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ABSTRACT This paper proposes a novel adaptive range composite differential evolution (ARCoDE)
algorithm to efficiently and accurately solve optimal reactive power dispatch (ORPD) problem. Because
of a novel adaptive range strategy for control parameters, the proposed ARCoDE possesses superior
exploration and exploitation capabilities that can efficiently handle the ORPD problem involving compli-
cated constraints and discrete and continuous variables. This has been demonstrated in case studies using
the IEEE optimal power flow testbeds considering complex wind and demand scenarios. The superior
performance of ARCoDE has been further validated through comparisons with several award-winning
algorithms in 2014 IEEE Competition on “Application of Modern Heuristic Optimization Algorithms for
Solving Optimal Power Flow Problems™, given limited iterations of in evolutionary optimization process.

INDEX TERMS Control parameter adaptation, differential evolution, optimal reactive power dispatch.

I. INTRODUCTION

The reactive power dispatch is critical to ensure the security
and economy of power system operation. Similar to optimal
power flow (OPF), optimal reactive power dispatch (ORPD)
problem is a complicated mixed-integer non-linear opti-
mization problem involving many constraints and discrete/
continuous decision variables [1]. Without assumptions such
as convexity, differentiability and continuity, traditional tech-
niques including linear programming, non-linear program-
ming, and interior point method may not handle these
problems well [2]-[4]. In addition, the performance of these
methods is highly affected by the initial solution guess.

In view of the above issues, a variety of heuristic
optimization algorithms (HOAs) have been proposed to solve
OPF and ORPD problems [5], including e.g. genetic algo-
rithm (GA), [6], [7], evolutionary programming (EP) [8],
particle swarm optimization (PSO) [9], [10], differential
evolution (DE) [11], seeker optimization [12], mean-variance
mapping optimization (MVMO) [13], quantum-inspired evo-
lutionary algorithm (QEA) [14], etc. In practice, fast OPF

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiayong Li.

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

computation is needed for e.g. power flow management [15],
reactive source control of wind farm [13], and so on.
Therefore, it is practically valuable to develop highly effi-
cient HOAs to fulfill practical operation needs. In addition,
the OPF and ORPD formulations are becoming even more
complicated due to integration of renewable energies, which
also motivates applications of HOAs.

The major concerns of HOAs include the convergence
speed and control parameters selection. The former can be
enhanced by introducing exploitive recombination strate-
gies, but the robustness (i.e. the method should obtain
good solutions, in reasonable times and not too sensitive to
changes in parameters) of the algorithm may be compro-
mised accordingly. The latter can be handled by different
adaptive or self-adaptive mechanisms to shorten the tedious
trial-and-error procedure for fine tuning control parameters.
However, these adaptive or self-adaptive strategies can still
provide unsatisfactory parameters for practical applications,
where only limited numbers of function evaluations are
allowed due to the critical time requirement. For exam-
ple, the active or reactive power dispatch in power system
can be conducted in every 15 minutes, asking for a fast
optimization solution. Considering the above concerns, this
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paper proposes a novel adaptive range composite differential
evolution (ARCoDE) algorithm targeting at practical
applications such as the fast ORPD. The proposed ARCoDE
utilizes the concept of compositing different types of trial
vector generation strategies [16], which is able to provide a
decent balance for the algorithm between the exploration and
exploitation capabilities. In addition, a novel control param-
eter range adaptation mechanism is proposed to enable a
highly efficient adaptive tuning of control parameters. These
novel properties effectively support ARCoDE to conquer the
difficulties introduced by the limited numbers of function
evaluations due to the critical time requirements in many
practical applications including ORPD problem.

The rest of this paper is organized as follows. Section II
briefly introduces the basic formulation of ORPD problem.
Section III reviews the state-of-the-art techniques of DE
algorithms. The proposed ARCoDE algorithm is detailed in
Section IV. Experimental results are reported in Section V.
Finally, Section VI concludes this paper

Il. ORPD PROBLEM FORMULATION
The ORPD problem is a classical but complicated
mixed-integer non-linear optimization problem involving
many constraints and discrete/continuous decision variables.
In general, the application of HOAs to solve ORPD prob-
lems may be constrained by the relatively long convergence
time. In addition, the fine-tuning of control parameters needs
numerous amounts of trial-and-error tests. Moreover, due
to the uncertainties introduced by the increased penetration
of renewable energy generation including PV and wind
power [17], the solutions provided by HOAs are less likely
robust.

Typically, the ORPD problem aims at the minimization of
the total active power losses in transmission networks as,

Minimize : f o
- Z Ploss,k

ke(i.j)

ii[gl-,-(|v,-|2+|vj|2—2|v,-||V,-|cos(&-—8;))] (1)

i=1 j=1

where fp is the sum of active power loss and minimized in
terms of decision variables x and u; Py  is the active power
transmission loss for branch k; L is the number of transmis-
sion lines. x represents the control variables including volt-
ages at generation buses Vg, reactive power compensation of
the shunt capacitors and inductors Qc, and transformer tap
settings Qc,

x" =[Vg, Qc, T] )

and u denotes the dependent variables consisting of voltage
of load buses Vpg, generator reactive power outputs Qg and
transmission line flow i, defined as,

u' =[Vi, Qc, SL] A3)
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Constraints including the equality and inequality ones are
involved in ORPD problem. The equality constraints are
mainly non-linear power flow equations for power balance,
defined as,

Pg; —Pp, _PEIOSS =0, Og,—0p, _Qfloss =0,ieNg (4

where Pg, and Qg, are the injected active and reactive power
at bus i respectively, Pp, and QOp, represent the active and

. . . B B
reactive power demands. atbus irespectively, P, and Qi,l oss
are the active and reactive power losses at bus 7 respectively,
and Np is the total number of buses. The inequality con-

straints include,

ymin <y, <YM e Np, (5)
08" < Qg < Q8™, i€ Ng, (6)
O < Qc, < OF™, i€ Nc, (7)
TN < T; < T/, je Ny, ®)

S, < Sgax, i € N, &)

where constraints (5)—(9) define the limits for bus voltage V;,
reactive power generation Qg;, reactive power compensation
QOc;, transformer tap position 7; and branch power flow St ,,
respectively; Ng, Nc, and Nt denote the total number of
generator buses, shunt capacitors and inductors installation
buses, and transformer taps respectively.

Traditionally, the ORPD problem can be solved by clas-
sical optimization algorithms such as linear programming,
non-linear programming, and interior point method, however,
the results obtained can hardly become the genuine global
optimum due to the involved problem simplifications. In con-
trast, HOAs can be applied directly to solve the original for-
mulations without simplifications. In addition, HOAs are the
only category of methods that are capable of global optimal
search for mixed integer non-differentiable and non-convex
problems. However, the concerns of solution robustness and
computation time limit their practical applicability, and these
concerns are particularly attended in developing the proposed
ARCODE algorithm.

Ill. OVERVIEW OF DIFFERENTIAL EVOLUTION
The DE algorithm is a stochastic population-based optimiza-
tion algorithm for real-valued parameters and functions. The
core of DE is a scheme for generating trial solution vectors
by weighing the difference vector between two population
members and then adding that to a third member. If the
resulting vector yields a smaller objective value than its target
vector, it will be prioritized in the evolutionary optimization
process. The algorithm comprises the following four steps:
initialization, mutation, crossover, and selection.
Initialization: DE begins with a randomly initiated popu-
lation of NP D-dimensional real-valued vectors. The below
notation represents the ith vector of the population at
generation G:

x = [Xi1, X2, X3, - XiD| (10)
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Since each variable may have a certain range, the jth compo-
nent of the ith vector can be initialized as

Xij = x]mi“ + rand;; [0, 17 - (™ — x;“i“) (11)

Mutation: The DE mutation maintains the population
diversity and provides information necessary to steer the opti-
mization. One of the simplest DE mutation operators gener-
ates a mutated vector for each target vector X; of generation G,
according to

Vi=X, +F - (X, — Xpy), (12)

where ri, r», and r3 are distinct integers randomly chosen
from [1, NP] and different from i, F' is the mutation constant
controlling the amplification of the differential variation.
Crossover: To enhance the population diversity, the
mutated vector is then mixed with a predetermined target
vector to form the so-called trial vector, often referred to as
crossover. Specifically, the trial vector is formed as follows:

Ui = [ui1, ui2, -+ s uipl, (13)
where
i ifrand;;[0,1] < C [ =j
uij = {Vl’l 1t ran l][ 1= Crorj=jrana (14)
x;j otherwise
and jyang 1s an integer randomly chosen from [1,2, .-, D]

to ensure u;; receive at least one component from v; j. The
crossover constant Cr controls the population diversity.

Selection: This step determines whether the target or the
trial vector survive to the next generation according to,

yor _ | UP I < FXE)

= 15
{XiG otherwise, (15)

where f is the objective to be minimized. Equation (15)
ensures the fitness of the population can either improve or
remain the same, but never deteriorate.

Recognizing that DE performance depends on its trial
vector generation strategies and control parameter settings,
many DE variants have been proposed. With respect to the
trial vector generation strategies, Fan and Lampinen [18]
propose a trigonometric mutation operator to accelerate
the DE convergence. Their mutation operator enhances the
local search, since it moves the new trial vector toward
the best one of three individuals chosen for mutation.
Mezura-Montes et al. [19] propose a novel mutation operator
named “current-to-best/1”’, which incorporates the informa-
tion of the best solution in the current population and the
current parent to create a new trial vector. Feoktistov and
Janaqi [20] classify mutation operators into four categories
according to the way they use the objective function values.
It has been observed that “‘current-to-best/1”” strategy per-
forms poorly on exploring the search space when solving
multimodal problems. Recently, much effort has been made
to improve the performance of this strategy. Das et al. [21]
improve the “current-to-best/1”’ strategy by introducing a
local neighbourhood model, in which each vector is mutated
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by using the best individual solution found so far in its
small neighbourhood. Zhang and Sanderson [22] propose
the ““current-to-pbest/1” strategy. Instead of only adopting
the best individual in the “current-to-best/1” strategy, their
strategy also utilizes the information of other good solutions.
Moreover, the recently generated inferior solutions are incor-
porated in this strategy. Yong et al. [16] study the DE per-
formance of combine several effective trial vector generation
strategies with some suitable control parameter settings, and
propose a composite DE (CoDE) to randomly combine three
selected recombination strategies and three control parame-
ters settings to generate trial vectors.

Many attempts have also been made to improve the DE
convergence speed and robustness of solutions by tuning
the control parameters such as NP, F, and Cg. Storn and
Price [23] argue that the three parameters are not difficult
to set for good performance, suggesting NP € [5D, 10D],
F should be 0.5 as a good initial choice and FF < 0.4 or
F > 1.0 will lead to performance degradation, and Cg can be
set to 0.1 or 0.9. In contrast, in [24], it is shown that DE per-
formance is very sensitive to control parameters and suggests
NP € [3D, 8D], It is proved that F should not be smaller than
a problem-dependent threshold in order to prevent premature
convergence, and if F > 1.0, the convergence speed will
decrease. Therefore, a good initial ' be 0.6 and Cre [0.3, 0.9]
is suggested. Despite many different suggestions for control
parameters, consensus has been reached that F' € [0.4, 1.0],
and Cg should be either close to 1.0 or 0.0 depending on the
characteristics of problems.

Some smart adaptive strategies are developed to best tune
the control parameters during DE evolution. Two schemes
are introduced to adapt F, with one scheme varying F ran-
domly, and the other linearly reducing F from a predefined
maximal value [21]. A self-adaptive DE (jDE) is proposed
in [25], where both F and Cr are randomly tuned according to
certain probabilities. An adaptive differential evolution with
optional external archive (JADE) (proposed by Zhang and
Sanderson [22], utilizes normal and Cauchy distributions to
generate F' and Cg for each target vector, respectively. In addi-
tion, JADE makes use of recent successful F and Cg for
generating new ones. Unlike the above methods, self-adaptive
differential evolution (SaDE), proposed in [26], adaptively
adjusts its trial vector generation strategies and control
parameters simultaneously by learning from the previous
search.

IV. ADAPTIVE RANGE COMPOSITE DE FOR ORPD

As reviewed in Section III, different generation strategies for
trial vector and the control parameter tuning have been exten-
sively investigated. However, those methods are still found
unpromising when dealing with the practical ORPD problem
that demands fast speed as well as solution robustness. This
is mainly due to that ORPD in practice are conducted in
short time intervals just allowing limited numbers of func-
tion evaluations for those strategies to well adapt the trial
vector and control parameters. As such, this paper proposes
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TABLE 1. Pseudo-code of ARCoDE.

Input: NP: the number of candidates for each generation.
Max_FES: maximum number of function evaluations.
The strategy candidate pool: “DE/best/2/bin” and
“DE/rand/2/bin.
Initial ranges of the control parameters: F¢" = [0.7,0.9];
Fe =[0.5,0.7]; Cf" = [0.8,1]; Cf* = [0,0.2].
Initial probabilities of each range: Pgj¢, = Pgjc, = 0.5.
(1) G = 0; Initialize the candidate population Py, = {}?1_0, ,)?NP,O}
by uniformly sampling within the feasible region;
(2) Calculate the objective values for all the candidates

f()?l,o): lf()?NP,O);
Evaluate the constraint violation g()? 1'0), o, g()? NP,O);
(3) FES = NP;
(4) while FES < Max_FES do
(5) Poy1 = ¢;
(6) fori =1:NP do

(7)  Calculate parameter range probabilities per/et

F/Cr
(4.14) and update the success and fail memory. Then apply
Roulette Wheel selection to select the ranges;

(8)  Generate two candidate vectors i; ; ¢ and U; , ; for the target

using equation

X 1, based on the two candidate vector generation mechanisms
with control parameters determined according to the ranges
obtained by Step (7);

(9) Calculate the objective values and the constraint violation
values of the two candidates U; 4 ; and U; 5 ¢;

(10) Choose the best trial vector from the two trial vectors u; 1 ¢
and U; , ¢, and the target vector X 1,6 according to Deb’s
selection criterion;

(11) FES = FES +2;

(12) end for

13) ¢ =6 + 1;

(14) end while

Output: the candidate with the best objective function value or the

smallest constraint violation value in the population

a novel ARCoDE method aiming at efficiently solve fast
ORPD problem. The primary idea is to randomly combine
two trial vector generation strategies with two adaptive ranges
of control parameters at each generation in creating new trial
vectors.

Different from the original CoDE, the new algorithm
features a faster convergence while remains a consistent pop-
ulation diversity during evolutions. To allow fast convergence
given limited function evaluations, two trail vector generation
strategies including DE/best/2/bin and DE/rand/2/bin [23] are
employed in the study. Instead of setting specific values for
control parameters, explorative and exploitative ranges for F'
and Cp respectively are innovatively introduced in the pro-
posed algorithm. During the evolution process, the algorithm
gradually adapts the chosen probabilities and the sizes of
these ranges. At each generation, each trial vector generation
strategy from the strategy pool is used to create a new trial
vector with the algorithm control parameters chosen from
the ranges of F and Cg according to its feedback proba-
bility. Accordingly, two trial vectors are generated for each
target vector. Then the best one enters the next generation
if it is better than its target vector. Table 1 presents the
pseudo-code of ARCoDE, details of which are illustrated
below.

20120

A. TRIAL VECTOR GENERATION STRATEGIES

To allow fast convergence, the greedy combination strategies
that benefit from their fast convergence by incorporating
the best solution information in the evolutionary search are
considered. Consequently, the DE/best/2/bin is selected as
one of the candidate recombination strategies in the pool.
However, such strategy may easily lead the evolutionary of
the population to local optimum. To prevent the premature
convergence by such a greedy strategy, the DE/rand/2/bin
strategy is also included to further enhance the explorative
capability of the proposed algorithm. In the DE/rand/2/bin,
two difference vectors are added to the base vector, which
might lead to better perturbation than the strategies with only
one difference vector e.g. DE/rand/1/bin.

B. CONTROL PARAMETER ADAPTATION

As discussed above, solving ORPD problems in practice may
need limited function evaluations for fast convergence. The
existing adaptive strategies e.g. jDE, JADE, and SaDE can
hardly guarantee to gauge suitable values for F and Cg in
such a small number of function evaluations. Instead, it is
more promising to evolve suitable ranges for these control
parameters during the iteration process. In general, a large F
can make the mutant vectors distributed widely in the search
space and can increase the population diversity. In contrast,
a small F makes the search focus on neighborhoods of the
current solutions, thus speeding up the convergence. On the
other side, a large Cr makes the trial vector very different
from the target vector, since the trial vector will inherit little
information from the target vector. Consequently, the diver-
sity of the offspring population can be maintained. A small
Cr is very suitable for separable problems, since in such case
the trial vector may be different from the target by only one
component.

Motivated by the above observations, explorative and
exploitative ranges for F' and Cg, respectively are defined
in this paper based on the characteristic of these control
parameters, defined as follow,

Explorative range of F : F¢ =[0.7,0.9], (16)
Exploitative range of F : F¢ =10.5,0.7], a7
Explorative range of C, : C;" =[0.8, 1], and (18)
Exploitative range of C, : C¢' = [0, 0.2]. (19)

The initial probabilities of applying different range to each
individual are set to 0.5, i.e. P;r/éi = 0.5. Therefore, each
range has equal probability to be applied to every individual in
the initial population. According to the probability, Roulette
Wheel selection is applied to select the range for each indi-
vidual in the current population. Thereafter, an F'/C, value
will be randomly selected within this range and assigned to
the corresponding individual. After evaluation of all newly
generated trial vectors, the number of trial vectors gener-
ated by different ranges while successfully entering the next

generation is recorded as NS ;r//g and the numbers of trial
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. . t
vectors discarded is recorded as NS ;r/ gr. These numbers are

accumulated within a specified number of generations, call
the learning period. Then the probability is updated as:

er/et
P p— 20)
r er/et er/et
NSF/C, +NFF/C,

which represents the percentage of the success rate of trial
vectors generated by each range during the learning period.
Therefore, the probabilities of applying each range are
updated every generation, after the learning period. When
the evolutionary process reaches a pre-defined set point,
the range with lower percentage of success rate is discarded
and the range with higher percentage of success rate will be
split in half, and then the above operation is repeated with this
new range. This adaptation procedure is capable to gradually
evolve suitable ranges for F and Cg within a relatively small
number of function evaluations.

C. CONSTRAINT HANDLING
In this work, the constraint handling methods are applied
based on superiority of feasible solutions proposed by
Deb [27]. Deb’s selection criterion has no parameter to fine-
tune, which is one of the main motivation of our work—no
fine-tuning of parameters as much as possible. Hence, this
constraints handling technique is incorporated as follows:
During the selection procedure, the vector A is compared to
vector B in the current population considering both the objec-
tive value and constraint violations. Vector A will replace
vector B and enter the population of the next generation if
any of the following conditions is true.
1) Vector A is feasible and vector B is not.
2) Vectors A and B are both feasible and vector A has
smaller objective value than vector B.
3) Vectors A and B are both infeasible, but vector A has a
smaller overall constraint violation.

V. NUMERICAL RESULTS

The 41-bus offshore wind power plant (WPP) ORPD test
case in the 2014 IEEE Competition on “Application of Mod-
ern Heuristic Optimization Algorithms for Solving Optimal
Power Flow Problem” is used to study the performance of the
proposed ARCoDE. This test case consists of 18 continuous
variables associated to wind generator reactive power set-
points, 2 discrete variables associated to stepwise adjustable
on-load transformers’ tap position, a discrete variable defin-
ing the stepwise adjustment of a regulated capacitor, and
a continuous variable defining the adjustment of reactor.
In the fast ORPD problem, the reactive power requirements
corresponding to the actual operating condition are defined
as stepwise changes of reactive power requirements (qref)
results in 96 scenarios, some of which turn out to be hard-
to-solve optimization tasks. According to (1)—(9), the target
of the problem is to minimize the total active power transmis-
sion losses while fulfilling constraints, given limited numbers
of function evaluations. The WPP ORPD problem contains
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96 scenarios, among which the 13 most challenging scenarios
are selected for the test purpose in this paper. These 13 sce-
narios are particularly selected since their feasible solutions
can hardly be found by those award-winning algorithms in
the competition. The topology of the offshore WPP system is
shown in Fig. 1, and a detailed description of test cases and
the competition results can be found in [28].

. 18xSMW DFIG Wind Turbines ___

GBEREER

074km 050km 058km 057km 057 km
220/110kV

3 288880
W aeges

075km 056km 054km 0.62km 054km 057 km

7.5kmlandcable  110/33KV
26.9 km submarine cable |

Gue  CONTROLLER
e X OPF I:
(every 15 min)
T

Reference value /== ding of WGs

FIGURE 1. The 41-bus offshore wind power plant (WPP) ORPD test
case [13], [28].

A. NUMERICAL RESULTS OF ARCODE ON THE TEST CASES
The test environment is a DELL Desktop Workstation with
Intel (R) Xeon (R) CPU E5-2650 v2 @2.60GHz RAM 64GB.
Table 2 shows the numerical results (including the best solu-
tions, objective values, the sum of constraint violations, and
the average computation time through 31 trials) obtained
by the proposed ARCoDE algorithm for the 13 test cases,
where WGi_Q represent the wind generator reactive power
set-points, and i = 1,2,---,18; OLTC_T; represent the
tap position of stepwise adjustable on-load transformers, and
Jj =1, 2; Cq represents the stepwise adjustment of capacitor;
Xshl represents the adjustment of reactor; obj_best repre-
sents the best objective value (power loss) according to (1)
obtained by ARCoDE, and gvar_best represents the best sum
of different constraint violations. It is observed that the com-
putation of each scenario is fairly fast for about 60s, reflected
by the average computational time.

B. COMPARISON WITH THE AWARD-WINNING
ALGORITHMS IN THE COMPETITION

The mean and standard deviation of fitness values (eval-
uated by the benchmark program provided by [28]) from
ARCOoDE are compared with those from the top 3 ranking
algorithms in the IEEE Competition on “Application of Mod-
ern Heuristic Optimization Algorithms for Solving Optimal
Power Flow Problem”, i.e. improved (i + A)-constrained
differential evolution (ICDE) [29], differential evolution par-
ticle swarm optimization (DEEPSO) [30] and MVMO. The
number of function evaluations in all these methods is set
to 10000 according to the competition rules. Such a short
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TABLE 2. Best Results Obtained by ARCoDE on the 13 Test Scenarios.

Scenario 50 51 52 53 54 55 56 75 76 77 78 79 80
WGI1_Q (MVar) 1.644 1.633 1.650 1.650 1.650 1.650 1.543 -1.546 | -1.650 | -1.650 | -1.650 | -1.650 | -1.650
WG2 _Q (MVar) 1.647 1.647 1.650 1.649 1.650 1.650 1.637 -1.604 | -1.650 | -1.650 | -1.650 | -1.650 | -1.650
WG3 _Q (MVar) 1.519 1.648 1.650 1.650 1.650 1.650 1.611 -0.891 | -1.650 | -1.650 | -1.650 | -1.650 | -1.650
WG4 Q(MVar) | 1.616 | 1.601 | 1.650 | 1.650 | 1.650 | 1.650 | 1.645 | -0.816 | -1.650 | -1.650 | -1.650 | -1.650 | -1.650
WGS5 Q(MVar) | 1.594 | 1.643 | 1.650 | 1.650 | 1.650 | 1.650 | 1.648 | -0.601 | -1.650 | -1.650 | -1.650 | -1.650 | -1.650
WG6 Q(MVar) | 1.643 | 1.571 | 1.650 | 1.650 | 1.650 | 1.650 | 1.641 | -0.394 | -1.650 | -1.650 | -1.650 | -1.650 | -1.650
WG7_Q (MVar) 1.616 1.650 1.650 1.650 1.650 1.650 1.607 -1.636 | -1.650 | -1.650 | -1.650 [ -1.650 | -1.650
WG8 _Q (MVar) 1.645 1.650 1.650 1.650 1.650 1.650 1.626 -1.222 | -1.650 | -1.650 | -1.650 | -1.650 | -1.650
WG9 _Q (MVar) 1.630 1.618 1.650 1.650 1.650 1.650 1.633 -1.543 | -1.650 | -1.650 | -1.650 | -1.650 | -1.650
WGI10 Q (MVar) | 1.626 1.649 1.650 1.650 1.650 1.650 1.603 -1.353 | -1.650 | -1.650 | -1.650 | -1.650 | -1.650
WGI1_ Q(MVar) | 1.612 | 1.639 | 1.650 | 1.650 | 1.650 | 1.650 | 1.620 | -1.141 | -1.650 | -1.650 | -1.650 | -1.650 | -1.650
WGI2 Q(MVar) | 1.628 | 1.633 | 1.650 | 1.650 | 1.650 | 1.650 | 1.555 | -1.100 | -1.650 | -1.650 | -1.650 | -1.650 | -1.650
WGI3 Q(MVar) | 1.615 | 1.645 | 1.650 | 1.650 | 1.650 | 1.650 | 1.640 | -0.907 | -1.650 | -1.650 | -1.650 | -1.650 | -1.650
WG14 Q (MVar) | 1.604 1.646 1.650 1.650 1.650 1.650 1.626 -1.541 -1.650 | -1.650 | -1.650 | -1.650 | -1.650
WGI15 Q (MVar) | 1.594 1.638 1.650 1.650 1.650 1.650 1.618 -1.507 | -1.650 | -1.650 | -1.650 | -1.650 | -1.650
WG16 Q (MVar) | 1.575 1.610 1.650 1.650 1.650 1.650 1.640 -1.378 | -1.650 | -1.650 | -1.650 | -1.650 | -1.650
WG17 Q (MVar) | 1.625 1.627 1.650 1.650 1.650 1.650 1.586 0.759 -1.650 | -1.650 | -1.650 | -1.650 | -1.650
WGI18 Q (MVar) | 1.606 1.643 1.650 1.650 1.650 1.650 1.567 -0.854 | -1.650 | -1.650 | -1.650 | -1.650 | -1.650
OLTC Tl 1.0993 | 1.0993 | 1.0993 | 1.0993 | 1.0993 | 1.0993 | 1.0993 | 0.9669 | 0.9669 | 0.9669 | 0.9669 | 0.9669 | 0.9669
OLTC_T2 0.8700 | 0.8700 | 0.8700 | 0.8700 | 0.8700 | 0.8700 | 0.8700 | 1.1083 | 1.1300 | 1.1300 | 1.1300 | 1.1300 | 1.1300
C,(MVar) -12.100 | -12.100 | -12.100 | -12.100 | -12.100 | -12.100 | -12.100 | -4.033 | -4.033 | -4.033 | -4.033 | -4.033 | -4.033
X1 (MVar) 0 0 0 0 0 0 0 9.8965 | 9.8965 | 9.8965 | 9.8965 | 9.8965 | 9.8965
obj _best (MW) 1.433 1.379 1.280 1.216 1.258 1.261 1.440 2.011 2.637 2.637 2.637 2.637 2.637
gvar_best 0 0 0 0 0 0 0 0 0 0 0 0 0
Computation time* | 64.128 | 63.910 | 64.522 | 64.085 | 64.294 | 65.230 | 66.425 | 55.990 | 66.266 | 65.469 | 63.703 | 63.221 | 66.484
(s)
*: The average value through 31 running trials
function evaluations makes it extremely difficult to find fea- 0 e
sible solutions of the complicated ORPD problem for HOAs. A
The experimental results are given in Table 3. All the 3 =
results are obtained from 31 independent trials. The last three "‘“ML
rows of Table 3 summarize the experimental results. On these 5

13 test scenarios, ARCoDE performs significantly better than
ICDE, which is developed by the authors previously. The per-
formance of ARCoDE and DEEPSO are quite similar. For test
scenarios 76 and 79, MVMO shows a better performance in
terms of optimality and robustness than the other 3 competi-
tors. However, it should be noted that the proposed ARCoDE
does not need a fine-tuning pre-defined control parameter
setting, which indicates a significant advantage over the other
three algorithms. In Table 3, “—"",”+”, and “~”* denote that
the performance of the corresponding algorithm is better than,
worsen than, and similar to that of ARCoDE. E.g. MVMO
wins ARCoDE in 3 scenarios, but loses in 1. They perform
similarly in the rest 9 scenarios out of the total 13. Notably,
ARCOoDE needs no local search operator that can add com-
putational complexities and is found existing in DEEPSO
and MVMO. In terms of the constraint handling, ARCoDE is
much simpler than ICDE, which utilizes the concept of multi-
objective optimization. The preference of feasible solutions
makes the constraint handling part of ARCoDE less compu-
tationally complex.

In summary, the proposed ARCoDE is better, or at least no
worse than the three competitors. The evolution of the mean
fitness values derived from ICDE, DEEPSO, MVMO, and
ARCODE versus the number of function evaluation is plotted
in Fig. 2 for some typical test scenarios.
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FIGURE 2. Evolution of the mean fitness value derived from modified
ICDE, DEEPSO, MVMO, and ARCoDE versus the number of FES on four test
cases.

C. COMPARISON WITH THREE STATE-OF-THE ART DE
ALGORITHMS

To demonstrate the effectiveness of the novel proposed adap-
tive range of control parameter settings, ARCoDE is also
compared with three other state-of-the-art adaptive DEs, i.e.,
jDE, JADE, and SaDE. In jDE, JADE, and SaDE, the control
parameters F and Cr are self-adapted during the evolution.
In our experiments, the same parameter setting is used for
these three methods as in their original papers. The number
of function evaluations in all these is 10000, and each method
is executed 31 times on each test cases. Table 4 summarizes
the experimental results.
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TABLE 3. Experiment Results of ICDE, DEEPSO, MVMO and ARCoDE Over 31 Independent Trials.

Scenario ICDE DEEPSO MVMO ARCoDE
Mean (Std) Mean (Std) Mean (Std) Mean (Std)
50 2.428E+04(4.567E+04) 1.422E+00(0.004E+00) 1.430E+00(0.016E+00) 1.437E+00(0.003E+00)
51 9.079E+04(1.096E+05) 1.373E+00(6.384E-04) 1.380E+00(0.010E+00) 1.382E+00(0.003E+00)
52 3.760E+05(2.803E+05) 1.280E+00(3.920E-05) 1.280E+00(5.043E-05) 1.280E+00(7.112E-06)
53 4.482E+05(2.999E+05) 1.216E+00(5.257E-05) 1.216E+00(7.427E-05) 1.216E+00(8.466E-06)
54 3.770E+05(2.412E+05) 1.258E+00(2.251E-05) 1.258E+00(2.719E-05) 1.258E+00(3.225E-06)
55 2.944E+05(1.089E+05) 1.261E+00(4.576E-05) 1.261E+00(4.534E-05) 1.261E+00(5.289E-06)
56 9.737E+03(2.293E+04) 1.428E+00(0.003E+00) 1.435E+00(0.016E+00) 1.445E+00(0.002E+00)
75 2.968E+01(1.471E+02) 7.550E+01(4.092E+02) 2.022E+00(0.003E+00) 2.0116E+00(5.296E-04)
76 3.895E+05(2.278E+05) 1.270E+06(5.761E+06) 2.637E+00(3.740E-08) 4.444E+05(2.328E+06)
77 3.281E+05(1.986E+05) 9.233E+05(5.118E+06) 2.637E+00(2.497E-08) 2.637E+00(1.796E-08)
78 3.186E+05(1.941E+05) 6.464E+05(3.600E+06) 7.086E+03(3.944E+04) 7.016E+04(3.841E+05)
79 2.937E+05(1.696E+05) 2.008E+04(1.118E+05) 2.637E+00(3.005E-08) 5.776E+05(3.002E+06)
80 3.341E+05(1.841E+05) 2.637E+00(7.478E-08) 2.637E+00(3.005E-08) 2.637E+00(1.356E-05)
- 0 3 3 N.A.
+ 13 2 1 N.A.
~ 0 8 9 N.A.
“Mean” and “Std” indicate the average and standard deviation of the function fitness values obtained in 31 runs, respectively. “-”,”+”, and “~” denote that the
performance of the corresponding algorithm is better than, worsen than, and similar to that of ARCoDE, respectively.
TABLE 4. Experimental Results of jDE, JADE, SaDE and ARCoDE Over 31 Independent Trials.
Senario jDE JADE SADE Adaptive range CODE
Mean (Std) Mean (Std) Mean (Std) Mean (Std)
50 3.579E+09(9.754E+08) 1.450E+03(1.987E+03) 9.291E+02(1.747E+03) 1.437E+00(0.003E+00)
51 4.299E+09(1.083E+09) 6.951E+05(1.200E+06) 2.044E+06(3.206E+06) 1.382E+00(0.003E+00)
52 4.777E+09(1.056E+09) 4.755E+06(90.96E+06) 9.533E+06(9.080E+06) 1.280E+00(7.112E-06)
53 4.761E+09(1.222E+09) 3.338E+06(7.740E+06) 6.235E+06(7.514E+06) 1.216E+00(8.466E-06)
54 5.103E+09(9.391E+08) 6.839E+06(1.012E+07) 1.011E+07(1.111E+07) 1.258E+00(3.225E-06)
55 4.665E+09(9.477E+08) 5.051E+06(9.511E+06) 5.490E+06(5.254E+06) 1.261E+00(5.289E-06)
56 3.725E+09(1.258E+09) 1.273E+03(1.743E+03) 1.039E+05(5.726E+05) 1.445E+00(0.002E+00)
75 1.174E+07(7.458E+06) 2.012E+00(3.834E-04) 2.012E+00(2.719E-04) 2.0116E+00(5.296E-04)
76 4.436E+07(5.195E+07) 2.402E+07(2.580E+07) 1.772E+07(1.498E+07) 4.444E+05(2.328E+06)
77 3.846E+07(1.541E+07) 1.595E+07(2.488E+07) 2.150E+07(2.570E+07) 2.637E+00(1.796E-08)
78 4.109E+07(2.084E+07) 1.981E+07(2.163E+07) 1.975E+07(2.334E+07) 7.016E+04(3.841E+05)
79 3.891E+07(2.575E+07) 2.005E+07(2.579E+07) 2.262E+07(3.546E+07) 5.776E+05(3.002E+06)
80 3.533E+07(1.624E+07) 1.809E+07(2.496E+07) 2.185E+07(2.537E+07) 2.637E+00(1.356E-05)
0 0 0 N.A.
+ 13 12 12 N.A.
~ 0 1 1 N.A.
“Mean” and “Std” indicate the average and standard deviation of the function fitness values obtained in 31 runs, respectively. “-”,”+”, and “~” denote that the

performance of the corresponding algorithm is better than, worsen than, and similar to that of ARCoDE, respectively.

Overall, ARCoDE significantly outperforms jDE, JADE,
and SaDE in terms of the optimality and robustness of solu-
tions. As the assumption described in Section IV, when deal-
ing with practical ORPD kind of problems, these adaptive
strategies may not guarantee to evolve to a satisfied con-
trol parameter setting within a limited numbers of function
evaluations. However, by relaxing the search criterion of
control parameters from a specific value to a range, ARCoDE
presents a promising application for fast ORPD problems.
The evolution of the mean fitness values derived from mod-
ified jDE, JADE, SaDE, and ARCoDE versus the number of
function evaluation is plotted in Fig. 3 for some typical test

scenarios.
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FIGURE 3. Evolution of the mean fitness value derived from jDE, JADE,
SADE, and ARCoDE versus the number of FES on four test cases.

D. COMPARISON WITH FOUR VARIANTS OF CODE

The proposed ARCoDE is also compared with four variants
of CODE with different trial vector generation strategies.

VOLUME 9, 2021

For each variant, we attempt to provide a good balance
between their exploration and exploitation ability by merg-
ing the greedy generation strategies (i.e., DE/best/2/bin, DE/
current-best) and explorative-oriented generation strategies
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TABLE 5. Experimental Results of Four Variants of CODE and ARCoDE Over 31 Independent Trials.

Senario | Original CODE CODE (Best/2/, rand/2/, | CODE (Rand/2/, CODE (Best/2/, current- | Adaptive range CODE
Mean (Std) current-rand) current-best) rand) (best/2/, rand/2/)
Mean (Std) Mean (Std) Mean (Std) Mean (Std)

50 8.561E+06(2.107E+07) | 2.203E+06(8.913E+06) | 2.849E+07(6.614E+07) | 7.144E+06(1.680E+07) 1.437E+00(0.003E+00)
51 2.844E+07(5.167E+07) 1.344E+07(3.028E+07) 1.943E+07(4.309E+07) | 3.463E+07(8.172E+07) 1.382E+00(0.003E+00)
52 3.438E+07(8.116E+07) | 2.540E+07(4.201E+07) | 2.878E+07(4.536E+07) | 4.472E+07(8.200E+07) 1.280E+00(7.112E-06)
53 5.258E+07(1.085E+08) 1.967E+07(1.944E+07) 1.577E+08(1.763E+08) | 3.723E+07(8.293E+07) 1.216E+00(8.466E-06)
54 3.955E+07(5.350E+07) | 3.654E+07(8.163E+07) | 8.834E+07(1.471E+08) | 3.834E+07(8.164E+07) 1.258E+00(3.225E-06)
55 4.816E+07(6.290E+07) | 2.953E+07(8.284E+07) | 3.790E+07(5.516E+07) | 3.223E+07(4.977E+07) 1.261E+00(5.289E-06)
56 9.971E+06(.3759E+07) 1.067E+07(3.714E+07) | 3.056E+07(7.468E+07) | 2.033E+06(8.237E+06) 1.445E+00(0.002E+00)
75 1.032E+06(5.749E+06) 1.726E+06(9.612E+06) | 2.052E+06(9.303E+06) | 7.860E+04(4.374E+05) 2.0116E+00(5.296E-04)
76 1.260E+08(1.531E+08) 1.497E+08(2.562E+08) | 2.175E+08(2.430E+08) 1.293E+08(1.567E+08) 4.444E+05(2.328E+06)
77 2.286E+08(4.301E+08) 1.170E+08(1.413E+08) | 2.187E+08(3.059E+08) 1.151E+08(1.389E+08) 2.637E+00(1.796E-08)
78 1.724E+08(2.848E+08) 1.405E+08(1.577E+08) | 2.452E+08(2.407E+08) 1.399E+08(1.724E+08) 7.016E+04(3.841E+05)
79 1.253E+08(2.418E+08) 1.698E+08(2.839E+08) | 2.126E+08(2.676E+08) | 6.824E+07(8.234E+07) 5.776E+05(3.002E+06)
80 1.746E+08(2.053E+08) 1.551E+08(2.293E+08) | 2.348E+08(3.178E+08) 1.650E+08(2.473E+08) 2.637E+00(1.356E-05)
- 0 0 0 0 N.A.

+ 13 13 13 13 N.A.

~ 0 0 0 0 N.A.

“Mean” and “Std” indicate the average and standard deviation of the function fitness values obtained in 31 runs, respectively. “-”,”+”, and “~” denote that the

performance of the corresponding algorithm is better than, worsen than, and similar to that of ARCoDE, respectively.

TABLE 6. Comparison of ARCoDE with Respect to ICDE, DEEPSO, MVMO,
jDE, JADE, and SaDE in Terms of Feasible Rate.

Scenario Feasible rate (%)
ICDE |DEEPSO|MVMO | jDE | JADE | SADE |ARCODE
50 25.8 100 100 0 645 | 774 100
51 6.5 100 100 0 742 | 58.1 100
52 0 100 100 0 77.4 0 100
53 0 100 100 0 83.9 0 100
54 0 100 100 0 67.7 0 100
55 0 100 100 0 77.4 0 100
56 32.3 100 100 0 64.5 | 677 100
75 93.5 96.8 100 100 [ 100 100 100
76 0 87.1 100 0 29.0 0 93.5
77 0 93.5 100 0 54.8 0 100
78 0 96.8 96.8 0 38.7 0 90.3
79 0 96.8 100 0 35.5 0 87.1
80 0 100 100 0 35.5 0 100

(i.e., DE/rand/2/bin, DE/current-rand). 31 trials were carried
out on 13 test scenarios. The number of function evaluations
in all these methods is set to 10000. As shown in Table 5,
the proposed ARCoDE shows its significant advantages over
the typical CODE so as its variants in terms of the optimality
and the robustness of solutions. The experimental results
demonstrates once again the better applicability of ARCoDE
for OPRD problems.

E. COMPARISON IN TERMS OF FEASIBLE RATE

As described in Section II, the ORPD problem involves a
lot of equality and inequality constraints. Therefore, it is
crucial for HOAs to provide stable feasible solutions i.e.
candidate solutions fulfilling all constraints, when dealing
with the ORPD problem. In terms of rate of feasible solutions,
ARCOoDE is compared against 6 methods as shown in Table 6.
For all the test scenarios, the feasible rates are obtained
through 31 trials. It can be seen from Table 6, ARCoDE gets
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100% feasible rate for 10 of the 13 test scenarios. The feasible
rate performance of ARCoDE is only worse than MVMO for
scenario #76, 78, and 79, and superior to the other methods
for all scenarios. It should be pointed out that ARCoDE
does not need a fine-tuned control parameter setting for trial
vector generations. In addition, the constraint handling part of
ARCODE involves no pre-defined parameter settings. These
characteristics indeed enables the ease of its application in
many practical problems.

In summary, the overall performance of ARCoDE is highly
competitive with the six methods compared. It is therefore
convinced that the proposed ARCoDE can provide superior
optimization performance for ORPD problems.

VI. CONCLUSION
Many attempts in using HOAs for solving ORPD problems
have been reported in the literature. These experiences reveal
that for solving fast OPRD problem, a faster convergence
and the robustness of solution should be provided by a
well-designed HOAs. The novel ARCoDE algorithm, pro-
posed in this paper, represents one of the first attempts along
this direction. It employs two trail vector generation strategies
and a novel control parameter range adaptation strategy. The
structure of ARCoDE is simpler and it is easier to implement.
The experimental studies in this paper are carried out on the
benchmark test cases of IEEE Competition on “Application
of Modern Heuristic Optimization Algorithms for Solving
Optimal Power Flow Problems”. The proposed ARCoDE is
compared with the three award winning algorithms and three
state-of-the-art adaptive DE algorithms. The experimental
results demonstrate the overall performance of ARCoDE is
better, or at least no worse than the other award winning
algorithms. In addition, the effectiveness of the combination
of the selected trial vector generation strategies and the novel
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proposed adaptive range of control parameters is experimen-
tally studied. The experimental results show that the fast
convergence rate and the robustness of ARCoDE make it
promising for solving fast ORPD problems.
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