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 35 
Abstract 36 

The elastic response of the lithosphere to surface mass redistributions produces 37 

geodetically measurable deformation of the Earth. This deformation is especially pronounced in 38 

South and Southeast Asia, where the annual monsoon produces large-amplitude hydrological 39 

loads. The Myanmar-India-Bangladesh-Bhutan (MIBB) network of about 20 continuously 40 

operating Global Navigation Satellite Systems (GNSS) stations, established in 2011, provides an 41 

opportunity to study the Earth’s response to these loads. In this study, we use GRACE temporal 42 

gravity products as an estimate of long-wavelength surface water distribution and use this 43 

estimate in an elastic loading calculation. We compare the predicted vertical deformation from 44 

GRACE with that observed with GNSS. We find that elastic loading inferred from the GRACE 45 

gravity model is able to explain the phase and much of the peak-to-peak amplitude (typically 2-46 

3 cm) of the vertical GNSS oscillations, especially in northeast India and central Myanmar. 47 

GRACE-based corrections reduce the RMS scatter of the GNSS data by 30-45% in these regions. 48 

However, this approach does not capture all of the seasonal deformation in central Bangladesh 49 

and southern Myanmar. We show by a synthetic test that local hydrological effects may explain 50 

discrepancies between the GNSS and GRACE signals in these places. Two independent 51 

hydrological loading models of water stored in soil, vegetation, snow, lakes, and streams display 52 

phase lags compared to the GRACE and GNSS observations, perhaps indicating that 53 

groundwater contributes to the observed loading in addition to near-surface hydrology. The 54 

results of our calculations have implications for survey-mode GNSS measurements, which make 55 

up the majority of geodetic measurements in this region. By using the GNSS data together with 56 

estimates of hydrological loading from independent observations and models, we may be able 57 

to more accurately determine crustal motions caused by tectonic processes in South and 58 

Southeast Asia, while also improving our ability to monitor the annual monsoon and resulting 59 

water storage changes in the region. 60 

 61 
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 64 

1. Introduction 65 

 On seasonal timescales, hydrological cycles redistribute masses of water, ice, and air 66 

around the globe. As these masses move, they impose gravitational loads on the solid Earth, 67 

and the Earth’s deformation in response to the loads reveals information about both the 68 

sources of loading and the Earth itself (Blewitt et al. , 2001). For example, loading deformation 69 

provides a means of understanding the exchange of mass between the atmosphere, surface 70 

water, soil moisture, and groundwater (Argus et al., 2014; Argus et al., 2017; Milliner et al., 71 

2018). With respect to the solid Earth, the surface response to time-varying loads also allows us 72 

to probe the elastic and viscoelastic structure of the crust and upper mantle (Chanard et al., 73 

2018a; Chanard, 2018b). Furthermore, hydrological loads can be important sources of stress on 74 

faults, contributing to the timing and occurrence of earthquakes and non-volcanic tremor 75 

(Bettinelli et al., 2008; Craig et al., 2017; Johnson et al., 2017; Pollitz et al., 2013). For these 76 

applications as well as for the study of tectonic transients, it is valuable to understand the 77 

hydrological loading effects in geodetic data as accurately as possible.  78 

For the study of tectonic processes, it is necessary to isolate deformation caused by 79 

mass loading from that caused by the earthquake cycle (e.g., Fu & Freymueller, 2012). This can 80 

be a challenging task but is important in regions with transient earthquake cycle deformation 81 

and hydrological loads that vary from year to year. Accurate knowledge of hydrological loading 82 

in a region can also help with the interpretation of horizontal and vertical intermittent survey-83 

mode GNSS measurements, which record the effects of both long-term tectonic deformation 84 

and hydrological loading but are sampled too sparsely in time to allow for their separation.  85 

Hydrological processes generally produce millimeter-to-centimeter-level deformation of 86 

the Earth’s surface through two dominant mechanisms. The first is elastic loading, in which the 87 

Earth’s surface is deflected downward due to the weight of a load placed on or near the surface 88 

(Farrell, 1972). The second mechanism is poroelastic loading, in which the addition of 89 

groundwater produces upward deflection by filling pore spaces and increasing fluid pressure 90 

within the rock below, and is often observed in aquifer settings (Chaussard et al., 2015; 91 

Galloway et al., 1999; Miller & Shirzaei, 2015; Ojha et al., 2019). Both mechanisms primarily 92 



affect the vertical component of GNSS measurements, although they also act to a smaller 93 

degree on the horizontal components (Silverii et al., 2016; Wahr et al., 2013). 94 

The typical methods used for studying hydrological loads in GNSS time series involve 95 

applying either mathematical function fitting or hydrological models from independent 96 

datasets to assess the effects of elastic loading at GNSS stations. One of the most commonly 97 

used external models comes from the Gravity Recovery And Climate Experiment (GRACE) 98 

mission, which produces spatiotemporal descriptions of the Earth’s gravity field and inferred 99 

redistribution of near-surface mass. A large body of research supports the general agreement 100 

between GRACE-based models of deformation and the hydrological loads observed in GNSS 101 

data (Chanard et al., 2018; Fu et al., 2013; Fu & Freymueller, 2012; Gu et al. , 2017; Hao et al., 102 

2016; Tregoning et al., 2009; Yan et al., 2019; Saji et al., 2020). However, GRACE data products 103 

are relatively coarsely sampled in both space and time, having a spatial wavelength of 350-500 104 

km and monthly sampling, and an inherent tradeoff between temporal and spatial resolution in 105 

the processing. GRACE cannot capture local hydrological loading effects at individual GNSS 106 

stations, such as effects from large nearby streams or reservoirs, nor can it typically capture 107 

short-term temporal variations (Springer et al., 2019). Other types of information, such as 108 

water storage models derived from independent hydrological data sets, can be used to improve 109 

the spatial resolution of load sources near GNSS stations.  110 

In this work, we seek to evaluate the performance of several techniques to model the 111 

seasonal deformation at GNSS stations in South and Southeast Asia (Figure 1), an important 112 

tectonic region that also has a strong monsoon climate and large seasonal loading deformation 113 

(Fu et al., 2013; Steckler et al., 2010). We compute the average amplitude and phase of several 114 

loading models and compare them with the GNSS time series and precipitation data. We assess 115 

how well the models reduce the variance of the GNSS data with the goal of separating the 116 

hydrological versus tectonic contributions to the deformation signal.  117 

 118 



 119 
Figure 1: A) Map of GNSS stations in South and Southeast Asia from two networks – the MIBB 120 

(Myanmar, India, Bangladesh and Bhutan) network and the BanglaPIRE network. Active faults 121 

are shown (Wang et al., 2014). B) Vertical velocities of GNSS stations shown in (A), computed 122 

using least-squares fitting to the time series.  123 

 124 

2. Methods 125 

2.1 GNSS Data 126 

 We used data from the Myanmar-India-Bangladesh-Bhutan (MIBB) GNSS network 127 

operated by the Earth Observatory of Singapore (EOS) and their regional partners in each 128 

country in the network: the Department of Meteorology and Hydrology of Myanmar, the 129 

Myanmar Earthquake Committee, North Eastern Hill University in India, the Geological Survey 130 

of Bangladesh, and Sherubtse College, Royal University of Bhutan. The network was first 131 

established in 2011. Most of the 24 stations began operation in 2012 and remain in operation, 132 

although some have significant data gaps. We used data until the summer of 2017, focusing on 133 

the period before the GRACE/GRACE-FO gap.  We excluded 2 MIBB stations with less than two 134 

years of data during this period. The list of excluded stations is shown in Table S1.  135 



We processed the GNSS time series using the GIPSY-OASIS software version 6.2 136 

(Zumberge et al., 1997) following the processing strategy in Feng et al. (2015), with model 137 

corrections applied for solid Earth and pole tides and ocean tidal loading. We calculated ocean 138 

tidal loading relative to the center of mass of the whole Earth including the solid Earth, oceans 139 

and atmosphere with the FES2004 model (Lyard et al., 2006), using the free ocean tidal loading 140 

calculator provided by the Onsala Space Observatory (http://holt.oso.chalmers.se/loading/). 141 

The coordinate time series were produced in the International Terrestrial Reference Frame 142 

2008 (ITRF2008) (Altamimi et al., 2011) and subsequently rotated into a Sunda-fixed frame 143 

(Altamimi et al., 2012). The ITRF2008 reference frame is by definition a center-of-mass frame, 144 

but in practice, it has been shown to more closely follow the Earth’s center-of-figure on 145 

seasonal and shorter timescales (Dong et al., 2003); this distinction is important for proper 146 

comparison with hydrological models in later sections. After processing the GNSS time series, 147 

we then removed the effects of non-tidal atmospheric and non-tidal ocean loading using the 148 

“NTAL” and “NTOL” loading products provided by the Earth System Modeling group at the 149 

German Research Centre for Geosciences (GFZ) (Dill & Dobslaw, 2013) in the center-of-figure 150 

frame. At two stations in central Myanmar (SDWN and SWBO), we also modeled and removed 151 

the signal related to the 2012 Mw 6.8 Thabeikkyin earthquake (Soe Thura Tun & Watkinson, 152 

2017) using Heaviside step functions for coseismic offsets and logarithmic functions for 153 

postseismic deformation (Feng et al., 2015). Where available, we also included 11 stations from 154 

a separate GNSS network in Bangladesh that was installed in 2007 as part of the NSF- and 155 

UNAVCO-supported BanglaPIRE project (Figure 1) (Steckler et al., 2016, 2010). Most of these 156 

stations have data from 2007-2011 (Figure S4). These data are available from UNAVCO and 157 

were processed using the GIPSY-OASIS software with the same processing strategy as above.  158 

 159 

2.2 Hydrological Loading Models 160 

 As the simplest model for yearly hydrological load cycles, we used a mathematical 161 

function to fit the average seasonal components in the GNSS time series using least squares. In 162 

Equation 1, the coefficients A-E describe annual loading, semi-annual loading, and a constant 163 

velocity; w is the angular frequency associated with an annual period. This simple model is 164 



constrained to have constant-amplitude seasonal terms, so it cannot capture multi-annual 165 

hydrological variations.  166 

 167 

𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝑤𝑡) + 𝐵𝑠𝑖𝑛(𝑤𝑡) + 𝐶𝑐𝑜𝑠(2𝑤𝑡) + 𝐷𝑠𝑖𝑛(2𝑤𝑡) + 𝐸𝑡 + 𝐹                           Eq. 1 168 

 169 

We then evaluated several physically based elastic loading models starting with a 170 

GRACE-gravity derived estimate of monthly surface mass changes. Our models are derived from 171 

the global Mascon gridded solution from NASA’s Jet Propulsion Lab (JPL). GRACE Mascon data 172 

are available at http://grace.jpl.nasa.gov (Watkins et al., 2015; Wiese et al., 2016). The GRACE 173 

Level 2 data are corrected for ocean tidal loading, non-tidal ocean loading, and non-tidal 174 

atmospheric mass, meaning that contributions from those signals are not included in the 175 

product. We then computed the resulting elastic deformation at each GNSS station from all grid 176 

cells assuming a Preliminary Reference Earth Model (PREM) structure (Dziewonski & Anderson, 177 

1981) (Figure S1). We used loading Love numbers (Farrell, 1972) for the loading Green’s 178 

functions following the formulation of Fu & Freymueller (2012) and Johnson et al. (2020). The 179 

amplitude and phase of these models are estimated also using Equation 1.  180 

In addition to GRACE, we considered several other elastic loading models from ground- 181 

and satellite-based hydrological products. The first of these is the Land Surface Discharge 182 

Model (LSDM), which models the elastic loading displacements driven by high-resolution 183 

hydrological models of terrestrial water storage and can be directly compared with geodetic 184 

time series (Dill & Dobslaw, 2013; Moreira et al., 2016). The LSDM estimates loads from shallow 185 

soil moisture, snow, and surface water stored in rivers and lakes. The loading displacements are 186 

computed using an elastic “ak135” Earth structure (Kennett, Engdahl, & Buland, 1995). While 187 

ak135 is slightly different from PREM, these differences have been shown to produce only small 188 

changes (~1% change in amplitude reduction) in modeled hydrological loading (Gu et al., 2017; 189 

H. Wang et al., 2012); furthermore, the differences in Earth models are smallest in the vertical 190 

component that we study here (Wang et al., 2012). Hydrological loading displacement time 191 

series for each coordinate were extracted from the LSDM website (http://rz-vm115.gfz-192 



potsdam.de:8080/repository/entry/show?entryid=24aacdfe-f9b0-43b7-b4c4-bdbe51b6671b, 193 

last accessed on 7 July 2019) in the center-of-figure frame.  194 

We also considered loading driven by the Global Land Data Assimilation System (GLDAS) 195 

hydrological model (Rodell et al., 2004). This model contains 1°x1° monthly estimations of 196 

surface water in shallow soil moisture (upper 2m), snow pack, and vegetation. Elastic loading 197 

deformation was computed on a PREM Earth structure following the technique of Wahr et al. 198 

(2013) and as implemented in North America for the Plate Boundary Observatory dataset 199 

(Puskas, Meertens, & Phillips, 2017). The summary of the three loading models (GRACE, LSDM, 200 

and GLDAS) is presented in Table 1.  201 

We assessed the performance of each of these models by evaluating the reduction in 202 

the weighted root mean square error (WRMS) of each detrended time series before and after 203 

correction. The percent improvement after correction shows the effectiveness of the seasonal 204 

correction technique. Following van Dam et al. (2007), the WRMS reduction is calculated by:  205 

𝑊𝑅𝑀𝑆89:;<=>?@ = 	
BCDEFGHH	IBCDEFGHHJKLMNO

BCDEFGHH
	                                                     (Eq. 2) 206 

 207 

For comparisons between GRACE-based loading models and vertical GNSS time series, typical 208 

WRMS reductions around the globe and in South/Southeast Asia range from 20%-50% (Fu & 209 

Freymueller, 2012; Li et al., 2016; Saji et al., 2020), with higher being better. Understanding the 210 

differences between these time series and increasing the WRMS reductions achieved by 211 

hydrological loading models (Chanard et al., 2018a) is an important aim of current research.  212 

 213 
 214 

 GNSS GRACE LSDM GLDAS 
Ocean Tidal û  

(Corrected for) 
û 

(Corrected for) 
û 

(Not modeled) 
û 

(Not modeled) 
Ocean Non-Tidal û  û û û 

Atmosphere û  û û û 
Soil Moisture ü ü ü ü 

Snow ü ü ü ü 
Vegetation ü ü û ü 



Lakes + Rivers ü ü ü û 
Groundwater ü ü û û 

Resolution – 350-500 km 0.125° x 0.125° 1° x 1° 
Earth Model – PREM ak135 PREM 

 215 

Table 1: Summary of datasets and products. Red crosses indicate that the specific loading 216 

source is not included or considered in the model. Blue crosses indicate that the loading source 217 

has been removed from the data through a separate model prior to its inclusion in this study. 218 

Green checkmarks indicate that the loading source is included in the loading model or is 219 

expected to be present in the GNSS/GRACE data.  220 

 221 

3. Results 222 

 223 

3.1 Least-squares results 224 

When we fit the GNSS time series with Equation 1, we find that GNSS stations across 225 

South and Southeast Asia record significant deformation at seasonal periods, generally in phase 226 

with the local hydrological cycle. Peak uplift is around April, at the end of the dry period, and 227 

peak subsidence is around October, at the end of the monsoon (Figure S2). The amplitudes of 228 

the vertical displacements are about 20 mm peak-to-peak (Figure 2). In Figure 3, the phase and 229 

amplitude information of seasonal oscillations, such as from GNSS time series, are plotted as 230 

phasors rather than physical vectors. The length of the phasor represents the peak-to-peak 231 

amplitude of the seasonal signal, and the phasor orientation represents the timing of peak 232 

uplift in the seasonal cycle.  233 

 234 

3.2 Comparison with GRACE-derived load models 235 

The GRACE mass loading model results are shown in Figure 3a and 3b. Although the 236 

phases of the models are generally consistent with GNSS, the seasonal amplitudes of the GRACE 237 

models are systematically lower than the GNSS, especially in Myanmar. When the GRACE 238 

models are used to correct the GNSS time series, the WRMS reduction is generally 20-45% 239 

(Figure 3b). The oscillations from hydrological loading are visibly reduced in the time series 240 



after the GRACE correction is applied (Figures S3 and S5). However, a few stations, typically 241 

those with misaligned phases between the GNSS and GRACE data, experience little WRMS 242 

reduction after seasonal correction by this technique (Figure 3b). We assessed the GRACE 243 

model fit to the horizontal GNSS data as well but found the seasonal signals in the horizontal 244 

components are generally small and sometimes spatially incoherent (Figure S7); more research 245 

into these horizontal seasonal oscillations is warranted in the future.  246 

 247 

 248 
 249 

Figure 2: A) GNSS vertical time series from the MIBB network spanning from 2012 to 2017. B 250 

and C) Two stations’ vertical time series with their corresponding hydrological loading models.   251 

 252 

3.3 Comparison with LSDM and GLDAS hydrological load models 253 

 We find that the LSDM model predicts larger seasonal displacement patterns than the 254 

GRACE-derived model. The LSDM generally fits the amplitude of the GNSS seasonal oscillations 255 

very well across the network in South Asia. However, these models systematically reach peak 256 

uplift ~1 month earlier than the GNSS. Because of the better match between the GNSS and 257 



LSDM seasonal amplitudes, the typical WRMS reduction for this model is slightly higher than for 258 

the GRACE corrections (Figure 3d).  259 

 260 

Figure 3: a) Average phase and amplitude results for GNSS observations using a least-squares 261 

model fit (black) and GRACE models computed from the CSR solution (red). The length of the 262 

vector shows the peak-to-peak amplitude of the seasonal oscillation and the angle shows the 263 

phase by denoting the timing of peak uplift as shown in the legend. b) WRMS reduction (in %) 264 

between the uncorrected and corrected GNSS time series using GRACE predicted displacements 265 

as corrections. c & d) Phase and amplitude results for the LSDM, with its WRMS reduction.  e & 266 

f) Phase and amplitude results for the GLDAS model, with its WRMS reduction.  267 



 268 

 The GLDAS results are similar in phase to the LSDM, and similar in seasonal amplitude to 269 

the GRACE models. As a result, they disagree with the GNSS data by displaying lower 270 

amplitudes and phases that are ~1 month too early. Correcting the GNSS data using this model 271 

is less effective than the other two methods, generally resulting in only 10-25% WRMS 272 

reductions (Figure 3f). 273 

Overall, we find that the GRACE-derived and LSDM-derived hydrological loading models 274 

capture the majority of seasonal signals in the vertical GNSS time series (Figures 3 and 4), 275 

although in slightly different ways. We find that GRACE models best match the phase of the 276 

observed data, suggesting that the gravity data successfully capture the overall temporal 277 

pattern of seasonal mass loading experienced at most stations. On the other hand, the LSDM-278 

based models best match the GNSS seasonal amplitudes. LSDM seems to provide a similar 279 

phase estimate but larger seasonal amplitude estimate compared to GLDAS. 280 

Analyzing region by region, we find that GRACE models generally have the highest 281 

WRMS reduction in the upland or mountainous parts of the study region, including the 282 

Indoburman Range, the Shillong Plateau, Bhutan, and the foreland of the Indian Himalaya 283 

(Figure 4). However, the LSDM is the model with the highest WRMS reduction in 284 

India/Bangladesh and in the southern part of Myanmar.  285 

 286 

 Avg amplitude 

(mm) 

Avg phase 

(DOY) 

Avg amplitude 

misfit (mm) 

Avg phase misfit 

(days) 

Avg 

WRMS (%) 

GNSS 23.3 74 - - - 

GRACE 16.5 79 6.8 14.0 (mostly neg) 28.5 

LSDM 22.9 65 3.5 17.4 (mostly pos) 29.7 

GLDAS 13.8 65 9.5 17.3 (mostly pos) 24.3 

 287 

Table 2: Summary of seasonal deformation detected in the MIBB GNSS network (top row) and 288 

predicted by three hydrological model products. Their typical misfits and WRMS reductions 289 

with respect to the GNSS data are characterized in the three right columns.  290 



 291 
Figure 4: Station by station performance of each seasonal model. Higher WRMS reduction 292 

values indicate a stronger model fit. The LSSQ model is the reference model, derived from 293 

fitting Equation 1 to the GNSS time series. Stations are grouped geographically and ordered 294 

north-to-south within groups where possible. 295 

 296 

4. Discussion 297 

The patterns in our estimates of seasonal loading phase and amplitude (both across 298 

datasets and across the region) may help illuminate the underlying physical processes evident 299 

in the vertical GNSS time series. As one example, the GRACE models and the GNSS data have a 300 

systematic phase lag compared to the LSDM and GLDAS of about 15 days (Table 2).  One 301 

hypothesis for this phase difference is the slow movement of water through the groundwater 302 

system; the loading due to groundwater should be visible in GRACE and GNSS but not in LSDM 303 

and GLDAS, contributing a phase lag. An order-of-magnitude calculation of diffusive 304 

groundwater transport using typical hydraulic diffusivities (Barbour & Wyatt, 2014) shows that 305 

15 days is too short a timescale for significant lateral groundwater flow to take place; however, 306 

it could account for the flow of surface water into unconfined aquifers, removing it from the 307 

surface-water-only models (LSDM and GLDAS) but not the mass-sensitive observations (GNSS 308 

and GRACE) (Figure S9). A similar phase lag (20 days in the same direction) was inferred 309 

between GRACE-based groundwater estimates and terrestrial water storage from hydrological 310 

models in India (Rodell et al., 2009). Further work to better understand the phase difference 311 

between these hydrological models and GNSS data should consider spatial heterogeneity in the 312 

size, depth, and structure of aquifers.  313 



The GRACE loading models in our study underpredict observed GNSS seasonal 314 

amplitudes at nearly all stations (Figure 5a), an effect that has also been observed in other parts 315 

of the world (Fu et al., 2013; Tregoning et al., 2009; Zhao, Wu, & Wu, 2017). Fu et al. (2013) 316 

suggested that scaling GRACE models by a factor of 1.22 was needed to match vertical GNSS 317 

data in South Asia, and we find comparable seasonal amplitude differences between GRACE 318 

models and GNSS data. Similarly, our GRACE amplitude predictions are systematically lower 319 

than LSDM, a surprising result given that LSDM should represent a subset of GRACE’s total mass 320 

budget (i.e., only the water associated with rivers, lakes, and shallow soil moisture). The same 321 

amplitude discrepancy was also found in Yunnan Province and several other regions of China 322 

(Yan et al., 2019). Earth model differences between these two models should not be able to 323 

explain the magnitude of the GRACE vs. LSDM discrepancy, as PREM and ak135 produce similar 324 

vertical displacements for the same load distribution (Martens et al., 2016, their Figure 10; 325 

Wang et al., 2012, their Table 2).  326 

Through quantitative tests of loading distributions, we instead suggest that the reduced 327 

GRACE-modeled seasonal amplitudes are due in large part to unmodeled loading from local 328 

water sources below the measurement resolution of GRACE. We modeled loading from the 329 

same hypothetical total mass under both localized loads from rivers and lakes (similar to the 330 

LSDM resolution) and distributed loads (similar to the GRACE resolution). The distributed model 331 

shows widespread 10%-40% reductions in displacement across almost the entire region (Figure 332 

6), with very few stations experiencing increased loading amplitude as a result of the 333 

smoothing. The largest discrepancies naturally occur where local loading sources are expected 334 

to be dominant (Figure 6c), such as near large rivers. This apparent smoothing mechanism 335 

could explain the GRACE model’s overall smaller seasonal displacements relative to the higher-336 

resolution LSDM, as well as the modeled differences in the two largest deltas, the Ganges-337 

Brahmaputra and Irrawaddy river deltas in Bangladesh and Myanmar (Figure 4).  338 

Specifically for GNSS stations located in sedimentary basins, Earth model effects from 339 

the shallow sedimentary layers may play a small secondary role in the discrepancy between the 340 

GNSS and GRACE amplitudes. The addition of a 5-km-thick surface layer of clay to PREM can 341 

result in a several-fold increase in loading response for loads on the order of several km from 342 



the observation point (Bos, 2010).  However, because near-surface effects only amplify loads 343 

that are very close to GNSS stations (Martens et al., 2016), and because much of the seasonal 344 

amplitude of the GNSS data is already captured with the LSDM model, we consider these 345 

effects to be second-order at most stations. An even higher-resolution representation of 346 

loading from rivers, streams, and lakes, perhaps focused on a particular sub-region, could help 347 

quantify these approximations in the future.  348 

We note that the phase and amplitude of hydrological loading signatures in GNSS time 349 

series contain some inherent uncertainty and may include small contributions from other 350 

processes. For example, here we make the assumption that the phase and amplitude of 351 

seasonal deformation are consistent from year to year, but in reality, these vary slightly. In 352 

addition, estimation of the seasonal deformation is thought to depend somewhat on the GNSS 353 

processing. GNSS processing software and approaches may differ in their treatment of 354 

reference frame and Earth center realization, draconitic errors, and corrections for ocean tidal 355 

loading effects; these effects can impact both phase and amplitude of GNSS seasonal 356 

oscillations, but are usually much smaller than loading from the hydrological cycle (Chanard et 357 

al., 2018b; Larochelle et al., 2018; Van Dam et al., 2016). Thermoelastic strains may contribute 358 

on the order of 1 mm to the GNSS-observed loading (Fang et al., 2014) but would not be 359 

included in hydrological models. 360 

 361 

 362 



Figure 5: Comparisons of estimates of seasonal amplitude and phase from observed GNSS data 363 

and three models of hydrological loads. A) GNSS Amplitude vs. GRACE model amplitude. B) 364 

GNSS Amplitude vs. LSDM amplitude. C) GNSS Amplitude vs. GLDAS model amplitude. D-F) 365 

Comparisons of GNSS and model phase of peak uplift, in day of year. G) Regional map with 366 

stations color-coded for reference.  367 

 368 

 369 
Figure 6: a-c) Synthetic test of two identical-volume loads on the solid Earth, one locally 370 

distributed along rivers and lakes and one broadly distributed in large cells. The effect of local 371 

water bodies on the loading problem is shown by the residuals. Most stations have 10-40% 372 

higher loading amplitudes from localized loads compared to distributed loads of the same 373 

mass. d) Example calculation from two equivalent-mass loads with different widths. e) 374 

Residuals between panels (a) and (b).  375 

 376 

 The results presented here can be used in a number of applications. In the future, a 377 

combined GNSS- and GRACE-derived estimate of total water storage would be higher resolution 378 

than a GRACE-based estimate alone (Adusumilli et al., 2019; Fu et al., 2015), and may provide 379 

new insights into the hydrological system in a monsoon region. An improved understanding of 380 



vertical seasonal and longer-term motion from elastic mass loading could also be used to 381 

extract more accurate tectonic velocity measurements from short time series that contain a mix 382 

of hydrological loading effects and earthquake cycle deformation such as postseismic 383 

transients. Model predictions of hydrological loading can be used to correct sparse time series 384 

such as from survey-mode GNSS measurements (Zhao et al., 2017). Depending on the location 385 

of particular stations, we suggest that either GRACE or LSDM, or a combination of both, may 386 

provide the most accurate model from which to derive a hydrological correction for survey 387 

GNSS data. From a hazards perspective, it is important to have as precise a 3-dimensional 388 

velocity field as possible in South and Southeast Asia, given that significant first-order questions 389 

still remain about the present-day activity of the Arakan megathrust and continental faults in 390 

the region (Mallick et al., 2019; Steckler et al., 2016). As more GNSS data are collected in 391 

Myanmar in the future, these corrections will help to further characterize tectonic activity in 392 

this complex plate boundary zone.  393 

 The study of vertical velocities from GNSS time series is also an important research area 394 

that would benefit from accurate characterization of hydrological loads in Asia. Vertical 395 

velocities can reveal regions of elastic strain accumulation, active mountain-building, lower 396 

crustal flow, mantle upwelling, groundwater withdrawal, isostatic response to ice melt, sea 397 

level change, and more (Hammond, Blewitt, & Kreemer, 2016; Higgins et al., 2014; Hill, Davis, 398 

Tamisiea, Ponte, & Vinogradova, 2011; Serpelloni, Faccenna, Spada, Dong, & Williams, 2013; Yi, 399 

Freymueller, & Sun, 2016). In and around Myanmar, little is known about the processes 400 

affecting vertical deformation and the rheology of the crust. Separating the annual and 401 

multiannual hydrological signals from the existing GNSS datasets will provide insight into these 402 

questions by revealing regions where significant present-day vertical motion is attributable to 403 

tectonics.  404 

 405 

5. Conclusions 406 

In this work, we analyze continuous GNSS data from South and Southeast Asia to 407 

understand the patterns of hydrological loading deformation evident in their vertical time 408 

series, which result in seasonal cycles of about 2-3 cm in amplitude. We then compare the 409 



observed loading signals to three hydrological modeling techniques to learn about the sources 410 

of loading on the solid Earth. We find that the best fitting models derive from GRACE gravity 411 

data and a hydrological model (Dill & Dobslaw, 2013) that contains estimates of water in soil 412 

moisture, snow, and surface water. The loading component due to surface water in lakes and 413 

streams appears to be significant in this area, especially in the Ganges-Brahmaputra and 414 

Irrawaddy river deltas. At a larger scale, the comparison and integration of these data sets has 415 

the potential to provide insights into both the active tectonics and the spatiotemporal 416 

hydrological properties of South and Southeast Asia.  417 

 418 
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