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ABSTRACT
Finite-temperature dynamics of singlet fission in crystalline rubrene is investigated by utilizing the Dirac–Frenkel time-dependent variational
method in combination with multiple Davydov D2 trial states. To probe temperature effects on the singlet fission process mediated by a
conical intersection, the variational method is extended to include number state propagation with thermally averaged Boltzmann distribu-
tion as initialization. This allows us to simulate two-dimensional electronic spectroscopic signals of two-mode and three-mode models of
crystalline rubrene in the temperature range from 0 K to 300 K. It is demonstrated that an elevated temperature facilitates excitonic popu-
lation transfer and accelerates the singlet fission process. In addition, increasing temperature leads to dramatic changes in two-dimensional
spectra, thanks to temperature-dependent electronic dephasing and to an increased number of system eigenstates amenable to spectroscopic
probing.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0031435., s

I. INTRODUCTION

An exciton multiplication process, which allows an excited sin-
glet state generated by irradiation to be converted to two triplet
excitations in monomers as well as in the crystalline phase of organic
molecular aggregates, singlet fission (SF) has attracted much atten-
tion as it can potentially enable photovoltaic devices to bypass the
Shockley–Queisser limit in conversion efficiency.1 Over the recent
years, substantial progress has been achieved in scrutinizing SF
mechanisms and pathways in pentacene/tetracene systems as well
as in theoretical modeling of SF processes in a variety of contexts to
engineer novel photovoltaic materials.1–5

It is nowadays well established that conical intersections (CIs)
play a pivotal role in the SF process.6–8 Furthermore, two mech-
anisms of CI-mediated SF have been established for crystalline
rubrene.5,7 The first one is the quantum coherent mechanism gener-
ated by the CI between the singlet S1 state and the correlated triplet
pair (TT) state. It was shown that a symmetry-breaking intermolec-
ular mode triggers the interstate coupling in crystalline rubrene,

opening up a new venue for engineering molecular systems with
more efficient SF mechanisms. Spectroscopic manifestations of this
mechanism at zero temperature have recently been studied by theo-
retical simulations in Ref. 9. The second one is the thermally assisted
SF mechanism. It employs thermal activation for reaching the CI
seam between the S1 and TT states, where the interstate coupling is
activated through the excitation of the symmetry-breaking modes.
In addition, a pivotal role of vibrational modes in driving the SF
process has been demonstrated.8,10–12

Nonlinear femtosecond spectroscopy is the main source of
empirical knowledge on the SF dynamics. The corresponding exper-
imental techniques include transient transmittance pump-probe
spectroscopy,6,7 time- and frequency-resolved fluorescence,10,11 and
two-dimensional (2D) electronic spectroscopy (2DES).8,12 These
techniques provide alternative views of the SF dynamics by pro-
jecting the multidimensional electronic/nuclear wave packets onto
different electronic states.

To the best of our knowledge, little attention has been devoted
so far to the accurate simulation of temperature effects on the
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CI-mediated SF dynamics in organic molecular aggregates and its
spectroscopic manifestations. These topics are the focus of the
present work.

Spectroscopic signatures of CIs in the SF process have been
analyzed so far in terms of phenomenological low-dimensional
(reduced) CI models with several electronic states, a single vibra-
tional coupling mode, and one or two vibrational tuning modes.8,12

The numerically efficient and accurate hierarchy equation of motion
(HEOM) method13 has recently been applied to the simulation of
electron–phonon dynamics14–19 and nonlinear femtosecond spec-
troscopic signals20–22 at CIs described by similar models. There-
fore, combining the reduced models with the HEOM methodology
could be feasible for the elucidation of the mechanistic role of CIs
in the SF process at finite temperature. In the present work, how-
ever, we wish to develop the ab initio-based methodology, which
permits the simulation of spectroscopic signals of the CI-driven SF
systems on the basis of multidimensional potential-energy surfaces
(PESs) constructed microscopically via quantum-chemical meth-
ods. The linear-vibronic-coupling (LVC) machinery in which PESs
are represented by polynomials on nuclear coordinates is a reli-
able method for the construction of Hamiltonians of CI systems.23

The wave-function-based methods, notably the (multilayer) multi-
configuration time-dependent Hartree (MCTDH) method24 and
the variational multi-configurational Gaussian (vMCG) method,25

are known to be highly efficient in modeling the CI dynamics
driven by LVC Hamiltonians at zero temperature. However, the
generalization of these methods to finite temperatures requires
statistical sampling of initial conditions and is highly demanding
computationally.26–30 Hence, applications of the MCTDH to the
simulation of spectroscopic signals at finite temperatures are quite
limited.31,32

In the past decade, a method has been developed, which
enables efficient, accurate simulation of optical responses of mul-
timode systems with CIs through the evaluation of the third-order
response functions within the framework of the Dirac–Frenkel time-
dependent variation combined with a hierarchy of the multiple
Davydov Ansätze.9,33–36 On the one hand, this method performs well
in grasping nonadiabatic dynamics at CIs. On the other hand, it is
flexible and offers a good balance between the accuracy and effi-
ciency by varying the multiplicity of the Davydov trial states. Yet,
the Davydov Ansatz method for evaluating the third-order response
functions was available only at zero temperature due to its con-
struct of time-dependent variation. Werther et al. have recently
proposed an approach that can be efficiently employed to intro-
duce temperature effects into the Davydov trial states.37,38 Two
alternative approaches, the sampling of P-function method39 and
the thermo-field dynamics method,40–42 are numerically demand-
ing, which makes their application to the evaluation of third-order
response functions somewhat time consuming.

In this work, we incorporate the method of Refs. 37 and 38
for the evaluation of the third-order response functions and investi-
gate the thermally assisted SF mechanism in crystalline rubrene by
accurate simulations of temperature effects in the CI-mediated SF
population transfer and its spectroscopic signatures. The remainder
of this paper is structured as follows: in Sec. II, we present the model
Hamiltonian and introduce the methodology employed in this work.
Simulations of the SF dynamics and 2DES signals are presented and
discussed in Sec. III. The conclusions are drawn in Sec. IV.

II. METHODOLOGY
A. The CI model

Due to the complexity associated with the accurate simulation
of the CI-driven SF at finite temperatures, we restrict ourselves to
the consideration of two-electronic-state (S1 and TT) and two/three-
vibrational-mode models of SF in rubrene crystals. Here, S1 is the
(optically bright) singlet state and TT is the (optically dark) cor-
related triplet pair state. For simplicity, higher-lying singlet/triplet
states and charge transfer states are not explicitly included in our
simulation here. Yet, the present model gives valuable insight into
the SF dynamics and its spectroscopic detection at finite tempera-
tures as well as serves as a useful testing ground for the develop-
ment of more realistic multidimensional and multistate microscopic
models of the SF process in organic molecular aggregates.

In the diabatic representation, the system Hamiltonian HS of
the present model is represented as the sum of an electronic ground-
state Hamiltonian Hg and an excited state Hamiltonian He,9

HS = Hg + He. (1)

Explicitly,
Hg = ∣g⟩hg⟨g∣, (2)

He = ∑
k=S1 ,TT

∣k⟩(hk + εk)⟨k∣ + (∣S1⟩⟨TT∣ + ∣TT⟩⟨S1∣)λQc. (3)

Here, |g⟩ denotes the electronic ground state, εS1 and εTT are the ver-
tical excitation energies of the states |S1⟩ and |TT⟩, respectively, and
λ is the interstate coupling constant responsible for the CI of |S1⟩ and
|TT⟩. The vibrational Hamiltonians hg , hS1 , and hTT include a single
coupling mode (subscript c) as well as one (or two) primary tuning
mode (subscript t),

hg =
1
2 ∑α=c,t

Ωα(P2
α + Q2

α), (4)

hk = hg +∑
α=t

κkαQα. (5)

Here, Ωα, Qα, and Pα are the frequencies, dimensionless coordinates,
and dimensionless momenta of the modes, respectively, while κkα are
the linear intrastate electron-vibrational couplings. We have set h̵ =
1. The tuning modes Qt are the dimensionless reaction coordinates
of SF, while Qc is an antisymmetric intermolecular coupling mode
that couples the electronic states |S1⟩ and |TT⟩.

The LVC Hamiltonian of the CI model can also be recast in the
operator form9,36

ĤS = ∑
k=S1 ,TT

ϵk∣k⟩⟨k∣ + ∑
α=t,c

wαb̂†
αb̂α

+
λ
√

2
(∣S1⟩⟨TT∣ + ∣TT⟩⟨S1∣)(b̂†

c + b̂c)

+
1
√

2
∑
α=t
∑

k=S1 ,TT
κkα∣k⟩⟨k∣(b̂

†
α + b̂α), (6)

where b̂†
α (b̂α) is the electronic creation (annihilation) operator

of the αth mode. This equivalent form of the Hamiltonian is
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convenient for the implementation of the Dirac–Frenkel variational
principle.

The system, which contains all primary vibrational modes
strongly affecting the SF process, is coupled to a harmonic phonon
bath described by the Hamiltonian HB, which mimics the impact of
the remaining inter- and intramolecular modes on the SF dynamics,

HB =
Nbath

∑
q

h̵ΩqB̂†
qB̂q. (7)

The system-bath coupling Hamiltonian is assumed to be diagonal in
the electronic space,

HSB =
Nbath

∑
q=1

∑
k=S1 ,TT

∣k⟩⟨k∣κkq(B̂
†
q + B̂q), (8)

with κkq being the system-bath coupling coefficients. To facilitate the
interpretation of the obtained results, we assume that κS1

q = κTTq = κq.
The so-defined bath does not affect electronic population relaxation
([HS, HSB] = 0) but induces the dephasing of coherences between the
electronic states |g⟩ and |S1⟩, |TT⟩.34,35 Then, the total third-order
response functions describing spectroscopic signals of the SF system
are expressed as products of the system and the bath response func-
tions, where the bath response functions are evaluated analytically
through the line shape functions of the Brownian oscillator model
(see Appendix B).

B. Multiple Davydov Ansätze and physical
observables

To treat Hamiltonians with off-diagonal coupling terms, Davy-
dov D2 trial states of multiplicity M, which essentially sum over
M copies of the corresponding single-state Davydov D2 Ansatz,
are deployed to boost simulation accuracy. A generalized multi-
D2 Ansatz of multiplicity M for the displaced number state ∣n⃗⟩
= ∣n1n2⋯nw⟩ used to include temperature effects reads37,38

∣ψM
n⃗ (t)⟩ =∣S1⟩

M

∑
k=1

An⃗
k(t)e

(∑q f n⃗kq(t)b
†
q −H.c.)

∣n⃗⟩

+ ∣TT⟩
M

∑
k=1

Bn⃗
k(t)e

(∑q f n⃗kq(t)b
†
q −H.c.)

∣n⃗⟩. (9)

Especially, for n⃗ = 0, applying the displacement operator on the
vacuum phonon state of the oscillator spawns a coherent state.
Here, H.c. denotes the Hermitian conjugate. An⃗

k(t) and Bn⃗
k(t)

denote, respectively, the time-dependent variational parameters for
the amplitude in the diabatic states |S1⟩ and |TT⟩. f nqkq (t) are the
corresponding phonon displacements with the kth coherent state
and the qth mode. The Eulerian equation of motion for time-
dependent variational parameters μ⃗ = {An⃗

k(t),B
n⃗
k(t), f

nq
kq (t)} can

be derived from the Dirac–Frenkel variational principle. Here, the
Dirac–Frenkel Lagrangian is formulated as

L =
i
2

⎡
⎢
⎢
⎢
⎢
⎣

⟨ψM
n⃗ (t)∣

Ð→
∂

∂t
∣ψM

n⃗ (t)⟩ − ⟨ψ
M
n⃗ (t)∣

←Ð
∂

∂t
∣ψM

n⃗ (t)⟩
⎤
⎥
⎥
⎥
⎥
⎦

− ⟨ψM
n⃗ (t)∣H∣ψ

M
n⃗ (t)⟩. (10)

A detailed derivation of the equations that govern the time propaga-
tion of the variational parameters is given in Appendix A.

The time-dependent diabatic population of the electronic state
|S1⟩ for the number state |n⟩ can be obtained by

Pn⃗
S1 =

M

∑
m

M

∑
m′

An⃗∗
m (t)A

n⃗
m′(t)S

n⃗
mm′ ,

where the Debye–Waller factor is given by

Sn⃗mm′ = exp
⎛

⎝
∑
q
{−(∣ f nqmq∣

2
+ ∣ f nqm′q∣

2
)/2 + f nq∗mq f nqm′q}

⎞

⎠
. (11)

Then, we adopt the Boltzmann-averaged method to calculate the
observable from

PB
S1 =∏

l

Nl,T

∑
nl=0

e−βnl
̵hωl

Qβ
Pn⃗
S1 ,

where

Qβ =∏
l

∞

∑
nl=0

e−βnl
̵hωl (12)

is the canonical partition function and β = 1/(kBT) (kB is the Boltz-
mann constant and T is the temperature). The truncated number
of the lth phonon mode excitation N l ,T yielding converged numer-
ical results is determined by the temperature and the total phonon
excitation energy.

It is well known that the number state |nl⟩ of the harmonic
oscillator can be expanded in terms of coherent states,43 which
becomes

∣nl⟩ =
1

2π

¿
Á
ÁÀnl!e∣βl ∣

2

∣βl∣2nl
∫

π

−π
dθle

−inlθl∥βl∣e
iθl⟩. (13)

To discretize the integral over θl, we adopt the approximate expres-
sion

∣nl⟩ ≈

¿
Á
ÁÀnl!e∣βl ∣

2

∣βl∣2nl
1
N

N−1

∑
kl=0

e−inlθkl ∥βl∣e
iθkl ⟩, (14)

where θkl = −π + 2π
N kl and kl = 0, . . ., N − 1.

Following the suggestion of Werther et al.,37 for the Davydov-
D2 Ansatz with multiplicity M ≥Nw (w is the number of modes that
may be excited), the initial conditions with the w phonon modes
read

An⃗
k(0) =

⎧⎪⎪
⎨
⎪⎪⎩

∏
l
N(βl) exp(−inlθkl), 1 ≤ k ≤ Nw

0, else,
(15)

Bn⃗
k(0) = 0, (16)

f nlkl (0) = {
∣βl∣ exp(iθkl), 1 ≤ k ≤ Nw

0, else,
(17)
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TABLE I. Numerical values of the model parameters (in units of eV).

Energy Mode ωl κ(1)l κ(2)l λl

ES1 = 2.23 Ωc 0.0154 0 0 0.0745
ETT = 2.28 Ωt1 0.1860 0.3720 −0.3720 0

Ωt2 0.0260 0.0745 −0.0745 0

where N(βl) = 1
N

√

(nl !)e
β2
l

∣βl ∣2nl
. The convergence with respect to the

number of sampling points N on the circle of radius ∣βl∣ =
√
nl

can be quickly obtained, for example, in Ref. 37, for N between
5 and 14 depending on various initial excitations n. In the subse-
quent simulations, we, thus, adopt ∣βl∣ =

√
nl, the value of best

performance.37

In the present work, we monitor temperatures in the range
from 0 K to 300 K (0 eV–0.0259 eV). The total phonon energy con-
sidered is, thus, within 0 eV–0.13 eV. The chosen maximal phonon
energy, which is five times higher than the maximal thermal energy,
ensures a high precision of samplings. Thus, the phonon excitation
combinations can be directly given according to the total phonon
excited energy for different models. We set N = 14 for the two-mode
model and N = 10 for the three-mode model. For both models, a
multiplicity of M = 108 is used in the simulations.

C. 2D spectroscopy
Two-dimensional electronic spectroscopy (2DES) is a fem-

tosecond spectroscopic technique that allows the elucidation of sys-
tem dynamics on the ultrafast timescale.44,45 An optical analog of

FIG. 1. Cuts through the adiabatic PESs of the S1 (blue), STT (red), and g (black)
states of the 2-mode model along the normal coordinates Qc (upper panel) and
Qt 1 (lower panel).

FIG. 2. Cuts through the adiabatic PESs of the S1 (blue), STT (red), and g (black)
states of the 3-mode model along the normal coordinates Qc (upper panel), Qt 1
(middle panel), and Qt 2 (lower panel).

2D infrared (IR) spectroscopy,46 which is used to study vibrational
excitations and transfer, 2DES probes atomic/molecular systems by
a train of three mutually delayed ultrashort (tens of femtoseconds)
laser pulses.

FIG. 3. Diabatic population dynamics of the singlet S1 state for the (a) two- and (b)
three-mode models for T = 0 K, 100 K, 200 K, 300 K.
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If the pulses can be considered as short on the system dynam-
ics timescale, the optical response of the system to the three
pulses is fully described by the four third-order response functions
Rn(t1, Tw , t3), where n runs from 1 to 4. The delay between the first
and second pulses is called the coherence time and is labeled as t1.
The delay between the second and third pulses is called the popula-
tion time or the waiting time and is labeled as Tw . The time after the
third pulse corresponds to the detection time t3. After those response
functions have been evaluated, various components of the 2DES
spectra, such as the ground state bleach (GSB) contribution SGSB(ωτ ,
Tw , ωt) and the stimulated emission (SE) contribution SSE(ωτ , Tw ,
ωt), can be expressed in terms of doubly performed Fourier trans-
forms of the corresponding third-order response functions. Here,
ωτ and ωt are the frequency domain equivalents of coherence time
t1 and detection t3, respectively.

More details of the derivation of the third-order response
functions and the evaluation of 2DES signals can be found in
Appendix B.

III. NUMERICAL RESULTS
A. Model parameters

In this work, we systematically consider two models of the pri-
mary SF Hamiltonian HS. The first one, the two-mode model, is

essentially the model suggested in Ref. 7 and further exploited in
Ref. 9. This model contains a low-frequency coupling mode Qc
and a single high-frequency tuning mode Qt1. The second model,
the three-mode model, contains an extra low-frequency tuning
mode Qt2. Our motivation behind the consideration of the three-
mode model is twofold. First, there are indications that extra low-
frequency tuning modes may be necessary for a detailed modeling
of the SF process in rubrene. Second, an additional low-frequency
tuning mode increases the sensitivity of the model to temperature
effects that are in focus of the present study. Numerical values of the
model parameters are collected in Table I.

The phonon bath of Eqs. (7) and (8) is fully characterized by
its spectral density D(ω) = ∑q κ

2
qδ(ω −Ωq). In our simulations, the

spectral density function is taken in the Drude form

D(ω) = 2η
γω

ω2 + γ2 , (18)

where η = 0.15 eV and γ = 0.03 eV. With these parameters, the bath
covers the typical values of electronic dephasing times (∼10 fs–100
fs) and describes their decrease with temperature. Following Ref. 7,
we assume that the state S1 is optically bright from the ground state,
while the state TT is optically dark. Hence, we set μgS1 = 1 and
μgTT = 0.

Shown in Figs. 1 and 2 are the cuts through adiabatic PESs
of the electronic ground state g (black) and two excited S1 (blue)

FIG. 4. The real parts of the SE component (a), the GSB component (b), and the total 2DES signals (c) in the two-mode model for different population times Tw at T = 10 K.
[(a) and (b)] From left to right, the spectra correspond to Tw = 0 fs, 12 fs, 22 fs, and 34 fs. (c) From left to right, the spectra correspond to Tw = 0 fs, 34 fs, 66 fs, and 100 fs.
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and STT (red) electronic states of the 2-mode model and the 3-
mode model along the corresponding normal coordinates, respec-
tively. The CI is located at (Qc, Qt1) = (0, 0.07) for the 2-mode
model and at (Qc, Qt1, Qt2) = (0, 0.07, 0.325) for the 3-mode model.
In both models, the CIs are, therefore, located in the vicinity of
the Franck–Condon region (Qc, Qt1, Qt2) = (0, 0, 0). The vertical
energy corresponding to the CI is found to be 2.256 eV in both
models.

B. Temperature effects on population dynamics
We first investigate the temperature effect on the population

dynamics P(t) of the S1 state in the two-mode (Ωc ,t1) and the three-
mode (Ωc ,t1,t2) CI model of the SF process. The thermal bath of
Eqs. (7) and (8) does not affect P(t). Hence, P(t) exhibits the net
effect of the temperature-dependent dynamics driven by the system
Hamiltonian HS alone.

The population dynamics of P(t) for both models is presented
in Fig. 3 for a range of temperatures from 0 K to 300 K. The pop-
ulation decay (hence, the SF efficiency) increases with temperature
in both models. This can be understood by the following consider-
ations. Using the explicit form of HS, it is straightforward to show
that the initial depopulation dynamics is Gaussian,

⟨P(t)⟩ = exp{−ν2t2
} + O(t3

),

where ν−1 is the so-called Zeno time that can be evaluated according
to Refs. 47 and 48. Explicitly,

ν2
= λ2
⟨Q2

c ⟩ = λ
2
(

1
2

+
1

exp{Ωc/(kBT)} − 1
). (19)

Hence, the population decay rate ν is minimal at T = 0 (ν
= λ/
√

2) and increases ∼
√
T in the classical limit of kBT ≫ Ωc,

yielding ν = λ
√
kBT/Ωc. The initial decay of P(t) is, thus, deter-

mined solely by the frequency of the coupling mode Ωc and tem-
perature T and is independent of the tuning modes, in agreement
with the temperature dependency of initial population dynamics in
Fig. 3.

At t > ν−1, the P(t) evolution becomes much more complex and
depends strongly on the tuning modes. In particular, the depop-
ulation in the 3-mode model is faster than that in the 2-model
model. This indicates that thermally activated modes accelerate the
SF process. For t < 75 fs [Fig. 3(a)] and t < 200 fs [Fig. 3(b)],
P(t) exhibits a characteristic step-like structure that is character-
ized by the period of 2π/Ωt1 = 22 fs, revealing the high-frequency
tuning mode. This structure is indicative of the stepwise, CI-driven
|S1⟩ → |TT⟩ population transfer. This kind of behavior is generic
for nonadiabatic vibronic systems (see Ref. 49 and the discus-
sion therein). On a longer timescale, P(t) of Fig. 3(a) exhibits a

FIG. 5. The real parts of the SE component (a), the GSB component (b), and the total 2DES signals (c) in the two-mode model for different population times Tw at T = 100 K.
[(a) and (b)] From left to right, the spectra correspond to Tw = 0 fs, 12 fs, 22 fs, and 34 fs. (c) From left to right, the spectra correspond to Tw = 0 fs, 34 fs, 66 fs, and 100 fs.
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quite erratic behavior, which is typical for two-mode CIs.14 The
dynamics of P(t) in Fig. 3(b) is smoother, faster, and more irre-
versible since more modes are involved in the CI-driven population
transfer.

C. Temperature effects in 2D spectra
We begin with a systematic investigation of 2DES spectra

for the two-mode model at various waiting times Tw and three
temperatures [T = 10 K (Fig. 4), T = 100 K (Fig. 5), and T = 300 K
(Fig. 6)]. Any 2DES signal can be subdivided into three compo-
nents: the GSB component, the SE component, and the excited state
absorption (ESA) component. The GSB contribution reflects the
wave packet motion in the electronic ground state, while two other
contributions monitor the projection of the wave packet motion in
the low-lying electronic states into the electronic ground state (GSB)
and the higher-lying electronic states (ESA). Since the higher-lying
electronic states are not included in our model, ESA is not consid-
ered here. We, thus, plot separately the SE contribution (a), the GSB
contributions (b), and the total (SE + GSB) 2DES spectra (c).

It should be recapitalized here that the thermal bath of Eqs. (7)
and (8) is responsible for optical dephasing only, with the dephas-
ing rates increasing with temperature. The bath broadens the peaks
in the 2D spectra but does not affect dynamical features in the
signals. The latter are determined by the system dynamics driven by
the Hamiltonian HS at different temperatures.

Let us consider Fig. 4 first. Since T = 10 K causes weak dephas-
ing in the present model, the spectra show pronounced peaks of
vibronic progression, which reveal the high-frequency tuning mode
Ωt1. At Tw = 0, the SE, GSB, and total signal look similar and are
concentrated along the main diagonal. The strongest diagonal peaks
are located at two points, (ωτ , ωt) = (2.0 eV, 2.0 eV) and (2.18 eV,
2.18 eV): The first of which matches the 0–0 vertical excitation
energy of the system, also known as the zero-phonon line. The other
point, (2.18 eV, 2.18 eV), is the 0–1 peak in a corresponding vibronic
progression of linear absorption. At Tw = 12 fs, which corresponds
to the half-period of the high-frequency tuning mode, shapes of the
SE and GSB contributions change. The SE signal remains symmetric
with respect to the main diagonal but spreads over both directions
(ωτ and ωt). This reflects the pulsating character of the wave packet
propagation. The GSB signal also spreads along both axes (ωτ and
ωt) but loses its axial symmetry, developing a pattern shifted pre-
dominantly above the main diagonal (ωt > ωτ) but possessing a
substantial below diagonal lobe. This behavior reflects the reversible
energy redistribution in the electronic ground state, which popu-
lates those vibrational levels that have larger Franck–Condon fac-
tors with higher lying vibronic levels in the excited electronic states.
Tw = 24 fs corresponds to the period of the Ωt1 mode. We, thus,
observe an almost complete revival of the GSB, SE, and total sig-
nal because the |S1⟩ → |TT⟩ population transfer at t = 24 fs is
just around 4% (cf. Fig. 3). As Tw increases, the SE and GSB

FIG. 6. The real parts of the SE component (a), the GSB component (b), and the total 2DES signals (c) in the two-mode model for different population times Tw at
T = 300 K. [(a) and (b)] From left to right, the spectra correspond to Tw = 0 fs, 12 fs, 22 fs, and 34 fs. (c) From left to right, the spectra correspond to Tw = 0 fs, 34 fs, 66 fs,
and 100 fs.
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signals exhibit almost periodic evolution with a period of 22 fs.
Yet, negative areas along the main diagonal are formed in the SE
signals and below the main diagonal in the GSB signals. This can
be related to the rephasing of the wave packet motion in the elec-
tronic ground and the excited states (cf. Refs. 35 and 50). In gen-
eral, intensities of the SE and GSB signals are comparable on the
entire timescale under consideration (∼100 fs), and both the SE and
GSB components contribute almost equally to the total 2DES sig-
nal, the intensity of which decreases only slightly with Tw . This is a
manifestation of the relatively slow |S1⟩ → |TT⟩ population transfer
(cf. Fig. 3).

The 2DES spectra at T = 100 K are plotted in Fig. 5. The 2DES
spectra are similar to those at T = 10 K. However, the rising tem-
perature causes two different effects. On the one hand, it increases
the number of system states amenable to spectroscopic probing. On
the other hand, it causes stronger bath-induced electronic dephas-
ing. The first effect is not significant since Ωc/(kBT) = 1.8 at
T = 100 K. It induces a faster |S1⟩ → |TT⟩ population transfer, which
manifests itself in slightly smaller SE intensities. The second effect
broadens vibrational peaks.

If the temperature further increases, the effects described
above become more dramatic. The corresponding 2DES signals at
T = 300 K are shown in Fig. 6. Since Ωc/(kBT) = 0.6 at T = 300 K,
temperature effects cause significant dynamical changes, which
manifest themselves through the pronounced asymmetry of the

signals relative to the main diagonal. In addition, the aforemen-
tioned 22 fs periodicity of the signals is complied with only approx-
imately since more states connected to the coupling mode are
involved in the CI-driven dynamics. On the other hand, a sub-
stantial increase of the optical dephasing merges individual vibra-
tional peaks into richly structured, multiform patterns that are the
two-dimensional manifestations of the linear vibronic progression.

Let us consider now 2DES signals for the three-mode model.
The signals simulated at T = 100 K are depicted in Fig. 7. Albeit the
general patterns and trends of the two-mode model in Fig. 5 have
been reproduced in Fig. 7, the difference between the two is still quite
dramatic. First, the 2DES signals in Fig. 7 lose almost completely
the vibronic structure of Fig. 5. Second, the shapes of the signals
undergo significant changes, most notably at larger values of Tw .
This is a direct consequence of the increased density of states in the
three-mode model of SF.

The 2DES signals simulated at T = 300 K in the three-mode
model, as shown in Fig. 8, should be contrasted with their two-
mode model counterparts in Fig. 6. The differences between the
two groups of signals are even more substantial. The signals of the
three-mode model show less-structured patterns with more pro-
nounced asymmetry relative to the main diagonal, as compared with
those of the two-model model. Hence, we conclude that vibronic
effects triggered by low-frequency modes become more pronounced
at elevated temperatures.

FIG. 7. The real parts of the SE component (a), the GSB component (b), and the total 2DES signals (c) in the three-mode model for different population times Tw at
T = 100 K. [(a) and (b)] From left to right, the spectra correspond to Tw = 0 fs, 12 fs, 22 fs, and 34 fs. (c) From left to right, the spectra correspond to Tw = 0 fs, 34 fs, 66 fs,
and 100 fs.
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FIG. 8. The real parts of the SE component (a), the GSB component (b), and the total 2DES signals (c) in the three-mode model for different population times Tw at
T = 300 K. [(a) and (b)] From left to right, the spectra correspond to Tw = 0 fs, 12 fs, 22 fs, and 34 fs. (c) From left to right, the spectra correspond to Tw = 0 fs, 34 fs, 66 fs,
and 100 fs.

IV. CONCLUSIONS
To develop a microscopic methodology for the accurate simu-

lation of multidimensional spectroscopic signals of SF systems, we
have extended the variational Davydov Ansatz machinery toward
the evaluation of third-order response functions at finite temper-
atures. This allows us to simulate 2DES signals of two-mode and
three-mode models of crystalline rubrene in the temperature ranges
relevant for many practical applications (from 0 K to 300 K). On the
one hand, our simulations demonstrate that an elevated temperature
facilitates the |S1⟩ → |TT⟩ population transfer and, thus, accelerates
the SF process. On the other hand, increasing temperature causes
dramatic changes in 2DES spectra owing to temperature-dependent
electronic dephasing and an increased number of system eigenstates
amenable to spectroscopic probing. We, thus, conclude that thermal
effects on singlet fission dynamics have to be adequately accounted
for in theoretical simulations of excited state transfer and relaxation
in organic molecular aggregates.

Our results demonstrate that the methodology developed in the
present work to efficiently compute finite-temperature SF dynam-
ics and associated third-order response functions and 2DES sig-
nals can be readily applied to novel material systems with one
or a few vibrational modes exhibiting strong intrastate vibrational
coupling and/or strong interstate electronic coupling. Furthermore,
in the anticipation of rapid progress in spectroscopic technolo-
gies and the need to probe ultrafast excitation transfer of multiple

segments, higher-order optical response functions and multi-
dimensional spectroscopic signals beyond third-order can be com-
puted using the same methodology established here. The work along
this direction as well as the extension of the present framework to
account for higher-lying electronic states is in progress.
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APPENDIX A: TIME-DEPENDENT VARIATIONAL
APPROACH BY THE MULTI-D2 ANSÄTZE
1. Equation of motion

The equations that govern the time propagation of the varia-
tional parameters μi can be obtained from the Euler equations of
motion,
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d
dt

∂L
∂μ̇∗i
−

∂L
∂μ∗i

= 0, (A1)

L =
i
2

⎡
⎢
⎢
⎢
⎢
⎣

⟨DM
2 (t)∣

Ð→
∂

∂t
∣DM

2 (t)⟩ − ⟨D
M
2 (t)∣

←Ð
∂

∂t
∣DM

2 (t)⟩
⎤
⎥
⎥
⎥
⎥
⎦

− ⟨DM
2 (t)∣H∣D

M
2 (t)⟩ =: Ltd − LH . (A2)

Using the normalization of the Davydov Ansatz, the derivative can
only be taken to the right, simplifying matters considerably,

Ltd = i⟨D
M
2 (t)∣

Ð→
∂

∂t
∣DM

2 (t)⟩. (A3)

We first calculate the Lagrangian L in the Dirac–Frenkel time-
dependent variation,

L = i
M

∑
m,n
[A∗mȦn + B∗mḂn]Smn

+ i
M

∑
m,n

⎡
⎢
⎢
⎢
⎢
⎣

(A∗mAn + B∗mBn)∑
q

⎛

⎝

(2f ∗mq ḟnq − f ∗nq ḟnq − fnq ḟ ∗nq)
2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

Smn

− ⟨DM
2 (t)∣H∣D

M
2 (t)⟩, (A4)

where the Debye–Waller factor is Smn = exp∑q{−(∣ fmq∣
2 + ∣ fnq∣2)/2

+ f ∗mq fnq} and the last term in Eq. (A4) can be obtained as

⟨DM
2 (t)∣H∣D

M
2 (t)⟩

=
M

∑
n,m
(ϵS1A

∗

mAn + ϵTTB∗mBn)Smn

+
M

∑
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q
ωq f ∗mq fnqSmn

+
M

∑
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∑
q

⎛

⎝

κ(1)q
√

2
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κ(2)q
√

2
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⎞
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(fnq + f ∗mq)Smn

+
M

∑
n,m
∑
q

λq
√

2
(A∗mBn + B∗mAn)(fnq + f ∗mq)Smn. (A5)

The Dirac–Frenkel variational principle results in equations of
motion for An and Bn,

i
M

∑
n
ȦnSmn + i

M

∑
n
An∑

q
[−

1
2
(ḟnqf ∗nq + fnq ḟ ∗nq) + f ∗mq ḟnq]Smn

= ϵS1

M

∑
n
AnSmn +

M

∑
n
An∑

q
ωq f ∗mq fnqSmn

+
M

∑
n
An∑

q

κ(1)q
√

2
(fnq + f ∗mq)Smn

+
M

∑
n
Bn∑

q

λq
√

2
(fnq + f ∗mq)Smn (A6)

and

i
M

∑
n
ḂnSmn + i

M

∑
n
Bn∑

q
[−

1
2
(ḟnqf ∗nq + fnq ḟ ∗nq) + f ∗mq ḟnq]Smn

= ϵTT
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∑
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M
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M
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√

2
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+
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q
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√

2
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The equations of motion for f nk are

i
M

∑
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∑
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APPENDIX B: 2D SPECTRA
All optical response functions hinge on the transition dipole

moment; the auto-correlation functions of the polarization oper-
ator directly lead to linear and nonlinear spectral signals. The
autocorrelation function F(t) based on the multi-D2 Ansätze is
defined by

F(t) = ph⟨0∣ex⟨0∣e
iHtPe−iHt ∣0⟩ex∣0⟩ph

= ph⟨0∣ex⟨0∣Pe
−iHtP†

∣0⟩ex∣0⟩ph, (B1)

where P = μ∑n(|n⟩exex⟨0| + |0⟩exex⟨n|) is the polarization operator.
The linear absorption spectra are ready to be obtained by

the Fourier transformation of the autocorrelation function,51 which
reads
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F(ω) =
1
π
Re∫

∞

0
F(t)dt. (B2)

In addition to the information provided by the linear (1D) spec-
tra, 2DES signals provide direct knowledge on multi-state exci-
tonic dynamics and inter-exciton interactions and on dephasing
and relaxation processes that are elusive in the output from the
traditional 1D spectroscopy. The computation of 2DES signals
involves calculating the third-order polarization P(3)(t), which can
be expressed in terms of the nonlinear response function Ri(τ, Tw , t)
with i going from 1 to 4, and τ and t are the coherence time and the
detection time, respectively.

In the SF model of Sec. II A, the total response functions can be
represented as the product of the responses generated by the system
and bath Hamiltonians,

Ri(τ,Tw , t) = RS
i (τ,Tw , t)RB

i (τ,Tw , t). (B3)

The reader is referred to Ref. 9 for a detailed derivation and explicit
expressions for RS

i (τ,Tw , t) in terms of the multi-D2 Ansätze.
RB
i (τ,Tw , t), on the other hand, are evaluated analytically,52

RB
1(τ,Tw , t) = e−g

∗
(t)−g(τ)−g∗(Tw)+g∗(Tw+t)+g(τ+Tw)−g(τ+Tw+t),

RB
2(τ,T, t) = e−g

∗
(t)−g∗(τ)+g(Tw)−g(Tw+t)−g∗(τ+Tw)+g∗(τ+Tw+t),

RB
3(τ,Tw , t) = e−g(t)−g

∗
(τ)+g∗(Tw)−g∗(Tw+t)−g∗(τ+Tw)+g∗(τ+Tw+t),

RB
4(τ,Tw , t) = e−g(t)−g(τ)−g(Tw)+g(Tw+t)+g(τ+Tw)−g(τ+Tw+t),

(B4)

where g(t) is the line shape function,

g(t) = ∫
∞

0
dω

D(ω)
ω2

× [coth
h̵ω

2kBTeq
(1 − cosωt) + i(sinωt − ωt)]. (B5)

If the laser pulses are short on the timescale of the sys-
tem dynamics, the SE and GSB contributions to the 2DES sig-
nals are directly expressed through the response functions as
follows:

SSE(ωτ ,Tw ,ωt) = R∫
∞

0
∫

∞

0
dtdτ[R2(τ,Tw , t)e−iωττ+iωt t

+R4(τ,Tw , t)eiωττ+iωt t],

SGSB(ωτ ,Tw ,ωt) = R∫
∞

0
∫

∞

0
dtdτ[R3(τ,Tw , t)e−iωττ+iωt t

+R1(τ,Tw , t)eiωττ+iωt t]. (B6)

The correlated 2D spectrum (ωτ , Tw , ωt) is given by the sum of
the two above contributions, neglecting the contribution of ESA
(excited-state absorption),

S(ωτ ,Tw ,ωt) = SSE(ωτ ,Tw ,ωt) + SGSB(ωτ ,Tw ,ωt). (B7)
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