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ABSTRACT 

Powder compaction is an important technique for fabricating engineering materials as it offers 

good resolution and is compatible with complex stoichiometry and geometries. It forms the 

basis of important manufacturing processes such as powder bed 3D printing, powder 

metallurgy and metal injection moulding. However, a major disadvantage is that the presence 

of porosity in the resultant material can lead to a drastic deterioration of its mechanical 

properties. To improve the stiffness and strength of these powder compacts, it is imperative to 

pinpoint the main cause of these weakening effects. Here, we attempt to do so by examining 

the mechanics of different topologies that the microstructures of powder compacted materials 

can adopt. General structure – property relationships were first derived for (i) compression/ 

stretch – dominated (CD) (ii) compression, shear and bending (CSB) and (iii) compression, 

shear and joint rotation (CSR) topologies, for the range of relative densities between 0 and ~ 

0.9. Using the Face-Centered Cubic (FCC), Body-Centered Cubic (BCC) and 3D Anti-

Tetrachiral (3ATC) geometries to represent the CD, CSB and CSR topologies respectively, the 
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analytical and simulated relative stiffness vs. relative density and relative strength vs. relative 

density trends were compared against experimental data in the literature. It was found that the 

mechanical properties of powdered materials typically fall within an exclusive range of values 

exhibited by the 3ATC lattice, which is much lower than that expected of FCC and BCC lattices. 

A closer examination of the analytical equations indicated that the low modulus of 3ATC 

lattices and powder compacted materials is caused by joint (i.e. particulate) rotation, while their 

weak strength is the result of thin beams, which manifest as narrow neck-like interparticle 

connections in powder compacted materials. These results are supported by previous studies, 

which showed that powder compacted materials have eccentric microstructures similar to 

3ATC unit cells and the compression of granular material usually results in extensive 

particulate rotations. Higher coordination number of the particles is expected to reduce these 

rotations, thus illuminating the strategy for improving the modulus of powder compacted 

materials. The material strength, on the other hand, has already been shown to improve with a 

thickening of the neck regions, which can be achieved through higher sintering temperature, 

compressive pressure and/ or longer compaction time.     
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1. INTRODUCTION 

Cellular solids are an important class of engineering materials because they offer unique 

combinations of properties such as lightweight characteristics [1–3], good load bearing 

capabilities [4–6] and excellent energy absorption efficiencies [7–9]. Low relative density (< 

20%) materials are often used as acoustic [10] and shock absorbers [7,8,11] or space frames 

for buildings and vehicular bodies [4,12,13]. On the other hand, large relative density cellular 

solids (≥ 0.2) possess moderate stiffness and strength, as well as energy absorption 

characteristics that lie between the extremes of solid and low relative density materials [14–

17]. These materials are important for applications such as biomedical implants used in 

reconstructive surgery [18–20] and tissue engineering [21].  

There are several methods of producing porous cellular materials, including direct 

foaming (introduction of air/ gas bubbles) [16,22,23], dealloying of solid solutions (selective 

dissolution of one metal in an alloy to form pores) [24,25], 3D printing (layer by layer addition 

of material at precise spatial positions) [26–30] and powder compaction, where loose particles 

in the form of fine powder are fused together to form a desired geometry through the application 

of heat and/ or pressure [6,31,32]. Spacer particles, which are removed in a subsequent 

processing step, can be added to the functional particles to increase the porosity of the part [21].  

Powder compaction is an important technique that forms the basis of processes such as 

metal injection moulding [33], powder metallurgy [34,35], hot isostatic pressing [36,37] and 

powder bed 3D printing, which includes selective laser sintering (SLS) [26,38], selective laser 

melting (SLM) [39] and electron beam melting (EBM) [27]. In powder bed 3D printing, 

selective regions in a thin layer of powder are made to coalesce using intense heat generated 

by a laser or electron beam. By successively depositing and sintering/ melting powder layers, 

a coherent 3D part can be produced.  
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Powder compaction can be used to produce parts with complex geometries [26], 

intricate details (i.e. fine resolution) [33] and complicated stoichiometry [38]. One major 

drawback, however, is a rapid deterioration of the mechanical properties of the parts in the 

presence of porosity [32]. For instance, the ultimate tensile strength of thermoplastic 

polyurethane (TPU) powder sintered using SLS was found to fall by 72% when the relative 

density decreased by 8%, from 0.95 to 0.87 [40]. Because of this, functional components 

produced by powder compaction are currently limited to solid parts that have been densified to 

relative densities greater than 95% [33].  

To fully exploit the advantages of powder compaction for the production of porous 

materials, the mechanical properties of these parts have to be improved significantly. An 

important first step towards this end is to identify the root cause behind these inferior 

mechanical properties which, despite decades of powder compaction research, remains unclear. 

In the following, we seek to clarify this by considering the various microstructure topologies 

that powder compacted materials can adopt. The mechanical properties of these topologies are 

then examined through analytical and numerical means, before comparing them against 

experimental values reported in the literature to gain useful insights. 
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2. GENERAL MODEL 

The physical and mechanical properties of powder compacted materials will be 

examined in this section. We begin by considering the 3 basic types of geometries the 

microstructures can adopt. These topologies are named according to the deformations that the 

microstructure experiences in the presence of a load – (i) the compression-dominated (CD) 

design (also known as stretch-dominated design) (ii) the compression, shear and bending (CSB) 

design and (iii) compression, shear and joint rotation (CSR) design. General structure-property 

relationships for the 3 topologies will first be derived. These analytical equations are expected 

to be valid for /s ≤ 0.9, beyond which pore morphologies and variations in local density are 

expected to supersede the importance of beam arrangements in determining lattice mechanics 

[15,41,42].  

To validate our analysis, specific geometrical parameters for the Face-Centered Cubic 

(FCC; also commonly known as Octet Truss [4,43]) (Fig. 1a), Body-Centered Cubic (BCC) 

(Fig. 1b) and 3D Anti-Tetrachiral (3ATC) (Fig. 1c) lattices will be applied to the general 

solutions of the CD, CSB and CSR topologies respectively. These geometry-specific analytical 

solutions will then be compared to data obtained from finite element simulations (COMSOL 

5.3a), as well as experiments from the literature, in the next section, under “Results”. FCC 

<111>, BCC <100> and 3ATC <100> lattices were selected to represent the various topologies 

as these geometries and orientations had previously been observed in self-assembled particles 

[44–46]. Since the packing of the particles is a primary factor in determining the microstructure 

of powder compacted materials, these geometries are, therefore, more relevant to the present 

study.  
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Figure 1: Schematic diagrams showing the arrangement of powder compacted particles, as well 

as the corresponding idealized unit cell and idealized lattice designs for the (a) Face-Centered 

Cubic (FCC)/ Octet Truss <111> packing geometry; representative of the CD topology (b) 

Body-Centered Cubic (BCC) <100> packing geometry; representative of the CSB topology (c) 

3D Anti-Tetrachiral (3ATC) <100> packing geometry; representative of the CSR topology. 

The white dotted lines in the leftmost diagrams represent the lines of action for external forces, 

while the black lines indicate the locations where the particles join up with their other 

neighbours.  

 

2.1 Relative Density 

The unit cells considered in this analysis are 3D, symmetric about the 3 cartesian axes 

and consist of beams and joints arranged within a space of L  L  L (Fig. 1). The volume of 
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each joint is proportional to t  t  t, while the length of each beam is proportional to (L - t), 

where  is a constant that can be calculated based on the lattice geometry. For instance, in the 

case of the BCC structure, the length of the beam is approximately √3𝐿 − 2𝑡 and therefore, 

𝛾 = 2/√3. The cross-section of the beam is proportional to t  t for the CD and CSB topologies 

and (t – e)  (t – e) for the CSR topology. The relative density, /s, of the CD and CSB 

geometries can then be given by [4]  

𝜌

𝜌𝑠
= 𝐴 [(

𝑡

𝐿
)

2

− 𝐷 (
𝑡

𝐿
)

3

],    (1) 

where A and D are constants that can be derived from the geometry of the unit cell (Table 1). 

For the CSR topology, the relative density can similarly be derived to be [9,47] 

𝜌

𝜌𝑠
= 𝐴 (

𝑡

𝐿
−

𝑒

𝐿
)

2

(1 − 𝛾
𝑡

𝐿
) + 𝐷 (

𝑡

𝐿
)

3

.    (2) 

Table 1: Properties of the lattices used for analytical calculations and finite element simulations. 

The relative density of the FCC/ Octet Truss and BCC lattice was modulated by varying t/L, 

while that for the 3ATC was varied using different L and e separately. The Poisson’s ratio used 

was ν ~ 0.4 for all designs. 

Design 
Coordination 

Number 
Loading A D  e t L 

FCC/ 

Octet 

Truss 

12 

Symmetric 

17 1.18 1.41 - - - 

BCC 8 6.9 0.87 1.15 - - - 

3ATC 6 Eccentric 6 1 1 
1.5 3 vary 

vary 3 0.6 

 

2.2 Compression/ Stretch-Dominated (CD) Topology 

2.2.1 Relative Stiffness 
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 Under the influence of a load, a material would, at the minimum, be subjected to 

compressive/ tensile deformation. The compressive strain, stretch, can be derived using 

𝜀𝑠𝑡𝑟𝑒𝑡𝑐ℎ =
𝛥𝑏+𝛥𝑗

𝐿
   ,     (3) 

where b refers to the displacement in the beams parallel to the loading axis (e.g. section b in 

Fig. 1) and j refers to the displacement in the joint region (e.g. section j in Fig. 1). Because 

the effective loading area at section j is typically much larger than that at section b, therefore, 

as a first order approximation, we assume Δb >> Δj to simplify the calculations. From Fig. 1, 

Δb can be calculated as 

     𝛥𝑏 ∝
𝐹(𝐿−2𝑡)

𝑡2𝐸𝑠
,     (4) 

where F is the force on a unit cell and Es is the Young’s modulus of the constitutive material 

of the structure. 

 Since the stiffness of the overall structure, E, is given as 

𝐸 =
𝜎

𝜀𝑠𝑡𝑟𝑒𝑡𝑐ℎ
,     (5) 

and the effective stress on the structure, , is F/L2, Eq. (5) can be rearranged to give the 

material-independent parameter of relative stiffness, E/Es, as 

𝐸

𝐸𝑠
=

1

𝑘𝑠𝑡𝑟𝑒𝑡𝑐ℎ[
1

(
𝑡
𝐿

)
2 − 

2

(
𝑡
𝐿

)
]

   ,    (6) 

where kstretch is a constant. If we impose the condition that E/Es = 1 when ρ/ρs = 1, kstretch can be 

found. As an example, using Eq. (1) and the values of A and D for the FCC/ Octet Truss 

structure (Table 1), it can be observed that ρ/ρs = 1 when t/L = 0.303. For this value of t/L, E/Es 

= 1, so that Eq. (6) yields kstretch = 0.233. 
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2.2.2 Relative Strength 

 Under uniaxial loading, some beams in a compression – dominated structure may 

nevertheless exhibit limited buckling (Fig. 2a and 2b) [42]. These deformations do not 

influence the relative stiffness appreciably at small strains. However, the bending stress, σbend, 

has to be accounted for when considering the failure stress of the structure, f, since its 

magnitude can be similar to that of compressive/ tensile stresses, σstretch. Since σstretch and σbend 

are applied along the length of a beam and are parallel to each other, the structure will begin to 

fail when the sum of these stresses exceeds the yield/fracture stress of the constitutive material, 

s. In other words, 

    𝜎𝑠 = 𝜎𝑠𝑡𝑟𝑒𝑡𝑐ℎ,𝑓 + 𝜎𝑏𝑒𝑛𝑑,𝑓,    (7) 

where     𝜎𝑠𝑡𝑟𝑒𝑡𝑐ℎ,𝑓 = 𝛼𝑠𝑡𝑟𝑒𝑡𝑐ℎ
𝐹𝑓

𝑡2      (8) 

and    𝜎𝑏𝑒𝑛𝑑,𝑓 = 𝛼𝑏𝑒𝑛𝑑
𝐹𝑓(𝐿−𝛾𝑡)

𝑡3 .    (9) 

stretch and bend are proportionality constants and Ff refers to the critical force required to 

induce failure in the structure. Since 𝐹𝑓 = 𝜎𝑓𝐿2, therefore, the relative strength, f/s, can be 

derived as 

𝜎𝑓

𝜎𝑠
=

1

(𝛼𝑠𝑡𝑟𝑒𝑡𝑐ℎ−𝛾𝛼𝑏𝑒𝑛𝑑)

(𝑡/𝐿)2 +
𝛼𝑏𝑒𝑛𝑑
(𝑡/𝐿)3

,    (10) 

2.2.3 Low Relative Density 

At low relative densities (i.e. t/L << 1), Eq. (1) reduces to 

𝜌

𝜌𝑠
∝ (

𝑡

𝐿
)

2

.     (11) 

For the relative stiffness shown in Eq. (6), 1/(t/L)2 >> 1/ (t/L), so  
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𝐸

𝐸𝑠
∝  (

𝑡

𝐿
)

2

   ,     (12) 

which, from Eq. (11), is equivalent to  

𝐸

𝐸𝑠
∝  

𝜌

𝜌𝑠
  .     (13) 

This result is consistent with that of previous analyses conducted for low relative density FCC/ 

Octet Truss structures [4,12]. 

Similarly, for Eq. (10), the buckling term, αbend/(t/L)3, dominates in the denominator so 

that  

𝜎𝑓

𝜎𝑠
∝ (

𝑡

𝐿
)

3

     (14) 

which can be re-written as   

  
𝜎𝑓

𝜎𝑠
∝ (

𝜌

𝜌𝑠
)

1.5

     (15) 

It should be noted from Eq. (10), however, that the t/L and therefore, ρ/ρs, required to observe 

the above result depends on the relative magnitude of the coefficients, αstretch – γαbend, and αbend. 

The greater the value of (αstretch – γαbend)/ αbend , the smaller ρ/ρs will have to be for the buckling 

term, αbend/(t/L)3, to dominate. Based on literature reports, it would appear that (αstretch – γαbend)/ 

αbend is generally a large value, as the result in Eq. (15) had, thus far, only been observed for 

ρ/ρs ≤ 0.002 [3]. 
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Figure 2: (a) Schematic illustration of part of the FCC structure (a.k.a. Octet Truss) undergoing 

compression/ stretch - dominated deformation. Red arrows represent the external forces acting 

on the structure, while green arrows highlight the regions under compression due to the 

buckling of the beams. (b) Simulation result (COMSOL 5.3a) showing the stress distribution 

of a 2D slice within an FCC structure undergoing uniaxial compression. The green arrows 

highlight the elevated bending stresses as expected. Note that the horizontal beams cannot be 

seen here as they are out of plane. A.U. – Arbitrary Units. 

 

2.3 Compression, Shear & Bending (CSB) Topology 

2.3.1 Relative Stiffness 

 On top of compression, a unit cell under load can also experience bending deformation 

with accompanying shear strain. The mechanics of beam bending in lattices with small relative 

densities had been analysed by Gibson and Ashby previously [41], and it was shown that the 

effective lattice strain in these bending - dominated structures, bend, can be expressed as 

𝜀𝑏𝑒𝑛𝑑 ∝
𝐹(𝐿−𝛾𝑡)3

𝐸𝑠𝐼𝐿
,     (16) 

where I is the second moment of area, which is proportional to t4. 

 For short and thick beams that are usually present in large relative density lattices, the 

lattice strain caused by shear stresses, shear, may not be negligible, and is derived using the 

Timoshenko beam theory to be [48,49] 

𝜀𝑠ℎ𝑒𝑎𝑟 ∝
𝐹(𝐿−𝛾𝑡)

𝐸𝑠𝑡2𝐿
.     (17) 

 The tensile/ compressive lattice strain caused by F on the lattice is given previously in 

Eq. (2) – Eq. (4). The stiffness of a CSB structure, E, can therefore be expressed as 

𝐸 =
𝜎

𝜀𝑏𝑒𝑛𝑑+𝜀𝑠ℎ𝑒𝑎𝑟+𝜀𝑠𝑡𝑟𝑒𝑡𝑐ℎ
  ,    (18) 

which can be re-written as 
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𝐸

𝐸𝑠
=

1

𝐶𝑏𝑒𝑛𝑑+𝐶𝑠ℎ𝑒𝑎𝑟+𝐶𝑠𝑡𝑟𝑒𝑡𝑐ℎ
  ,    (19) 

where   𝐶𝑏𝑒𝑛𝑑 = 𝑘𝑏𝑒𝑛𝑑

(1−𝛾
𝑡

𝐿
)

3

(
𝑡

𝐿
)

4    ,    (20) 

𝐶𝑠ℎ𝑒𝑎𝑟 = 𝑘𝑠ℎ𝑒𝑎𝑟(1 + 𝜈) [
1

(
𝑡

𝐿
)

2 −
𝛾

(
𝑡

𝐿
)
],    (21) 

and   𝐶𝑠𝑡𝑟𝑒𝑡𝑐ℎ = 𝑘𝑠𝑡𝑟𝑒𝑡𝑐ℎ [
1

(
𝑡

𝐿
)

2 −
2

(
𝑡

𝐿
)
].   (22) 

kbend, kshear and kstretch are the proportionality constants for bending, shearing and 

tensile/compressive contributions respectively and ν refers to the Poisson’s ratio. Previous 

findings for foams and lattices of similar topology at low relative densities (i.e. t/L << 1) 

showed that E/Es = (/s)
2 [2,3,11], and therefore, 

𝑘𝑏𝑒𝑛𝑑 = 1/𝐴2     (23) 

If it can be assumed that E/Es = 1 when ρ/ρs = 1, which occurs when t/L = 0.511 for the BCC 

lattice, then the relationship between kstretch and kshear can be obtained as 

𝑘𝑠𝑡𝑟𝑒𝑡𝑐ℎ = 10 [
0.978

𝐴2
+ 1.55(1 + 𝜈)𝑘𝑠ℎ𝑒𝑎𝑟 − 1]  .   (24) 

 

2.3.2 Relative Strength 

 The most likely points of failure for CSB structures are the beam surfaces in the sections 

subjected to the highest bending moments (e.g. encircled region in Fig. 3). A beam element at 

these locations experiences the maximal bending stress, a compressive stress in a perpendicular 

direction, as well as shear stress (Fig. 3). The principal stresses, P1 and P2, can therefore be 

expressed as [50] 
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𝜎𝑃1,𝑃2 = 𝜎𝑏𝑒𝑛𝑑 [
1

2
(1 +

𝜎𝑠𝑡𝑟𝑒𝑡𝑐ℎ

𝜎𝑏𝑒𝑛𝑑
) ± √[

1

2
(1 −

𝜎𝑠𝑡𝑟𝑒𝑡𝑐ℎ

𝜎𝑏𝑒𝑛𝑑
)]

2

+ (
𝜎𝑠ℎ𝑒𝑎𝑟

𝜎𝑏𝑒𝑛𝑑
)

2

],  (25) 

where     𝜎𝑏𝑒𝑛𝑑 = 𝛼𝑏𝑒𝑛𝑑
𝐹𝑡(𝐿−𝛾𝑡)

𝐼
,    (26) 

𝜎𝑠ℎ𝑒𝑎𝑟 = 𝛼𝑠ℎ𝑒𝑎𝑟
𝐹

𝑡2,     (27) 

and    𝜎𝑠𝑡𝑟𝑒𝑡𝑐ℎ = 𝛼𝑠𝑡𝑟𝑒𝑡𝑐ℎ
𝐹

𝐿𝑡
.     (28) 

 refers to the proportionality constant for the deformation mode denoted in the subscript.  

Since material failure occurs when σP1 ≥ σs, using the Tresca criterion [51] and noting 

that the effective force causing lattice failure is F = σfL
2, the relative strength of a CSB structure 

can be expressed as 

𝜎𝑓

𝜎𝑠
= 𝛼𝑏𝑒𝑛𝑑

(
𝑡

𝐿
)

3

1−𝛾(
𝑡

𝐿
)

{[
1

2
(1 −

𝜎𝑠𝑡𝑟𝑒𝑡𝑐ℎ

𝜎𝑏𝑒𝑛𝑑
)]

2

+ (
𝜎𝑠ℎ𝑒𝑎𝑟

𝜎𝑏𝑒𝑛𝑑
)

2

}
−

1

2

,  (29) 

where     
𝜎𝑠ℎ𝑒𝑎𝑟

𝜎𝑏𝑒𝑛𝑑
= 𝛼𝑠ℎ𝑒𝑎𝑟

1
1

𝑡/𝐿
−𝛾

 ,    (30) 

and    
𝜎𝑠𝑡𝑟𝑒𝑡𝑐ℎ

𝜎𝑏𝑒𝑛𝑑
= 𝛼𝑠𝑡𝑟𝑒𝑡𝑐ℎ

1

(
1

𝑡/𝐿
)

2
−

𝛾

𝑡/𝐿

.    (31) 

 

2.3.3 Low Relative Density 

For relative stiffness, when t/L << 1, it can be seen from Eq. (19) – (22) that the bending 

term, Cbend, dominates over Cshear and Cstretch due to its (t/L)4 denominator. Therefore,  

𝐸

𝐸𝑠
∝  (

𝑡

𝐿
)

4

   ,     (32) 

and from Eq. (11),    
𝐸

𝐸𝑠
∝  (

𝜌

𝜌𝑠
)

2

   .     (33) 
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Similarly, for relative strength, a small t/L would cause σshear/ σbend and σstretch/ σbend to 

approach 0 (i.e. bending stress dominates), so  

𝜎𝑓

𝜎𝑠
∝ (

𝑡

𝐿
)

3

 ,    (34) 

which is,     

 
𝜎𝑓

𝜎𝑠
∝ (

𝜌

𝜌𝑠
)

1.5

     (35) 

Once again, these results are consistent with previous derivations [41] and demonstrates that 

bending-dominated designs are basically CSB designs at low relative densities.  

 

Figure 3: Schematic illustration of the BCC structure undergoing uniaxial deformation without 

joint (highlighted in light blue) rotation. Red arrows represent the external forces acting on the 

structure. An element in the beam is magnified to show the compressive, shear and bending 

stresses acting on it.  

 

2.4 Compression, Shear & Joint Rotation (CSR) Topology 

2.4.1 Relative Stiffness  

 Unlike the CD and CSB topologies, where loading forces are symmetrically applied, 

eccentric loading in CSR designs results in joint rotation (Fig. 4a) [9,47,52], with 

accompanying shear and compressive deformation. As with the case of FCC/ Octet Truss 

design, the buckling of the beams does not contribute appreciably to the lattice strain but will 

be important for the determination of the failure stress.  
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At low relative densities, the main contribution to the overall lattice strain of CSR 

structures arises from rotation of the joints [9]. In the elastic, small strain limit, the rotation 

angle of the joint, , is correspondingly low. Applying the small angle approximation to the 

solutions developed previously [9,47], the effective lattice strain caused by joint rotation, rot, 

can be obtained as 

𝜀𝑟𝑜𝑡 ∝
𝑒𝜃

𝐿
,     (36) 

where    𝜃 ∝
𝜎

𝐸𝑠

(
𝐿

𝑒
)

3

(1−
𝑡

𝐿
)

2
(

𝑡

𝑒
−1)

4  .     (37) 

 The effective strain caused by shear stresses acting on the joints, shear, can be derived 

as 

𝜀𝑠ℎ𝑒𝑎𝑟 ∝
𝜎

𝐸𝑠
(1 + 𝜈) (

𝑒𝐿

𝑡2).    (38) 

The compressive strain, stretch, caused by normal stresses acting on the beam, stretch,b, 

and the joint, stretch, j, is found to be 

𝜀𝑠𝑡𝑟𝑒𝑡𝑐ℎ = 𝜀𝑠𝑡𝑟𝑒𝑡𝑐ℎ,𝑏 + 𝜀𝑠𝑡𝑟𝑒𝑡𝑐ℎ,𝑗,    (39) 

where    𝜀𝑠𝑡𝑟𝑒𝑡𝑐ℎ,𝑏 ∝
𝜎

𝐸𝑠

(1−
𝑡

𝐿
)

(
𝑡

𝐿
−

𝑒

𝐿
)

2,     (40) 

and    𝜀𝑠𝑡𝑟𝑒𝑡𝑐ℎ,𝑗 =
𝜎

𝐸𝑠
(

𝐿

𝑡
).     (41) 

Unlike the case of CD topology, the compressive deformation of the joint is accounted for here 

since the joint can be large even at small relative densities and the loading area in section j may 

not necessarily be significantly larger than that of section b, as the cross-section of the 

horizontal beams is (t – e)  (t – e), which may be much smaller than that of the joint. 



16 
 

Since     

𝐸 =
𝜎

𝜀𝑟𝑜𝑡+𝜀𝑠ℎ𝑒𝑎𝑟+𝜀𝑠𝑡𝑟𝑒𝑡𝑐ℎ
,    (42) 

the relative stiffness of the eccentric structure can then be given as 

𝐸

𝐸𝑠
=

1−
𝑡

𝐿

[𝑘𝑟𝑜𝑡𝑒2(𝐿−𝑡)2

(𝑡−𝑒)4+𝑘𝑠ℎ𝑒𝑎𝑟(1+𝜈)(
𝑒

𝑡
)(

𝐿

𝑡
−1)+𝑘𝑠𝑡𝑟𝑒𝑡𝑐ℎ(

𝐿−𝑡

𝑡−𝑒
)+

𝐿

𝑡
−1]

,  (43) 

where k refers to the proportionality constant for the respective deformation mode denoted in 

the subscript. 

 

2.4.2 Relative Strength 

 Failure of CSR structures are expected to take place when the maximum sum of bending 

and compressive stress in the beams, which are thinner and therefore, weaker than the joints, 

exceed the material strength i.e. s ≥ bend + stretch (Fig. 4b). Since the bending moment acting 

on the beams is proportional to Fe and distance of centroid to beam surface is (t - e)/2,   

𝜎𝑏𝑒𝑛𝑑 ∝
𝐹𝑒(𝑡−𝑒)

𝐼
=  

𝐹𝑒

(𝑡−𝑒)3      (44) 

and  

𝜎𝑠𝑡𝑟𝑒𝑡𝑐ℎ ∝
𝐹

(𝑡−𝑒)2  ,    (45) 

therefore, the relative strength can be obtained as 

𝜎𝑓

𝜎𝑠
= (

𝑒

𝐿
)

2 (
𝑡

𝑒
−1)

3

𝛼𝑏𝑒𝑛𝑑+𝛼𝑠𝑡𝑟𝑒𝑡𝑐ℎ(
𝑡

𝑒
−1)

.    (46) 

where α is a proportionality constant for the deformation mode denoted in the subscript.  
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From Eq. (2), (43) and (46), it can be seen that the physical and mechanical properties 

of CSR structures are dependent not just on the geometrical parameter of t/L, but also e/L and 

e/t. However, there are only 2 independent parameters, since e/L = t/L  e/t. Therefore, for 

3ATC lattices, ρ/ρs was varied in 2 ways to establish an upper and lower bound of their 

mechanical properties – (i) changing t/L while keeping e/t constant and (ii) changing e/t while 

keeping t/L constant.  

 

Figure 4: (a) Schematic illustration of a 3ATC subunit cell undergoing deformation. Red 

arrows represent the external forces acting on the structure, while the encircled region indicates 

the presence of the highest compressive stress. Note that the joint rotates by an angle of θ. (b) 

Simulation result showing the stress distribution in a unit cell of the 3ATC lattice undergoing 

uniaxial compression. The regions experiencing maximum stress are circled. A.U. – Arbitrary 

Units. 

 

3. RESULTS 

3.1 Relative Stiffness 

 Fig. 5 shows the simulated (solid lines) and analytical trends (broken lines) of E/Es vs. 

ρ/ρs for the FCC/ Octet Truss, BCC and 3ATC lattices. Finite element simulations were 

performed on 4  4  4 lattices of the respective designs using the condition of stationary 

loading in COMSOL 5.3a. As can be observed, the fitting of the theoretical trends to the 

simulations is reasonably good (fitting parameters are shown in Table 2), indicating that the 

structure-property relationships derived in the preceding section are mostly valid. 
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 Next, to ascertain if FCC/ Octet Truss & BCC are suitable representatives of the CD 

and CSB topologies respectively, we plotted the simulated values of alternative geometries, 

Simple Cubic (100) (CD) [9] and Kelvin Cell (i.e. tetrakaidecahedron) (CSB) [53], in Fig. 5 as 

well. It can be seen that the values of Simple Cubic (100) follow the trend of FCC (111) quite 

closely while that of Kelvin Cell adhered to the CSB trend initially before transitioning over to 

the CD trend for ρ/ρs > 0.2. This may be because parts of the Kelvin Cell densify rapidly with 

increasing beam width, resulting in compression-dominated deformation in these regions. This 

rapid densification is also the reason that very high relative densities were unobtainable for the 

Kelvin Cell. 

Nevertheless, it is clear that E/Es is generally highest for CD for a given ρ/ρs, followed 

closely by the CSB design. 3ATC, representative of the CSR design, on the other hand, exhibits 

very low E/Es values (pink region). For ρ/ρs > 0.7, the range of possible E/Es values widens 

rapidly, from as low as 0.1 to as high as the values for BCC lattices. The boundaries of the pink 

region are by no means the definitive limits of E/Es values for 3ATC lattices, but they clearly 

illustrate that 3ATC lattices can have unique combinations of E/Es and ρ/ρs, that are 

unattainable by CD and CSB designs.  

 

Table 2: Independent fitting parameters for the analytical solutions (indicated by the respective 

equation numbers) shown in Fig. 6 and Fig. 8. 

Design 

E/Es /s 

Parameters Eq. 

No. 

Parameters Eq. 

No. krot kshear kstretch bend shear stretch 

FCC - - - (6) 0.01 - 0.13 (10) 

BCC - 0.46 - 
(19) -

(22) 
0.43 0.01 0.50 

(29) – 

(31) 

3ATC 8 0.7 0.8 (43) 0.1 - 1 (46) 
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Figure 5: Simulated (solid lines) and fitted analytical trends (broken lines) of relative stiffness, 

E/Es, vs. relative density, ρ/ρs, for the various lattices. Region highlighted in pink represents 

the range of possible E/Es values for the general 3ATC geometry. 

 

In Fig. 6, the experimental results of E/Es vs. /s for powder compacted materials 

obtained from the literature (black data points) are plotted against the analytical and simulated 

trends in Fig. 5. The results clearly show that the stiffness of powder compacted materials 

generally fall within the range of values exhibited by 3ATC lattices (pink region). It is worth 

noting, in particular, that the power law index for 3ATC can be very high (between 3 and 14) 

at large relative densities (> 0.4), indicating that small increments of porosity can lead to drastic 

reductions in material stiffness, which is consistent with experimental observations involving 

powder compacted materials [31,32]. These results strongly suggest that the microstructures of 

powder compacted materials share similar deformation modes as the unit cell of 3ATC i.e. both 

belong to the CSR topology.  

For comparison, the experimental data for macroscopic foams obtained through direct 

foaming and nanoporous foams obtained through dealloying of metal solid solutions are plotted 
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in Fig. 6 as well. It can be seen that these fabrication techniques produced porous materials that 

are stiffer, adhering more closely to the CD and CSB topologies. It is also worth noting that 

the stiffness of macroscopic foams changed from bending-dominated at low relative density to 

compression-dominated for ρ/ρs > 0.3, as opposed to being bending-dominated for the entire 

range of ρ/ρs, which was suggested previously [41]. Our results show that this misconception 

might have arose because the power law index for compression-dominated geometries 

increased from 1 at ρ/ρs < 0.2 to ~ 2 for ρ/ρs > 0.4 (Table 3). While it is well-known that the 

power law index for bending-dominated geometries is 2 for E/Es vs. ρ/ρs at low relative 

densities, the power law relationship for high relative density structures had not been rigorously 

derived previously and therefore, when it was found that the experimental value of the power 

law index for foams was ~ 2 across the entire range of relative density, it appeared that foams 

were exhibiting bending-dominated deformation regardless of their porosity levels.  

Using the fitted analytical data, the contributions of the various deformation modes to 

the overall lattice strain for each type of topology can be calculated (Fig. 7). For the FCC/ Octet 

Truss lattice, the only contribution to lattice strain arises from compression (i.e. contribution 

to total strain by compression = 1 for 0 ≤ ρ/ρs ≤ 1) and hence, its plot was not included in Fig. 

7. For the BCC lattice, Fig. 7a shows that its relative stiffness is bending-dominated at low 

relative densities (< 0.4) and shear-dominated at large relative densities. For the 3ATC lattice, 

its stiffness is always limited by excessive joint rotation when the relative density is varied by 

changing L (Fig. 6b). For the case where the relative density is varied by changing e instead, 

the lattice deformation is initially joint - rotation – dominated (ρ/ρs < 0.65) before transitioning 

to compression – dominated as beams become thicker at higher relative densities (ρ/ρs > 0.8) 

(Fig. 6b). These results are generally in line with rigorous, first principle (non-empirical) 

analysis of 3ATC structures [47].  
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Figure 6: (a) Plot of relative stiffness, E/Es, against relative density, /s. The blue triangles 

and grey circles represent literature data for nanoporous foams formed by dealloying [24] and 

macroscopic foams formed by direct foaming [41] respectively. Literature data for powder 

compacted titanium (Ti) [17,54], magnesium (Mg) [21,55], copper (Cu) and stainless steel (SS) 

with spherical, irregular and dendritic powder morphologies (45 m ≤ d ≤ 300 m) [31] are 

plotted as black data points. Solid lines represent static loading data from finite element 

simulations, while dashed lines represent analytical solutions. Note that for “3ATC, e varied”, 
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ρ/ρs cannot reach 0 as the joint still contributes a volume of t3 to the unit cell even if the beam 

does not exist (i.e. e = t). The fitting parameters of the analytical solutions can be found in 

Table 2. The region highlighted in pink covers the range of values that are possible with an 

3ATC lattice geometry. (b) A log – log plot of the figure in (a).   

 

Table 3: The value of the power law index, n, where y = (ρ/ρs)
n. y can be E/Es or σ/σs. The 

values extracted from analytical trends are given without brackets while that from simulation 

trends are given in brackets.  

Design ρ/ρs 

n 

E/Es σ/σs 

FCC/ Octet Truss (111) 0.4 – 0.9 1.7 (2.2) 1.4 (1.9) 

BCC (100) 0.4 – 0.9 2.0 (2.1) 2.2 (2.8) 

3ATC (100) 
Varied e/t 0.6 – 0.8 14.0 (13.1) 7.0 (7.8) 

Varied t/L 0.4 – 0.9 3.1 (1.4) 0.9 (0.9) 

 

  

Comparing Fig. 6 with Fig. 7b, it can be seen that the very low E/Es values exhibited 

by the 3ATC lattices (pink region in Fig. 6) and powder compacted materials (black data points 

in Fig. 6) correspond to the range of relative density in Fig. 7b where joint rotation dominates, 

implying that joint rotation is the main cause behind the low moduli exhibited by these 

geometries. In contrast, when the contribution to total strain is dominated by compression or 

shear, in the Octet Truss and BCC lattices, as well as when ρ/ρs > 0.8 for the 3ATC lattice 

(varied e/t), E/Es is comparatively much higher. 
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Figure 7: Respective contributions of the various deformation modes to the total strain for the 

(a) BCC and (c) 3ATC lattice. Note that compressive deformation is the only source of strain 

for FCC/ Octet Truss at all relative densities (Contribution = 1 for all ρ/ρs). 

 

3.2 Relative Failure Strength 

Fig. 8 shows the analytical (broken lines), simulated (solid lines) and experimental (data 

points) values of relative strength (f/s) vs. relative density (/s). As was the case with 

relative stiffness, the analytical trends provided a good fit with the simulated trendlines (fitting 

parameters shown in Table 2). Together, they suggest that the FCC lattice and by extension, 

the CD topology, gives the best relative strength for a given relative density, followed by the 

BCC lattice of CSB topology. Again, the 3ATC lattices (CSR topology) exhibited very low 

values of f/s that could not be found with CD and CSB topologies. The main exception to 

this lies in the low relative density regime (< 0.3), where the relative strengths of the BCC 

lattice and 3ATC lattice can be comparable.  
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It can also be observed that majority of the experimental data points for powder 

compacted materials (black) are lower than the expected f/s values for FCC/ Octet Truss and 

BCC lattices, generally falling within the range for 3ATC lattices (pink region). Furthermore, 

the index for the power law relationship between relative strength and relative density for 

3ATC lattices range from ~ 1 – 7 for ρ/ρs > 0.4 (Table 3), which is in good agreement with 

Hakamada et. al.’s previous observation of 1 - 6.3 for high relative density foams [15]. This 

reinforces the results obtained with relative stiffness comparisons above. Unfortunately, 

relative strength data for macroscopic and nanoporous foams at high relative densities (> 0.3) 

are not as abundant as those for relative stiffness. Nevertheless, based on the available literature 

data, it appears that the foaming technique produces porous materials with microstructures that 

are closer to CD and CSB topologies, unlike powder compaction techniques, that lead to CSR 

microstructures.   

 

Figure 8: Plot of relative strength, f/s, against relative density, /s. The blue triangles and 

grey circles represent literature data for nanoporous foams formed by dealloying [25] and 

macroscopic foams formed by direct foaming [41] respectively. Literature data for powder 

compacted titanium (Ti) [17,54], magnesium (Mg) [21,55] and copper (Cu) [15,56] are plotted 

as black data points. Solid lines represent static loading data from finite element simulations, 
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while broken lines represent analytical solutions. Note that for “3ATC, e varied”, ρ/ρs cannot 

reach 0 as the joint still contributes a volume of t3 to the unit cell even if the beam does not 

exist (i.e. e = t). The fitting parameters of the analytical solutions can be found in Table 3. The 

region highlighted in pink covers the range of relative strength values that are possible with an 

3ATC lattice geometry. 

 

Breaking down the respective contributions by the various deformation modes to total 

stress, it can be observed that, at extremely low relative densities (< 0.01), the lattice strength 

of FCC/ Octet Truss is limited by bending stresses arising from beam buckling (Fig. 9a). For 

larger relative densities, bending and compressive stresses co-dominate, with compressive 

stresses becoming more important as ρ/ρs rises. This is expected, as thicker beams at higher 

relative densities are less prone to buckling and bending.  

For the BCC lattice, it is interesting to note that the bending stress is much larger than 

that of shear or compression for the full range of relative density (Fig. 9b), although 

increasingly thick beams at higher relative densities did improve the contribution of the 

compressive stress to the total stress. Shear stress, on the other hand, remains very much 

negligible regardless of the relative density. This may seem to run counter to the observation 

above that shear is the main cause of BCC lattice strain for ρ/ρs > 0.4, but as seen from the case 

of Octet Truss at low relative density (< 0.01), the deformation mode that determines the lattice 

strain and strength may not necessarily be the same [43]. In addition, it should be noted that, 

unlike the case of Octet Truss and 3ATC lattices, the maximum stress experienced by an 

element in a BCC lattice is not a simple sum of all the stresses. Instead, it is dictated by the 

difference between the compressive and bending stresses and its relative magnitude with 

respect to the shear stress, as governed by Mohr’s circle (Eq. (29)). 

For the 3ATC lattice, it is clear that compressive stress is the limiting determinant of 

lattice stress across all relative densities, except for a very small range of 0.58 < ρ/ρs ≤ 0.59 for 

3ATC (e varied), where compressive and bending stresses had similar values (Fig. 9c). Despite 

being compression-limited, the relative strength of 3ATC lattices for a given relative density 
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is much lower compared to that of an Octet Truss lattice (Fig. 8). This is because, for the given 

joint size of t  t  t, the effective loading area for a beam in an 3ATC lattice, (t - e) 2, is lower 

than that of an Octet Truss lattice, t2. This leads to higher stresses in 3ATC beams and 

consequently, failure at smaller external loads compared to the Octet Truss. Powder compacted 

porous materials probably exhibit similar σ/ σs values as 3ATC lattices for the same reason – 

the neck-like interparticle connections that act as beams usually have significantly smaller 

cross-sectional areas than the particulate joints [57,58].  

It is also interesting to note in Fig. 9c that the trends for compression and bending 

contributions to the total stress of 3ATC (t/L varied) are constant. This can be understood from 

Eq. (44) and (45), which can be combined to give 

𝜎𝑠𝑡𝑟𝑒𝑡𝑐ℎ

𝜎𝑏𝑒𝑛𝑑
∝ (𝑡 − 𝑒)  ,    (47) 

demonstrating that the value of σstretch , with respect to σbend, is independent of L. 
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Figure 9: Respective contributions of the various deformation modes to the total stress for the 

(a) FCC/ Octet Truss (b) BCC and (c) 3ATC lattice.  

 

4. DISCUSSION 

The results presented above strongly suggests that rotation of joints, which were 

originally particles before compaction, is the main cause behind the small elastic moduli of 

porous materials fabricated through powder compaction. The load bearing inefficiency of these 
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eccentric CSR microstructures lies with the fact that most of the material is gathered in the joint 

rather than in the beams (i.e. the neck-like interparticle connections) where it may help restrict 

the rotation of the joint. The relatively large size of the joints also means that small loads can 

potentially cause large moments and rotations, which lead to large lattice strains for powder 

compacted materials. The highly uneven distribution of material between the joints and struts 

is also the main reason for the much lower relative strength of these structures, as the stresses 

become heightened in the narrow interparticle necks, which are the weak links in the structure.  

These inferences are further supported by tomographic images of powder compacted 

materials from multiple studies (Fig. 10a – 10d), which clearly show that the majority of 

particles are eccentrically attached to their neighbours (red) with only a few symmetrical 

exceptions (green). In addition, experimental observations of particle rotations during the 

compression of granular/ powder materials are also well-documented in previous studies [59–

61]. One study, in particular, noted that higher coordination numbers led to reduced particulate 

rotation during loading [61], which is consistent with the geometries used in this study – Octet 

Truss and BCC have coordination numbers of 12 and 8 respectively and are symmetric, while 

the asymmetric 3ATC structure has the lowest coordination number of 6.  

The reason for this relationship between coordination number and joint rotation is 

illustrated in Fig. 10e and 10f. If a 2D circle has a coordination number of 2, there is only 1 

configuration where no moment or rotation of the central particle (in green) would be generated 

(Fig. 10e). However, if the coordination number is now increased to 3, the third particle can 

attach anywhere along the red border of the central particle and cause a reduction of the original 

moment caused by the prior 2 particles (Fig. 10f). Qualitatively, from Fig. 10f, we can see that 

there is a more than fair chance of that happening since the red border takes up nearly all of the 

remaining circumference of the central particle that is available for attachment. Extrapolating 

this to 3D space, we can therefore expect a higher coordination number to reduce particle 
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rotation because the eccentric positioning of neighbours around a particle has a tendency to be 

cancelled out with increasing number of neighbouring particles i.e. it is extremely unlikely that 

all the attachments will contribute towards the same moment vector.  

The strategy for improving the stiffness of powder compacted porous materials is, 

therefore, to increase the packing density as much as possible prior to compaction, so that 

particle arrangement approaches that of the Octet Truss or BCC design (high coordination 

number), rather than the random loose pack structure (low coordination number). Previous 

studies have shown that this can be achieved through the use of vibrations during compaction 

[62] or lubricants to reduce interparticle friction [63].  

As for improving the strength of powder compacted materials, the interparticle 

connections have to be thickened with increased compressive pressure [36], higher sintering 

temperatures [64] and/ or longer compaction times [57]. These approaches have already been 

attempted and shown to work, but it should be noted that they, together with strategies to 

increase packing density, would decrease porosity, which may be undesirable if very low 

relative density materials are required. 
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Figure 10: Illustration of experimentally and numerically obtained 2D slices in 3D powder 

compacted (a) copper (ρ/ρs = 0.7) [61] (b) copper (ρ/ρs = 0.72) [65] (c) glass (ρ/ρs = 0.65) [57] 

and (d) copper (ρ/ρs not given) [58]. Red - particles with eccentrically arranged neighbours. 

Green - particles with approximately symmetric connections. Black lines highlight these 

interparticle connections. Schematic illustration of (e) a non-eccentric arrangement of 3 

particles (f) an eccentric arrangement of particles about the center particle (green). The red 

arrows represent external forces and the red border of the center particle (green) highlight the 

sites where a 3rd particle can attach in order to reduce the moment and rotation of the center 

particle caused by the first 2 eccentrically positioned particles.  

 

5. CONCLUSIONS 

The microstructural cause behind the weak mechanical properties exhibited by porous 

powder compacted materials was investigated in this study. Comparing experimental data of 

stiffness and strength previously reported for powder compacted materials against the 

trendlines obtained from finite element simulations and analytical solutions derived for the 

compression/ stretch – dominated (CD), compression, shear and bending (CSB) and 

compression, shear and joint rotation (CSR) topologies, we found that eccentric geometries 

and accompanying joint/ particle rotation, as well as narrow neck-like interparticle connections, 

were the main reasons behind the low modulus and strength of powder compacted porous 

materials. This result is supported by numerous reports documenting the eccentricity of the 

microstructures in such materials, as well as measurements of particulate rotation during 

compression tests. This insight also implies that the packing density of the powder has to be 

increased as much as possible before compaction in order to reduce the geometrical eccentricity 

and particle rotation in the microstructures, which would lead to better stiffness for the porous 

powder compacted materials. The material strength, on the other hand, can be improved 

through thickening of the interparticle connections using a higher temperature, compressive 

pressure and/ or compaction duration. 
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