the
suburban environment, while UAV altitudes between 0.3 km and 1 km was
noted in [54].
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(a) Impact of the Rician  factor on Tn ,D??4A .
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(b) Impact of < on Tn ,D??4A .
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(c) Impact of f on Tn ,D??4A .
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(d) Impact of d on Tn ,D??4A .

Fig. 3. Impact of the Rician  factor, <, f, and d on Tn ,D??4A for AE,1 = AE,2 = 1 and Rician  factor of 10 dB.
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Fig. 4. Impact of d and W on 4D??4A for W1 = W2 = −10 dB and Rician  
factor of 7 dB.

As such, the power allocation factor 0 9 is heuristically

defined based on the altitudes of the #� downlink UAVs to

ensure fairness. Specifically, we let 0 9 =
ℎ 9

∑#�
:=1

ℎ:
in order

to assign higher transmit powers to UAVs operating far

away from the GS [58], i.e., 0 9 < 0 9+1. 11 Doing so allows

downlink UAV- 9 to recover the SOI by performing SIC

to remove MUI from downlink UAV-< for < > 9 , while

ignoring MUI from DL UAV-: for : < 9 [59], [60].

For the rest of the section, we present observations and

discussions pertaining to the performance analysis of the

NOMA-aided UCS.

A. Joint PDF Validation and Truncation Analysis

Fig. 2 shows a comparison between the closed-form joint

PDF expression in (5) and the exact expression in [26, eq. (4)].

Evidently, (5) is validated as it is shown to be in very close

agreement with [26, eq. (4)]. Furthermore, as < → ∞, the

closed-form expression in (5) can be used to model a bivariate

Rician fading PDF.

The impact of the Rician  factor, <, f, and d on the

upper bound of the truncation error
(

Tn ,D??4A
)

is shown

11While power allocation can be based on the horizontal Euclidean distance
and altitude of the UAVs, such an approach may lead to high overheads for the
NOMA-aided UCS. Furthermore, performance analysis of the NOMA-aided
UCS becomes intractable. Instead, it is more practical to base 0 9 on ℎ 9 , i.e.,
only altitude, as transmissions to UAVs at higher altitude can be allocated
a higher transmit power to overcome the effects of fading, shadowing, and
cross correlation.
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Fig. 5. Impact of minimum altitude ℎ<8= on NOMA outage probability.

in Fig. 3. Likewise, the impact of d and W on the upper

bound of the truncation error
(

4D??4A
)

is plotted in Fig. 4.

In particular, it is seen in Fig. 3 and Fig. 4 that Lemmas 3

and 4 are validated, since Tn < Tn ,D??4A and 4 < 4D??4A
when  CA ,1 and  CA are sufficiently large. Also, Fig. 3 shows

that a small  CA ,1 leads to an insufficient number of terms

to achieve convergence in the power series expressions, e.g.,

(5), (7), and (8). Such an observation is due to an insufficient

value chosen for  CA ,1 to achieve the necessary accuracy, e.g.,

Tn ,D??4A < n . Nonetheless, the accuracy of Tn and Tn ,D??4A
improves as  CA ,1 is incremented. Thus, it can also be observed

in Fig. 3 that Tn > Tn ,D??4A at the lower range of  CA ,1 and

Tn ≤ Tn ,D??4A at the higher range of  CA ,1. From Fig. 3a, it

is seen that a larger  CA ,1 is needed to reduce Tn ,D??4A as the

Rician  factor increases. It is also observed in Fig. 3b, Fig.

3c, and Fig. 3d that an increase in <, f, and d leads to a

decrease in Tn ,D??4A . Similarly, Fig. 4 shows that an increase

in d or decrease in W leads to a decrease in 4D??4A Therefore,

Corollaries 2, 3, and 4 are validated.

B. Outage Probability and Finite SNR Diversity Gain Analysis

Observation 1: The NOMA-aided UCS can simultaneously

support more downlink UAVs on the same spectrum than an

OMA-based UCS while achieving almost similar reliability.

Observation 2: Smaller cross correlation corresponds to

higher reliability for both NOMA and OMA transmissions.

The impact of the minimum altitude (ℎ<8=) on the NOMA

outage probability of downlink UAV- 9
(

%A
(

O#$"�
9

) )

is plot-

ted in Fig. 5 for 1 ≤ 9 ≤ #� .

It is observed that %A
(

O#$"�
9

)

is not limited by MUI, de-

spite interference from the SOIs of other downlink UAVs. It is

also seen that %A
(

O#$"�
3

)

< %A
(

O#$"�
2

)

< %A
(

O#$"�
1

)

when ℎ<8= = 0.1 km, and %A
(

O#$"�
3

)

≈ %A
(

O#$"�
2

)

≈
%A

(

O#$"�
1

)

when ℎ<8= = 0.9 km. Such an occurrence is

due to the power allocation factor (0 9 ). Specifically, a low

ℎ<8=, e.g., ℎ<8= = 0.1 km, results in a lower power allocation

for UAV-1 (01) and a higher power allocation for UAV-3 (03).

In contrast, a high ℎ<8=, e.g., ℎ<8= = 0.9 km, results in a more

even power allocation for the UAVs, i.e., 01 ≈ 02 ≈ 03. As

ℎ<8= increases, the difference between 0 9 and 0 9+1 diminishes
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Fig. 6. Impact of cross correlation coefficient d on NOMA outage probability.
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1.85
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2

Fig. 7. Impact of cross correlation coefficient d on NOMA finite SNR
diversity gain.

due to the altitude separation factor (l). Thus, the downlink

UAVs exhibit very similar NOMA outage probabilities for

ℎ<8= = 0.9. When compared against the OMA-based UCS, it

is evident that the NOMA-aided UCS achieves similar outage

probability particularly at high ℎ<8=. Therefore, the NOMA-

aided UCS is able to achieve similar reliability to an OMA-

based UCS while simultaneously supporting a greater number

of downlink UAVs as all NOMA transmissions occur over the

same time-frequency resource.

The impact of the cross correlation coefficient (d) on

the NOMA outage probability of downlink UAV- 9 , i.e.,

%A
(

O#$"�
9

)

, is plotted in Fig. 6 for 1 ≤ 9 ≤ #� . It

is seen that an increase in d corresponds to an increase in

%A
(

O#$"�
9

)

and %A
(

O$"�
9

)

. Such a behavior is due to the

decrease in diversity gain, i.e., 3#$"�
5 , 9

and 3$"�
5 , 9

, as cross

correlation (d) increases [26].

A clearer picture of the outage probability decay behavior

is seen in Fig. 7, where 3#$"�
5 , 9

and 3$"�
5 , 9

is plotted for

1 ≤ 9 ≤ #� . Specifically, similar trends are also observed

in Fig. 7 at low %C regimes, with both NOMA and OMA

transmissions experiencing lower 3#$"�
5 , 9

and 3$"�
5 , 9

, respec-

tively, as d is increased. It should also be pointed out that it
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is possible for 3#$"�
5 , 9

to be large, e.g., much greater than 2,

due to the steep drop in NOMA outage probability as %C is

increased. However, at high %C regimes, it is observed that

the impact of d diminishes since both 3#$"�
5 , 9

→ 2 and

3$"�
5 , 9

→ 2 as %C increases. Such an observation is due

to the fact that d only affects the coding gain of selection

combining techniques [61]. In particular, the coding gain of

both NOMA and OMA transmissions increases as %C increases

at low %C regimes. As a result, a lower 3#$"�
5 , 9

and 3$"�
5 , 9

is experienced when d is increased. However, at high %C
regimes, the increase in the coding gain becomes negligible.

Hence, 3#$"�
5 , 9

= 3$"�
5 , 9

= 2 for d ∈ {0.5, 0.6}, which

validate Corollaries 5 and 6. Therefore, it is demonstrated that

a low cross correlation is required in order to achieve a lower

outage probability for the NOMA-aided UCS. Additionally,

the coding gain of selection combining for both NOMA and

OMA transmissions becomes stagnant at high %C regimes.

VII. CONCLUSION

A NOMA-aided UCS with selection combining dual-

diversity receivers is investigated in this paper as a step

towards addressing spectrum scarcity in UAV communications.

Through new closed-form expressions for the joint PDF and

joint CDF, new expressions for the outage probability and

finite SNR diversity gain of the NOMA-aided UCS are pre-

sented. It is shown that more downlink UAVs can be supported

on the same spectrum with the NOMA-aided UCS, with

an outage probability that is similar to OMA-based UCSs.

Furthermore, the effect of cross correlation is analyzed, where

it is shown that a lower cross correlation leads to lower outage

probability in the NOMA-aided UCS. Also, it is demonstrated

that correlation only reduces the diversity gain of NOMA-

aided and OMA-based UCSs at low SNR regimes. Therefore,

NOMA-aided UCSs are an attractive alternative over OMA-

based schemes in future wireless systems.

APPENDIX A

PROOF OF LEMMA 1

We first begin by noting that �0
( 2AE,8 G

f2
E (1−dE )

)

for 8 = 1, 2 in

(4) can be represented as the following power series [48, eq.

(9.6.10)]:

�0

(

2AE,8G

f2
E (1 − dE )

)

=

∞
∑

==0

(1/4)=
=!Γ(= + 1)

(

2AE,8G

f2
E (1 − dE )

)2=

=

∞
∑

==0

�8 (=). (18)

Then, using the Cauchy product theorem [49, eq. (0.316)],
∏2
8=1 �0

( 2AE,8 G

f2
E (1−dE )

)

in (4) becomes:

2
∏

8=1

�0

(

2AE,8G

f2
E (1 − dE )

)

≈
∞
∑

:=0

:
∑

==0

�1 (=)�2 (: − =) ≈
 CA ,1
∑

:=0

�(:), (19)

where �(:) = ∑:
==0

(1/4): (2AE,1)2= (2AE,2)2(:−=)

Γ2 (=+1)Γ2 (:−=+1) [f2
E (1−dE ) ]2: G

2: .

Next, 1�1

(

<E , 1;
 E

f2
EdE (dE<E+ E )

G2
)

in (4) is also expressed

as the following power series [48, eq. (13.1.2)]:

1�1

(

<E , 1;
 E

f2
E dE (dE<E +  E )

G2

)

≈
∞
∑

8=0

�(8), (20)

where �(8) = (<E )8
8!(1)8

(  E
f2
EdE (<EdE+ E )

) 8
G28 . Using (19) and (20),

along with the Cauchy product theorem [49, eq. (0.316)],
∏2
8=1 �0

( 2AE,8 G

f2
E (1−dE )

)

1�1

(

<E , 1;
 E

f2
EdE (dE<E+ E )

G2
)

in (4) can be

expressed as:

2
∏

8=1

�0

(

2AE,8G

f2
E (1 − dE )

)

1�1

(

<E , 1;
 E

f2
E dE (dE<E +  E )

G2

)

≈
 CA ,1
∑

:=0

:
∑

8=0

�(8)�(: − 8)

≈
 CA ,1
∑

:=0

:
∑

8=0

8
∑

==0

( 1
4
)8 (2AE,1)2= (2AE,2)2(8−=)

Γ2(= + 1)Γ2(8 − = + 1) [f2
E (1 − dE )]28 (1):−8

× (<E ):−8
(: − 8)!

(

 E

f2
E dE (dE<E +  E )

) :−8
G2: . (21)

Substituting (21) into (4) and utilizing the fact that
∫ ∞
0
G2:+1 exp

(

−(1−dE )
f2
EdE (1−dE )

G2
)

3G =
:!
2

(

1−dE
f2
EdE (1−dE )

)−(:+1)
[49,

eq. (3.461.3)], one obtains the expression in (5). This com-

pletes the proof.

APPENDIX B

PROOF OF COROLLARY 1

To show that (5) is convergent, the D’Alembert test is

invoked to show that lim=→∞
|U(:,8,=+1)A2(=+1)+1

E,1
A

2(8−=−1)+1

E,2
|

|U(:,8,=)A2=+1
E,1

A
2(8−=)+1

E,2
|

= 0,

lim8→∞
|U(:,8+1,=)A2(8−=+1)+1

E,2
|

|U(:,8,=)A2(8−=)+1

E,2
|

= 0, and lim:→∞
|U(:+1,8,=) |
|U(:,8,=) | = 0.

Starting with lim=→∞
|U(:,8,=+1)A2(=+1)+1

E,1
A

2(8−=−1)+1

E,2
|

|U(:,8,=)A2=+1
E,1

A
2(8−=)+1

E,2
|

, the limit

can be evaluated as:

lim
=→∞

�

�U(:, 8, = + 1)A2(=+1)+1

E,1
A

2(8−=−1)+1

E,2

�

�

�

�U(:, 8, =)A2=+1
E,1

A
2(8−=)+1

E,2

�

�

(0)
= lim

=→∞
AE,1

A2
E,2

(

=Γ(=)81−=Γ(8)
=2Γ(=)8−=Γ(8)

)2

= lim
=→∞

AE,1

A2
E,2

(

8

=

)2

= 0,(22)

where (a) is obtained using the asymptotic identity Γ[<+=] ≈
<=Γ[<] in [62, eq. (25)].

For lim8→∞
|U(:,8+1,=)A2(8−=+1)+1

E,2
|

|U(:,8,=)A2(8−=)+1

E,2
|

, the limit is evaluated as:

lim
8→∞

|U(:, 8 + 1, =)A2(8−=+1)+1

E,2
|

|U(:, 8, =)A2(8−=)+1

E,2
|

(0)
= lim

8→∞
A2
E,2

(

Γ(: − 8 − 1 + <E )
(  E
f2
EdE (dE<E+ E )

) :−8−1

Γ2(8 − = + 2) [f2
E (1 − dE )]28+2Γ2(: − 8)

)

×
(

Γ
2(8 − = + 1) [f2

E (1 − dE )]28
Γ

2 (: − 8 + 1)
Γ(: − 8 + <E )

(  E
f2
EdE (dE<E+ E )

) :−8

)
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(1)
= lim

8→∞
A2
E,2

(

:<E−8−1
Γ(:)

(  E
f2
EdE (dE<E+ E )

) :−8−1

82−=Γ(8) [f2
E (1 − dE )]28+2:−28Γ2(:)

)

×
(

81−=Γ(8) [f2
E (1 − dE )]28:−28+2

Γ
2(:)

:<E−8Γ(:)
(  E
f2
EdE (dE<E+ E )

) :−8

)

= lim
8→∞

A2
E,2
:

(

 

f2
EdE (dE<E+ E )

)

8
= 0, (23)

where (a) is due to (0): =
Γ(0+:)
Γ(0) [48, eq. (6.1.22)] and (: −

8)! = Γ(: − 8 + 1), and (b) is obtained using the asymptotic

identity Γ[< + =] ≈ <=Γ[<] in [62, eq. (25)].

Finally, for lim:→∞
|U(:+1,8,=) |
|U(:,8,=) | , the limit is evaluated as:

lim
:→∞

|U(: + 1, 8, =) |
|U(:, 8, =) |

(0)
= lim

:→∞

(

Γ(: − 8 + 1 + <E )
(  E
f2
EdE (dE<E+ E )

) :+1−8

Γ2 (: − 8 + 2)

)

×
(

Γ
2(: − 8 + 1)

Γ(: − 8 + <E )
(  E
f2
EdE (dE<E+ )

) :−8

)

(1)
= lim

:→∞

(

 

f2
E dE (dE<E +  E )

)

×
(

:<E+1−8
Γ(:)

[

:2−8Γ(:)
]2

) (
[

:1−8
Γ(:)

]2

:<E−8Γ(:)

)

= lim
:→∞

(

 E

f2
E dE (dE<E +  E )

)

1

:
= 0, (24)

where (a) is due to (0): =
Γ(0+:)
Γ(0) [48, eq. (6.1.22)] and (: −

8)! = Γ(: − 8 + 1), and (b) is obtained using the asymptotic

identity Γ[< + =] ≈ <=Γ[<] in [62, eq. (25)].

Thus, from (22), (23), and (24), the expression in (5) has

a convergence radius of ∞. Therefore, (5) is shown to be

convergent. This completes the proof.

APPENDIX C

PROOF OF LEMMA 2

We begin by noting that exp(G) ≈ ∑ CA ,2
;=0

G;

;!
[49, eq.

(1.211.1)]. Then, the joint CDF �'E,1 ,'E,2 (W1, W2) can be

obtained from (5) as follows:

�'E,1 ,'E,2 (W1, W2)

(0)≈
∫ W2

0

∫ W1

0

 CA ,1
∑

:=0

:
∑

8=0

8
∑

==0

 CA ,2
∑

;=0

;
∑

@=0

U(:, 8, =)

×
(−1);

( ;
@

)

;![f2
E (1 − dE )];

(AE,1)2(@+=)+1(AE,2)2(;−@+8−=)+13AE,13AE,2

(1)≈
 CA ,1
∑

:=0

:
∑

8=0

8
∑

==0

 CA ,2
∑

;=0

;
∑

@=0

U(:, 8, =)

×
(−1);

( ;
@

)

;![f2
E (1 − dE )];4(@ + = + 1) (; − @ + 8 − = + 1)

×(W1)2(@+=+1) (W2)2(;−@+8−=+1) (25)

where (a) is obtained by applying the identities in [49, eq.

(1.211.1)] and [49, eq. (1.111)], and (b) is obtained through

term-wise intergration [49], [50]. This completes the proof.

APPENDIX D

PROOF OF LEMMA 3

The upper bound of the truncation error is obtained using

the same approach in [43]. From the expression in (7), taking

the ratio between terms
(

Δ(:)
)

as : increases yields:

Δ(:) = |U(: + 1, 8, =) |
|U(:, 8, =) |

(0)
=

(

 E

f2
E dE (dE<E +  E )

)

1

:
= 0, (26)

where (a) is obtained from (24). Since Δ(:) monotonically

decreases as : → ∞, (7) becomes upper bounded by Δ
(

 CA ,1
)

as shown [43, eq. (92)]:

Tn ≤
 CA ,1
∑

8=0

8
∑

==0

U
(

 CA ,1, 8, =
)

1 − Δ
(

 CA ,1
)

×A2=+1
E,1 A

2(8−=)+1

E,2
exp

(

−
A2
E,1

+ A2
E,2

f2
E (1 − dE )

)

(27)

≤ Tn ,D??4A .
This completes the proof.

APPENDIX E

PROOF OF LEMMA 4

The upper bound of the truncation error 4 is obtained using

the same approach in [43]. From (9), 4 can be rewritten as:

4 = 41 + 42 + 43 + 44 , (28)

where 41 =

 CA
∑

:=0

:
∑

8=0

8
∑

==0

∞
∑

;= CA+1

;
∑

@=0

`(:, ;),

42 =

∞
∑

:= CA+1

:
∑

8=0

8
∑

==0

 CA
∑

;=0

;
∑

@=0

`(:, ;),

43 =

∞
∑

:= CA+1

:
∑

8=0

8
∑

==0

∞
∑

;=:

;
∑

@=0

`(:, ;),

44 =

∞
∑

;= CA+1

;
∑

@=0

∞
∑

:=;

:
∑

8=0

8
∑

==0

`(:, ;).

Starting with 41, taking the ratio between terms
(

Θ1 (:, ;)
)

as ; increases yields:

Θ1 (:, ;) =
`(:, ; + 1)
`(:, ;)

(0)
=

(−1) (W2)2(; + 1) (; − @ + 8 − = + 1)
f2
E (1 − dE );2(; − @ + 8 − = + 2)

= 0, (29)

where (a) is obtained through algebraic simplifications after

applying the identities Γ[< + =] ≈ <=Γ[<] [62, eq. (25)] and
(G
H

)

=
Γ(G+1)

Γ(H+1)Γ(G−H+1) [48, eq. (3.1.2)]. Thereafter, 41 is upper

bounded as [43, eq. (89)]:

41 ≤
 CA
∑

:=0

:
∑

8=0

8
∑

==0

 CA+1
∑

@=0

`(:,  CA + 1)
1 − Θ1 (:,  CA + 1) .

(30)
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For 42, taking the ratio between terms
(

Θ2(:)
)

as : in-

creases yields:

Θ2(:) =
`(: + 1, ;)
`(:, ;) = Δ(:) = 0,

where Δ(:) is given in (26). Then, 42 can be upper bounded

as [43, eq. (92)]:

42 ≤
 CA
∑

8=0

8
∑

==0

 CA
∑

;=0

;
∑

@=0

`( CA , ;)
1 − Θ2( CA ) .

(31)

For 43 and 44, the upper bound can be respectively obtained

from [43, eq. (93)] and [43, eq. (102)] as:

43 ≤
∞
∑

:= CA+1

:
∑

8=0

8
∑

==0

 CA+1
∑

@=0

`(:,  CA + 1)
1 − Θ1(:,  CA + 1) ,

(32)

44 ≤
 CA+1
∑

@=0

 CA
∑

8=0

8
∑

==0

`( CA ,  CA + 1)
1 − Θ2( CA ) .

(33)

Then, combining (30), (31), (32), and (33) into (28) yields

the upper bound in (10). This completes the proof.

APPENDIX F

PROOF OF THEOREM 1

From the selection combining NOMA outage event at

downlink UAV- 9
(

O#$"�
9

)

, the NOMA outage probability
(

%A
(

O#$"�
9

) )

can be obtained from the closed-form expres-

sion of �'E,1 ,'E,2 (W1, W2) in Lemma 2 as follows:

%A
(

O#$"�
9

)

= %A

(

max
(

' 9 ,1, ' 9 ,2
)

< W#$"�
9

√

3!
9

%A

)

=

∫ !?, 9

!<, 9

�' 9,1 ,' 9,2

(

W#$"�
9

√

F!

%A ,

W#$"�
9

√

F!

%A

)

53 9 (F)3F

≈
∫ !?, 9

!<, 9

 CA ,1
∑

:=0

:
∑

8=0

8
∑

==0

 CA ,2
∑

;=0

;
∑

@=0

U(:, 8, =)� (;, =, 8, @)

×
[ (

W#$"�
9

)2

%A

] ;+8+2 (

2

A2
0

)

F! (;+8+2)+13F (34)

From (34), (12) is obtained by interchanging the order

of integration and summation [49], [50]. This completes the

proof.

APPENDIX G

PROOF OF COROLLARY 5

After some algebraic simplifications, (16) can be expressed

as:

3#$"�
5 , 9 ≈

(

 CA ,1
∑

:=0

:
∑

8=0

8
∑

==0

 CA ,2
∑

;=0

;
∑

@=0

U(:, 8, =)� (;, =, 8, @)

×Ξ 9
(

;, 8
) (

W#$"�
9

)2(2+;+8) (2 + ; + 8) (%A )−;−8
)

/(

 CA ,1
∑

:=0

:
∑

8=0

8
∑

==0

 CA ,2
∑

;=0

;
∑

@=0

U(:, 8, =)� (;, =, 8, @)

×Ξ 9
(

;, 8
) (

W#$"�
9

)2(2+;+8) (%A )−;−8
)

(35)

Next, it is straightforward to see that:

lim
%A→∞

(%A )−;−8 =
{

1, for ; = 0, 8 = 0

0, for ; > 0, 8 > 0
(36)

Therefore, only ; = 8 = 0 needs to be considered when

evaluating 3#$"�
5 , 9

at asymptotic SNR regimes. Thus, after

further algebraic simplifications, (35) reduces to 3#$"�
5 , 9

= 2.

This completes the proof.
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