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Abstract

Deep neural networks have shown significant improvements in computer vision

applications over the last few years. Performance improvements have been brought

about mostly by using pre-trained models like Inception-v4, ResNet-152, and VGG

19. However, these improvements have been accompanied by an increase in the

size and computational complexity of the models [1]. This makes it difficult to

deploy such models in energy-constrained mobile applications which have become

ever crucial with the advent of the Internet of Things (IoT).

This is especially problematic in a battery-powered IoT system, where executing

complex neural networks can consume a lot of energy [2]. Hence, some methods

to reduce this complexity in software, like using depthwise separable convolutions

[3] and quantization [4], have been proposed. Also, a very different computing

paradigm of spiking neural networks (SNN) has been introduced as a method to

introduce a parameterizable tradeoff between accuracy and classification energy

[5], [6]. The security of such edge deployed neural networks is also a matter of

concern since the IoT devices are easily accessible to hackers.

In this work, a study of the effect of using depthwise separable convolutions and

Dynamic Fixed Point (DFP) weight quantization [7] on both model accuracy and

complexity is done for a DNN used for classifying traffic images captured by a

neuromorphic vision sensor. Initial results show that the DFP weight quantization

can significantly reduce the computational complexity of neural networks with less

than a 2% drop in accuracy.

Finally, the vulnerability of neural networks to side-channel [8] and cold boot at-

tacks [9] is also being studied. To do this, trained models are deployed to edge

devices like the Neural Compute Stick, EdgeTPU DevBoard, and the EdgeTPU

accelerator and then attacked to retrieve the model weights, architecture and other

parameters. We show that using cold boot attacks, it is possible to recover the

model architecture and weights, as well as the original model accuracy. Further,
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we show that with side-channel attacks, it is possible to isolate and identify the ex-

ecution of individual neurons in a model. Since quantized networks have fewer and

smaller weight values, they should be easier to attack. On the other hand, larger

neural networks with complex architectures and dataflows should be comparatively

safer from side-channel attacks.
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Chapter 1

Introduction

1.1 Motivation and Background

Over the last decade, the popularity of smart connected devices has led to an

exponential growth of Internet of Things (IoT) devices. Around the same time,

the availability of a vast amount of data and parallel computing using GPUs has

also increased the applications of deep learning and neural networks.

Figure 1.1: Growth of IoT devices connected to the internet compared to
non-IoT devices. Taken from [10]

Figure 1.1 shows that the number of IoT devices is expected to more than triple by

2025 as compared to 2018. Moreover, the number of IoT devices will be approxi-

mately twice as many as the number of non-IoT devices connected to the internet.

18



Chapter 1. Introduction 19

Figure 1.2 shows that nearly $8 billion were invested in AI companies just in the

second quarter of 2019. This number is also expected to rise over the next few

years. More and more companies are investing heavily and trying to build prod-

ucts that use AI to enhance their functionality. Figure 1.3 shows that by 2030, it is

projected that augmented intelligence and smart products will make up more than

50% of the total revenue generated by AI products. This shows the importance,

value and ubiquity that AI and IoT will have in our lives over the next few years.

Figure 1.2: Funding that AI based companies have received per quarter. Taken
from [11]

Figure 1.3: Business value brought about by AI based products over the next
decade. Taken from [12]
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While both of these fields were progressing separately, in the last few years, re-

searchers have tried to run deep learning models on IoT devices. This computing

paradigm where networks are run at the place where data is generated (IoT devices)

is known as edge computing.

Figure 1.4: Edge Computing is a computing paradigm where computation is
done on nodes near where the data is generated. Taken from [13]

Today, most data is still sent to cloud servers to perform the analytics tasks that

many IoT products perform. However, due to the increase in IoT devices, this

is not a feasible solution anymore. Moreover, many IoT devices generate a vast

amount of data which is not possible to be sent to a cloud server. This is why there

has been a shift to edge computing, whereby analytics and deep learning models

are run at the node where the data is generated.

However, most edge devices are cheap and contain very little compute power. Due

to this, it is not easy to run complex neural network architectures in such devices.

This is why efforts have been made to reduce the compute requirements of neural

networks and to pack more computational power into smaller devices.

One of the ways to do the former is to quantize [4] and prune neural networks [24].

While these methods do work, they are often accompanied by a drop in accuracy

and research efforts need to be put in to regain the lost accuracy. Many companies

like Intel and Google are also building custom hardware to run complex models

on edge devices. The advantage here is that the original model can be executed

without a drop in accuracy. However, many of these custom hardwares are limited

to the types of architectures that can run them, and they consume a large amount

of power.
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Another problem with edge computing is security threats. Edge devices are usually

placed in the open with minimal security features. This makes them very easy to

attack. While software-based attacks are well studied, and security measures are

known [25], hardware attacks and protection from such attacks on neural networks

is still in its nascent stages [8].

The rise in popularity of both IoT and Deep Learning, along with the increase

in the availability of data makes it an opportune time to apply machine learning

models at the edge. This is why edge computing will become the broad topic of

this research, and focus will be put on developing algorithms that can efficiently

run on the edge as well as securing the models from side-channel attacks.

1.2 Outline

The rest of this thesis is organized as follows: In Chapter 2, an overview of the

different areas being explored is given.

In chapter 3, a neural network model for classifying images captured by a neuro-

morphic vision sensor data is presented. Following that, a quantization method to

reduce the number of computes required to run the neural network is presented.

In chapter 4, a method to extract neural network architecture and weights from a

commercial neural network accelerator using a cold-boot attack is demonstrated.

Further, we also show how to regain the loss in accuracy (due to erroneous weight

recovery) using knowledge distillation.

In chapter 5, a way to attack neural networks using side-channel attacks is pre-

sented. We first show that it is possible to identify the kind of pre-trained neural

network running on a neural compute stick with nearly 100% accuracy. Thereafter,

we try to extract the model parameters of a custom binary weighted neural net-

work architecture. The results of the attack on this network running on a neural

compute stick is reported.

Finally, in chapter 6, an overview of all the results and potential future works are

outlined.



Chapter 2

Literature Review

In this chapter, a review of edge computing and the techniques used to reduce

model complexity is presented. This includes quantization techniques like INT8

quantization [26] and efficient neural network layers like separable depthwise con-

volutions [27], as well as edge computing hardware like the Neural Compute Stick

and the EdgeTPU [28], [29]. This is followed by a review of retina-inspired Neu-

romorphic Vision Sensors (NVS). Finally, the current state-of-art on side-channel

attacks and protection techniques on edge computing hardware is discussed [30].

2.1 IoT and Edge Computing

Internet of Things (IoT) is a system of interconnected devices that can transfer

and receive data over a wireless connection. IoT devices generally contain a micro-

controller and multiple sensors which they use to gather information and perform

a task. This has made them very popular as smart home devices like digital assis-

tants, smart lights and fitness trackers. However, the presence of sensors has also

increased their application in industrial settings. This sub-branch of IoT called In-

dustrial IoT or IIoT uses such devices to perform tasks like monitoring, predictive

maintenance and surveillance.

To perform many of these tasks, IoT devices collect data from sensors, perform

some predictive analysis on that data and then either take some action or send an

22
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alert to a human in case of anomalous behaviour. Most of this analysis is done by

deep learning or machine learning models in the cloud.

Edge Computing is a computing paradigm where computation is done closer to the

place where data is being generated. This is different from the more common cloud

computing paradigm where data is sent to a cloud server where it is processed and

then sent back.

Edge computing is quickly becoming more common with the increase in IoT devices.

This is primarily because IoT devices generate a lot of data. In many cases (for

instance, surveillance and security cameras), it is not possible to send all data

to a cloud server to perform inference. Moreover, in time-sensitive operations, or

areas without an internet connection, it is not possible to send data over a network

connection.

Some other advantages of edge computing include:

1. Security: Many industries work on sensitive or IP protected materials, de-

vices or processes. In such cases, sending data over a network can expose

them to data breaches. With edge computing, the data never leaves the

device where the data is generated hence giving increased security.

2. Power Consumption: Many IoT devices are deployed in remote areas as

battery-powered units. Such devices are expected to run on their own either

by harvesting energy or with limited battery changes. Since sending data

over wireless connections require much power, performing computations at

the edge, on the device, will be beneficial.

3. Network Latency and Resiliency: Sending large amounts of data over a

network has some latency associated with it. This latency can be detrimental

in time-sensitive operations like a self-driving car or a predictive maintenance

setting. Another issue with networks is their resiliency. A self-driving car

going through a tunnel will have limited network coverage, so will devices

deployed in mines and remote areas. In such cases, performing calculations

at the edge will improve the reliability of the IoT device.

4. Bandwidth: Some IoT devices like security cameras can produce data in

the order of multiple gigabytes per hour. Sending all that data to a cloud
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server will be impractical and expensive. Instead, the camera feed can be

processed locally and then only important information, like the presence of

an intruder, can be transferred.

However, edge devices usually have a limited amount of computational power. Fur-

thermore, since many of them are battery-powered, running complex algorithms

and neural networks on them can consume much power. This is why many methods

have been explored to reduce the complexity of neural networks. These include us-

ing depthwise separable convolutions [27] and quantization [4]. Furthermore, much

research has been done on creating energy-efficient neural network accelerators and

on using near-data processing [2]. In the next sections, these techniques will be

explored.

2.2 Adapting Neural Networks for Edge Com-

puting

In this section, some techniques to change the computational complexity of the

neural network by making changes in the architecture, weights and the computation

method of neural networks will be explored.

2.2.1 Depthwise Separable Convolutions

Convolutional Neural Networks (CNN) is the most widely used neural networks

architectures for computer vision tasks. CNNs learn by identifying hierarchical

patterns from images. These patterns are used to create a dense embedding that

contains all the information of the image. This embedding can then be used by a

fully connected network to make predictions from the image.

The most important layer in a CNN is the convolutional layer. Convolutional layers

take feature maps of shape Ci × Hi ×Wi as input and produces feature maps of

shape Co × Ho ×Wo as output. Ci and Co are the number of input and output

depth or channels, respectively. Hi, Wi, Ho, and Wo are the input and output

height and width of the feature maps. The input feature maps can be an RGB
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image, or they can also be the output of another convolutional layer. By being

able to stack multiple convolutional layers, CNNs can learn hierarchical features.

The number of MACs in a standard convolutional layer is given by:

Dk ×Dk × C ×N ×Wo ×Ho (2.1)

where C and N are the number of input and output channels and Dk is the di-

mension of the convolutional filter.

Depthwise Separable Convolutions work by separating the standard convolutional

filter into a depthwise convolutional operation and a pointwise convolutional oper-

ation.

Filters in the depthwise convolution are applied only to a single channel. This

means that the number of filters in a depthwise convolution will be equal to the

depth of the input feature map. Furthermore, in a depthwise convolution, the

output depth will not change, but the height and width will change.

Pointwise filters are applied across the depth of the image like a standard convo-

lution, and like the name suggests, these filters have a height and width of 1. This

means that the output depth after applying this filter will be 1, but the output

height and width will remain the same. By applying multiple such pointwise filters

on the image, we can get an output feature map with the same shape as a standard

convolutional layer.

The number of MACs in a depthwise filter can be calculated by:

Dk ×Dk × C ×Wo ×Ho (2.2)

and the number of MACs in a pointwise filter is given by:

C ×N ×Wo ×Ho (2.3)
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This shows that even though a depthwise filter can have the same input and output

feature map shapes as a standard convolution, it has fewer MACs by a factor of:

1

C
+

1

D2
k

(2.4)

This makes depthwise separable convolutions very attractive for use in resource-

constrained edge devices.

Depthwise Convolutions were first introduced in the Xception model [27]. They

were most notably used in the MobileNet model where it was shown to have signif-

icantly fewer parameters and MAC operations as compared to comparable models

while still maintaining accuracy [3].

2.2.2 Pruning

Trained networks usually have more weights and trainable parameters than what

is required to learn a particular task. Such networks are called overparameterized,

and many weights or connections in these networks can be removed with very

little loss in accuracy, but a drastic drop in computational cost. This is known as

network pruning.

Pruning was first proposed in [31], where weight saliency was used to calculate the

importance of each weight. Modern pruning, introduced in [24] uses the magnitude

of each weight as a measure of the importance of each weight . By doing so, the

authors showed that AlexNet weights [32] can be pruned by 9×, corresponding

to a 3× drop in MACs, with minimal drop in accuracy. Pruning also involves a

finetuning step where the network is retrained after weights are pruned to increase

the accuracy.

Networks can also be pruned for other metrics. For instance, in [33], the authors

show that they can prune a network to reduce the energy required to run the

network. Also, a very different computing paradigm of spiking neural networks

(SNN) has been introduced as a method to introduce a parameterizable tradeoff

between accuracy and classification energy [5], [6].

However, one problem with pruning is the introduction of sparsity in the model

weights [34]. Methods have been proposed to store and compress sparse weights
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so as to reduce memory access and perform sparse matrix-vector operations [34],

[35], [36], [37]. Often custom hardware needs to be used to execute pruned models

efficiently. Efficient Inference Engine (EIE) [36] and Sparse Convolutional Neural

Network (SCNN) [37] are examples of such implementations.

Due to the challenges in efficiently executing sparse networks, researchers have

proposed methods to introduce ”structured sparsity” in their models [38]. These

techniques try to prune groups of weights instead of individual weights. For in-

stance, pruning an entire neuron in a fully connected layer, or an entire filter in

a convolutional layer [39] [40]. However, such pruning methods tend to lead to a

more significant loss in accuracy [41]

2.2.3 Quantization

Neural Networks are initialized and trained with high precision floating point

weight values. The training process involves making tiny adjustments over these

values to nudge the network to a minima. After the training process, the same

floating-point weight values are stored and need to be loaded to run inference.

Using low precision weights for inference instead can reduce the storage require-

ments as well as computational cost. This process of reducing the precision of

weights is called quantization. One of the simplest forms of quantization is to map

the high precision weights linearly to a low precision value like INT8. Another

simple quantization technique is to use k-means clustering to map multiple weight

values to a single value.

Quantization can be broadly classified into two types: Weight Quantization and,

Weight and Activation Quantization. In general, weight quantization methods are

concerned only with accurately representing high precision weights in low preci-

sion values. This helps to reduce the on-device storage requirements, but not the

computational requirements as weights are up-converted to run inference [2]. Some

exceptions are binary and ternary neural networks where the weights are converted

to two and three values respectively and then used for inference [42], [43]. Finally,

while low precision can be used for training networks, they are usually not done

due to the sensitivity of the gradients during training [44], [45], [46].
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(a) 32-bit floating point example
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Figure 2.1: Various methods of number representations. Taken from [2]

Weight and Activation quantization quantizes both the weights as well as the ac-

tivations in the network. This not only helps reduce the memory requirements of

the network, but it also uses the quantized values to execute the network. The

most common technique for this method of quantization is INT8 quantization [26].

By using Integer only arithmetic, the authors were able to quantize ResNet-50 [47]

with less than a 2% drop in accuracy.

Neural networks can also be quantized partly. In this case, only the most compu-

tationally expensive layers are quantized, or the layers which affect the accuracy

the least are quantized [48]. Moreover, it is not necessary that all layers in the net-

work be quantized to the same quantization level. For instance, in Dynamic Fixed

Point (DFP) [7] quantization, different layers in the network can have different

quantization levels. This technique uses the fact that different layers have different

ranges of weights to quantize their weights. Moreover, activations will have a far

different distribution of values than weights, and it makes sense to quantize them

separately. This helps better cover the range of values in weights and activations.

In DFP quantization, numbers are quantized to the form (−1)s · 2−fl ·
∑B−2

i=0 2i ·xi
where B is the bitwidth, s is the sign bit, fl is the fractional length and x is the

mantissa bits. The value of fl can be adjusted for each layer and its activations.

Earlier layers can use larger values of DFP to take advantage of the increased

precision, and later layers can use a smaller value of DFP to accommodate a larger

range of values. Using this quantization scheme, the authors were able to quantize

LeNet to 4 bits with only a 0.1% decrease in accuracy.
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Figure 2.2: Data path of quantized convolutional and fully connected layers.
Taken from [7]

2.2.4 Knowledge Distillation

Knowledge Distillation (KD) is a model compression technique that uses a teacher-

student training paradigm to teach a smaller student model to emulate the perfor-

mance of a larger teacher model. Knowledge Distillation was first introduced by

in [49] and improved by Hinton et al. in [50].

To transfer knowledge to a student, the teacher model first outputs predictions for

a set of training images. The input image and the softmax outputs of the teacher

model are used as the input-output pairs to train the student model. The hard

labels are not used since they do not contain enough information for the student

to learn. However, for a well trained teacher model, even the soft outputs can have

a probability distribution with the correct class with a very high probability. This

is why, in addition to using soft labels, Hinton et al. also proposed using softer

outputs by using a Temperature Factor T. This was called Softmax Temperature,

and the probability pi of a class i is calculated by

pi =
e

zi
T∑
i e

zi
T

(2.5)
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By setting T = 1, the standard softmax distribution is gotten. However, with

larger values of T, the output probability distribution can be made softer. By

providing softer inputs, the student model can get more knowledge about which

classes are similar to each other and help the student learn the teacher model’s

internal representation better.

Knowledge in a neural network can be represented in multiple ways. The output

of a model given an input is known as the response-based knowledge of the neural

network. This is the type of knowledge that was being distilled into the student

using the technique being proposed by Hinton et al [50]. However, neural network

can also have other types of knowledge embedded in them. For instance, deep

neural networks are good at learning multiple levels of features in each layer. This

is known as feature-based knowledge distillation and techniques to teach student

networks this kind of knowledge has also been proposed.

Bengio et al.[51] proposed using the outputs of the final layer as well as the feature

maps of intermediate layers from the teacher model to supervise the training of the

student model. In FitNets [52] the authors propose using intermediate represen-

tation or ’hints’ from the teacher model to train the student model. The student

model learns by trying to match the feature activations of the teacher.

Further, since the student model learns from the soft outputs of the teacher, un-

labelled data can also be used to train the student model. In [53], the authors use

KD has been used as a method to increase the accuracy of the student network

by using a trained teacher model to generate pseudo labels for a large unlabelled

image dataset. This kind of semi-supervised training has been shown to improve

the accuracy of the student model on ImageNet by 2%.

Finally, KD can also be combined with some of the previous model optimization

techniques to further compress the student model. For instance, KD can be com-

bined with pruning [54] [55] as well as quantization [56] [57] [58] to improve the

performance of the model on edge devices.
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2.3 Neural Network Accelerators

Along with deploying efficient models, efforts have also been made to create custom

hardware and accelerators that can efficiently run networks on hardware. Some

of these hardwares are built, keeping in mind a specific network architecture or

quantization method [59], [60]. On the other hand, some hardware like the Neural

Compute Stick [28] and the EdgeTPU board [29] can run any neural network

architecture.

2.3.1 Neural Compute Stick

The Neural Compute Stick (NCS) is a neural network accelerator that contains a

Vision Processing Unit (VPU) [61]. The device has the form factor of a pen drive

and consumes a power of only 1W. The advantage of using a neural compute stick

is that it can be attached to any microcontroller (running either Windows or a

Linux based OS) with a USB-A type connection.

The VPU inside the NCS is called the Myriad X VPU. It contains a Neural Com-

pute Engine that can perform 1 trillion operations per second (TOPS). It also

contains 16 vector processors that can run inference parallelly on multiple data

points. Combined, the vector processors and the neural compute engine can pro-

vide 4 TOPS of computing performance.

The NCS uses the OpenVINO toolkit [62] as an interface between itself and the

hardware it is connected to. The model is first loaded onto the device. Once loaded,

it is not cleared until the device powers off, or a new model is loaded. Data can be

then sent to the device to perform inference. Moreover, data from multiple sources

can be batched together and sent to the device for inference. Another advantage

of using NCS is that multiple devices can be interfaced and the inference load can

be shared across the multiple devices.

2.3.2 EdgeTPU Board

Another popular edge computing hardware is the EdgeTPU dev board and the

EdgeTPU accelerator by Google. The dev board contains an EdgeTPU System
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Figure 2.3: Intel Neural Compute Stick 2. Taken from [14]

on Model that contains a Quad-core Arm Cortex-A53 as well as an EdgeTPU

accelerator co-processor [63]. Since the device contains multiple I/O as well as its

own processor, it can be deployed as-is with a working model.

Figure 2.4: EdgeTPU DevBoard. Taken from [15]
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The accelerator is similar to the NCS and has a USB form factor. It contains only

the EdgeTPU accelerator co-processor and needs to be interfaced with a microcon-

troller to run neural networks [64].

Figure 2.5: EdgeTPU Accelerator. Taken from [14]

Both the dev board and accelerator can run TFLite models [65]. Models are first

loaded on to the device, and then data can be sent to the device for inference.

While TFLite is a more developed framework, it has a few disadvantages. Firstly,

it cannot perform inference on batches of data, and multiple EdgeTPU boards

cannot be interfaced to improve inference speeds.

2.4 Neuromorphic Vision Sensors

Along with efficient neural networks and hardware, efforts are also being made to

make efficient sensors. RGB cameras are commonly used cameras in edge comput-

ing systems. The high frame rates in RGB cameras, as well as increased memory

and bandwidth transmission requirements, make them have high power require-

ments and unsuitable for remote edge computing applications [66]. Moreover,

when performing tasks like object tracking and identification, proposing RoIs in-

volves computationally intensive steps which leads to a further increase in power
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consumption [67]. Due to these reasons, an alternative to standard RBG cameras

is to use Neuromorphic Vision Sensors (NVS).

NVS use a retina-inspired principle and capture changes asynchronously on a pixel

level. Each pixel capture intensity changes independently hence giving NVS low

data rates, high effective frame rates, high dynamic range and low power [68], [69],

[70].

Furthermore, since NVS capture only dynamic events, backgrounds being static

are automatically removed. This makes NVS suitable for remote surveillance using

a static camera, where the background does not change relative to the objects

being tracked. However, using NVS as the primary camera sensor requires the

use of algorithms that can learn and predict from asynchronous events, or requires

the conversion of these events into frames that can be fed into a standard neural

network architecture for inference.

One of the ways to detect and track an object using NVS is to dynamically update

the representation of the object as and when new events are generated [71], [72],

[73]. However, these methods fail when trying to track multiple objects, and they

work better for certain specific applications [73].

Another method of processing events is to aggregate events over a certain period

of time and then processing all the aggregated events [74], [75], [76]. This is

a much better approach since the output frames are similar to those produced

by an RGB camera, and traditional classification techniques can be used. For

instance, in [74], events were aggregated at intervals of 10ms and 20ms, and then

clustering algorithms, as well as Kalmann filters, were applied for object detection

and tracking.

To further reduce the power consumption, a low power tracking algorithm using

stationary NVS was proposed in [77]. This work used a combination of frame-

based as well as event-based approaches to perform tracking and classification.

Aggregating events first generated frames. These were fed into a tracker to get

the location of the objects. Finally, the frames were converted back to spikes for

classification on IBM’s TrueNorth neuromorphic chip [78].

In [17], the authors propose using a connected component labelling (CCL) based

approach to track objects. The generated frames were then fed into a convolutional
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neural network for classification. Finally, in [20], the authors show how to combine

detector and classifier into the same network to improve the performance of the

overall pipeline.

2.5 Security and Privacy of Edge Computing Hard-

ware

An increasing concern in the deep learning field is the protection of model data

in their deployed models as well as protection of the model from adversarial at-

tacks [25]. It has been shown that private and sensitive information, are stored in

the weights of trained neural networks, and can be retrieved by an attacker [79].

Moreover, just getting access to the weights and architecture of a trained neural

network can motivate attackers who might not have access to the same dataset or

compute power to train a network from scratch. This is an increasing concern since

more companies and entities are using deep learning models for sensitive applica-

tions at the edge [80], [81]. An overview of such attacks is given in [82]. However,

most of these attacks are software-based, and few works focus on the security of

networks from attackers trying to extract models and gain information through

vulnerabilities and leakages from hardware where models are deployed.

One of the first attacks demonstrating model extraction was done by Tramer et

al [83], where the authors show that it is possible to get a model with similar

performance from a black box API without access to the original dataset or model

parameters. Physical access to edge computing hardware can allow attackers to

exploit even more attack vectors like side-channel leakages [23] and faults [84].

Side channels like power, electromagnetic and timing can be used to recover model

parameters. A review of these attacks can be found in [85].

In [86], the authors propose different levels of model extraction attacks based on

the complexity and severity of the attack:

1. Exact Extraction: In this case, the extracted model has the same archi-

tecture, weights and other parameters as the original model. This is the best

possible extraction attack, but at the same time, it is the hardest to perform

especially in a limited attack setting.
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2. Functionally Equivalent Extraction: This is a slightly weaker extraction

assumption but a more likely attack. In this case, the output of both the

extracted and original model needs to be the same for all inputs in a given

domain. This type of extraction is hard to perform if the attack only has

access to the input/output pairs from the original model.

3. Fidelity Extraction: In this type of extraction, the extracted model should

have an output which is as similar to the output of the original model. Fidelity

extraction is a slightly weaker assumption than Functional Extraction (where

the similarity is 1).

4. Task Accuracy Extraction: This is the weakest assumption where the ex-

tracted model is expected to achieve a similar or higher accuracy as compared

to the original model. This is the easiest goal since the extracted model does

not need to match the mistakes of the original model.

In this section, a review of the security of edge computing hardware from the

perspective of side-channel attacks and cold boot attacks will be done.

2.5.1 Electromagnetic Side-Channel Attacks

Side-channel attacks (SCA) is the use of physical leakages from hardware to ex-

tract information of the data, or computations being performed in it. To achieve

this, side-channels attackers try to observe electromagnetic leakages, timing delays,

power consumption and other leakages during the execution of operations inside

the device.

SCA was first used in cryptography applications to recover keys [87]. Using SCA,

it was possible to recover only small parts of the key at a time, thus reducing the

complexity of the attack. However, recent works have shown that SCA can also be

used to recover the weights, operations, and architecture of neural networks just

from EM leakages [16].

Before looking at how attacks are performed, it is vital to understand the different

SCA attack techniques for EM leakages as well as the attack scenario and the

attacker capabilities.

There are two main types of attacks performed on EM leakages:



Chapter 2. Literature Review 37

(a) Complete Measurement Setup

(b) Target Microcontroller without covering (c) Probe used for measuring EM leakages

Figure 2.6: Experimental Setup for performing side channel attack. Taken
from [16]

1. Simple Power or EM Analysis (SPA): This uses a few EM traces gen-

erated from the hardware to understand the computation that is happening

inside the hardware. Since SPA uses only a few traces, it can be used to

extract straightforward or simple operations.

2. Differential Power or EM Analysis (DPA): Unlike SPA, DPA uses many

measurements (sometimes in the order of millions) to apply statistical tech-

niques to extract information. Using correlation, an attacker can find the

difference between an actual measurement and hypothetical measurement.

By making small variations in the input and seeing the change in the mea-

sured signatures, it is possible to get information about the operations and

data. Such attacks have been successfully used in ASICs and GPUs [88], [89].
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Figure 2.7: Traces generated from probe. Different operations generate differ-
ent leakage patterns. Taken from [16]

To perform these attacks, it is assumed that the attacker has access to the hardware

running the model. This is a reasonable assumption since many edge computing

hardware can be bought off the shelf, and the attacker can run experiments unin-

hibited. Once an attacker knows how to attack a particular hardware, then they

can use that knowledge to attack a product with sensitive data using the same

hardware.

In such a scenario, it is assumed that the attacker does not know the model weights

or its architecture; however, they are able to feed in any input to the model.

Finally, the attacker should also be able to measure side-channel leakages during

their attack.

Using these constraints, [16] showed that it is possible to extract information re-

garding the activation function, model weights and model architecture from an

Atmel ATmega328P and on an ARM Cortex-M3. They used a Lecroy WaveRun-

ner 610zi oscilloscope and an RF-U 5-2 near-field electromagnetic probe to collect

the EM leakages. The attack was done on a simple Multi-Layer Perceptron model

as well as a CNN model.
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Figure 2.8: EdgeTPU Accelerator with its housing and heat sink removed.
Attacks are done after removing the housing of the board. This helps to get
better reading of the leakages.

However, these attacks assume that the network execution calculations are done

sequentially, which makes the attack much more straightforward. In such a case,

shuffling the order of execution of the different computes in a layer can help prevent

(or at least slow down) these attacks [90].

Another countermeasure to weight recovery is to use masking [91] [92]. In such a

case, calculations are done with random values instead of actual data to remove

the dependence on actual values when performing an attack. In [8], the authors

propose MaskedNet which uses masked ReLU units as well as masked adder trees

for FC layers to prevent side-channel attacks. However, these masked approaches

can be accompanied by an increase in the execution time of the network.

2.5.2 Timing Side-Channel Attacks

Unlike electromagnetic leakages, timing side-channels utilizes timing leakages from

hardware to infer information about the type of operations and parameters inside

a neural network.

One of the first works showing the use of timing side-channels was by Hua et

al.[93]. They show that it is possible to find the type of layers used in a CNN

model running on an Intel SGX device[93]. Using a combination of timing and

memory leakages, the authors are able to extract information about the model
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architecture and weights. Similarly, in [16], the authors use timing leakages to

infer the type of activation function in models running on ARM devices.

Another timing side-channel model extraction attack was proposed by Duddu et

al. in [94]. They feed the timing leakages to a regressor model that predicts the

depth of the victim neural network. Once the depth of the network is extracted,

they perform task accuracy extraction by using reinforcement learning to create

an optimal neural network with a similar accuracy using Architecture Search. In

Dong et al.[95], the authors use timing information from power consumption trace

during Floating Point operations to infer input pixel values to the neural network.

All the previous attacks were performed on custom implementations on general

purpose hardware like CPUs, microcontrollers and FPGAs. However, with the re-

cent popularity of edge computing, commercially available high performance deep

learning accelerators are being increasingly used to deploy models. The vulnera-

bility of deep learning models in such accelerators to timing side-channels is still

an open question and is investigated in this work.

2.5.3 Cold Boot Attacks

SRAM, SDRAM and other volatile memory are integral to any computing systems.

They are called volatile because they lose their data upon power off. Since RAM

data is volatile, it is used to store information like passwords, PINs, keys and other

private and sensitive data. However, it has been shown that by cooling the RAM

to below freezing temperatures, it is possible to delay the deterioration of the data

in the RAM. This property of data remanence of RAM data is what is exploited

in cold boot attacks (CBA).

CBAs were first proposed in 2008 by Halderman et al. in [22]. They show that

by freezing the RAM to −50◦C, it is possible to recover RAM data from multiple

laptops. In addition to that, they also showed that it is possible to recover secret

AES and RSA keys from the dumped RAM data. Later, in 2013, it was shown

that it is possible to recover RAM data from mobile phone devices and recover

PINs, secret keys and decrypted mount data from the RAM dump [96]. It has also

been shown that CBAs can be effective against newer generation of memories with

memory scrambler countermeasures (like those in DDR3 and DDR4 RAM) [97].
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Figure 2.9: Raspberry Pi model B+ (Left) frozen using an air duster (Right).
Taken from [9]

However, in the previous examples, the RAM is present as a standalone device.

In case of IoT devices like Raspberry Pi’s, RAM is usually present on-chip or as

a stacked package. This makes CBAs more challenging since the boot sequence

of the main board needs to be bypassed[9]. In Won et al. [9], the authors show

that it is possible to recover RAM data from a Raspberry Pi with more than 99%

recovery rate by freezing the RAM to −30◦C. Further, they also show that at that

temperature, even with a decay time of 10 seconds, their recovery ratio is still more

than 99%. They do this attack with an air duster and the whole attack costs less

than $10 which makes it even more serious.

Figure 2.10: CBA recovery results for different decay times and freezing tem-
peratures. Recovery is better the higher the temperature and lower the decay
time. Taken from [9]

While cold boot attacks have been shown to be successful with recovering secret

keys and passwords, they are still prone to many errors. When it comes to perform-

ing model extraction with CBA, these errors can significantly affect the accuracy



Chapter 2. Literature Review 42

of the model. It has been shown that even with a single bit flip, the accuracy of

neural networks can drop by more than 99% in the worst case and up to 40% in

the best case scenario. This means that even with a recovery rate of more than

99%, even performing task accuracy extraction using CBA can be a challenge. To

the best of our knowledge, using cold boot attack for model recovery has not been

investigated before.

2.6 Conclusion

Edge computing involves running neural networks on IoT devices. These devices

generally have low computational power, low memory and are often battery oper-

ated. This makes it challenging to run neural networks as they often have large

weights and complex architectures with many computes.

In this chapter, a review of the challenges of running neural networks at the edge has

been covered. The first was how to change the layers and weights of neural networks

to make computes lesser. These included techniques like pruning, quantization and

changing convolutional layers with depthwise separable convolutions. Secondly,

from the hardware aspect, it was seen how using neural network accelerators can

help speed up computation at the edge. Another aspect is to use more efficient

sensors at the edge. Neuromorphic Vision Sensors which capture only intensity

changes are one such device. Using NVS instead of RGB cameras can reduce

the power consumption of your overall edge system. Finally, different methods of

attacking and protecting neural networks running on edge devices from side-channel

attacks were reviewed.
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Neuromorphic Traffic Data

Classification

In this work, a “what” and “where” pathway approach, similar to that of our

brain’s visual cortex [98] is used to locate and predict objects in images generated

by a Neuromorphic Vision Sensor (NVS) [19] [99]. Furthermore, the neural network

trained is such that it can be deployed to a memory and compute constrained edge

device. To further reduce the complexity of the network, Dynamic Fixed Point

(DFP) based quantization [7] is also applied on the network.

First, an overview of the NVS dataset is presented. After that, the process of

generating frames or Event Based Binary Image (EBBI) from a DAVIS NVS [19]

WHAT ? 

WHERE ? 

CLASSIFY

Figure 3.1: what-where pathway approach with a DAVIS NVS. Taken from
[17]
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is explained. This is followed by an overview of the region proposal algorithms

used to extract regions of interest from the EBBI images. Moving on, the model

architecture, training methodology and training results are presented. Finally, the

DFP quantization method and the quantized model accuracy is shown.

3.1 Dataset Overview

The dataset used in this work is the same as the one used in [77]. The data was

collected by recording traffic on roads during the daytime. Recordings were done

at multiple locations with different characteristics like angle of road, presence of

trees, buildings and other objects and distance of road from the recording location.

This gave us a wide range of scenarios to study the efficacy of data capture as well

as neural network training and classification. The data was annotated manually

and contained five classes: car, bus, truck, van, human and bike. Along with the

class, these Ground Truth (GT) annotations also contained a unique track id for

each object in the frame as well as their bounding boxes.

The data was divided into a training and testing set, where the testing set contained

recordings from sites not present in the training set. The same training-testing split

was used while training all the different kinds of models. An overview of the data

can be found in Table 3.1

Table 3.1: Class-wise distribution of data

Train/Validation Test

Sample
Count

Track
Count

Size
WxH

Sample
Count

Track
Count

Size
WxH

Car 17342 460 44x19 2984 84 44x19
Bus 6954 246 101x41 1544 58 101x41
Truck/Van 7272 205 50x25 1216 32 50x25
Bike 1737 58 21x16 183 6 21x16

Sum 33305 969 5927 180
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Figure 3.2: Camera setup with ZED [18] RGB cameras and DAVIS [19] NVS.
Taken from [20]

3.2 Data Collection and Preparation

A DAVIS [19] Neuromorphic Vision Sensor (NVS) was used to capture the data

used in this work. Traffic data was collected from multiple different sites during

daytime. The NVS sensor was placed perpendicular to the road at a height to create

the recordings. A standard RGB camera was also used to simultaneously capture

the same scene for comparison with the NVS captured data. While humans were

also captured in the data, they generated few events and had very few features.

Therefore they were not used in this work.

3.2.1 Event Based Image Generation

To create images from the events recorded by the NVS, all events happening during

a fixed time interval, tf = 66ms, were aggregated. These events could have two

types of polarities: an ON polarity represented by 1 or an OFF polarity represented

by 0. These polarities correspond to an increase or decrease in the activation of

the sensor at that pixel. Since NVS cameras generate events when there is either

an ON event or an OFF event, images generated can either have 1 channel, or 2

channels. By making different combinations of polarities and aggregations, four

types of images were created:

• 1 Bit, 1 Channel (1B1C): These images were created by recording any event

during tf as a 1, and no events as a 0. These events were recorded without

considering the polarity of the event.
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(a) Site 1

(b) Site 2

(c) Site 3

Figure 3.3: Examples of EBBI (Left) and RGB Image (Right), recorded at
different sites. Taken from [20]

• 1 Bit, 2 Channel (1B2C): To get two channels, events occurring in the dif-

ferent polarities were recorded separately as different channels in the image.

Any activity in each channel during tf is recorded as a 1, and a lack of ac-

tivity is recorded as a 0. 1B2C images can be converted to a 1B1C images

by taking a logical OR of the two channels.

• Multi-Bit, 1 Channel (MB1C): In this case, multiple events, regardless of

their polarity, are aggregated pixel-wise. These aggregations are clipped at

15 to limit spurious events.

• Multi-Bit, 2 Channel (MB2C): These images were obtained by aggregating

the events in the two channels separately. Just like in MB1C, more than 15

events were clipped.
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The “where” pathway uses low-resolution images to track objects. On the other

hand, the “what” pathway uses the high-resolution images to identify the objects

in the image. More details about the implementation of the “what” and “where”

pathways are given in the next sections.

3.2.2 Region Proposal Algorithms

The “where” pathway in the what-where pathway approach is responsible for iden-

tifying regions in the image where objects are present. While many region pro-

posal algorithms like YOLO [100], Mask-RCNN [101] and MobileNet-SSD [102]

exist, they require a lot of computes to execute. Moreover, such networks would

be excessively complex for finding objects in 1-bit images. For this work, more

straightforward and low complexity methods were explored.

In [77], 1D histograms of the events were summed and projected along the X

and Y-axis of the 1B1C images. This approach is referred to as the “HIST RP”

method. While this is simple and fast to implement, it has some significant flaws.

Firstly, since the projections use a side view to generate histograms, proposals for

smaller vehicles can appear to be larger, especially if they are present near bigger

vehicles. Furthermore, since the projections are 1D, much of the information in

the image is lost. Additionally, in case the road is present in an angle in the frame,

this technique will lead to the creation of multiple false region proposals. Finally,

since many of the objects appear as distinct fragments of pixels (caused due to the

presence of windows which do not generate any events), the same object can be

proposed as multiple close by objects.

To overcome these drawbacks, a Connected Component Labelling (CCL) approach

was used [103]. To apply CCL, the original 240x180 pixel frame was downsized to

a 40x60 pixel frame by applying a 6x3 logical-OR patch on the frame. Downsizing

helps merge all the fragmented objects and also reduces the computes required.

CCL was applied in two passes [104], and the tight bounding boxes generated were

then scaled up and mapped back to the original image.

To test the efficacy of the proposed regions, it was compared with the GT bound-

ing box annotations. A proposed region was considered valid only if it had an

Intersection over Union (IoU) greater than 0.1. To create images of a fixed size
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Figure 3.4: X and Y histogram projection based region proposals. Taken from
[21]

Figure 3.5: Disadvantages of HIST RP based region proposal: (a) Normal
Region Proposal; (b) (c) Large bounding box due to bigger object; (d) False
region proposal. Taken from [21]



Chapter 3. NVS Data Classification 49

for the CNN training algorithm, a 42x42 crop was taken from the centroid of each

bounding box. Bounding boxes of size less than 42x42 were padded with zero. For

larger objects (whose size exceeded 42x42), four similar patches were taken from

the four bounding box corners.

The results of training the model on both these region proposal algorithms are

highlighted in the next sections.

3.3 Model Overview

The “what” pathway in the “what-where” pathway approach was implemented by

using a Convolutional Neural Network (CNN). Most popular CNN architectures

used for object classification cannot be used in Edge Computing applications, due

to their large size, and computational complexity [1]. In this work, low complexity

neural network architectures were explored for classifying the NVS frames.

Architecture exploration was first started with a LeNet-5 based architecture [105].

This architecture is called the Base LeNet5. However, with the large number of

convolutions in the LeNet-5 architecture, the number of computes also increases.

To reduce the number of computation, the convolutional operation is decoupled by

using depthwise separable convolutions [27].

First, all the convolutional layers in the LeNet-5 architecture was replaced with

separable convolutions. This architecture is referred to as Base SepNet. However,

this architecture does not perform as well because there is no sharing of feature

maps across the channels. To overcome this, a mixed architecture model was used

where the first convolutional layer was not changed, and subsequent convolutional

layers were replaced by separable convolutions. This architecture is inspired by

the idea that most features can be learned in a CNN in the first few convolutional

layers in the model. Since the features in our dataset are simple, fewer layers should

be required to learn those features. This is referred to as the Mixed Architecture

Model.

However, a major bottleneck in all CNN architectures is the first feed-forward

layer which performs a large matrix multiplication using the flattened features of
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Table 3.2: Description of CNN architectures

Label Architecture Hyperparameters

BL Base LeNet5
Base LeNet5 architecture with two
CONV layers with average pooling
after each layer and three FC layers.

BS Base SepNet
LeNet Architecture with SEPCONV
instead of 2D CONV layers

MA Mixed Architecture
LeNet Architecture with second layer
as SEPCONV instead of 2D CONV

TN TinyNet
Mixed architecture
with 5 filters in second layer
and only one softmax dense layer

LG LeNet With Global Pooling
Base LeNet with Global Average
Pooling instead of Flatten layer

LK LeNet Large Kernel
Base LeNet with 7x7 kernels in
all 2D CONV layers

SN Small LeNet
Base LeNet with only one
Softmax dense layer

the last convolutional layer. Executing this layer on hardware becomes both a

computational and memory bottleneck.

To overcome this bottleneck, two models without any fully-connected layers and

only a softmax layer was trained. The first model was the Base LeNet5 model,

called Small LeNet, and the second was the Mixed Architecture model called

TinyNet. Finally, some simple hyperparameter search was done, by changing the

kernel sizes (LeNet Large Kernel), and adding a global pooling layer before the first

fully connected layer (LeNet with Global Pooling). An overview of the different

architectures trained can be found in Table 3.2.

3.4 Model Training

All the models mentioned were trained on three types of data: 1B1C, 1B2C, MB2C.

In the case of multibit images, they were first normalized by dividing with the max

pixel value (which in this case was 15). 1-bit images were used as is without any

extra preprocessing steps.

The models were trained with minibatch stochastic gradient descent with a batch

size of 128 and an Adam Optimizer [106]. The data was shuffled before feeding
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it into the network for training on an NVIDIA TITANX GPU. The models were

trained for 20 epochs, and the model with the best validation accuracy was selected.

To fairly evaluate the performance of the models, the class imbalance in our dataset

had to be taken into account. Therefore, our results were calculated as balanced

accuracy on a per-sample and per-track basis. The per-sample accuracy is the av-

erage of class-wise sample accuracies, whereas the per-track accuracy is the average

of class-wise track accuracies. The per-track accuracy is calculated by taking the

mode of the predicted labels for all the samples in the track.

3.5 Results and Discussion

To choose the best network for an edge computing application, the model FLOPs

and Memory was also calculated. The results for the different architectures can be

seen in Table 3.3 and their respective memory and FLOPs count can be seen in

Figure 3.6

The memory size is calculated by considering a tile-based network execution. In

this approach, a tile of the input image is propagated through all the layers instead

of processing the network layer by layer for the whole image. This means that a

decrease in tile size will decrease the memory, but will increase the latency. To

calculate the memory, a tile size of 21 is considered.

From Figure 3.6, it is clear that networks towards the bottom right are ideal as they

have the highest accuracy while having the least memory and FLOPs requirement.

Table 3.3: Classification accuracy using X/Y, where X is per-sample and Y is
per-track overall balanced values

Train on HIST RP, Test on HIST RP Train on CCL RP, Test on CCL RP

CNN architectures
1 bit,

1 channel
1 bit,

2 channel
Multi bit,
2 channel

1 bit,
1 channel

1 bit,
2 channel

Multi bit,
2 channel

Base Lenet5 71.15/81.80 75.26/79.94 74.34/81.02 78.36/91.21 82.16/93.56 81.92/89.65
Base SepNet 72.06/81.80 74.76/86.15 74.72/81.32 77.41/91.51 81.18/91.21 81.19/90.43
Mixed Architecture 71.58/87.23 74.54/82.29 72.87/80.74 76.50/92.48 81.22/93.56 81.61/92.78
Small LeNet 69.11/80.61 72.56/79.64 71.52/76.89 76.05/87.53 81.64/94.34 80.02/89.65
TinyNet 61.89/78.96 66.45/77.81 62.15/73.68 71.06/86.75 78.43/90.62 75.75/91.70

The Base LeNet5 architecture achieved the highest accuracy of 82.16% using the

CCL region proposal algorithm. However, it also needs the most number of FLOPs
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and memory to execute. This makes this architecture unsuitable for low memory

or computing applications.

The Small LeNet architecture has a slightly less accuracy of 81.64%; however, it

has a 63.51% lower memory consumption and takes fewer computes to execute.
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Figure 3.6: FLOPS, Memory and Accuracy Trade-offs for CNN Models. Taken
from [17]

Another interesting model is the TinyNet model which has a lower accuracy than

both the Small LeNet5 architecture and the Base SepNet model but has signif-

icantly lower memory and FLOPs requirement. This is due to the presence of

only a single classification layer and separable convolutions. This is also the model

selected for quantization using Dynamic Fixed Point (DFP) [7].

From Table 3.3 it can be seen that 1B2C images give much better accuracy than

multibit images. This is also advantageous as it reduces memory requirements.

Finally, models with changed hyperparameters did not give any significant im-

provements.

3.6 Dynamic Fixed Point Quantization

To further reduce the computational complexity and memory footprint of the

trained models, weight clustering followed by DFP quantization was applied on

the models [7].
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The reason for doing this was two-fold: Firstly, by clustering the weights, and

replacing weights using the cluster centres, the number of distinct weights that

need to be stored gets reduced. In addition to that, since the number of cluster

centres is a hyper-parameter, it is possible to choose the number of unique weights,

either on a per-layer basis or across the whole model. This number can be easily

adjusted based on the hardware and accuracy requirements with more weights

giving more accuracy but requiring more space and vice versa.

Secondly, DFP quantization can be used to emulate calculations on floating-point

values, while still using 8-bit integers. Moreover, by making the DFP value ad-

justable for each layer, the range and precision for weights and activations in each

layer can be changed based on the layer depth or weight range. For instance, earlier

layers in CNNs can use more precise weights and activations as they are the more

important feature extracting layers, whereas deeper layers can use a smaller DFP

value to accommodate a broader range of activations.

In this work, weights for each layer were clustered into 16 buckets using k-means

clustering. Since the number of biases was few in each layer, they were not clus-

tered. Clustering was done such that there is no change in sign of the weights [107].

After clustering, both the clustered weights and biases were DFP quantized. DFP

quantization was done layerwise, such that each layer had two DFP values: one

for the weights, and the other for the biases. The DFP value was chosen such that

it could accommodate the range of weight and bias values. Activations for each

layer also had their own DFP value. These values were also set to accommodate

the maximum possible activation value for each layer.

3.6.1 DFP Finetuning

The loss in precision of both weights and activations leads to a drop in accuracy

of the model. To counter this drop, the DFP quantized model was finetuned.

Finetuning was done by only retraining the last classification or softmax layer in the

model. The model was finetuned while using the clustered and quantized weights

on the training dataset with an Adam optimizer. Finetuning was stopped when

the validation accuracy dropped more than three times during the training process.

The model with the best validation accuracy was chosen.
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Since the finetuning step changes the weights and biases of the last layer, it had to

be quantized again using the same methodology as explained previously.

However, this quantization again leads to a drop in precision and hence accuracy

(although not as extreme as the first case since only the last layer is changed).

To counter this drop, the finetuning process can be repeated again. In our case,

this process was repeated twice before there were no significant gains in accuracy.

3.7 DFP Results

DFP finetuning was done on the TinyNet model trained on two different versions

of the same data. In the first version, the truck and van class were combined, and

the car class was kept as a separate class. In the other version, the car and van

classes were combined, and the truck class were kept as separate.

Table 3.4: Accuracy of model after DFP quantization and Finetuning

Dataset
Accuracy

Without
Quantization

With DFP
Quantization

DFP Quantization
and Finetuning

car/van classes
combined

72.38% 65.37% 69.01%

truck/van classes
combined

78.43% 76.11% 77.2%

From table Table 3.4, it can be seen that performing the DFP quantization causes

a drop in accuracy. However, the finetuning step can help recover it.

3.8 Conclusion

In this chapter, the process of identifying objects in frames or Event Based Binary

Image (EBBI) from a DAVIS NVS [19] is explained. Multiple CNN based neural

networks were trained on different EBBI image resolutions and different region

proposal algorithms. For an edge computing setup, the Small Net and TinyNet ar-

chitectures provide the best tradeoffs between accuracy, memory and FLOP count.
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Finally, the results of quantizing and finetuning the TinyNet model using DFP

quantization is shown.

Neural networks with smaller architectures and fewer parameters are far superior

when deploying to edge devices. However, edge deployed networks are often de-

ployed to simple and cheap micro-controllers with few security measures. This

makes them more susceptible to attacks. In the next chapter, we try to extract

the architecture and weights from a neural network deployed to an edge device.

We also test our hypothesis of whether it is easier to attack smaller networks as

compared to large networks with more parameters.
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Cold Boot Attack on Neural

Network Accelerators

Complex pre-trained models can be loaded on to edge computing neural network

accelerators like the Neural Compute Stick 2 (NCS) to perform inference. These

accelerators can take the load of executing large networks away from simple host

devices like Raspberry Pi’s and perform inference faster. In case of the NCS,

the original model is saved on the host device and loaded on to the accelerator.

When an inference needs to be performed, the host device sends a request to the

accelerator and gets the inference result.

However, loading models in the host device RAM can make it susceptible to Cold

Boot Attacks as shown in [9]. In this chapter a method to extract the neural

network architecture and weights using cold boot attack on the NCS with a Rasp-

berry Pi host is shown. To recover accuracy loss due to errors in the RAM dump,

knowledge distillation to perform task accuracy extraction on the victim model is

proposed. To make our attack more effective, we assume that the attacker does not

have access to the original dataset used to train the victim model. We also propose

Dropout Knowledge Distillation as a regularization technique to reduce overfitting

when the victim model training dataset is not available. We test our attack on 9

deep learning architectures trained on three different datasets.

First the experimental setup and threat model is discussed. This is followed by the

attack procedure and an explanation on how the model architecture and weights

are recovered from the RAM dump. After that, the task accuracy extraction

56
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training method is proposed. Finally, the results and attack mitigation methods

are discussed.

4.1 Experimental Setup and Threat Model

The attack is done on a NCS device with a Linux host microprocessor. For this

study, a Raspberry Pi (Model B+) host is considered.

To interface with the NCS, a developer can use Intel’s OpenVINO [62] framework

with Python. Using OpenVINO, a developer can load models saved on the host

computer on to the NCS, send data to perform inference on the NCS and get the

inference results. Since OpenVINO is the only official interface with the NCS, all

models have to be converted to the OpenVINO Intermediate Representation (IR)

format. Models trained and saved using other popular deep learning frameworks

like TensorFlow, Keras etc. can be converted to the IR format using the OpenVINO

model converter.

The IR format generates two types of files: a .bin file and a .xml file. The .xml file

is responsible for storing the model architecture and is formatted in XML format.

The .bin file contains the model weights stored sequentially one layer after the

other as little endian hexadecimal floating point weights.

Both of the IR files are required to load the model on to the NCS. The host device

has a copy of the model in its local storage. The IR files are read and parsed by

the host device before being loaded on to the NCS. The saved model files can be

encrypted and saved which makes attacking it difficult. However, they need to be

decrypted and loaded on to the RAM [108]. This means that the decrypted model

weights and architecture are present in the RAM and can potentially be retrieved

using a cold boot attack [22].

We consider the following attack setting for this work:

1. Victim Device: The device being attacked is a NCS interfaced with a

Raspberry Pi as the host device. The host has a proprietary model Mv in its

local storage. The attacker has legally obtained this device through a vendor.
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2. Device Access: It is assumed that the developer of the victim device has im-

plemented standard safety, access control and security features like blocking

unauthorized access using a password, model encryption and so on.

3. Device Interfacing: The attacker can send as many inference requests to

the victim device as is necessary. The inputs fed to the model are known by

the attacker. Further, the attacker can also read the softmax outputs from

the victim model as executed by the NCS.

4. Physical Access: The attacker has unrestricted physical access to the de-

vice. The attacker is able to perform the cold boot attack to recover the

model.

5. Victim Model: We assume that the attacker does not know any of the

parameters or the architecture of the victim model. In addition, we also

assume that the attacker does not have access to the same dataset or compute

capabilities used to train the victim model. However, since the attacker has

legally obtained this device, we assume that the attacker knows the classes

that the victim model can classify.

The aim of the attacker is to retrieve a model Ma whose architecture and accuracy

is similar to Mv. Since the cold boot attack has some errors, This type of attack

is known as task accuracy extraction as mentioned in [86]. The recovered model

can then be used by the attacker in their own device. Since the cold boot attack

will input some errors in the RAM dump, the recovered model will have less accu-

racy than the original model. In the next sections we mention in detail how the

attacker performs the cold boot attack, retrieves the model IR files and improves

the accuracy of the recovered model.

4.2 Cold Boot Attack Procedure

The Cold Boot Attack is done to retrieve the contents of the SRAM of the Rasp-

berry Pi which contains the model IR files. The attack procedure is similar to that

done by Won et al. in [9].

The attacker with physical access to the device freezes the RAM of the victim

device. This can be done using an air duster Figure 4.2. Once the RAM is frozen,
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Figure 4.1: Cold Boot Attack Procedure on NCS

Intel Neural Compute Stick 2 Main Processor
(Raspberry Pi)
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(a) NCS attached to frozen Raspberry
Pi host

(b) Air Duster used
for freezing RAM

Figure 4.2: CBA against NCS attached to Raspberry Pi.

Table 4.1: Error Rate (%) With CBA on Raspberry Pi

ρ0 (1→ 0) ρ1 (0→ 1)
Error Rate 0.0000027 0.00000009
(at −30 ◦C) (≈ 11373/4169415680) (≈ 375/4169415680)
Error Rate 0.01 0.001
(by [22])

the attacker changes the SD card on the Raspberry Pi with their own SD card

which contains code that can retrieve the RAM contents. Once the RAM contents

are retrieved, the attacker can then insert the original SD card and the victim

device can run normally.

To measure the effectiveness of the attack, we measure the changes in bit flips as

proposed in [22]. ρ0 refers to the bit with value 1 flipping to 0 and ρ1 is vice versa.

The results of our model recovery is provided in Table 4.1. As can be seen, our

recovery results are much better as compared to the previously reported results.
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4.2.1 Recovering Model IR Files

Once the RAM dump is obtained, the next step is to recover the model IR files.

Due to errors in the recovered RAM dump, the exact IR files cannot be recovered

and error correction steps need to be taken.

4.2.1.1 Recovering Model Architecture

Since the model architecture is present as an XML formatted .xml file with a well-

defined structure, it is easier to recover. The file starts and ends with a <net>

tag. The attacker needs to find the starting (<net>) and ending (</net>) tag and

recover the contents in between. Other tags present in the .xml file include the

<layers> and <edges> tag. These define the layer properties like input/output

sizes and how the different layers are connected to each other respectively. Other

metadeta regarding the model can be found in the <cli parameters>.

[commandchars=
{}] ¡net name=”simplaffnn”wers)on = ”7 >< layerS >< layerid = ”0”name = ”sequantiah[1input”type =
”I.put” >< mutput >< portiD = ”0”precisioN = ”FP32” >< dim > 14/diM >< dim > 3 < /dim ><
.port >< /output >< /layer: < /layers >< /net >

Figure 4.3: XML script with simulated errors reported by [22]. Incorrect
characters are marked in red.

Once the recovery is done, it can be verified by making sure that all opened tags

were closed. In case the model architecture file got separated into multiple parts in

the RAM dump, then checking for tags that have not been closed can be an easy

way to verify the architecture recovery. The recovered file can also contain some

errors due to bit flips. These can be seen in Figure 4.3. The errors can be easily

fixed.

4.2.1.2 Recovering Model Weights

Once the model architecture is recovered, the number of weight values can be cal-

culated. The weights are stored neuron by neuron sequentially layer by layer from

the input layer to the output layer. To perform weight recovery, we sequentially

search for little-endian Floating Point hexadecimal values which are invalid UTF-8

characters. This check is performed for 2 Floating Point values or 8 UTF-8 char-

acters. If those 8 characters are not a valid UTF-8 sequence, then we consider
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those values as valid model weights. Once we recover weights equal to the total

number of weights in the model, we terminate our search. In addition, we also

check whether more than 90% of the recovered weight values are within the range

of [−5, 5]. We consider only 90% of the weights since many of the weight values

can still be erroneous.

Algorithm 1: Weight Recovery Procedure
Input: RAM Dump(D), Total Weights(T);
Initialization: count = 0, weight array=[] ;
while bit in D do

while count ≤ T do
bits = Read next 64 bits from D;
if not valid UTF8(bits) then

count=count+2;
weight array.append(bits);

else
count=0;
weight array=[] ;

end

end
range count=Count(weight array in Range(-5, 5));
range percent=range count/Length(range count);
if range percent ≥ 0.9 then

break ;
else

count = 0 ;
weight array=[] ;

end

end

The weight recovery algorithm is summarized in Alg 1. In the next sections we

see the effect of the erroneous weights on the accuracy of the model and propose

methods to improve the accuracy.

4.2.2 Target Models

Hong et al. show that it is possible for the accuracy of a neural network model to

degrade by as much as 99% by a single bit flip [23]. Even in the best case scenario,

they show that the accuracy drop can be more than 40% with a single bit flip. In

this work, we use the same model architectures as those used by Hong et al.

We train our networks on MNIST, CIFAR10 and TinyImagenet. For CIFAR10 and

MNIST, we use the Base, Base (Wide), Base (Dropout), Base (PReLU), LeNet5

and LeNet5 (Dropout) architectures from [23]. We also use pretrained AlexNet,

VGG16 and ResNet18 (from Pytorch torchvision) and use transfer learning to train

them on TinyImageNet.
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The error rate from our cold boot attack is too low to cause a significant drop in

accuracy in our model. Therefore, for the rest of this work, we use an error rate of

ρ0 (1→ 0) = 1% and ρ1 (0→ 1) = 0.1%.

To quantify the model performance degradation we use the Relative Accuracy Drop

(RAD):

RAD =
AccM − AccM ′

AccM
, (4.1)

where M and M’ are original and recovered models respectively.

4.2.3 Baseline Accuracy Recovery

First we see the model degradation and use a simple error correction technique to

regain the original accuracy.

Weight values in the model .bin file are stored in the IEEE-754 floating point

standard. The standard sets the first bit as the sign bit, followed by the next 8

bits for the exponent and the remaining 23 bits for the mantissa.

Changes in the mantissa of the weight results in a small change in the magnitude

of the weight. These changes can be difficult to spot. Similarly, a change in the

sign bit, even though it is the least probable, is difficult to spot. However, even

a single bit change in the exponent bit can result in the exponent becoming very

large or very small. These changes can be easily spotted and corrected.

Most weights in a neural network are in the range of [−1, 1]. However, for this

work, we consider weights in the range of [−5, 5] as valid [16]. Additionally, we

also find that weight values are never less than 1e− 4. Therefore we also consider

weights whose absolute value is below that as invalid.

After identifying the erroneous weights, large weight values are divided by 2 until

its value is within the range of [−1,+1] and small weights are multiplied by 2 until

their absolute value is more than 10−3.

The results of performing this error correction on the models trained on CIFAR-

10 is shown in Figure 4.4. From the figure, it can be seen that larger models

have a larger RAD due to more weights being corrupted (since they have more
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Figure 4.4: RAD for 100 corruption iterations for models trained on CIFAR10.
Model architectures taken from [23]

parameters). Furthermore, we also see that in the worst case scenario, corrupted

model weights can cause the accuracy to drop by more than 60% for all models.

Given this type of accuracy drop, in the next section, we proposed a method to

perform task accuracy recovery using Knowledge Distillation (KD).

4.3 Task Accuracy Recovery Using Knowledge

Distillation

Since there are more mantissa bits, the probability of them getting corrupted is

more. Even though changes in the mantissa bit results in only a small magni-

tude change, with multiple weight changes, then the accuracy drop can be very

significant.

Accuracy recovery is done using a two step approach. First, all weights that are

considered invalid (as per previous section) are changed to 0. Following that, two

KD techniques are used to fix errors in the model:

1. Traditional Knowledge Distillation: In this case, inputs are fed to the

original model and its corresponding softmax outputs are recorded. These are

then used as Input/Output pairs to train the recovered model. Traditionally,

KD uses outputs from intermediate layers as well as softmax temperature to
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improve the training of the student model (the recovered model in our case).

However, due to the limited attacker capabilities, these techniques are not

used. This type of training paradigm is referred to as D1

2. Dropout Knowledge Distillation: Intermediate outputs as well as soft-

max temperature have been shown to act as regularizers during the training

of the student model. However, this kind of regularization cannot be used

in our training paradigm. Instead, we propose random gradient dropout as

another regularization technique. During the backward propagation, for each

layer, random gradients are dropped out when training the recovered model.

Weights with dropped gradients are not updated. This training paradigm is

referred to as D2.

In both training paradigms, KL-Divergence loss between the softmax outputs of

the original model and the recovered model is used to train the network.

We consider that the attacker does not have access to the original dataset so we use

the letters subset from the EMNIST dataset and the unlabelled subset from the

STL10 dataset as training data for the models trained on MNIST and CIFAR10.

We also use the same unlabelled subset of STL10 to recover the Tiny ImageNet

trained models. We call these the recovery datasets.

For the models trained on MNIST, Adam Optimizer with a batch size of 32 and a

learning rate of 1e − 3 was used. Training was done for 30 epochs. For CIFAR10

trained models, Adam optimizer with a learning rate of 1e− 4 and a batch size of

128 was used. The model was trained for 50 epochs. The learning rate was also

reduced by a factor of 0.9 every 10 epochs.

4.4 Results and Discussion

The results of accuracy recover for models trained on CIFAR10 and MNIST are

reported in Table 4.2. The RAD is reported firstly for when the attacker has access

to the original dataset. However, we still consider that the attacker has limited

compute capabilities and hence we use a randomly selected subset of 10% of the

dataset. This results is 5k samples for CIFAR10 and 6k samples for MNIST. We

also report the RAD for when the attacker uses the recovery dataset with the same
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Table 4.2: Baseline Model Recovery on Different Datasets From [? ]

Data
Models

Base BaseWide BaseDropout BasePReLU LeNet5 LeNet5Dropout

Training Recovery D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2

MNIST
MNIST 0.002956 0.0009176 0.004581 0.00101 0.001424 0.004884 0.003776 0.004286 0.002442 0.002238 0.002953 0.003361

EMNIST
(12k)

0.008666 0.004078 0.033594 0.01211 0.025132 0.008445 0.009899 0.006531 0.00661 0.006003 0.00682 0.007027

EMNIST
(6k)

0.01009 0.007952 0.02046 0.026977 0.02319 0.01058 0.01765 0.02061 0.007834 0.006919 0.01028 0.009064

CIFAR10
CIFAR10 0.081696 0.09497 0.13403 0.1091 0.09066 0.077327 0.06794 0.06726 0.05269 0.04236 0.05515 0.045448

STL10
(10k)

0.056496 0.05283 0.099543 0.08153 0.08217 0.055503 0.055001 0.05244 0.05864 0.03642 0.04907 0.030558

STL10
(5k)

0.07600 0.076818 0.135556 0.136063 0.08810 0.09214 0.0796710 0.07899 0.04701 0.04533 0.03224 0.03703

number of samples as those used in MNIST and CIFAR10. We refer to these as

EMNIST(6k) and STL10(5k). Finally, we also report results for a scenario in which

the attacker has slightly more data. In this case 10k samples of STL10 and 12k

samples of EMNIST. These are referred to as EMNIST(12k) and STL10(10k).

As expected, access to the original training dataset gives the best result and using

more data for training results in a decrease in RAD even if the original dataset

is not used. This can be seen in Figure 4.5. This shows that the task accuracy

recovery can be performed even if the attacker does not have access to the original

model.

Figure 4.5: RAD for LeNet5 model trained on CIFAR10 for Different Percent-
ages of Training Dataset using D1 Training Paradigm.

It can also be seen that using D2 with a dropout percentage of 0.5 as the training

paradigm results in a decrease in RAD as compared to using D1. This is true even

if the original dataset is not used. Finally, we also see that the presence of dropout

or PReLU does not affect the accuracy recovery.
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4.4.1 Original Weight Recovery

We also investigate the possibility of being able to recover the original weight of

the model. To see how similar the weights of a layer in M’ are as compared to the

weights in M, we calculate the Relative Layer Norm defined as:

LayerNorm =
Norm(M −M ′)

Norm(M)
, (4.2)

where a lower Layer Norm means that weights are similar.

We perform this recovery on the CIFAR10 trained models. In our experiments we

find that in general training faster (with a larger learning rate) helps recover the

original accuracy, but not the original weights. On the other hand, training slowly

(with a smaller learning rate) helps recover the original weights, but the training

time becomes significantly longer. We use D1 as our training paradigm with Adam

optimizer and a learning rate of 1e− 5. The learning rate is reduced by a factor of

x0.5 every 50 epochs and the model is trained for 500 epochs. The results of this

type of training is shown in Figure 4.6.

Figure 4.6: Layer Norm Recovery Values of CIFAR10 Trained Models

We find that it is easier to recover the original weights in the first and last layers

of the model and recovering the middle layers is much more challenging. Further,

layers with more parameters like the FC1 layers are harder to recover. In some

cases, the original weights cannot be recovered and the weights take on a different

distribution.
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4.4.2 Transfer Learning Scenario

We also consider a more practical case where a deployed model is not custom made,

but is a pre-trained model that has been transferred on to another dataset. In such

a scenario, since the weights of the pre-trained models are available, the attacker

has to recover only the weights and architecture of the fully connected layers.

Table 4.3: RAD after Task Accuracy Recovery on Pretrained Models

Data
Models

AlexNet VGG16 ResNet18

Training Recovery D1 D2 D1 D2 D1 D2

Tiny
ImageNet

Tiny
ImageNet

0.08246 0.08366 0.08532 0.09834 0.0289 0.09163

STL10
(unlabelled)

0.08488 0.08717 0.09427 0.09892 0.0935 0.09220

This attack is done by training AlexNet, VGG16 and ResNet18 on Tiny ImageNet.

We report the results of accuracy recovery in Table 4.3 using 50% of the original and

recovery dataset. Similar to before we see that using the original dataset results in

a better RAD. However, the magnitude of RAD is much larger than before. This

could be due to the FC layers being recovered with a higher layer norm error.

4.5 Challenges and Mitigation

One of the major challenges in this attack is the degradation of the RAM contents

with a decrease in temperature and an increase in recovery time. From Figure 4.7,

we can see that at low temperatures, the recovery ratio (ratio of incorrect bits to

correct bits) is higher. Similarly, we can see that as the decay time increases, the

recovery ratio decreases. For an attacker to successfully recover the RAM contents,

they need to be able to perform the attack quickly and at low temperatures.

The low cost and simplicity of this attack makes it a serious threat against low

cost IoT devices. Adoption of RAM with secure boot and secure initialisation of

memory at the firmware level can help mitigate such attacks [9]. Finally, since

the NCS only supports convolutional, pooling and fully connected layers, networks

with RNN or LSTM layers cannot be executed on it. So the efficacy of this attack

on such networks is unknown.
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Figure 4.7: Cold Boot Attack recovery ratio at different temperatures and
attack decay time. Taken from [9]

4.6 Conclusion

In this chapter, the process of performing a cold boot attack on a commercial edge

computing accelerator: the Neural Compute Stick 2 was shown. First, the cold boot

attack process and model weight and architecture recovery from a RAM dump was

explained. Following that, a Knowledge Distillation based technique to recover

the original model accuracy using the erroneous weights was shown. Finally, a

possible method to recover the original model weights from the erroneous weights

was discussed.

While cold boot attacks can be a simple and cheap way to extract the architecture

of the deployed model, it cannot extract the original weights. While techniques

like knowledge distillation can be used to regain the original accuracy, extracting

the original weights are more challenging. In the next chapter, we use two different

side channels: time and electromagnetic to extract the architecture and original

weights of the model.
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Side-Channel Attacks on Neural

Network Accelerators

IoT devices generally consume less power and do not have a lot of computational

power. To improve inference time when executing neural networks on them, custom

neural network accelerators are attached to them. Some of the most popular com-

mercially available accelerators are the Neural Compute Stick 2 by Intel [28] and the

EdgeTPU DevBoard and Accelerator by Google [63] [64]. Further, in many cases,

IoT devices are deployed in remote or unmonitored locations as remote surveillance

devices. This makes them easy targets to attack and steal sensitive data as well as

information about the model like its architecture, weights and parameters.

In this chapter, a method to extract the neural network architecture as well as its

weights and parameters is shown. Using timing side channel we show that it is

possible to correctly identify well-known neural network architectures with a rate

of nearly 100%. Additionally, we show that for unknown simple fully connected

neural network architectures, it is possible to identify the number of neurons in

each layer as well as their weights.

First, a method to extract model architecture using timing side-channel is dis-

cussed. This is followed by an overview of the electromagnetic side-channel attack

procedure taken. Finally, the results of the attack are shown.

69



Chapter 5. security 70

5.1 Timing Side-Channel Attack

In this section, we build a Kernel Density Estimator (KDE) to classify neural net-

work architectures on a high performance edge neural network accelerator: Neural

Compute Stick 2. We verify our approach on a cross-device (using multiple NCS)

and a cross-platform (using multiple host device) setting. Among the 9 different

popular neural network architectures tested, we show that it is possible to identify

the architecture with a success rate of almost 100%.

5.1.1 Experimental Setup and Threat Model

We assume that the attacker is someone who has access to a NCS device with the

victim model. The attacker either has access to the NCS [28] or is acting as a

client with user-level privilege through a cloud based service like those provided by

Google, Amazon, Microsoft or others. The latter assumption is known as an API

access assumption and is described in [109].

We also assume that the attacker can measure the inference time taken to run

the network. In case of a USB stick, this can be as simple as measuring the

time difference between sending an input to the NCS for inference and the result

received. In case of an API, it will be the same value adjusted for the latency of

the network and the amount of traffic at the device.

We assume that the victim model is based on the VGG and ResNet architectures:

ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, VGG11, VGG13, VGG16

and VGG19. This assumption is made since most computer vision products use one

of these networks as the feature extractor for their model. The attacker can send

as many requests as needed to the victim device and collect the timing signatures

freely. This is because we assume that the attacker has purchased unlimited access

to the device. Given these assumptions, the main goal of the attacker is to identify

the model architecture.
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5.1.2 Attack Procedure

For a given victim model Mv and inference time tv, the Kernel Density Estimator

(KDE) PrKDE over a set of n inputs (with timing t1a, ..., t
n
a) from attacker network

Ms can be calculated by:

KDEa(tv) := PrKDE(tv|ta) (5.1)

Since only the timing of the inference is being calculated and the inference result

is not considered, a substitute dataset, or even randomly generated noisy data

can be used. The original training data is therefore not required. For multiple

substitute attacker neural networks, the KDEa(tv) is calculated. The substitute

neural network with the highest KDEa(tv) can be considered as correct neural

network.

For multiple m observations (t1v, ..., t
m
v ) from a victim device, the Equation 5.1 can

be generalized as below:

KDEa(tv) :=
m∏
i=1

PrKDE(tiv|ta) (5.2)

The experiments are repeated 100 times to compute the KDE.

The execution times of the different ResNet and VGG architectures are calculated

for different devices. Three host devices are used: a Raspberry Pi, a Laptop

and a Desktop to verify cross-platform consistency. Further to verify cross-device

consistency, the experiments are repeated for three different NCS devices.

5.1.3 Results and Mitigation

The inference times for the different models are shown in Figure 5.1 and Figure 5.2.

While some samples take longer to execute (possibly due to I/O interrupts), they

are rare. On average, we can see that across the three devices, the inference time

for each architecture is similar. The execution times are also the same regardless

of the NCS device used.
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Figure 5.1: Execution Time for Various ResNet Architectures using Timing
Side-Channel
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Figure 5.2: Execution time for Various VGG Architectures using Timing Side-
Channel.

For the ResNet based architectures, the execution time increases as the model

becomes deeper. For the smaller models (ResNet18, ResNet34 and ResNet50),

the execution time difference are less as compared to the larger ResNet models

(ResNet101, ResNet152). The increase in time difference is due to the increase in

the number of convolutional layers.

Similarly, in case of the VGG models, the execution time is proportional to the

increase in number of layers in the model. Further, the execution times for each

model are unique and they can be easily distinguished from one another. Since the

timing does not depend on the type of host device, the attack is even more critical.

Table 5.1: Success Rate for Different Architectures

Architecture Device 2 Device 3

ResNet18 100% 100%
ResNet34 100% 100%
ResNet50 98% 100%
ResNet101 97% 100%
ResNet152 100% 98%

VGG11 100% 100%
VGG13 99% 98%
VGG16 100% 100%
VGG19 100% 100%
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Based on the timings, the KDE is computed by considering Device 1 as the attacker

device and Devices 2 and 3 as the victim device. It is assumed that the attacker

can measure the time on one legally obtained device (Device 1 in this case) and

can then measure the delay on the victim device (Device 2 and Device 3 in this

case) and determine the architecture used.

For the attacker device, 100 measurements per architecture are collected and for

the victim device, only 1 measure is taken per architecture to calculate the KDE.

This is repeated for 100 times to calculate the success rate. The rates of success

are shown in Table 5.1.

To counter such an attack, random delays could be introduced by the manufacturer.

Further, random fake operations could be introduced in the execution of the model

such that there is no correlation between the network architecture and inference

time can also prevent an attacker from correctly identifying the model [23]].

5.2 Electromagnetic Side-Channel Attack

5.2.1 Previous Work

One of the first applications of SCA to extract neural network model information

was done in [16]. The authors show that it is possible to decode information

regarding the model weights, the activation function and the model architecture

by just feeding known inputs to the hardware and measuring the generated traces.

For this work an Atmel ATmega32P processor and an ARM Cortex-M3 micro-

controller was used. EM leakages were collected on an Lecroy WaveRunner 610zi

oscilloscope using an RF-U 5-2 near-field EM probe. Traces were collected through-

out the execution of the network for each input.

First, the activation function used in the network was reverse engineered. The

authors note that different activation functions take different execution times. For

instance, ReLU takes the least amount of time, whereas tanh and sigmoid have

similar timing delays, but they are different for different inputs. These can be seen

in figure Figure 5.3. Furthermore, the different activation functions also traces

with different patters. By measuring the timing delays and verifying the patterns
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(a) ReLU (b) Sigmoid

(c) Tanh (d) Softmax

Figure 5.3: Timing for different activation functions. Taken from [16]

Figure 5.4: Difference in trace pattern for a multiplication operation and an
activation function. Taken from [16]

in the trace (Figure 5.4), the authors were able to figure out the kind of activation

function being used.

The next step was to isolate the weights of the network. Since the input to the
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network is known, weights were isolated by finding the correlation of traces gen-

erated by the actual weight and all hypothesis of weights. This kind of attack is

known as Correlation Power Analysis (CPA). Since the number of possible weights

is very large, the authors considered weights to be in the range of [−5,+5]. The

correct value of weight will have a higher correlation as compared to the other

weight values. This method takes a long time to execute since multiple traces have

to be generated for each weight hypothesis.

(a) 6 neurons in 1 hidden layer (b) 6 and 5 neurons in first and sec-
ond hidden layers

(c) 6, 5 and 5 neurons in first, second
and third hidden layers

Figure 5.5: Different patterns for neurons in hidden layers. Taken from [16]

Finally, once the activation function and weight values were recovered, the number

of neurons and the number of layers could be recovered as well. From the EM trace,

it was very easy to determine the number of neurons. This is because the patterns

generated by a multiplication operation was different from the one generated by an

activation operation. However, there were no visual cues to identify whether the

neuron belonged to the current layer or the next. This can be seen in Figure 5.5.

To identify this, the CPA based approach was used again. This time, the first
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hypothesis used was that the neuron belonged to the current layer and in the

second hypothesis, it was assumed that the neuron belonged to the next layer and

weight recovery was done using the outputs from the previous neurons. Whichever

hypothesis gave a higher correlation was used to identify whether the neuron was

in the current or next layer (and hence find layer boundaries).

5.2.2 Threat Model and Hardware Setup

The work done previously by [16] and [110] uses an Atmel ATmega32P, an ARM

Cortex-M3 and a Pynq-Z1 FPGA board. The authors implemented their own neu-

ral network code and deployed them on these devices. However, as far as we can

tell, no one has tried to attack the more popular and commercially available neural

network accelerators like the NCS. Additionally, the NCS contains 16 vector pro-

cessors which can execute the network in a highly parallelized manner. This makes

it difficult to run side-channel attacks on the device, as multiple neurons could be

executing at the same time. Keeping this in mind, we consider the following attack

setting:

1. The attacker can feed any known input to the model running on

the device: It is assumed that the attacker knows that the attacker can

access the device and can control the execution of the network on the device

by feeding inputs to it. The attacker however cannot access the intermediate

values during the execution of the network.

2. The target model is a Binary Neural Network (BNN): It is assumed

that the model running on the NCS is a BNN with inputs, weights and

activations limited to −1 and +1 and only fully connected layers.

3. The attacker can measure EM leakages from the device: It is assumed

that the attacker can collect traces multiple times for any input and save them

for later analysis. In this work, only EM leakages are collected.

Our hardware setup is similar to the one used in [16]. The side-channel attack was

made on an Intel Neural Compute Stick (NCS) running a simple fully connected

neural network. An RF-U 5-2 near-field EM probe from Langer was used to mea-

sure the EM leakages from the NCS. The probe is in essence used as an antenna to
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(a) Top Side with the Myriad X VPU

(b) Bottom Side

Figure 5.6: NCS2 with its outer shielding and heat sink removed.

measure the leakages coming from the main processor on the chip. The measure-

ment from the probe is collected using a Lecroy WaveRunner 610zi oscilloscope

and saved on a computer.

Figure 5.7: An example of trace collected after running the neural network.

Measurements or traces are taken for each input to the model. Each trace collected

span the entire time of the execution of the network on the NCS. This means that

for a given trace, the number of data points collected is equal to the product of
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(a) Complete Hardware Setup

(b) Setup of Raspberry Pi, Probe and NCS2.

Figure 5.8: Experimental Setup for performing side channel attack.

execution time and sampling frequency. An example of a collected trace can be

seen in Figure 5.7. To better help sampling, the outer shielding and heatsink of the

chip was removed, exposing the chip. A fan was used to keep the NCS cool. The

exposed Myriad X VPU can be seen in Figure 5.6. An important factor during

the measurement is the placement of the probe during the measurement. Since the

internal structure of the Myriad X VPU is not open source, this placement was

decided through trial and error. The complete setup can be seen in Figure 5.8a.

Another crucial part of the setup was synchronizing the execution of the network
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with the collection of traces. This was achieved using a Raspberry Pi. The Rasp-

berry Pi was used to send an input data sample to the NCS. It also sent a signal

to the oscilloscope to start the data collection process. Once the network output

was received from the NCS, the Pi sent another signal to stop the data collection.

These connections, as well as the probe placement, can be seen in Figure 5.8b

5.2.3 Attack Procedure

A simple fully connected neural network with binary weights: -1, 1 was used in this

work. The neural network had three input neurons and three neurons in each of

its 10 hidden layers. The output layer had 2 neurons. However, for the purpose of

this work, only the first two hidden layers were attacked. The weights of the first

two layers can be seen in Figure 5.9. It was seen that deeper networks generated

a more precise and more prolonged trace which made the attack process easier.

Figure 5.9: Weights of the first two layers and the guess points being attacked.

Traces were collected for different inputs to the network. To compare the differences

between the leakages for each input, multiple traces were generated and collected.

The leakage model being exploited in the NCS is the hamming weight model. The

power consumption of the device and the resultant EM leakage is proportional to

the data being loaded and the number of bits equal to 1. This means that the

leakage associated with loading a data x is:
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HW (x) =
n∑

i=1

xi, (5.3)

where xi is the ith bit of x [16]. These leakages are generated due to dynamic

current flows generated by the charging and discharging of parasitic capacitance

[8]. This is characterised by:

Idyn,i(t) =
1

2
Ci ·Di(t) ·VDD · fclk (5.4)

where Idyn,i(t) denotes transient current flow, Ci is the capacitance of net i, Di(t)

is its transient transition rate, VDD is the voltage supply, and fclk is the clock

frequency [111]. Furthermore, Di(t) is related to the characteristics and type of

computation happening in each layer of the network. Hence, each layer’s Di(t) is

proportional to its layer parameters which is what is being attacked. To conduct

the attack, a divide and conquer approach is taken where each neuron in each layer

is attacked separately.

Figure 5.10: Traces from the first layer of the neural network. Different colors
represent the different neurons in the first layer.

The next step was to find the part of the trace responsible for execution of a

specific neuron. To do this, traces for a particular input was compared with traces

for other inputs. Since we were using a BNN, we were trying to find peaks in the

trace generated by the MSB of the output of each neuron. To generate peaks, we

were feeding inputs to the network that would result in a +1 output or activation

at the neuron being attacked. Secondly, we also fed inputs to the network that

would result in a −1 output or activation at the neuron being attacked, but +!
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Figure 5.11: Traces from the second layer of the neural network. Different
colors represent the different neurons in the second layer.

outputs at other neurons. By finding the parts of the trace that is different, it was

possible to understand when a particular calculation was taking place.

Since there were very few leakages, approximately one million traces were collected

and averaged to identify the traces corresponding to an individual neuron calcu-

lation. Collecting multiple traces also helped to reduce the effect of jitter on the

probe reading. Once a sufficient number of traces were collected for an input, the

process was repeated for a different input. By subtracting the average traces of

both inputs, it is possible to see whether there is any significant difference in leak-

ages. Since the neuron with an activation of +1 will consume more power, it will

also generate a larger EM leakage, thus helping us perform a difference of means

attack.

5.2.4 Results

After collecting the different traces, it was possible to isolate the traces correspond-

ing to the neurons in the first hidden layer. In Figure 5.10, the blue lines represent

the traces generated when calculations for the first neuron in the first layer was

being done. Similarly, the orange and green lines are the traces for the second

and third neurons. While the traces for the third neuron is also easily visible, the

second neuron traces were not isolated. The reason for this is still unknown and

needs to be investigated further.

Furthermore, in this work, a layer by layer approach to isolating the calculations

is being done. Figure 5.11 shows the traces for the second layer. In this case, the
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Figure 5.12: Methodology to reconstruct neural network.

first and second neuron traces were more prominent than the third neuron. For

now, only the first and second layer traces were isolated. In the future, the rest of

the network will be attacked.

5.2.5 Challenges and Mitigation

One of the challenges of this work is the amount of experiments that needs to be

run to generate significant traces in the output. For large networks with multiple

neurons or convolutional layers, running multiple experiments to recover only each
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weight will make the attack challenging and time-consuming. However, most mod-

els deployed at the edge are small, with fewer layers and neurons, and algorithms

like pruning and quantization is applied to reduce the number of parameters in

the model. This makes timing side-channel attacks a serious attack vector for edge

deployed models.

One way to mitigate this attack is to execute the different neurons in each layer

non-sequentially. Shuffling the order of execution within each layer would prevent

the attacker from knowing which neuron weight they are recovering. Another

mitigation strategy is to introduce random delay in the execution of each neuron

or execute each operation in constant time. Since the timing SCA depends on

fluctuating timings, implementing constant time exponentiation can help mitigate

this attack [112].

5.3 Conclusion

In this chapter two side-channel attacks on the NCS were demonstrated. In this

first attack, we show that it is possible to know the type of model loaded on to a

NCS by seeing the execution time for a given input irrespective of the host device.

After that we show that using an electromagnetic side-channel it is possible to see

the execution of individual neurons in a BNN running inside a NCS. Finally some

challenges in implementing these attacks and their mitigation is discussed.

In the next chapter, some future work to improve the results of the different attacks

is discussed.
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Summary and Future Work

6.1 Summary

In line with the objectives, the following goals have been met:

1. Conversion of events captured by a NVS into frames by aggregating events

has been done. This was done by aggregating all events over a period of time.

By aggregating events of different polarities separately, frames with multiple

channels and bits could be created.

2. Proposal of RoIs containing vehicles from the frames. A histogram based

proposal was first used to get RoIs. However, this resulted in fragmented

objects, with different parts of the same object being proposed as different

RoIs. CCA based regions proposal solved this problem significantly.

3. Using depthwise separable convolutions, it was possible to classify the objects

in the proposed RoIs with reasonable accuracy while meeting computation

requirements. An architecture search was done by starting with a LeNet-5

based model. The TinyNet architecture was found to have the best tradeoff

between accuracy, memory requirements and model complexity (Figure 3.6).

4. After that, DFP quantization was used to further reduce the computes re-

quired to execute the TinyNet network. Following the DFP quantization,

the network was fine-tuned to recover the lost accuracy. It was shown that

84
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it is possible to quantize the network with less than a 2% drop in accuracy

(Table 3.4).

5. Cold Boot attack was used to attack a model running on an NCS. From the

RAM dump of the attack, the model architecture and weight files were recov-

ered. A method to fix errors in architecture and weight files were proposed.

While the architecture file errors can be easily fixed, fixing the errors in the

weights are more difficult.

6. To fix the erroneous weights, a training method based on knowledge distilla-

tion was proposed. We show that using knowledge distillation, it is possible

to regain the accuracy of the recovered model within a margin of 10% of the

original model accuracy. We also show that it is possible, but difficult to

recover the original weights of the model.

7. Using timing side channel, we show that it is possible to recover the kind

of pretrained model running on a Neural Compute Stick with nearly 100%

accuracy.

8. EM side channel was used to attack neural networks running on a Neural

Compute Stick. To help simplify the attack process, a BNN model was loaded

on to the neural compute stick to be attacked. The model was then attacked

layer by layer. We show that it is possible to isolate the computation for the

first two layers (Figure 5.10 and Figure 5.11). However, some of the neurons

in those layers do not generate traces.

6.2 Future Work

1. Methods to secure neural network computation from cold boot, timing and

electromagnetic side channel attacks need to be studied. Further, how these

protection scheme affect the accuracy and inference time of the network can

be explored. If the execution time is very high, then it will not be feasible to

apply them to an edge computing setting.

2. Try to find out why certain neurons do not generate any traces when using

EM side channel.
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Other ways of extracting weight and architecture details using electromag-

netic side-channel are also being explored. For instance, the execution timing

of different layers in the network can be used to extract information about

the type and number of layers in a model [110]. Using this information, an

attacker can train a similar model as long as they have access to the training

data. It is also possible to train a model with similar accuracy even with a

small subset of unlabelled data [50].

3. Further reduction in the computational complexity of neural networks using

activation pruning and hashing of neural network weights [113]. Most works

in hashing prune weights based on their magnitude. The smaller the weight,

the more likely it is to get pruned. The reason for this is because a small

weight will cause a small change in the activation and hence have an overall

smaller effect on the final output of the network. However, a small weight

could have a significant effect on the output if the activation flowing through it

is comparatively larger. Similarly, a small activation flowing through a large

weight will have a smaller effect on the output prediction. Therefore, we

hypothesize, that it is better to prune weights based not on their magnitude,

but based on the similarity between the weight and activation.

Locality Sensitve Hashing (LSH) for maximum inner product search (MIPS)

[114] is one of the proposed methods to achieve this and was done in [113].

The authors propose to use LSH has tables for each layer in the network.

Hashtables are created using the weights during the training phase. Further-

more, during the training phase, the layer’s inputs are hashed and queried

for the top k% of active set neurons. The rest of the neurons are dropped

out and only the active set of neurons are updated during the training phase.

This leads to sparse gradient updates which also help in faster and more par-

allelizable asynchronous training [115]. During testing, this method reduces

the number of multiplications needed to execute the network.

4. In this regard, we also attempt to find the effect of hashing of neural network

weights and choosing only top k% of activated weights vs. normal accuracy.

By dropping more weights, the complexity of the network can be decreased,

however, the accuracy will also be affected. The ’k’ value in turn can act like

a knob that can be used to finetune the network for the desired performance.
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5. While the ’k’ value can act as a good knob, we also attempt to find if other

parameterizable methods to tradeoff energy vs accuracy for ANN exist. In

addition, we try to find if these knobs can perform as well as the conversion

of ANN to Spiking Neural Networks (SNN).

The advantage of SNN over ANN is that they have an inherent parameteri-

zable knob: time. This is why they have been very popular as a method to

reduce the latency as well as the computational complexity of deep neural

networks [116]. Furthermore, SNNs can be queried for an output after the

first spike. This is unlike ANNs where the whole network needs to be run

first. However, training of SNNs is difficult and while significant progress has

been made, larger networks with equivalent accuracy as ANNs have not been

achieved. This is why work has been done on converting standard ANNs to

their SNN equivalents [117].

To this end, we tried to prune activations from neural networks instead of

weights based on their magnitude. During the training process, the model was

trained and the maximum activation for each neuron was recorded. During

the inference process, for each input, the activation for each neuron was

divided by its maximum activation for each layer. Doing this, we were able

to scale neurons based on its percentage of total activation. Following this,

for each layer, only the top k% of activations were allowed to pass through.

Doing this, without any finetuning, yielded decent results and we were able

to prune up to 20% of the activations without significant loss in accuracy.

To account for this reduction in activations going to the next layer, all the

activations were multiplied by the neuron drop percentage of that layer. This

pruning was done on a 3 layer ANN trained on MNIST. Finetuning was done

by performing the pruning during the training process and only training those

neurons that were activated (similar to hashing [113]). During this finetuning

process, the pruning percentage, or k value, could be used as a parameter.

Using this technique, the same network could be pruned by up to 80% while

still maintaining a 92% accuracy. We were also able to prune LeNet-5 by up

to 30% while still maintaining an accuracy greater than 90%.

6. This yielded good results on pruning and finding a parameter that can be

tuned to improve the accuracy of the network for a certain pruning percent-

age. This pruning was done in a spatial manner. In addition to spatial
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pruning, we try to find out if the neural networks can be pruned spatially

first, then converted to SNN and pruned temporally, while still maintaining

accuracy. To do this, we are using the SNN ToolBox to convert our pruned

neural network to an SNN [118].

7. In this work, we consider that the cold boot attack was done once and the

attacker had to recover all the details from a single RAM dump. However, if

multiple attacks can be performed, then the recovery can be more simple. By

using maximum voting on the bits of three RAM dumps, it can be possible

to both identify and fix erroneous bits using three RAM dumps. With two

RAM dumps, it can be possible to identify erroneous bits and potentially fix

them using simple techniques. However, this will be more difficult to do in

case there is a bias in the RAM dump causing a large number of bits to be

erroneous in a single part of the dump.
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