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Abstract

Estimating crowd counts remains a challenging task due to the problems
of scale variation, non-uniform distribution and complex backgrounds. In
this paper, we propose a multi-resolution attention convolution neural net-
work (MRA-CNN) to address this challenging task. Except for the counting
task, we exploit an additional density-level classification task during training
and combine features learned for the two tasks, thus forming multi-scale,
multi-contextual features to cope with the scale variation and non-uniform
distribution. Besides, we utilize a multi-resolution attention (MRA) model to
generate score maps, where head locations are with higher scores to guide the
network to focus on head regions and suppress non-head regions regardless
of the complex backgrounds. During the generation of score maps, atrous
convolution layers are used to expand the receptive field with fewer param-
eters, thus getting higher-level features and providing the MRA model more
comprehensive information. Experiments on ShanghaiTech, WorldExpo’10
and UCF datasets demonstrate the effectiveness of our method.

Keywords: Crowd Counting, Multi-resolution Attention (MRA) Model,
Convolution Neural Network (CNN), Atrous Convolution

1. Introduction

Crowd analysis has drawn remarkable attention for its wide applications
such as intelligent surveillance, public safety and urban planning [I}[2]. As
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one of the crowd analysis tasks, crowd counting plays an important role in
crowd control, traffic monitoring and urban security. Thanks to the powerful
image processing capability of convolutional neural networks (CNNs), recent
CNN-based counting approaches have seen a great success[3][4][5]. However,
due to the problems such as complex backgrounds, scale variation and non-
uniform distribution, as shown in Fig. [I crowd counting still remains a
challenging task in practical applications.

Complex
Backgrounds &

Scale-
¢ variation

Figure 1: Challenges for crowd counting

Recent crowd counting works address [3][4] the above challenges with dif-
ferent CNN architectures. A Crowd-CNN model [3], which is robust to com-
plex backgrounds, is proposed to address cross-scene crowd counting. The
authors make their first attempt to use a CNN-based architecture to generate
density maps for crowd counting. In [4], different receptive fields are applied
in the multi-column CNN (MCNN) channels to extract multi-scale features.
The MCNN is adaptive to head-scale variations caused by perspective effect
or image resolution. A contextual pyramid CNN (CP-CNN) fuses both global
and local context information and high-dimensional features to generate high
quality density maps. The density maps generated by the CP-CNN capture
the distribution of crowds. All these methods only address one or two of the
above mentioned challenging problems. In addition, most of recent count-
ing approaches conduct crowd counting by learning density maps of images
(e.g. [6][7][8]), which can estimate not only the counts but also the density
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and distribution of the crowds. All these approaches generate ground-truth
density maps according to head locations in the images, which also conforms
to human-style counting. However, the importance of head locations is not
explicitly reflected in the architecture of the CNN model.

This paper aims to address the above-mentioned challenges with a MRA-
CNN for crowd counting. Fig[2 illustrates the architecture of the proposed
method. We take the density level classification as an auxiliary task and
combine the learned features in this task with those learned in the crowd
task, thus providing multi-contextual and multi-scale information. Several
attention maps are applied to different feature layers to learn multi-scale score
maps, which can guide the final feature layer to focus on head regions. In
addition, the architecture gets a larger receptive field with fewer parameters
by using atrous convolution layers.

The contributions of this work can be summarized as follows:

1) The proposed method is robust to scale variation and non-uniform distri-
bution by learning multi-scale, multi-contextual features with multi-task
learning.

2) The MRA-CNN architecture addresses the problem of complex back-
grounds by estimating size-adaptive density maps and utilizing the MRA
model, which guides the network to focus on head regions.

3) The atrous convolution layer is utilized to increase the receptive field with
fewer parameters to get higher level features, and simultaneously provide
the MRA model more comprehensive information.

The remainder of the paper is organized as follows. Section 2 presents
some recent CNN-based related works on crowd counting. In Section [3] the
details of our proposed MRA-CNN architecture are introduced. Experimen-
tal results are given and discussed in Section |4l Finally, Section |5 concludes
the paper.

2. Related work

CNN has demonstrated its great success in various computer vision tasks,

such as classification [9][10], detection [I1][12], segmentation [13], re-identification

[14] and perception[I5]. Researchers are motivated to explore the application-
s of CNN on crowd counting and have seen significant improvements. This
section introduces recent CNN-based counting approaches. We broadly clas-
sify these counting methods into two categories: single task and multi-task
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frameworks, and each can be further separated into counts-only and densi-
ty map-based methods according to the output of the framework. Counts-
only methods output the number of people directly while density map-based
approaches learn the non-linear function from crowd images to their cor-
responding density maps, which represent the counts by the sum of pixel
values.

Herein, we introduce some representative single-task, counts-only meth-
ods [16] [17]. [16] presents an end-to-end CNN architecture to map the whole
image to its global counts, which makes use of sharing computations over
overlapping regions. This method incorporates contextual information to
tackle the problem of complex backgrounds by simultaneously learning local
counts. A mixture of CNNs (MoCNN) [17] addresses the large appearance
changes caused by scale and congestions with the cooperation of a gating
CNN and expert CNNs. The weights learned by the gating CNN according
to the appearance of the patches are multiplied to the prediction of expert
CNNs, making the network robust to various appearance changes.

In some specific scenarios, e.g. shopping mall, the distributions of crowds
and the counts provide managers useful information regarding the preferences
of customers. Therefore, some researchers begin to explore density map-
based counting methods. Boominathan et al. [I8] propose a CrowdNet,
which combines deep and shallow, fully convolutional networks to capture
both high-level semantic information and low-level features for addressing the
scene variations. The CrowdNet also tackles the varying scales and inherent
difficulties in high dense crowds by augmenting the training images. [7]
presents a scale-aware solution named Hydra CNN to learn the non-linear
regressor to generate the density maps from a pyramid of image patches
at multiple scales. Zhang et al. [4] also focus on the scale problem by
designing a multi-column CNN (MCNN), which use several CNN branches
with different receptive fields to extract multi-scale features. This work is
further extended to address scenario variations [19], density variations [§] and
complex backgrounds [5]. Marsden et al. [19] perform a multi-scale averaging
step during inference to overcome the scale and perspective issues. Taking
the MCNN [4] as a basic network, Sam et al. [§] design a switch to assign a
best regressor(a particular CNN branch if the MCNN) to crowd scene patch.
The results demonstrate that the switch relays the patch to a particular
CNN column based on the density of the crowds. [5] explicitly incorporate
global and local contextual information by a contextual pyramid CNN (CP-
CNN), which consists of four modules: global context estimator (GCE), local
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context estimator (LCE), density map estimator (DME) and a fusion-CNN
(FCNN). The authors use a variant of the MCNN [4] for estimating density
maps and a FCNN for fusing the features extracted from the GCE, the LCE
and the DME. In our previous work [20], we make the first attempt to add a
single attention model to the MCNN to guide the network to focus on head
locations, thus improving the counting accuracy obviously. Two U-nets are
used in [21] as both large and small generators, which estimate density maps
for large image and separated patches to address scale variations.

The success of multi-task learning for various computer vision tasks [22] [23]
inspired researchers to combine counts estimation or density map prediction
with other tasks, e.g. density level and appearance classification. [24] and
[25] classify the density level and appearance respectively during predicting
the counts. These approaches exploit a sub-task to extract different contex-
tual information for crowd counting. [3] aims to address cross-scene crowd
counting with a switchable learning approach and two related learning objec-
tives: crowd density map and crowd count. Zhao et al.[26] adopt a two-phase
training scheme to decompose the crowd counting into two sub-tasks: density
map prediction and crowd velocity map estimation. This method is robust
to variations of crowd density, velocity and direction of line-of-interest(LOI).
Sindagi et al. [27] propose a cascaded framework for both density level clas-
sification and density map estimation, which is also the basic framework of
the MRA-CNN. The cascaded framework learns global relevant discriminate
features by incorporating a high-level prior, thus enabling it to account for
large count variations. The crowd ranking network in [28] simultaneously
ranks images and estimates crowd density maps. The ranking task address
the lack of training samples.

3. The proposed method

As the the proposed architecture in Fig2] shows, a stack of two convo-
lution layers are used to firstly extract low level features, and followed with
two feature extraction branches with different kernel sizes. The branch with
larger kernel size (Point A to Point B in Fig is used for both density level
classification and density map estimation while the other branch (Point A
to Point C in Fig is only used for density map estimation. The density
level classification task is finally achieved after several fully connected layers.
Simultaneously, three atrous convolution layers and a MRA model is used to
generate density maps for crowd counting based on the fused features.
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Figure 2: Architecture of the MRA-CNN

3.1. Architecture of the MRA-CNN

This section presents the detail of the MRA-CNN architecture. To intro-
duce the structure of the network succinctly, we use simple notations to rep-
resent the parameters in different layers. 1.Conv(o, k, p) and A—Conuv(o, k, p)
for the traditional and atrous convolution layer with o outputs, kernel size k
and padding p. 2.Pool(k, s) represents the max pooling layer with kernel size
k and stride s. 3.AdapPool(h,w) stands for adaptive max pooling layer which
outputs the features with size of hx w. 4.ReLU for the activation function:
rectified linear unit. 5.FC(0) represents the fully connected layer with o out-
puts. Firstly, a stack of two convolution layers are used to extract low level
features from the image (Input to Point A in Fig. The parameters can
be represented as: Conv(16,7,5) — ReLU — Conv(32,5,3) — ReLU. Then
the low level features are fed into 2 convolutional branches. The branch used
for both 2 tasks has larger kernel sizes, which are: Conv(16,7,5) — ReLU —
Pool(2,2) — Conv(32,5,3) — ReLU — Pool(2,2) — Conv(16,5,3) — ReLU —
Conv(8,5,3) — ReLU. The trained feature maps are fed into the fully con-
nected layers for density level classification and a higher CNN branch for
density map estimation(Point B in Fig.. Since the image sizes in some
datasets are varied, we add an adaptive max pooling layer to get size-fixed
features and fed them to a fully connected layer. The detail of the fully con-
nected layers are: AdapPool(32,32) — FC(512) — FC(256) — FC(10). The
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counting focused CNN branch can be represented as: Conv(20,5,3)—ReLU—
Pool(2,2) — Conv(40,3,1) — ReLU — Pool(2,2) — Conv(20,3,1) — ReLU —
Conv(10,3,1)—ReLU. After the feature fusion process (Point C in Fig[2)), we
use atrous convolution layers to further enlarge the receptive field with fewer
parameters, which can be represented as: A — Conv(24,3,3) — ReLU — A —
Conv(32,3,1) — ReLU — A—Conv(16,3,1) — ReLU — Conv(8,3,1) — ReLU.
In addition, 3 score maps are generated from the atrous convolution layers
by attention models. The score maps are then summed to guide the final fea-
ture layer to focus on head regions. The MRA model and atrous convolution
layer will be introduced in Sectio and Section3.1.2] .

3.1.1. The MRA model

As aforementioned, the ground-truth density map is generated according
to head locations. In the training and testing process, the head regions are
expected to have larger values in the estimated density map. In order to
guide the network to focus on the head regions, we exploit three attention
models in the high-level feature extraction layers.

The attention model has been demonstrated effective for pixel-wise com-
puter vision tasks, e.g. object classification[29], image classification[30] and
image segmentation[3I]. Inspired by [31] and [32], we utilize attention model
to measure how much attention to pay to different regions in the feature
maps. Suppose the convolution feature maps as F, then the soft attention is
generated as:

S=pW®oeF+0) (1)

Where ¢ donates a nonlinear activation, ® is convolution function. Then the
attention model predicts how much attention to pay to different locations
with a softmax operation applied to .S:

€Sp

Zp’EP eSp/

M, measures the probability of presenting head region in pixel p.

To further improve the accuracy of the score map, we totally conduct
three attention measurement operation in convolution layers d, e and f, as
shown in Fig., which is defined as the MRA model. The three score maps
are summed as M. Finally, to guide the network to focus on head regions

M, = <2>
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with the summed score map M, we conduct element-wise product on the
final feature maps:

P = F @M (3)

To this end, the MRA model could adaptively emphasize the relevant re-
gions where the heads are presented and assign these regions higher weights.
This makes the MRA model very suitable for density map estimation. Sec-
tion will illustrates some representative score maps to demonstrate the
effectiveness of the MRA model.

3.1.2. The Atrous convolution layer

As aforementioned in Section [3.1.1, we use a sum of three score maps
which are generated from a series of convolution layers to guide the network
to focus on head regions. These layers are expected to extract high-level
features (which have larger receptive fields) from the fused feature maps. In
addition, the three score maps are also expected to have larger gap of reso-
lutions, which could further improve the head location prediction accuracy.
Therefore, we exploit atrous convolution in the high-level feature extraction
process. Atrous convolution has demonstrated its significant performance in

Traditional Convolution Atrouonvtion

(a) (b)

Figure 3: Illustration of traditional and atrous convolution

pixel-wise prediction tasks, such as object detection [33], semantic segmenta-
tion [34] and image segmentation[35] [36]. It allows to enlarge the receptive
field without increasing the number of parameters. Fig. [3] illustrates the re-
ceptive field of traditional and atrous convolution with kernel size 3 x 3. As

8



205

210

215

220

225

Fig. shows, the receptive field of the atrous convolution becomes larger
by inserting some ”holes” in the convolution kernel.

In this paper, the setting showed in Fig. is used for the 3 high-level
feature extraction layers (d,e,f in Fig. . By using the atrous convolution,
the receptive field gap in the 3 layers becomes larger, which provide more
comprehensive information for generating score maps and estimating the
density maps.

3.2. Loss Function

There are two tasks in the MRA-CNN, each one corresponds to a loss
function. As most of the density map generation-based counting methods did,
we choose Euclidean distance as the loss function for density map estimation
task, which can be formulated as:

| N
_ ) _ N2

Where N is the number of the training samples, D is the ground-truth density
map of the ith sample and F' is the function that mapping the input X; to
the estimated density map with parameters ©. Cross-entry loss is used for
density level classification, which is:

N
eXp(yclass)
L, = —log ————— (5)
; > exp(ye)

where y(class) represents the predicted probability of the input belonging to
class and C' is the number of classes.

To make a balance of training speed for the two tasks, we set a balance
weight to the cross-entry loss, and the final loss function of the MRA-CNN
can be represented as:

L=1Lyg+al, (6)

a is set as 0.001 according to the experiments.

4. Experiments

In order to evaluate the effectiveness of the proposed method, Shang-
haiTech [4], WorldExpo’10 [3] and UCF [37] datasets are employed for ex-
perimental results. We shall firstly introduce the detail of the datasets and

9
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then present how to obtain ground-truth density map. Experimental results
as well as the performance comparison with recent methods are finally pro-
vided to demonstrate the effectiveness of the MRA-CNN.

4.1. Datasets

We summarize the 3 datasets in Table [T}, where ”Min”, ”Max” and ” Avg”
represent the minimum, maximum and average numbers of people in exam-
ples of the dataset.

Table 1: Summary of crowd counting datasets

Dataset No. of | No. of | Resolution | Min | Max | Ave
training testing
samples samples
ShanghaiTech-A[4] | 300 182 Varied 33 3139 | 501
ShanghaiTech-B[4] | 400 316 768 * 1024 | 9 578 123
WorldExpo’10[3] 3380 120 576 * 720 1 253 50
UCF[37] 50 Varied 94 4543 | 1279

ShanghaiTech dataset [4] contains both dense (part A) and sparse (part
B) crowd examples, and it provides separated sets for training and testing.
The resolution of the images is varied in part A and constant in part B.
WorldExpo’10 [3] is the largest one focusing on cross-scene crowd counting.
The density of crowds in this dataset is the lowest among these 3 datasets.
It totally provides 600 images which are divided into 5 sub-sets for testing,
each contains a particular scene. In addition, region of interest (ROI) maps
are also provided by the WorldExpo’10 dataset, and we utilize them referring
to [3]. The images in this dataset are captured in Shanghai 2010 WorldExpo
and cover a large variety of scenes. The UCF dataset mainly focuses on dense
crowd counting. The scenes in this dataset belong to a diverse set of events,
e.g. concerts, protests, stadiums, marathons and pilgrimages. Besides, the
counts vary greatly and the number of samples is limited, making the dataset
more challenging. We conduct 5-fold cross-validation on this dataset, for each
validation, forty of the images are used as training samples and the other ten
are used for testing.

4.2. Ground-truth density maps generation

We convert the labelled head locations in the original image into ground-
truth density map following the method in [4]. An adaptive Gaussian kernel
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Figure 4: Representative density maps

(which is normalized to 1) computed by k-nearest neighbors (KNN) according
to the average distance between the object and its 3 neighbors is covered on
each head location. The generation method can be formulated as:

N

D(x) = 6z — ;) * Gy, (x;) (7)

=1

x; stands for the head location, G(-) is the Gaussian function and o; is the
variance of the Gaussian kernel. §(-) is an impulse function. Fig. {4| shows
two density maps generated from ShanghaiTech-A dataset. The color bar in
the bottom of this figure illustrates the values in the density maps, where
values get larger from left to right. The Gaussian kernel in the red circle of
the density map is generated from the head in yellow circle of the original
images, which is linked by a white dotted line. As each Gaussian kernel
is normalized to 1, the one generated from larger head will also have larger
size but small values in each location. However, the adaptive Gaussian kernel
method is not applicable to sparse crowd examples since the distance between
2 objects varies greatly. We have 2 sparse crowd datasets: WorldExpo’10 and
ShanghaiTech-B datasets. For the former one, o; is defined as 0.2 x P; where
P is the perspective map provided by this dataset. For the later one, we set
o; as 4.
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4.3. Ezxperimental results

The experimental settings are as follows. 50 patches with 1/4 image sizes
are cropped from each image for training. The testing images are fed into
the well trained model directly for evaluation. Two commonly used standard
metrics: the mean absolute error(MAE) and the mean squared error (MSE)
are employed to evaluate the performance. The two metrics are defined as:

1 /
MAFE = NZ’Z/E _yi‘v

1EN

1 ,
MSE = > (i — )

iEN

(8)

Where y; stands for the ground-truth count and y; is the estimated count for
the i-th sample.

4.8.1. Comparison to prior study on crowd counting

In order to effectively assess the performance of our algorithm, we com-
pare it with existing state-of-the-arts algorithms. Table[2land Table 3| present
experimental results on sparse (WorldExpo’10[3] and ShanghaiTech-B[4])
and dense (ShanghaiTech-A[4] and UCF [37]) crowd examples, respective-
lyE|. As all of previous works did, we only give the MAE of WorldExpo’10
dataset for comparison.

For sparse crowd examples, the MRA-CNN gets the-state-of-the-art per-
formance. Zhang et al. [3] focus on cross-scene crowd counting, their network
outputs both counts and density maps. It is also the first work to use CNN for
density map generation. [4] presents a MCNN with different receptive fields
in each feature extraction branch, thus being robust to head size variations.
Based on [4], Sam et al. [§] add a switch classifier to assign a best regressor to
an image and get better performance than the MCNN. Sindagi et al. [5] take
a variation of the MCNN [4] as density map estimator and combine global
and local contextual information with multi-scale features. An adversarial
loss is utilized generate high-quality density map, thus getting a significant
improvement, especially on ShanghaiTech-B dataset. The MAE/MSE of [5]

L7_" means that results on the dataset are not reported in that paper.
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is 2.74/— and 6.3/11.2 lower than [4] the WorldExpo’ 10 and ShanghaiTech-
B datasets, respectively. [27] utilizes multi-task learning, which is the basic
framework of the MRA-CNN. The authors combine features learned from
different tasks, and the results on ShanghaiTech-B dataset is close to [5].
The AM-CNNJ[20] adds a single attention model on the MCNN to guide the
network to focus on head locations and gets better results than the MCNN.
However, the single attention model works not so good as the MRA-CNN,
which use multi-resolution attention model. The MAS/MSE of the AM-CNN
is 0.34/— and 3.7/5.1 higher than the MRA-CNN on the WorldExpo’ 10 and
ShanghaiTech-B datasets. Except for the adversarial loss, [21] use two U-
nets to estimate density maps for both image and patches to address the
scale variation. The MAE/MSE of this method is 1.36/— and 2.9/2.7 lower
than the CP-CNNJ5], which also utilize adversarial loss. The image rank-
ing task in [28] assists the network perform well on ShanghaiTech-B dataset,
with low MAE/MSE of 13.7/21.4. Apart from using multi-task learning to
utilize multi-scale features, the proposed method could focus on head region-
s accurately by using the MRA model. In addition, the atrous convolution
layer expand the receptive fields with fewer parameters, which not only gets
high-level features but also expands the receptive field gap of the score maps,
making the MRA model focus on head locations more accurately. All of these
contributions make MRA-CNN get the state-of-the-art results on both of the
2 datasets: the MAE/MSE of the proposed method on the WorldExpo’10
and ShanghaiTech-B datasets are 7.5/— and 11.9/21.3.

Table 2: Results on Sparse Crowd examples

Dataset WorldExpo’ 10 (MAE) ShanghaiTech-B
Method S1 S2 S3 S4 S5 Ave | MAE MSE
Cross-Scene[3] 9.8 14.1 | 143 | 22.2 | 3.7 12.9 | 32.0 49.8
MCNN[4] 3.4 206 | 129 | 13.0 | 8.1 11.6 | 264 41.3
Switching-CNNg] 4.4 15.7 | 10.0 | 11.0 | 5.9 9.4 21.6 33.4
CP-CNN[5] 2.9 14.7 | 10.5 10.4 | 5.8 8.86 | 20.1 30.1
AM-CNN|[20] 2.5 13.0 | 9.7 10.0 | 4.0 7.84 | 15.6 26.4
Cascaded-MLT[27] | - - - - - - 20.0 31.1
ACSCP[21] _ - _ ] ] 7.5 | 17.2 27.4
Rank-Count[28] _ _ - - ] - 13.7 21.4
MRA-CNN 24 | 114 | 93 105 | 3.7 | 7.5 11.9 21.3
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ShanghaiTech-A and UCF datasets are both dense crowd datasets, and
the proposed method performs better than most of the-state-of-the-arts al-
gorithms on ShanghaiTech-A. The MoCNN [I7] is a counts-only method.
Although using a single-task style algorithm, it learns the appearance of the
crowds and assign the appearance-weights to different expert CNNs during
crowd counting, thus getting better performance than its previous algorithms
[3] [4] on UCF datasets. The AM-CNNJ[20] adds a single attention model on
the MCNNJ[4] and gets great improvements, with 22.9/40.5 and 98.1/131.3
lower MAE/MSE than the MCNN on ShanghaiTech-A and UCF datasets.
[7] [27] and [5] utilize multi-contextual information based on multi-scale fea-
tures and get better performances than previous algorithms [3] [I7]. Apart
from using multi-contextual information, [5] makes a combination of adver-
sarial loss and pixel-level Euclidean loss for higher-quality density maps, and
performing better than [7] and [27]. Besides the adversarial loss, a combina-
tion of large and small density map generators for image and patches makes
the ACSCP (Adversarial Cross-Scale Consistency Pursuit) network[21] get
4.8/17.3 lower MAE/MSE on the UCF dataset than [5]. Thanks to the auxil-
iary image ranking task, the method in [2§] performs best on ShanghaiTech-
A dataset, with the MAE of 72.0. ShanghaiTech-A dataset provides a large
number of dense crowd examples, the proposed method performs better than
most of the existing methods on this dataset. The performance of the MRA-
CNN is a little worse (MAE/MSE is 2.2/5.9 higher) than [28], however still
competitive. For UCF dataset, which is a dataset with limited samples, the
proposed method performs best among these methods.

4.8.2. Multi-resolution Attention vs. None Multi-resolution Attention

One of the important ideas of the proposed method is the ability of the
MRA model. Therefore, it is necessary to compare the performances of the
method with and without MRA model. We remove the MRA model from the
MRA-CNN while reserve the atrous convolution layers and test it on Shang-
haiTech dataset since it contains both sparse and dense crowd samples. In
addition, we use a single attention model in the last feature extraction layer
to compare with the MRA-CNN and thus demonstrating the necessary of
using MRA model. Table {4] displays the comparison results. By using a sin-
gle attention model, the performances on these two datasets get better, with
the MAE/MSE 4.5/2.5 and 0.6/0.2 lower than that without attention model.
However, only a single attention model could not utilize more comprehensive
information. When use the MRA model, the network could focus on head

14



Table 3: Results on dense crowd examples

Dataset ShanghaiTech-A UCF
Method MAE MSE MAE MSE
Cross-Scene[3] 181.8 277.7 467.0 498.5
MCNN] 110.2 173.2 377.6 509.1
MoCNNII7] - - 361.7 493.3
Hydra-CNN[7] ] - 333.7 425.2
Cascaded-MLT[27] 101.3 152.4 322.8 397.9
Switching-CNNg] 90.4 135.0 318.1 439.2
CP-CNN[5| 73.6 106.4 205.8 421.3
AM-CNNJ20] 87.3 132.7 279.5 377.8
ACSCP[21] 75.7 102.7 201 404
Rank-Count [28] 72.0 106.6 279.6 388.9
MRA-CNN 74.2 112.5 240.8 352.6

w0 regions more accurately. The performances of the proposed method are fur-
ther improved by using the MRA model, with the MAE/MSE 11.3/20.0 and
1.5/1.6 lower than that of with only one attention model on the ShanghaiTech
part A and part B datasets, respectively.

365

370

Table 4: Multi-resolution Attention vs. None Multi-resolution Attention

Dataset ShanghaiTech-A ShanghaiTech-B
Method MAE MSE MAE MSE
Method w/o MRA model 90.0 130.5 14.0 23.1
Method with single attention model 85.5 132.5 134 22.9
Method with MRA model 74.2 112.5 11.9 21.3

To visualize the ability of the MRA model, we display the score maps
generated from different atrous convolution layers on Fig. [b|and Fig. [6] The
first row illustrates test images. Rows 2 — 4 are score maps generated from
the last 3 atrous convolution layers. To illustrate the score maps clearly,
we resize these score maps and overlay them on the original images. The
transparency is set as 0.7 to display both the score map and the original
image clearly. Figures in the last two rows are estimated and ground-truth
density maps, respectively. As this figure shows, the score maps get clearer
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375

Figure 5: Representative samples of ShanghaiTech-A dataset

as the atrous convolution layer gets deeper. The score maps of the first
attention model contain much backgrounds, especially the structured ones.
The score maps of the second attention model filter more backgrounds than
the first one. The third attention model generate clearer score maps on
Shanghai-A dataset while get similar score maps with the second attention
model on ShanghaiTech-B. Someone may argue that why not only use the

16



Figure 6: Representative samples of ShanghaiTech-B dataset

third attention model, which generates the most clear score map. On one
hand, although the first two attention models get worse score maps than the
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third one, they still emphasize head locations comparatively. The sum of
the three attention maps can further emphasize the head locations. On the
other hand, the loss generated by the first two attention models can guide
the corresponding atrous convolution layer to learn better features, which
also resulting in better features on the third atrous layer. The experimental
results in Table [4] also demonstrate the necessary of the MRA model.

4.8.3. Atrous Convolution Layer vs. Traditional Convolution Layer

For another contribution of the proposed method: atrous convolution
layer, we also conduct the comparison based on ShanghaiTech dataset. In
this experiment, we replace the atrous convolution layer with traditional
convolution layer and reserve the MRA model. As aforementioned, the a-
trous convolution gets larger receptive fields without increasing the number
of parameters. By using atrous convolution in the last feature extraction
layers, the network can generate higher-level features and provide the atten-
tion models more comprehensive information. Table [5| shows the comparison
results.

Table 5: Atrous convolution layer vs. Traditional Convolution Layer

Dataset ShanghaiTech-A ShanghaiTech-B
Method MAE MSE MAE MSE
Method w/o Atrous convolution layer | 87.0 131.5 13.6 23.8
Method with Atrous convolution layer | 74.2 112.5 11.9 21.3

As the results show, the performance (MAE/MSE) of the proposed method
are 12.8/19.0 and 1.7/2.5 lower on ShanghaiTech-A (dense) and ShanghaiTech-
B (sparse) than traditional CNN, respectively, demonstrating the effective-
ness of the atrous convolution layer.

5. Conclusion

In this paper, we presented a MRA-CNN crowd counting algorithm, where
an additional density-level classification task is utilized to learn multi-scale,
multi-contextual information. In order to well exploit the head locations, a
MRA model is used to generate score maps from different feature extrac-
tion layers and guide the network to emphasize head regions. In addition,
we use atrous convolution layer to extract higher-level features with fewer
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parameters as well as provide the MRA model more comprehensive informa-
tion. Various experimental results and comparisons have demonstrated the
superiority of the proposed method over the existing ones.
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