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Abstract  32 

Snacking has traditionally been associated with consumption of foods rich in fats and 33 

carbohydrates. However, new dietary trends switched to consumption of protein-rich 34 

foods. This study investigates the impact of food processing on the cryptome of one 35 

of the most widely consumed meat snacks, beef jerky. We have performed discovery-36 

driven proteome-wide analyses, which identified a significantly elevated presence of 37 

reactive prooxidant post-translational modifications in jerky. We also found that these 38 

protein decorations impact an important subset of in-silico predicted DNA binding 39 

cryptides. Furthermore, we observed cell-dependent reduction in cell viability after 40 

prolonged treatments with endogenous-like jerky digests. Collectively these findings 41 

uncover the presence of prooxidant modifications in processed dried beef snacks and 42 

associate their presence with cytotoxicity. Thus, the findings reported here can pave 43 

the way for future studies aimed to establish appropriate dietary recommendations on 44 

snacking trends.  45 

 46 

 47 

 48 

 49 

 50 

  51 



3 
 

1. Introduction 52 

Snacking is a dietary habit influenced by complex biopsychosocial factors estimated 53 

to contribute to almost one third of dietary intake (Njike, Smith, Shuval, Shuval, 54 

Edshteyn, Kalantari, et al., 2016). Although snacks have traditionally been associated 55 

with consumption of foods rich in fats and carbohydrates with low nutritional profiles, 56 

inclusion of whole foods and foods rich in proteins has changed the social perception 57 

and outcomes of this habit (Farajian, Katsagani, & Zampelas, 2010).  58 

Snacks rich in proteins tend to increase satiety, balance energy consumption and 59 

reduce obesity among other significant health benefits (Chapelot, 2011; Marmonier, 60 

Chapelot, & Louis-Sylvestre, 2000). However, potential effects of long-term 61 

consumption of processed protein-rich snacks on human health remain poorly defined. 62 

Proteins are an essential macronutrient required to sustain endogenous protein 63 

synthesis and muscle mass (Phillips & Van Loon, 2011). Notwithstanding, the 64 

influence of proteins and of their derivatives extend well beyond basic nutritional 65 

values (Galvez & de Lumen, 1999; Koldovsky, 1989; Shah, 2000). Food bioactive 66 

proteinaceous range from two amino acids to long peptides, and in the human body 67 

are known to modulate hypertension, angiogenesis, diabetes, inflammation, immunity 68 

and opioid synaptic synergy, to mention just a few (Chatterjee, Gleddie, & Xiao, 2018).  69 

Although bioactive proteinaceous are naturally present in foods, a clear distinction 70 

between protein molecules naturally present in foods and the cryptome must be 71 

performed (Kitts & Weiler, 2003). Indeed, the cryptome consists in a subset of latent 72 

functional units that are liberated from protein sequences under certain conditions, 73 

such as proteolytic activity, which generates a novel cluster of bioactive peptides 74 

commonly dubbed as cryptides (J Autelitano, Rajic, Ian Smith, Berndt, Ilag, & Vadas, 75 

2006; Samir & Link, 2011).  76 

All food molecules, including proteins, are required to pass through a digestive process 77 

in the human body, and thus bioactivity of food proteinaceous becomes determined 78 

by the molecular composition of the cryptome, as previously revised (Samir & Link, 79 

2011). Endogenous enzymes in the digestive system generate a vast array of multi-80 

length proteolysed peptides that in some instances can become hard to link to the 81 

parent protein, and that may possess bioactive abilities that surpass those of the 82 

molecules naturally present in foods (Autelitano, Rajic, Smith, Berndt, Ilag, & Vadas, 83 
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2006). Thus, proteome-wide definition of cryptides and the cryptome of consumed 84 

foods has been described in recent studies (Federica Iavarone, Claudia Desiderio, 85 

Alberto Vitali, Irene Messana, Claudia Martelli, Massimo Castagnola, et al., 2018). 86 

Although it is known that biological variables are able to modify the complex molecular 87 

composition of the cryptome, and in turn to create a very singular bioactivity profile of 88 

each consumed food in each individual (Samir & Link, 2011); other variables, such as 89 

industrial processing and food composition seem to play fundamental roles in the 90 

molecular composition and biofunctional outcomes of the cryptome. Industrial 91 

processing is largely proven to alter the molecular composition and profile(s) of 92 

functional molecules in foods (Capanoglu, Beekwilder, Boyacioglu, De Vos, & Hall, 93 

2010; Escobedo-Avellaneda, Moure, Chotyakul, Torres, Welti-Chanes, & Lamela, 94 

2011). Similarly, food composition refers to presence of components, such as lipids or 95 

sugars, in the food composition, which alters the molecular profile(s) of functional 96 

molecules in foods by addition of protein posttranslational modifications (PTMs) (A. 97 

Serra, Gallart-Palau, See-Toh, Hemu, Tam, & Sze, 2016). Oxidative degradation of 98 

both lipids and sugars generates highly reactive dicarbonyls and other molecules that 99 

promote apparition of advanced glycoxidation end products (AGEs), and lipoxidation 100 

end products (ALEs) (Vistoli, De Maddis, Cipak, Zarkovic, Carini, & Aldini, 2013). 101 

These toxic protein decorations have been identified in food-derived nutraceuticals 102 

and bioactive peptides as consequence of food processing (A. Serra, Gallart-Palau, 103 

See-Toh, Hemu, Tam, & Sze, 2016). However, whether industrial processing and 104 

molecular composition affect the profile(s) and biofunctional outcomes cryptome-wide 105 

remains poorly uncovered.  106 

As recently unveiled, the raise in consumption of meat snacks has already overpassed 107 

that of potato chips in United States (Nielsen, 2017). The main benefits of these 108 

snacks, in which beef jerky is the most widely consumed (NHCS, 2018) are mainly 109 

promoted on the basis of their high level of protein and their low level of fats. To further 110 

investigate the impact that food processing and food composition exert on the 111 

cryptome of meat snacks, we have characterized in this study the molecular 112 

composition of cryptides from beef jerky and unprocessed beef meat by mass 113 

spectrometry (MS)-based cryptomics (Samir & Link, 2011).  114 

 115 
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2. Materials and methods 116 
2.1. Reagents and chemicals 117 

All reagents used in this study were purchased from Sigma-Aldrich (St. Louis, MO, 118 

USA) unless otherwise stated. Water and acetonitrile (ACN) used for mass MS 119 

analysis were of high-performance liquid chromatography (HPLC) grade from Fisher 120 

Scientific Inc. (U.S.A.). Complete Protease Inhibitor cocktail tablets were obtained 121 

from Roche (Basel, Switzerland). 122 

 123 

2.2. Protein extraction from meat samples for shotgun proteomics study 124 

Lean raw beef cube steak (unprocessed meat) and beef jerky were purchased from a 125 

local supermarket in Singapore. Ingredients listed on beef jerky label are: beef, sugar, 126 

dextrose, maltodextrin, salt, soy protein, vegetable powders, species, flovour, acidity 127 

regulator (331), vegetable oil, antioxidant (316), spice extracts, preservative (250). 128 

Both products were of Australian origin. Homogenization of meat samples (~250 129 

mg/sample) was performed with 2% sodium dodecyl sulfate (SDS), 100mM 130 

ammonium bicarbonate (ABB) and protease inhibitor (1:50 v/w)) (SDS extraction 131 

buffer) using a ultrasonic processor with a 3 mm microtip probe (Sonics & Materials, 132 

U.S.A.) at a 40% amplitude for 5-second pulses for five minutes, followed by 5-second 133 

cool-down interval. Homogenization was performed on ice. After homogenization 134 

samples were centrifuged at 10,000 x g for 10 minutes at 4°C and the supernatants 135 

were collected. Pellets were further homogenized twice as described above and 136 

supernatants were combined. Proteins were then precipitated and fat was removed 137 

from 1 mL of meat homogenized supernatant by liquid/liquid extraction adding 5 mL 138 

of 1:1 methanol/chloroform (v/v), vortexing and allowing to stand for an hour. The 139 

mixture was then centrifuged at 5000 x g for 10 minutes at 4°C and liquids decanted. 140 

Pellets were dissolved in a 1% sodium deoxycholate (SDC), 100mM ABB solution. 141 

The experiment was done per triplicate using three samples obtained from three 142 

packets of beef jerky or unprocessed meat. 143 

 144 

2.3. In-solution tryptic digestion of jerky and unprocessed meat proteins for 145 

shotgun proteomics study 146 

Digestion of proteins from jerky and unprocessed meat samples was performed as 147 

previously described (Gallart-Palau, Serra, Hase, Tan, Chen, Kalaria, et al., 2019; 148 

Aida Serra, Gallart-Palau, Wei, & Sze, 2016; A. Serra, Zhu, Gallart-Palau, Park, Ho, 149 
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Tam, et al., 2016). Briefly, reduction of disulfide bonds was performed with 10 mM 150 

dithiothreitol (DTT) at 60°C for 30 minutes, alkylation of cysteines was then performed 151 

by adding 20 mM iodoacetamide and incubating at 37°C for 30 minutes. Samples were 152 

then diluted 2.5-fold with 100 mM ABB containing 10 mM DTT and incubated for 30 153 

min at 37°C. Protein concentration was determined with a bicinchoninic acid assay, 154 

and 3 mg of protein from each sample were digested with trypsin at 1:20 enzyme-to-155 

protein ratio overnight at 37°C. Trypsin digestion was quenched and SDC was 156 

precipitated by acidification to a final concentration of 0.5% formic acid (FA). SDC was 157 

pelleted by centrifugation at 12,000 x g for 10 minutes at 4°C. The pellet was re-158 

suspended in 100mM ABB for further peptide recovery, and a second round of SDC 159 

precipitation was performed. The supernatant from both rounds of centrifugation were 160 

collected and combined. The peptides were desalted using a 1g Sep-pack C18 161 

cartridge (Waters, U.S.A.). The eluted peptides were dried completely in a vacuum 162 

concentrator (Eppendorf, Germany). 163 

 164 

2.4. High-pressure liquid chromatography fractionation of jerky and 165 

unprocessed meat peptides 166 

Desalted peptides were fractionated by high-pressure liquid chromatography (HPLC) 167 

as previously described (Gallart-Palau, Serra, Lee, Guo, & Sze, 2017), with minor 168 

modifications. Peptides were reconstituted in 200 µL of mobile phase A (85% ACN, 169 

0.1% acetic acid) and fractionated using a PolyWAX LP 3.5 μm 4.6 × 250 mm column 170 

(PolyLC, U.S.A.) with a Shimadzu Prominence UFLC system (Dionex, USA) with UV 171 

monitoring of peptide intensities at 280 nm. Peptides were separated in a 70-min 172 

gradient as follows: 0% B (0.1% FA) for 10 min, 0–20% B for 30 min, 20–65% B for 173 

10 min, 65-100% B for 1 min, 100% B for 8 min, 100-0% B for 1 min, and 0% B for 10 174 

min. Fractions were collected at 1 min intervals and combined in a total of 18 fractions 175 

per sample according to the peak elution profile. Combined fractions were dried 176 

completely in a vacuum concentrator. 177 

 178 

2.5. Liquid chromatography-mass spectrometry shotgun proteomics of jerky 179 

and unprocessed meat peptides 180 

Dried fractionated peptide samples were reconstituted in mobile phase A (3% ACN, 181 

0.1% FA). LC-MS/MS analysis of peptides was performed using a Dionex UltiMate 182 

3000 UHPLC system coupled with an Orbitrap Elite mass spectrometer (Thermo 183 
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Fisher Inc., Bremen, Germany) as previously described with minor modifications  184 

(Gallart-Palau, Serra, Qian, Chen, Kalaria, & Sze, 2015; Gallart-Palau, Serra, & Sze, 185 

2016; Gallart-Palau, Serra, Wong, Sandin, Lai, Chen, et al., 2015; Aida Serra, Xavier 186 

Gallart-Palau, Bamaprasad Dutta, & Siu Kwan Sze, 2018).  Spray was generated 187 

using a Michrom Thermo CaptiveSpray nanoelectrospray ion source (Bruker-Michrom 188 

Inc., Auburn, USA) working at 1.5 kV. Peptide separation was performed using a 189 

reverse-phase Acclaim PepMap RSL column (75 μm ID × 15 cm, 2 μm particle size, 190 

Thermo Scientific Inc.) maintained at 35°C and working at 300 nL/min. Eluents A (0.1% 191 

FA) and B (90% ACN, 0.1% FA) were used to establish the following 60-min gradient 192 

at a flow rate of 300 nL/min over a 60 minute period: 3% B for 1 min, 0–35% B for 47 193 

min, 35–50% B for 4 min, 50–80% B in 5 seconds, 80% B for 78 sec, 80–3% B in 6 194 

seconds, 3% B for 6.5 min. Orbitrap Elite mass spectrometer was set to positive mode 195 

for data acquisition with Xcalibur 2.2 SP1.48 software (Thermo Fisher Scientific Inc., 196 

Bremen, Germany) software alternating between full Fourier transform-mass 197 

spectrometry (FT-MS) (350−2000 m/z, resolution 60000, with 1 μscan per spectrum) 198 

and FT-MS/MS (150−2000 m/z, resolution 30000, with 1 μscan per spectrum). 199 

Fragmentation of the 10 most intense precursors with charge >+2 and isolated within 200 

a 2 Da window was performed using high-energy collisional dissociation (HCD) mode 201 

using 32% normalized collision energy. A threshold of 500 counts was enabled. For 202 

Full FT-MS and FT-MS/MS automatic gain control was set to 1 × 106.  203 

 204 

2.6. Protein extraction from meat samples for cell viability assay 205 

Proteins from 50 g of unprocessed meat or jerky were extracted with 200 mL of SDS 206 

extraction buffer as detailed previously with minor modifications (A. Serra, X. Gallart-207 

Palau, B. Dutta, & S. K. Sze, 2018). Homogenization was performed with the ultrasonic 208 

processor with a 6 mm probe (Sonics & Materials). Proteins were precipitated and fats 209 

removed with 200 mL of 1:1 methanol:chloroform (v/v) as previously detailed. Pelleted 210 

proteins (~1 g/sample) were dissolved in 8 mL of 4 mM hydrochloric acid (pH 2), and 211 

homogenized with the ultrasonic processor using the 3 mm probe (40% amplitude, 10-212 

second pulses for 10 minutes, 10-second cool down, on ice). The meat samples were 213 

further homogenized in a bullet blender (Next Advance, U.S.A.) with metallic beads 214 

(1mm; Next Advance) at maximum speed for 30 minutes at 4°C. Samples were 215 

centrifuged at 10,000 x g for 10 minutes at 4°C, and supernatants were collected.   216 

 217 



8 
 

2.7. Preparation of endogenous-like unprocessed meat and jerky digests for 218 

cell viability assay 219 

To simulate the sequential endogenous stomach, and duodenum human digestion, 220 

pepsin and trypsin proteases were used in a static in vitro digestion strategy as 221 

previously described (Nguyen, Bhandari, Cichero, & Prakash, 2015), with minor 222 

modifications. Reduction and alkylation of unprocessed meat or jerky proteins were 223 

performed as previously described for the shotgun proteomics study. Reduced and 224 

alkylated proteins were digested with pepsin (1:20 w/w) at pH 2 and 37°C overnight. 225 

Pepsin was inactivated by increasing the pH to 8 with ABB. Overnight digestion was 226 

then performed with trypsin (1:40 w/w) at 37°C, and inactivated by adjusting to pH 3 227 

with acetic acid. Peptides were then desalted using a 1g Sep-pack C18 cartridge 228 

(Waters, U.S.A.). The eluted peptides were dried completely in a vacuum concentrator 229 

(Eppendorf, Germany). 230 

 231 

2.8. Cell viability assay  232 

Cell viability was measured with a colourimetric tetrazolium dye, thiazolyl blue 233 

tetrazolium bromide (MTT) assay. NIH 3T3 fibroblast and HCT116 cells (American 234 

Type Culture Collection (ATCC), U.S.A.) were seeded per well in 96-well plates and 235 

incubated overnight in Dulbecco's Modified Eagle's Medium (DMEM, GE Healthcare 236 

Life Sciences, U.S.A.) supplemented with 10% fetal bovine serum. The endogenous-237 

like unprocessed meat or jerky protein digests were dissolved in 1 mL of 1x PBS, 238 

diluted with DMEM and filtered with a 0.22 μm polyethersulfone filter (Sartorius AG, 239 

Germany). The media was then exchanged with fresh media containing 0.25 to 1 240 

mg/mL of endogenous-like digests and cell viability was tested via an MTT assay at 241 

24, 48 and 72 hours according to manufacturer’s protocol. Cells treated with DMEM 242 

were considered as control. Absorbance was measured at 570nm and untreated 243 

controls were set to 100% viability. The experiments were performed per triplicate. 244 

 245 

2.9. In-silico identification of cryptides with DNA-binding capacity 246 

For the in-silico characterization of cryptides with DNA-binding capacity the list of 247 

unique peptides identified by shotgun proteomics after tryptic digestion of jerky and 248 

unprocessed meat were converted to FASTA format (including post-translationally 249 

modified and unmodified peptides) using an in-house program. Subsequently, the lists 250 

were submitted to the DNA binding protein prediction (DNA-Binding) online platform 251 
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(Szilagyi & Skolnick, 2006). In-silico DNA binding capacity prediction was done from 252 

peptide sequence at 15% false discovery rate (Szilagyi & Skolnick, 2006). Only 253 

peptides with a prediction score confidence > 10 were considered as cryptides with 254 

DNA binding capacity. Cryptides were in-silico predicted for every replicate (n=3). 255 

 256 

2.10. Bioinformatics and data analysis 257 

The raw MS/MS data were de-isotoped and converted into Mascot Generic Format 258 

using the Thermo Proteome Discoverer software (version 1.4.1.14, Thermo Fisher 259 

Scientific, U.S.A.), then searched against the Bos taurus reference proteome and 260 

UniMod protein modification were identified using an in-house Mascot server using the 261 

Mascot error tolerance search mode (version 2.6.1; Matrix Science, U.S.A.). The 262 

search was performed with a 5 ppm precursor MS tolerance, 0.02 Da MS/MS fragment 263 

tolerance. The missed cleavage sites was determined with Mascot search results. 264 

GraphPad Prism 6 (GraphPad Software, Palo Alto, CA) was used for parametric 265 

statistical analyses and for creating data plots. Data were analyzed by Student’s t-test 266 

at p-values < 0.05 and are reported as mean ± SD. 267 

 268 

2.11. Availability of data 269 

The data generated in this study are publicly available via the ProteomeXchange 270 

consortium through the partner repository PRIDE (Vizcaino, Csordas, Del-Toro, 271 

Dianes, Griss, Lavidas, et al., 2016).  272 

PRIDE Accession: PXD012112 273 

 274 

3. Results and discussion 275 

3.1. Protein post-translational modifications in jerky  276 

In this study we sought to investigate the presence of protein PTMs induced by food 277 

processing and food composition in beef jerky using unprocessed meat as control. 278 

Peptidome-wide characterization revealed a significantly higher number of total unique 279 

peptides in unprocessed meat samples compared to jerky (Supplementary Figure 1 280 

and Supplementary datasets 1 and 2), a fact that is consistent with previous reports 281 

(Yu, Morton, Clerens, & Dyer, 2017), and that could be related with denaturation and 282 

formation of proteinaceous aggregates of low solubility in jerky during production 283 

processes. Beef jerky production process generally involves a drying process of the 284 

marinated meat at about 71.1°C (160 degrees F) prolonged up to 12 h. The duration 285 
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of the drying process depends on specific recipe. On the contrary, drying temperature 286 

of 71.1°C was recommended by the United States Department of Agriculture (USDA) 287 

to achieve an immediate lethality of Salmonella and ensure an adequate 288 

microbiological safety (USDA, 2007). This long drying process is often precluded by a 289 

shorter post-drying heating step at about 135°C. In the first heating step meat is 290 

cooked and microbial numbers is reduced whilst the second drying phase stabilizes 291 

organoleptically the product and prevents microbial growth. 292 

Protein PTMs significantly elevated in jerky were essentially derived from the reaction 293 

between proteins with endogenous sugars, lipids or other components catalyzed by 294 

high temperature treatment (Figure 1 and Supplementary Table 1). These subset of 295 

PTMs, practically unidentifiable in unprocessed meat, included glycated –derived from 296 

hexose, glucoronyl and galactosyl and oligosaccharides- (Figure 1A) and lypoilated 297 

modified proteins (Figure 1B), as well as their degradation products, advanced 298 

glycoxidation and lipoxidation end products (AGEs and ALEs, respectively) (Figure 299 

1C-D). AGEs shown as a heterogeneous mixture of PTMs in jerky (Figure 1E). The 300 

most abundant AGE-related PTM detected in this processed meat snack was the 301 

highly reactive AGE precursor α-dicarbonyl 3-deoxyglucosone (3-DG)(Loughlin & 302 

Artlett, 2010), which affects Arg residues, followed by the Lys modications Nε -303 

carboxy-methyl-lysine (CML) and Nε -carboxy-ethyl-lysine (CEL) (Figure 1E). CML 304 

and CEL have been subject of exhaustive study due to their capacity to interact with 305 

human AGEs receptor (RAGE) (Xue, Rai, Singer, Chabierski, Xie, Reverdatto, et al.). 306 

Additionally, Arg modifying AGE-related PTMs such as the methylglyoxal-derived 307 

hydroimidazolone (MG-H1) and dihydroxyimidazolidine were also found significantly 308 

elevated in jerky (Figure 1E).  309 

Accumulation of AGEs in the mammal’s body leads to apparition of oxidative stress, 310 

inflammation, protein cross-linking and remains negatively associated with lifespan 311 

(Gallart-Palau, Serra, & Sze, 2015; Gallart-Palau, Tan, Serra, Gao, Ho, Richards, et 312 

al., 2019; Sharma, Kaur, Thind, Singh, & Raina, 2015). Although AGEs are 313 

endogenously produced through the sugar metabolism in all tissues and fluids of the 314 

body (Ahmed, Luthen, Haussinger, Sebekova, Schinzel, Voelker, et al., 2005), it was 315 

shown that exogenous AGEs from foods possess the same abilities as endogenous 316 

AGEs at the time to cause protein cross-linking and oxidative stress in cells (Cai, Gao, 317 

Zhu, Peppa, He, & Vlassara, 2002). Similarly, it has been shown that dietary restriction 318 

of AGEs in diabetes subjects and subjects with renal dysfunction has a significant 319 
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repercussion in lowering the circulatory levels of inflammatory markers and VCAM-1, 320 

a specific marker of endothelial dysfunction (Uribarri, Peppa, Cai, Goldberg, Lu, He, 321 

et al., 2003; Vlassara, Cai, Crandall, Goldberg, Oberstein, Dardaine, et al., 2002).  As 322 

demonstrated by Cai and colleagues (Cai, He, Zhu, Chen, Striker, & Vlassara, 2008) 323 

and emphasized by Sharma et al. dietary reduction of AGEs in aging populations is 324 

expected to exert therapeutic effects on the prevalence of several chronic age-related 325 

diseases (Sharma, Kaur, Thind, Singh, & Raina, 2015). Presence of AGEs in snacks 326 

has been found in chips, crackers and cookies (Sharma, Kaur, Thind, Singh, & Raina, 327 

2015; Story, Hayes, & Kalina, 1996), however, their levels were very low compared to 328 

meats (Sharma, Kaur, Thind, Singh, & Raina, 2015). Here, we demonstrate that the 329 

levels of toxic glycans in the most widely consumed meat snack largely surpass those 330 

in unprocessed meats and in other traditionally considered unhealthy snacks such as 331 

potato chips.   332 

 333 

3.2. Food-ubiquitous bioactive motifs contain prooxidant modifications in 334 

jerky  335 

Toxic glycans in bioactive peptides/motifs can alter their function(s) and molecular  336 

interactions (A. Serra, Gallart-Palau, See-Toh, Hemu, Tam, & Sze, 2016). Similarly, 337 

when the cryptome is affected by reactive PTMs (J Autelitano, Rajic, Ian Smith, Berndt, 338 

Ilag, & Vadas, 2006), release of cryptome-derived peptides could become hindered 339 

following endogenous enzymatic digestion (J Autelitano, Rajic, Ian Smith, Berndt, Ilag, 340 

& Vadas, 2006). Thus, since reactive PTMs were only evident in jerky, we investigated 341 

affectation of food-ubiquitous bioactive peptides by reactive PTMs in this processed 342 

food product. In depth analysis of post-translationally modified proteomes from jerky 343 

led to identification of several bioactive peptides affected by AGE-related modifications 344 

in (or surrounding) bioactive motifs as shown in Table 1. Of note, we found the beef 345 

myosin-derived peptide ALGTNPTNAEVKK13 modified in jerky by CML, CEL and Hex 346 

at the residue K13 (Table 1). This peptide contains the VKK region found in the 347 

antihypertensive bioactive peptide VKKVLGNP originally discovered in pork myosin 348 

(Katayama, Jamhari, Mori, Kawahara, Miake, Kodama, et al., 2007). Nevertheless, 349 

this potentially bioactive peptide found in beef jerky displayed prooxidant modifications 350 

at the bioactive motif VKK fact that, we hypothesize, may reduce or modify its 351 

bioactivity. Stoichiometry analysis of the prooxidant modifications in the motif VKK 352 

indicated that ~40% of the total peptide was modified by prooxidant modifications in 353 
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jerky. From these, ~29.3% of the peptide was modified by AGEs and ~9.6% was 354 

glycated (Hex) (Figure 2A). On the contrary, no modified proteoform in this motif was 355 

detected in unprocessed meat. 356 

Similarly the biofunctional motif RPR, originally identified in pork nebulin with 357 

contrasted antihypertensive abilities (Escudero, Toldra, Sentandreu, Nishimura, & 358 

Arihara, 2012), was found directly affected by a 3-DG modification and flanked by MG-359 

H1, 3-DG and Hex modifications in the peptide AGFAGDDAPRAVFPSIVGRPR in 360 

jerky (Table 1). Stoichiometry of these prooxidant modifications in RPR peptide motif 361 

indicated that 96.2% of the total peptide content was modified by AGEs and 3.8% was 362 

modified by glycation (Figure 2B). Furthermore, 10.45% of the peptide containing the 363 

biofunctional motif RPR presented and additional 3-DG modification in the Arg residue 364 

R10 (Table 1). None of these modifications were detected in the RPR motif in 365 

unprocessed meat.  366 

The bioactive motif FHG, proven to possess antihypertensive, antimicrobial and 367 

cancer cytotoxic properties, was identified in jerky flanked by a CML modification in 368 

the NDMAAQYKVLGFHG peptide from jerky (Table 1). Stoichiometry analysis of the 369 

modified peptide indicated that 40.8% was modified by Hex and 17.5% was modified 370 

by CML in jerky (Figure 2C). None of these modifications were detected in the FHG 371 

motif in unprocessed meat. 372 

We also observed that the functional peptides AGFAGDDAPRAVFPSIVGRPR and 373 

NDMAAQYKVLGFHG, while were containing glycotoxins and prooxidant 374 

modifications in jerky, occasionally presented trypsin miscleaved sites in their modified 375 

potential digestion sites. On the contrary, no miscleaved sites were detected for these 376 

peptides in unprocessed meat. 377 

  378 

3.3. Prooxidant modifications impair the release of cryptides from jerky 379 

Observation of missed cleavages in bioactive peptides of jerky prompted us to 380 

investigate the presence of missed cleavage sites in jerky originated by a hindering 381 

effect exerted by PTMs on normal protease activity due to their localization affecting 382 

protease digestion sites. Trypsin is the active form of trypsinogen and represents one 383 

of the main proteases in the digestive system (Antalis, Shea-Donohue, Vogel, Sears, 384 

& Fasano, 2007; Eggermont, Molla, Tytgat, & Rutgeerts, 1971), thus it was used in 385 

this study to investigate the presence of missed cleavage sites in jerky peptidomes 386 

modified and unmodified by prooxidant modifications. As shown in Figure 3A, 74.6% 387 
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of the total unmodified peptides did not display any missed cleavage sites, whereas 388 

the remnant ~25% was distributed in a range that included one to four missed 389 

cleavage sites per peptide (Figure 3A). On the contrary, the presence of missed 390 

cleavage sites in the prooxidant modified subset of peptides was significantly 391 

upregulated compared to their unmodified counterparts affecting ~95% of total 392 

modified peptides. From these, a big portion of 66.7% displayed one missed cleavage 393 

site (Figure 3A). Hindering effects of PTMs on normal protease activity have been 394 

demonstrated by acetylated lysines and other modifications (Zee & Garcia, 2012). 395 

Thus, we found that presence of prooxidant PTMs in processed meat snacks 396 

significantly reduces the endogenous protease efficiency of one of the main proteases 397 

in the digestive system, which in turn affects the release and composition of the 398 

resultant jerky-derived cryptome.  399 

 400 

3.4. Prooxidant modifications affect cryptides with DNA binding capacity in 401 

jerky 402 

Biological functions of cryptides are incipiently uncovered and range from signaling 403 

capacities to implication in regulatory mechanisms in target cells (Ueki, Someya, 404 

Matsuo, Wakamatsu, & Mukai, 2007). These signaling capacities involve DNA 405 

interaction (Ueki, Someya, Matsuo, Wakamatsu, & Mukai, 2007) and thus, identify 406 

potential peptides with DNA binding capacity in highly consumed foods  is required to 407 

define and characterize the biofunctional outcomes of cryptides from foods. In this 408 

study we have performed bioinformatics to obtain in silico predictions of the cryptides 409 

with DNA binding capacity from whole peptidomes identified by shotgun proteomics in 410 

jerky and unprocessed meat. DNA binding capacity is an important biological function 411 

described in vitro in cryptome-released peptides (H Barkhudaryan, V Hunanyan, 412 

Sarukhanyan, M Stepanyan, H Zakaryan, Grigoryan, et al., 2012; F. Iavarone, C. 413 

Desiderio, A. Vitali, I. Messana, C. Martelli, M. Castagnola, et al., 2018) that can be 414 

predicted in a peptidome-wide approach using in-silico bioinformatics strategies as 415 

previously shown (Szilagyi & Skolnick, 2006).  416 

Use of DNAbind predict in this study (Szilagyi & Skolnick, 2006) revealed that jerky 417 

peptidomes contained a total of 553 ± 47 peptides with DNA binding capacity whereas 418 

unprocessed meat peptidomes contained 766 ± 39 peptides. These data were shown 419 

in Figure 3B and whole lists of potential cryptides with DNA binding capacity from 420 

jerky and unprocessed meat are included in Supplementary dataset 3 and 4. Further 421 
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bioinformatics analyses revealed that prooxidant modifications were affecting 11% of 422 

the total cryptides with DNA binding capacities in jerky whereas these toxic 423 

modifications only affected 0.6% of total DNA binding cryptides in unprocessed meat 424 

(Figure 3B).  425 

Previous studies  reported that prooxidant modifications affecting proteins with DNA 426 

binding abilities can cause DNA damage (Guerrero, Vasudevaraju, Hegde, Britton, & 427 

Rao, 2013; Padmaraju, Bhaskar, Prasada Rao, Salimath, & Rao, 2011), and it has 428 

been hypothesized that this mechanism may play a central role in the pathology of 429 

several major diseases in which cell apoptosis is crucially involved (Guerrero, 430 

Vasudevaraju, Hegde, Britton, & Rao, 2013). Thus, based on the findings of this study, 431 

further studies will be required to evaluate the abilities of the cryptome described with 432 

DNA binding capacities in jerky and how these become modified by the effects of the 433 

specific prooxidant modifications uncovered. 434 

  435 

3.5. Modified jerky cryptides impair cell line proliferation in fibroblasts  436 

To explore in vitro the findings described in the previous section and to investigate any 437 

potential cytotoxic effect(s) of prooxidant modifications in the cryptome of beef jerky, 438 

NIH3T3 fibroblasts and HCT116 cell lines were treated with endogenous-like jerky 439 

digests. Digests from unprocessed meat in all conditions were used as control. Cells 440 

were treated with concentrations of digests ranging from 0.25 to 1 mg/ml in different 441 

time points (24h, 48h and 72h), and cell proliferation was evaluated by MTT assay. 442 

Significant time and dose-dependent cytotoxic effects of endogenous-like jerky digests 443 

were strikingly observed after 72h using 1 mg/ml of jerky digest on fibroblast cells (p-444 

value 0.049) (Figure 4). Rest of time-points, cell line (data not shown) and lower 445 

concentrations tested did not yield significant differences between jerky and 446 

unprocessed meat (Supplementary Figure 2). These findings highlight the expected 447 

cell-dependent ability of prooxidant modified jerky cryptides to exert cytotoxicity. The 448 

observed effects are apparently linked to long and abundant exposure of susceptible 449 

cells to prooxidant modified jerky cryptides, suggesting that these detrimental effects 450 

might be linked to interaction of variables like chronic/high level of consumption and 451 

aging, a hypothesis that deserves further investigation.   452 

Dose-dependent cytotoxic effects of AGEs, in susceptible cells, were encountered 453 

several years ago by Li and colleagues (Li, Mitsuhashi, Wojciechowicz, Shimizu, Li, 454 
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Stitt, et al., 1996). The authors found that these pathogenic adducts stimulate the 455 

presence of AGE-specific receptors (RAGEs) in target cells from tissues like renal, 456 

central nervous system and vasculature (Li, et al., 1996) affecting the endothelium, a 457 

basic target in the pathogenesis of several major diseases (A. Serra, Gallart-Palau, 458 

Park, Lim, Lim, Ho, et al., 2018). Similarly, ALEs have also been proven to interact 459 

with RAGEs in e.g. to dysregulate the levels of vasculature calcification (Ott, Jacobs, 460 

Haucke, Navarrete Santos, Grune, & Simm, 2014). Prooxidant modifications are 461 

eliminated from target cells by the renal system (Ott, Jacobs, Haucke, Navarrete 462 

Santos, Grune, & Simm, 2014), and their potential implications as central and/or 463 

comorbid factors in diseases that involve chronic failure of the renal system is under 464 

intense scientific scrutiny (Rabbani & Thornalley, 2018). Although the uptake of 465 

exogenous prooxidant modifications in the digestive system is somewhat limited 466 

(Vlassara, et al., 2002), it was clearly shown that a reduction in the amount of 467 

consumed prooxidant modifications has a significant impact on the levels of 468 

inflammatory processes and protein PTMs that take place in the body (Cecil, Johnson, 469 

Rediske, Lotz, Schmidt, & Terkeltaub, 2005; Vlassara, et al., 2002). Therefore, the 470 

links between long-time consumption of foods that contain an elevated amount of 471 

cryptides modified by prooxidant modifications, aging and human diseases, have to 472 

be further explored in the biomedical and nutritional fields by crosstalk between these 473 

disciplines. Similarly, we demonstrate here that definition of the spectrum of prooxidant 474 

modifications from highly consumed foods cryptome-wide, as well as analysis of their 475 

potential detrimental outcomes, becomes preferential to progress on the knowledge 476 

and improvement of the ties linking nutrition and health.    477 

4. Conclusions 478 

We confirmed an abnormal presence of AGEs and ALEs in the peptidome of beef jerky 479 

snacks, and shown that these reactive and toxic protein decorations directly affect 480 

jerky-derived cryptides and modify the global composition of the jerky cryptome by 481 

interfering with endogenous protease efficiency. Furthermore, we demonstrate that 482 

endogenous-like digests from jerky significantly reduce cell viability in a cell-type and 483 

dose-dependent manner under prolonged periods of exposure. Thus, our findings 484 

indicate that current food processing procedures affect the molecular composition of 485 

largely-consumed meat snacks. Based on these findings, additional research actions 486 

will be required to establish the basis of a proper dietary recommendation on snacking 487 
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habits in line with current snacking trends, in which protein-rich snacks gradually 488 

substitute the inclusion of carbohydrate- and fat-rich snacks in the diet. 489 

 490 
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Figure captions: 664 

Figure 1. Relative quantitation of the significantly elevated PTMs in beef jerky 665 
compared to beef unprocessed meat. A. Comparison of the total number of 666 
matched glycated peptides (glycation category includes hexosylation [+162Da at KN], 667 
hexosamine [+161 at KT], heptosylation [+192 Da at KNQRST], lactosylation [+324 668 
Da at KR], glucuronylation [+176 Da at S] and galactosydation [+178 Da at K]); B. 669 
Comparison of the total number of matched lypoilated peptides [+188 Da at K]; C. 670 
Comparison of the total number of matched advanced lipoxidation end products 671 
(ALEs)-containing peptides. In this category the modification nonanedioic (azelaic) 672 
acid cross link in oxidized lipoproteins [+175 Da at K] was considered. D. Comparison 673 
of the total number of matched advanced glycoxidation end products (AGEs)-674 
containing peptides. This category included carboxymethylation [+58 Da at CKW], 675 
carboxyethylation [+78 Da at K], dihydroxyimidazolidine [+72 Da at R], 676 
carboxymethylation [+58 Da at CKW] methylglyoxal-derived hydroimidazolone (MG-677 
H1) [54 Da at R] and 3-deoxyglucosone [+144 Da at R]. E. Categorization of AGEs in 678 
jerky.  679 

 680 

Figure 2. Stoichiometry of bioactive peptides containing prooxidant PTMs 681 
significantly elevated in jerky compared to beef unprocessed meat.  A. Beef 682 
myosin-derived peptide ALGTNPTNAEVKK# overlaps with the partial sequence VKK 683 
of the bioactive peptide VKKVLGNP. The unmodified proteoform of this peptide was 684 
detected in unprocessed meat. B.  The gamma enteric smooth muscle actin peptide 685 
AGFAGDDAPRAVFPSIVGRPR which contains the bioactive sequence RPR. This 686 
peptide was not present in unprocessed meat. C. The beef myoglobin-derived peptide 687 
NDMAAQYK#VLGFHG which contains the bioactive sequence FHG. This peptide was 688 
not present in unprocessed meat. # denotes the modified site. Bioactive motifs are 689 
underlined. 690 

 691 

Figure 3. Peptidome-wide analysis of jerky and beef unprocessed meat. A. 692 
Presence of missed cleavage sites expressed in percentage in tryptic digested jerky 693 
and unprocessed meat. *means significant differences between jerky and 694 
unprocessed meat assessed by chi-square test (p < 0.05). B. Peptidome-wide 695 
characterization of prooxidant post-translationally modified peptides with DNA binding 696 
capacity. A total of 766 and 553 peptides displayed potential DNA-binding capacity in 697 
unprocessed meat and jerky, respectively. Prooxidant modified peptides represented 698 
the 11% of the total peptides that displayed DNA-binding capacity in jerky. DNA-699 
binding capacity of tryptic peptides was predicted in silico.  700 

 701 

Figure 4. MTT assay results for NIH 3T3 exposed to 1 mg/mL of endogenous-702 
like jerky or unprocessed meat digests after 24 h, 48 h and 72 h treatment. Data 703 
are expressed as mean ± SEM. Significant differences were assessed by ANOVA 704 
with uncorrected Fisher’s LSD multiple comparisons test (p < 0.05). 705 
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Table 1. Peptides identified in the beef jerky that contained sequences corresponding to entire or partial known bioactive peptides. 
Locations of the PTM have been bolded, while the sequence matching known bioactive peptides have been underlined. bACE, refers 
to angiotensin-I converting enzyme. Reported peptides were identified in at least two replicates. 

 

 

 

Accession 
number 

Protein Identified Peptide Reported 
bioactive 
motif 

PTM Bioactivity Reference 

A0JNJ5 
 

Myosin light chain ALGTNPTNAEVKK VKKVLGNP CML ACEb-inhibitory  

ALGTNPTNAEVKK  CEL 

 ALGTNPTNAEVKK  Hexose   

F1MKC4 Actin, gamma enteric 

smooth muscle 

AGFAGDDAPRAVFPSIVGRPR RPR MG-H1 Antihypertensive   

AGFAGDDAPRAVFPSIVGRPR  3-DG 

  AGFAGDDAPRAVFPSIVGRPR  Hexose   

  AGFAGDDAPRAVFPSIVGRPR  3-DG, 3-DG   

P02192 
 

Myoglobin NDMAAQYKVLGFHG FHG CML 

Hex 

ACE-inhibitory, 

antimicrobial, 

cancer cell 

cytotoxic 

 


