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Learning to Schedule Joint Radar-Communication Requests for
Optimal Information Freshness

Joash Lee1, Dusit Niyato2, Yong Liang Guan3, Dong In Kim4

Abstract— Radar detection and communication are two of
several sub-tasks essential for the operation of next-generation
autonomous vehicles (AVs). The former is required for sensing
and perception, more frequently so under various unfavorable
environmental conditions such as heavy precipitation; the
latter is needed to transmit time-critical data. Forthcoming
proliferation of faster 5G networks utilizing mmWave is likely
to lead to interference with automotive radar sensors, which
has led to a body of research on the development of Joint
Radar Communication (JRC) systems and solutions. This paper
considers the problem of time-sharing for JRC, with the
additional simultaneous objective of minimizing the average age
of information (AoI) transmitted by a JRC-equipped AV. We
formulate the problem as a Markov Decision Process (MDP)
where the JRC agent determines in a real-time manner when
radar detection is necessary, and how to manage a multi-
class data queue where each class represents different urgency
levels of data packets. Simulations are run with a range of
environmental parameters to mimic variations in real-world
operation. The results show that deep reinforcement learning
allows the agent to obtain good results with minimal a priori
knowledge about the environment.

I. INTRODUCTION

Self-driving vehicles of the future will have to perform a
multitude of tasks to facilitate its end-goal of safe navigation,
including sensing and perception, localization, mapping of
obstacles and path finding. In a cooperative driving setting,
large amounts of data will have to be communicated between
vehicles (V2V) and between vehicles and infrastructure
(V2X). With the commercialization of 5G communication
technology and the associated transmission of data with
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Fig. 1: (a) Heavy precipitation causing low visibility for
camera-based systems. (b) A busy junction.

higher frequencies, such as the mmWave band, interference
with radar waves has become a possibility.

The problem of jointly operating radar and communica-
tion functions within the same frequency range has been
variously referred to as joint radar-communication (JRC) or
communication and radar spectrum sharing (CRSS). Methods
of realizing JRC systems have been variously reviewed by
[1], [2]. These methods may be broadly categorized into
three different approaches: using communications signals to
perform object detection, modulating communication signals
onto radar pulses, and time-division between radar operation
and communication.

More traditional approaches to time-division use a fixed
schedule to alternate between radar and communication [2],
[3]. In contrast, a learning-based approach was proposed by
[4] for use in automotive vehicles. The main advantage of
such an approach is that the communication system is able
to learn to respond to instantaneous changes in the environ-
mental conditions that may require increased frequency of
radar operation to support safe navigation.

Another challenge associated with the communication
of data in self-driving vehicles is the high data rate and
freshness of sensory information necessary for safe naviga-
tion, in combination with demand for low-latency Internet
connection for in-vehicle entertainment systems. Self-driving
vehicles are often equipped with a suite of sensors to
reliably perceive its environment: cameras, LIDAR, radar,
ultrasonic sensors, inertial measurement units and satellite-
based positioning systems such as GPS. The exteroceptive
sensors generate large amounts of data due to their multi-
dimensional nature [5]. This may require transmission in a
timely manner to surrounding vehicles or infrastructure in
cooperative driving settings.

Traditional metrics on communication of data, such as
throughput or delay, may be useful for in-vehicle enter-
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tainment systems. However, they may be inadequate for
evaluating the communication of sensory data in cooperative
driving scenarios where timely responses to an ever-changing
environment are required. The authors in [6] raised the
example of how a data packet containing old information
may be of little utility even if delivered with little delay. A
more appropriate metric for the timeliness of communication
in an automotive setting is the age-of-information (AoI), for
which [7] was an early proponent. In the proposition by [7],
“age” is the duration of time since the last received packet
was generated.

In this paper, we consider a combined approach to jointly
minimize AoI and maintain timely radar operation through
time division for a single vehicle agent. Key considerations
that motivate our approach to the problem formulation and
our method of solving it are as listed below:

1) Environment awareness — The agent must be able
to adjust its use of radar detection in response to
situations where radar becomes more important.

2) Urgency dependent — Several classes of data may be
transmitted by an autonomous vehicle. Our JRC system
should be capable of prioritizing the communication of
data of higher importance.

3) Low prior knowledge — The JRC system should
require minimal prior knowledge on the vehicle’s en-
vironment and the nature of the data it is to commu-
nicate.

The work presented in this paper is a significant improve-
ment of the time-division based JRC method first proposed
in [4]. We consider a single agent representing a JRC system
on a self-driving vehicle. Our contributions are as follows:

1) The agent manages a multi-class data queue of finite
length, where each class represents different urgency
levels of data packets.

2) In addition to jointly coordinating radar and commu-
nication, the agent minimizes the AoI of its commu-
nication function.

We formulate our JRC-AoI problem as a Markov Decision
Process (MDP), and investigate the use of Deep Q Networks
(DQN) to jointly optimize the objectives of minimizing aver-
age AoI and managing JRC. Section II presents related work
on automotive sensing and communication and their relation
to traffic accident risk. Section III introduces our problem
formulation, while Section IV provides a background on
DQN. In Section V, we describe different experimental suites
that mimic the variability in the environment that may be
encountered by an automotive JRC systems. We conduct
the experiments and discusses the results obtained. Code
required to reproduce these experiments is available 1.

II. BACKGROUND AND RELATED WORK

In this section, we review contemporary automotive sens-
ing techniques and identify challenging scenarios for auto-
motive perception. For each of these perceptually adverse

1https://github.com/joleeson/JRC-AoI.git

scenarios, we establish a connection with prevailing litera-
ture on road safety risk. We also review related work on
automotive communication and studies on AoI.

A. Automotive Sensing

In automotive vehicles, data from different sensors and
sensor types is typically combined. This process, known as
sensor fusion, results in more certainty than if sensor read-
ings are used individually [8], [9]. Certainty in environmental
perception can be gained through combining sensor types
that have complementary strengths. For example, while there
has been much success at object detection in the daytime
with camera systems, the distance of the object of interest
from the vehicle is measured more accurately using LIDAR
or radar [10].

Another method of increasing the certainty of environ-
mental perception is to increase the sampling rate of the
available sensors. Methods to adjust the sampling rate of
individual sensor nodes within a sensor network have been
proposed by [11], [12] and reviewed in [13]. The key idea is
that the sampling rate of a sensor node is increased when
the sensor is observing an interesting event, and reduced
otherwise. These adaptive sampling methods are motivated
by constraints on energy use or overall system bandwidth,
such as remotely-installed battery-powered monitoring [12]
or wearable devices [11]. We note a similarity in JRC,
in that there is a constraint on bandwidth availability. For
JRC deployed in an automotive setting, events that are of
interest to radar sensing are situations with higher risk, and
situations where radar performs favorably in comparison to
other available sensors.

B. Perception of Risky Conditions

Higher risk driving events include unfavorable road sur-
face conditions, adverse weather, proximity of other vehicles,
and excess vehicle speed. These factors have been shown by
road safety studies [14]–[20] to be associated with higher
risk of traffic accidents. For each of these environmental
features that contribute to accident risk, we review how each
feature can be measured and how they affect the risk level.
We review literature in Section II-C on how this risk may
be quantified.

Weather: Unfavorable weather conditions in an automotive
setting include rain, snow or fog [17]. Classification of the
weather condition can be conducted based on input from
cameras [21] or LIDAR systems [22]. Our paper is concerned
with quantitative evaluations of the intensity of weather
conditions, which is a matter that was considered in [22].
A study on aggregated data from various regions of Europe
showed that every additional 100 mm of rainfall led to an
increase in the number of injury-causing traffic accidents by
0.2-0.3% [14]. In adverse weather and low light conditions,
radar is known to be the most robust automotive sensing
modality [10]. This is in contrast to camera systems, which
experience a degradation in image quality such conditions;
Figure 1a illustrates low visibility experienced by a camera
under heavy precipitation.
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Road surface: Unfavorable road surface conditions most
associated with accidents were found by [16] to include ir-
regular topographical characteristics. This may be quantified
using standardized metrics such as the international rough-
ness index (IRI). Measurement methods on non-specialized
vehicles may utilize a combination of accelerometers and
measurements from vehicle suspension components [23],
[24]. These measurement modalities may be supplemented
or substituted by a digital map database that contains in-
formation on road surface conditions [23]. In a road safety
study [16], an increase in rut depth of 2.5 mm was found to
increase the frequency of night-time accidents in Tennessee
by 1.509 times. In higher risk situations that could cause
loss of traction, increased radar operation would create a
more accurate map of the vehicle’s environment, which could
become necessary for short-timescale corrective maneuvers.

Presence of moving objects: Successful driving is depen-
dent on the sub-tasks of moving objective detection and iden-
tification, especially in urban settings. While identification
of moving objects is typically best performed by camera
systems, radar systems perform the best at detecting speed
and distance of surrounding objects [10]. The volume of
traffic flow, which is indicative of the number of vehicles in
close proximity and interacting with one another, has been
shown to have a positive relationship with the frequency of
accidents on both motorways [18] and intersections [19].
On three-lane motorway segments in France, the average
number of crashed vehicles doubled when the traffic flow rate
increased from 1500 to 4000 vehicles per hour [18]. Figure
1b shows an example of a busy intersection with pedestrians
and vehicle navigating in different directions.

Speed of ego vehicle: Many studies indicate that higher
speeds or higher differences in speed relative to surrounding
traffic are associated with increased frequency of road traffic
accidents [15], [20]. A variation in speed by 1% was found
to increase the frequency of accidents by 0.3% in [20].
A vehicle’s speed can be measured by odometry sensors
and corroborated with global navigation satellite systems.
Increased frequency of radar operation would be useful in
high speed scenarios because of its strengths in object speed
detection.

As mentioned, the higher-risk conditions discussed in this
paper coincide with situations where radar sensing is known
to perform more favorably compared to alternative sensors
such as LIDAR and camera systems [10]. However, there are
few studies which consider the effect of such high-risk events
in formulating strategies for automotive sensing. The typical
approach is to sample data from each sensor at a constant
pre-determined rate [5]. Solutions have been proposed in the
form of sensor fusion methodologies [9], [25], although they
do not assume any costs or constraints on sensor availability.

C. Characterization of Accident Risk

Studies on road safety commonly quantify the risk of
a road accident in terms of the number of accidents over
a given period of time [16]. Previous studies have used
statistical regression techniques to evaluate how much each

environmental condition contributes to the overall risk of
traffic accidents for different sets of data from different
geographical regions. Negative binomial regression is com-
monly used for such modeling [14], [16], [19], [20]. This
is a generalization of Poisson regression which relaxes the
assumption that the variance must be equal to the mean. The
predicted mean number of traffic accidents µ within a given
road segment for a particular time interval is given by:

µ = exp (eβ) (1)

where e is the vector of environmental features as introduced
above, and β is the coefficient vector to be estimated. We
adopt a similar mathematical relationship in our problem for-
mulation in Section III-A. The learned relationship between
environmental condition and risk level could be provided to
individual vehicles through access to a digital map database.

D. Communication in Automotive Settings

Dissemination of information in V2V or V2X networks
is typically handled by the IEEE Wireless Access in Vehic-
ular Environments (WAVE) family [26]. However, existing
standards and the prevailing body of literature on vehicular
communications do not account for AoI. We use a definition
of AoI consistent with earlier works [6], [27]:

Definition 1: The age of information A<m> for data class
m at a receiver is the length of time from the generation to
receipt of the most recently generated data packet of class
m.

The initial study on AoI by [7] considers an M/M/1
model where data packets are generated at a constant rate
and enter into a First-in-First-Out (FIFO) queue at the
medium access control (MAC) layer. AoI was minimized
by adapting the rate of packet generation at the source
nodes. AoI has also been investigated for a system with
a multi-class queue in [27]. The effect of interference and
channel quality was not considered in these earlier works
[6], [27]. We note that a limitation of the optimization-
based approaches utilized by the above-mentioned studies
is that they minimize AoI for the average system state
by adjusting average rate parameters, and fail to account
for instantaneous differences in the system. In contrast, we
model a vehicular communication problem as a Markov
Decision Process (MDP). A scheduling algorithm is then
solved by using deep reinforcement learning.

III. PROBLEM FORMULATION

In our study, the concept of AoI is extended by taking
into account the urgency of each data class as a linear weight
applied to its age. Given our focus on the transmitting agent,
we consider “age” as the delay from packet generation to the
instant of its transmission.

We formulate an online JRC scheduling problem as a MDP
where the agent of interest is the JRC system of a single
vehicle. A schematic of how the JRC scheduler interacts
with the vehicle’s sensory and perception systems is shown
in Figure 2. At each discrete time step, the agent observes
the state of its data queue along with information on the
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Fig. 2: A schematic showing how a Joint-Radar Commu-
nication system and its scheduling policy would interact
with the sensor fusion system in an automotive application.
The scheduling policy receives environmental features e and
decides on scheduling actions a.
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Fig. 3: A schematic of the multi-class data packet queue.
Data packets with class n arrive into the queue.

surrounding environmental conditions. The environmental
features considered in this paper are introduced in Section II,
and have been shown in road safety studies [14]–[17] to be
associated with the risk of road traffic accidents. From an
information theoretic standpoint, a higher sampling rate of
sensory input would be required to provide more certainty
about safety-critical events [13]. We propose a reward func-
tion to encourage such behavior. Details on the state space,
state transition, action space and reward function are further
described in this section.

A. State Space and System Model

The state consists of features e representing the agent’s
environmental conditions, the condition of the communica-
tion channel c, the age α and class u of the data packets
that are queued, and the AoI for all classes of data A:

s = [e, c,α,u,A]. (2)

The environmental condition vector contains four environ-
mental features, such that e = [ρ, w,m, v]. These features
represent the condition of the road, weather, the presence
of moving objects nearby, and the speed of the ego vehicle
respectively; they are identified in Section II to be associated
with the risk level. Each feature is ranked on a discrete
scale such that {ρ, w,m, v} ∈ {0, 1, . . . , E}; a value of
zero indicates the safest possible condition, while higher
values indicate decreasing favorability in terms of safety.
For example, ρ = 0 would indicate a dry well-maintained
road, while higher values would indicate decreasing frictional
coefficients. Higher values of w, m and v would indicate in-
clement weather and poor visibility, the presence of a moving
object in the vicinity of the ego vehicle, and high speed of

the ego vehicle respectively. For ease of presentation, we
consider E = 1.

As discussed in Section II-C, the relationship between en-
vironmental conditions and the risk level is typically modeled
using negative binomial regression. We interpret this quantity
as related to the number of high-risk events for which radar
operation is necessary. By making the assumption that the
time step is sufficiently small, the arrival of a high-risk
event X in each time step for an individual vehicle can
be modelled by a Bernoulli distribution with probability
parameter k exp (eβ), where k is a constant [28].

The channel state is an indicator of quality of the com-
munication channel, where c = 0 indicates a good channel,
and higher values indicate lower transmission rates.

Additional state features that we consider in this study
relate to descriptors of data packets that arrive into the
agent’s queue, which has a maximum length of L. For each
data packet l in the queue, its age is represented by αl, such
that the age vector is α ∈ RL. Note that this concept is
related but different from the AoI of each data class, which
we discuss further later in this section.

Definition 2: The age of each data packet is measured by
the number of time steps that it remains in the queue before
it is successfully transmitted by the agent.

The corresponding urgency class of each data packet is
ul ∈ {1, 2, . . . ,M}, such that u ∈ RL. A value of ul = 0
indicates that position l in the data queue is empty. If no
data packets enter or leave the queue at time step t, the age
transition function can be described as:

αl(t+ 1) = αl(t) + 1R+(ul(t)), (3)

where 1R+ is an indicator function for positive real numbers.
A schematic of the data packet queuing system is shown

in Figure 3. New data packets enter the queue according to a
Poisson distribution with means (λ<1>, λ<2>, . . . , λ<M>),
where λ<m> is the parameter for the arrival of tasks with
urgency level m. Let the random variables for the number
of newly generated data packets be represented by Y <m>.
Each newly generated data packet is inserted into the first
non-zero index of the urgency and action state features α
and u. Data packets that exceed a threshold age of αmax
are considered to be expired, and removed from the age and
urgency state vectors.

The vector A ∈ RM maintains the AoI for each urgency
class. Each element A<m> represents the number of time
steps since the generation of the last data packet of urgency
class m that was received by its intended receiver. The
evolution of A<m> can be described as:

A<m>(t+1) =


min
l

(
αl(t)

1{m}(ul(t))
)

+ 1
if a(t) = a<m>

A<m>(t) + 1 otherwise,
(4)

where A<m>(t+ 1) is the AoI of data class m at time step
(t+ 1), 1{m}(·) is the indicator function for numbers equal
to m, at is the action taken by the agent at time step t. The
evolution of AoI with time for a particular class is shown
in Figure 4. This model adopts the assumption that the time
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Fig. 4: The evolution of the Age of Information A of a
specific data class with time step t. The time t′1 indicates
when the first packet arrives into the queue. At time step
t1, a communication action is chosen, thus transmitting the
packet after it has spent α(t1) time steps in the queue.

taken from the moment of transmission to receipt of the data
is constant and equal to zero. The actions available to the
agent are described in the next sub-section.

B. Action

At each time step, the agent may choose to operate in
radar mode ar, or execute tasks with a chosen urgency level.
The action set is thus: A = {ar, a<1>, a<2>, . . . , a<M>},
where a<u=m> indicates the choice of communicating data
with urgency class m. A better channel condition c allows
the agent to successfully transmit more data packets from the
chosen class. The transmitted data packets are removed from
the queue in the next time step. We define T ∈ RL to be a
vector that consists of binary indicators of whether each data
packet l in the queue is transmitted during a given time step
t. For simplicity, we consider a deterministic service time
that is equal to the duration of one time step.

C. Reward

The reward received by the agent at each time step t
is defined as a weighted sum that encourages the agent to
minimize the age of the queued data packets while also carry
out radar detection when necessary:

r(t) = wagerage(t) + woverflowroverflow(t) + wradrrad(t),
(5)

where wage, woverflow and wrad are weights. rage encour-
ages the agent to minimize AoI, roverflow encourages the
agent to transmit data packets before the queue overflows
with new arrivals, while rradar encourages the agent to per-
form a radar scan when there are unfavorable environmental
conditions.

We formulate rage to encourage minimization of the sum
of urgency weighted ages for each data class.

rage(t) = −
M∑
m=1

(
m×A<m>(t+ 1)

)
, (6)

where m is the urgency class, and A<m>t+1 is the AoI of data
class m at the next time step.

The penalty for queue overflows is proportional to the
number of newly-generated data packets that the queue

cannot accommodate, after accounting for data transmission
T and data expiration at the current time step:

roverflow(t) = min
(

0,−
( L∑
l=1

[1R+(ul(t))

− 1R+(αl(t)− αmax)− Tl(t)]

+

M∑
m=1

Y <m>(t)−N
))
.

(7)

In our simulated environment, the activation of radar
detection mode is deemed necessary whenever an unexpected
high-risk event occurs. The term rradar is proportional to the
number of unfavorable environmental features in e whenever
a high-risk event occurs (i.e. Xt = 1):

rrad(t) = −
(
ρ(t) + w(t) +m(t) + v(t)

)
×X(t). (8)

IV. DEEP Q-LEARNING

This section provides a brief background on the DQN
algorithm that we use to solve our JRC-AoI problem. DQN is
a reinforcement learning algorithm that combines Q-learning
algorithm with the use of deep neural networks. This method
was chosen for its abilities in handling MDPs with high
complexity or high-dimensional state spaces, such as the
Atari game environments for which the algorithm received
notable recognition [29], and learning optimal actions with
minimal a priori knowledge of system parameters.

At the beginning of each time step t, the state st as
observed by the agent is input into the Q network, pa-
rameterized by θt at time step t, which then predicts the
optimal values Q∗ of taking each possible action at. Based
on these predictions, the agent chooses an action based on
the ε-greedy policy, which leads to receipt of reward rt. The
agent’s experience (st, at, rt, st+1) is stored in a dataset Dt.

At regular intervals, the agent performs Q-learning through
experience replay by sampling a minibatch (si, ai, ri, si+1)
randomly from its memory Dt, and updates its Q network
using the following equation:

θt+1 = θt − β∇θQθt(si, ai)
(
Qθt(si, ai)− yi

)
, (9)

where β is the learning rate, ∇θQθt(si, ai) is the gradient
of the Q-network at the point (si, ai) with respect to its
parameters θt, and yi is the target Q-value based on a one-
step Bellman backup on the sampled experience:

yi = ri + γmax
a

Qθ′t(si+1, a), (10)

where γ is the discount rate, and θ′t are the parameters of
the target Q-network that are updated at fixed intervals with
the parameters θt from the online Q-network. The steps
mentioned above are repeated across many time steps and
training iterations. In our study, we utilize the double Q-
learning extension [30] and a dueling network architecture
[31] for improved learning of the Q values. We term this as
Dueling DDQN and also refer to it as DQN for simplicity.



ACCEPTED TO THE 2021 IEEE INTELLIGENT VEHICLES SYMPOSIUM 6

V. EXPERIMENTS

In this section, we first evaluate the effectiveness of
Dueling DDQN in scheduling just-in-time radar operation
while minimizing the AoI of transmitted data. Crucially,
we then simulate conditions that our JRC system might
encounter in service by considering a scenario where the ego
vehicle encounters different environmental conditions across
road segments. In each of these experiments, the performance
of a JRC scheduler trained using Dueling DDQN is compared
with the non-learning Round Robin algorithm and a one-step
planner with prior knowledge. Performance is evaluated in
terms of the total reward received in each episode, as well as
the AoI for data from each urgency class. We also consider
the more traditional metric of throughput.

A. Performance

The performance of the DQN agent is compared against
the three benchmark algorithms introduced below:

Q-learning: This more classical form of algorithm uses
the Bellman update equation introduced in (9) to update a
Q-table containing the agent’s evaluation of each state-action
pair.

Round Robin: This algorithm alternates between radar
operation ar and a communication action; the commu-
nication actions cycle between urgency levels, such that
the action sequence is {a(t = 1), a(t = 2), . . .} =
{ar, a<1>, ar, a<2>, . . .}.

One-step Planner: This one-step planner has perfect
knowledge of the environment’s state transition model and
reward function, which it exploits to greedily choose the
action with the highest expected instantaneous reward at each
time step.

To compare the above-mentioned algorithms of interest,
experiments are run in an environment with a greatly reduced
state space by restricting the length of the data queue to
N = 3. This allows the Q-tables to be stored in the memory
and storage facilities available on a consumer-level desktop
computer. To discourage the agent from letting data packets
in the queue become stale, the threshold age is also reduced
to αmax = 2.

We set each episode to comprise of 400 time steps, and
conduct training across 2500 episodes. For simplicity, we
set the data packet arrival parameters to be equal λ<m> = λ
and set the environmental condition indicators to be discrete
values {ρ, w,m, v} ∈ {0, 1}. For each set of experimental
parameters, experiments with different random seeds are
performed. Performance variations across random seeds are
represented on the graphically plotted results by shaded
areas.

The training progress in terms of total reward achieved
is shown in Figure 5 for the environment with reduced
state space. The DQN agent outperforms both the tabular
Q-learning and the non-learning Round Robin agents. The
superior performance of the DQN-trained agent in terms of
both learning speed and final performance indicates that the
use of neural networks allows the agent to generalize across

Fig. 5: Total reward r obtained for each episode during
the training processes of the DQN and Q-learning agents,
compared with the testing process for the Round Robin
algorithm and one-step planner.

Fig. 6: The proportion of radar operation actions ar taken
by a trained DQN agent across a range of state features e
and c.

the state space of the JRC environment. An analysis of the Q-
learning algorithm at test time shows that most states visited
by the agent are estimated by the Q-table to have their default
value of zero, indicating that these states were previously
unexplored. This shows that even with the greatly reduced
state-space, the representation of the Q-function as a table is
inadequate and does not allow for sample-efficient learning.

Fig. 7: The proportion of communication actions taken by a
trained DQN agent across a range of class ages A.

We produce heat maps of a policy learned by a DQN agent
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 8: A comparison the effect of road condition transition probability p(ρt+1 = 1|ρt = 1) on (a) the sum of total reward r
per episode, (b) total urgency-weighted age reward rage per episode, (c) total radar reward rrad per episode, (d) total data
overflow reward roverflow per episode, (e) throughput and (f) probability of missed radar detection.

in Figures 6 and 7. Figure 6 shows the sampled probability
that a DQN-trained agent selects the radar operation action
ar given state features e. The results show that the agent
learned to choose radar detection more often when the
environmental conditions were poorer (indicated by higher
values of

∑
e), and at almost every event where poor channel

state (c = 1) decreased data throughput. On the other hand,
Figure 7 shows the sampled probability that a DQN-trained
agent chooses to transmit data for a given class m for
different levels of AoI ∆<m>. The results show that a data
class with a higher AoI is generally more likely to have
packets transmitted.

B. Effect of varying environmental conditions

While navigating a given route, a vehicle is likely to transit
between varying road conditions. In our model, a deteriora-
tion in road condition from good to poor corresponds with
an increase in the environmental variable ρ from ρ = 0 to
ρ = 1. The study [16] showed that the frequency of accidents
scales with exp (0.5IRI). Consequently, if the IRI transitions
from a good condition of 50 (ρ = 0) to a fair value of 100
(ρ = 1), the crash frequency would increase by 1.65 times.

Consider a scenario where the vehicle takes a route with
poorer road conditions, such that the state transition model
dictates that the probability of remaining in a poor road
p(ρt+1 = 1|ρt = 1) increases. The overall risk of a high-
risk event would increase, causing a corresponding increase
in the need for radar operation. We investigate the effect of
increasing p(ρt+1 = 1|ρt = 1) from 0 to 1.0 on system
performance in this sub-section.

Figure 8 shows the average total episode reward attained
by agents trained across a range of values for p(ρt+1 =

1|ρt = 1). This is compared against the value of its
components wagerage and wradrrad. We also plot supporting
performance metrics, such as Figure 8e, which shows the
average number of data packets sent per step (throughput),
and Figure 8f, which shows the probability that the agent
wrongly chooses a communication action when there is a
high-risk event.

A higher rate of occurrence of high-risk events X (due to a
higher value of p(ρt+1 = 1|ρt = 1)) increases the number of
opportunities to accrue penalties rrad, as shown in Figure 8c.
The DQN agent and one-step planner respond to the higher
probabilities of high-risk events by more frequently choosing
radar detection ar, as reflected by the declining probability
of missed detection in Figure 8f. While Figure 8f shows
that the DQN agent misses a higher number of radar events
than the Round Robin agent, Figure 8c shows that the DQN
agent achieves a higher radar detection reward rrad. This
indicates that the DQN agent learned to identify the more
safety-critical moments as demarcated by higher values of
the environmental features e. The overall performance of
the DQN agent, as measured by the total reward per episode
(see Figure 8a) is comparable to that of the one-step planner
for p(ρt+1 = 1|ρt = 1) = [0.1, 0.6]. As p(ρt+1 = 1|ρt = 1)
increases, the performance of the DQN agent exceeds that of
the planner. This may be attributed to more information in
the reward signal that helps the DQN function approximator
to learn the reward function more accurately. Figure 8d
indicates that at higher values of p(ρt+1 = 1|ρt = 1),
the DQN agent is better able to balance the conflicting
requirements of increased radar operation and transmitting a
constant stream of data without queue overflows. Overall, the
results show that the combination of the problem formulation
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and the characteristics of the DQN algorithm allow the
agent to learn an effective solution specific to the prevailing
environmental conditions with minimal knowledge of the
environmental parameters.

VI. CONCLUSION

We considered the problem of joint radar communication
(JRC) for autonomous vehicles where the objective is to
jointly optimize radar operation and age of information
(AoI) of a multi-class data queue by finding a real-time
time division policy. By reviewing contemporary literature
in automotive sensing and perception in combination with
modern understanding of road traffic safety, we established
how a JRC scheduling policy module can be integrated
into an automotive perception system, and how judicious
scheduling of radar sensing can be used to support the
objective of road safety. We framed the problem as a Markov
Decision Process (MDP), and solved it using an extension of
the Deep Q Networks (DQN) algorithm. Experimental results
show that the DQN method outperforms the standard tabular
Q-learning algorithm and the more traditional round robin
queuing algorithm. The DQN method also performs well
compared to an exhaustive one-step planner, even with min-
imal information about the environment. Future work may
consider methods to implicitly learn to adapt to continually
varying environmental parameters and consider the effect of
a multi-agent environment.
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