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Guided Co-Segmentation Network for Fast Video
Object Segmentation

Weide Liu, Guosheng Lin, Tianyi Zhang, and Zichuan Liu

Abstract—Semi-supervised video object segmentation is a task
of propagating instance masks given in the first frame to the
entire video. It is a challenging task since it usually suffers
from heavy occlusions, large deformation, and large variations of
objects. To alleviate these problems, many existing works apply
time-consuming techniques such as fine-tuning, post-processing,
or extracting optical flow, which makes them intractable for
online segmentation. In our work, we focus on online semi-
supervised video object segmentation. We propose a GCSeg
(Guided Co-Segmentation) Network which is mainly composed
of a Reference Module and a Co-segmentation Module, to si-
multaneously incorporate the short-term, middle-term, and long-
term temporal inter-frame relationships. Moreover, we propose
an Adaptive Search Strategy to reduce the risk of propagating in-
accurate segmentation results in subsequent frames. Our GCSeg
network achieves state-of-the-art performance on online semi-
supervised video object segmentation on Davis 2016 and Davis
2017 datasets.

Index Terms—Video Segmentation, Co-Segmentation, Semi-
supervised

I. INTRODUCTION

Video object segmentation is a task of segmenting out
object instances from videos. It has attracted increasing re-
search interests due to its wide potential applications such
as video surveillance [1], autonomous driving, and action
detection. Based on the level of human supervision in the
testing phase, video object segmentation could be roughly
classified into supervised (interactive) [2], semi-supervised [3],
[4] and unsupervised [5], [6], [7] settings. Among these
settings, semi-supervised video object segmentation is a task of
propagating instance masks given in the first frame to the entire
video, which is a more realistic setting to balance the labor
load of human annotation and segmentation accuracy. Semi-
supervised video object segmentation is a challenging task. In
realistic videos, there exist problems of distinct variations of
object scales, fast movement, frequent object disappearance/re-
appearance, and heavy occlusions. These problems dramat-
ically reduce the mask propagation performance. The ex-
isting works on semi-supervised object segmentation could
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be roughly classified into two categories: temporal motion-
based approaches and spatial cues based approach. Temporal
motion-based approaches [8], [9], [10], [11] mainly rely on the
temporal continuity information to track the annotations from
the first frame through the video sequence. However, temporal
motion-based methods are vulnerable to the temporal discon-
tinuity caused by object occlusions and object disappearance.
Consequently, the tracking failures are easily propagated to
the subsequent frames. Spatial cues based approaches [3], [12],
[13], [14], [15], [16] mainly rely on the appearance cues of the
target object in the annotated frames to search similar objects
in the unannotated frames. Such spatial cues are stable for
the disappearance/reappearance of objects but are vulnerable
to object deformation and appearance change.

Currently, most existing video object segmentation works
rely on time-consuming techniques to improve accuracy. Some
works [3], [12], [13], [17], [18] perform fine-tuning with
the annotated masks in the testing phase, which introduce
additional workload of model training. Some works [19], [20]
rely on optical flow, which is quite time-consuming to extract,
to represent pixel-level temporal continuities accurately. Some
works [3], [18], [21] utilize slow post-processing techniques
such as denseCRF to generate masks that coincide well with
the object boundaries. Although these mentioned techniques
can help increase the segmentation accuracy, they hinder their
practical applications to fast/online video segmentation. It is
still an open problem of balancing segmentation accuracy and
computation efficiency in video object segmentation.

In this paper, we propose a novel Guided Co-Segmentation
(GCSeg) network for online semi-supervised object segmen-
tation. Our GCSeg network efficiently combines both motion
and static cues to incorporate short-term, middle-term, and
long-term temporal inter-frame relationships.

In video segmentation tasks, there exist problems of sig-
nificant variations of object scales, fast movement, frequent
disappearance and re-appearance of objects and heavy occlu-
sions. In order to tackle these problems, we aim to explore
the invariant information of the target objects in the video. We
assume that such invariant information exists among different
pairs of frames with different temporal intervals. The temporal
intervals could be ranged from zero to the whole video
length. Thus, we are inspired to propose a video segmentation
pipeline that could mine different inter-frame relationships
(short, middle, and long-term temporal intervals) with the
same module.

The short-term relationship refers to the inter-frame rela-
tionship between the current frame and the very last previ-
ous frame, which processes the most accurate motion cues
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for propagating previously predicted masks. The middle-term
relationship refers to the inter-frame relationship between
the current and the previous frames within reasonable short
temporal intervals. Such relationships assume reasonable small
appearance differences of target objects and relatively signifi-
cant differences of background, which helps segment out the
common target objects. The long-term relationship refers to the
relationship between the current frame and the annotated first
frame. We aim to mine out the target objects which are close
to the ground truth annotation through the whole video. Our
approach to incorporate short-term, middle-term, and long-
term inter-frame relationships is intuitive and straightforward.
When a person searches target objects in video frames, he can
either focus on what has been detected in the most similar
frame or focus on what are the common objects that exist in
other background scenes or focus on which is the same object
as the reference groundtruth.

Semi-supervised object segmentation often suffers from the
risk of propagating previous errors from predicted masks to
subsequent frames. In our work, we propose an adaptive search
strategy to decide whether to propagate from the previous
predicted mask or not to alleviate this error propagation
problem.

We summarize our contributions as follows:

• We propose a GCSeg network which efficiently incor-
porates short-term, middle-term and long-term temporal
inter-frame relationships for semi-supervised object seg-
mentation methods.

• We propose an Adaptive search strategy to alleviate the
problem of error propagation.

• Our method achieves state-of-the-art online/real-time
semi-supervised object segmentation results on the chal-
lenging benchmarks of Davis-2016 and Davis-2017
benchmarks.

II. RELATED WORK

A. Semi-supervised video segmentation

Semi-supervised video object segmentation aims to prop-
agate the mask from the first annotated frame to the rest
of the video. The early approaches rely on hand-crafted
features to tackle this problem, such as super-pixel propagation
[22], object proposals [23] and bilateral space [24]. Recently
Deep Neural Networks (DNN) [17], [3], [13], [20], [19],
[11] has dramatically increased the performance of semi-
supervised video object segmentation. In this section we give
a brief review on the DNN-based semi-supervised video object
segmentation methods. The methods are roughly categorised
as spatial cues based approaches and temporal motion based
approaches.

The spatial cues based methods [3], [17], [11], [9],
[18], [25], [26] usually apply Fully Convolutional Network
(FCN) [2] to capture spatial properties within each video
frame to mine out the spatial features that are similar to the
groundtruth annotation. In order to mine out the similarity
features, model fine-tuning is always applied in the testing
phase over the annotated frames. Consequently it introduces

additional training complexity. In order to make the predic-
tion conicide well with the object boundary, time-consuming
post-processing techniques (e.g., Conditional Random Field
(CRF) [27] and contour snapping [3]) are usually applied to
refined the segmentation results. Our GCSeg network achieves
competitive results with those methods but follows a more effi-
cient pipeline without fine-tuning and post-processing process.

Temporal motion methods [17], [11] propagate the current
frame mask to the next frame based on the temporal continuity
information. However, such methods are vulnerable to the
temporal discontinuity caused by object reappearance or object
occlusion. To alleviate the temporal discontinuity problem,
Cheng et al. [19] and tokmakov et al. [20] extract optical flow
to capture the accurate pixel-wise temporal information. Li et
al. [28] rely on re-identification (ReID) module to compensate
the error propagation caused by temporal discontinuity. The
optical flow is time-consuming to extract, and the ReID
makes the pipeline complex to implement. In our work, we
propose a much more efficient pipeline to incorporate temporal
information.

B. Semantic segmentation

Semantic segmentation is a fundamental computer vision
task that aims to assign the correct labels to each pixel in the
images or video frames. Fully convolutional networks (FCN)
is always applied to pixel-wise prediction tasks. Encoder-
Decoder structure [29], [2], [30], [31], [32], [33], [34], [35]
is one of the most widely used FCN structure which aims
to generate high-resolution prediction maps. Typically the
encoder outputs the high-level feature representation of large
field-of-view. Such features are of low-resolution which are not
suitable for accurate dense prediction tasks. The Decoder aims
to recover the high-resolution information from the output
feature of the Encoder module. Noh et al. [36] upsamples the
low-resolution feature maps with a learnable de-convolutional
decoder. Dilated convolution [37] is often used to increase the
feature map resolution. Skip connections [30] fuse different
levels of features for better feature representation. Our network
also follows the similar encoder-decoder structure in which the
encoder aims to mine the similarity with the reference frame
while the decoder aims to recover the high-resolution details.

C. Object co-segmentation

The object co-segmentation task is defined as jointly seg-
menting similar objects in multiple images based on the
assumption of the existence of common objects and distinct
backgrounds among these images. In the early works of
object co-segmentation works, Vicente et al. [38] rely on
object recognition method with powerful features extractor,
Joulin et al. [39] used an efficient convex quadratic energy
approximation pipeline, Chiu et al. [40] extracted multiple
foreground objects by a non-parametric Bayesian model on
object proposals and Guo et al. [41] extracted the foreground
parts by exploiting the common fate exhibiting across dif-
ferent video frames. Recently proposed methods significantly
improve performance by adopting CNN [42], [43] to co-
segmentation tasks. Compared with other video-processing
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Fig. 1. The pipeline of our GCSeg Network architecture. Our GCSeg Network mainly consists of two modules: Reference Module and Co-segmentation
Module. Reference Module is aimed at encoding the foreground region of the reference frame. Co-segmentation Module is aimed at encoding the relationship
between the current frame and the previous frames to capture the short, middle and long term relationship. Mt denotes the final prediction of the tth frame,
M ′t denotes the prediction from co-segmentation net of the tth frame.

techniques such as spatial-pixel matching and temporal mask
propagation, object co-segmentation is more stable to the
problem of object appearance variation, shape deformation,
and fast motion. The works in [44], [45] apply co-segmentation
technique on video segmentation. We incorporate the co-
segmentation technique with novel architecture design into the
semi-supervised video segmentation task.

D. Few-shot learning

Few-shot learning refers to learning from just a few training
examples per class to generalize well to new data. It was
first approached by learning how to learn [46] strategy. Few-
shot learning received more attention with the developments
of DCNN. Mishra et al. [47] utilizes neural networks with
memory capacities to approach few-shot learning problems.
Bertinettoet al. [48] utilize fine-tuning technique to predict
the model parameter. Metric learning based [49], [50], [51]
approaches achieve impressive results on few-shot classifica-
tion tasks. Our work utilizes a deep metric learning embedding
module to generate the foreground features to adapt to new
video frames efficiently.

TABLE I
ACRONYMS

Abbreviation Meaning
Mt The tth frame prediction
M0 First frame Annotation
It The tth frame
F Output Features from Feature Extractor module
f Middle features in co-segmentation net
G Output Features from co-segmentation module

rt−n Masked Foreground Reference Feature Vector
GTt The ground truth of tth frame
R The output features of Reference Module
R1 The features from upper stream of Reference Module
R2 The features from bottom stream of Reference Module
D1 Similarity map
D1′ Normalized similarity map

III. METHOD

As illustrated in Figure 1, Our GCSeg network is
mainly composed of two parts: Reference Module and Co-
segmentation Module. A video is represented by a frame
sequence I = {I0, I1, · · · , It · · · IT }. Reference Module is
aimed at encoding the foreground regions of reference frame
It−n to retrieve similar features in other feature space. The
Co-segmentation Module extracts regional representation from
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Fig. 2. The co-segmentation module aims to mine out the common objects existing both in the current tth frame and (t− n)th frame. F1 and F2 denote
the output of Feature Extractor module to represent the feature of input frame and predicted mask. G1 and G2 denote the output feature which encodes the
similarity between the input feature pair.

the current video frame It and the reference frame It−n
within the whole video sequence. In our GCSeg, Reference
Module guides Co-segmentation Module in order to generate
a more informative frame feature to obtain more accurate
segmentation results. In this section, we introduce our GCSeg
network and how it can incorporate short-term, middle-term,
and long-term temporal relationships. Then we describe our
Adaptive Search Strategy and how it adaptive copes with the
error propagation problem. For convenience, we denote the
provided ground truth of the first frame as M0, and the other
tth predicted masks as Mt.

A. GCSeg Network

In this section, we first briefly introduce our Training and
Inference Procedure. Then we introduce the Feature Extractor
module, which aims to encode the feature of the input frames.
Next, we introduce the main parts of our GCSeg network:
Reference Module and Co-segmentation Module. Finally, we
describe the Decoder, which aims to produce the final seg-
mentation outputs.

1) Training and Inference Procedure: In this section, we
introduce how to sample our reference frames during the
training and inference phase. A video clip from the first to
current frame is represented as I = {I0, I1, · · · , It}. During
the training procedure, we randomly select a mini-batch of
videos as training frames. For each video, we randomly select
one pair of frames in each video. One frame serves as the
reference frame, and the other frame serves as the target frame
to be segmented. Our proposed GCSeg network focus on
encoding the relationships between the reference frame and
the target frame. Based on the temporal interval between the
reference and target frame, the relationship could be roughly
classified as short-term, middle-term, and long-term temporal
relationships.

In the inference phase, we evenly split the video clip
I = {I0, I1, · · · , It} into n temporal fragments s1, s2, · · · , sn.
To represent a different temporal relationship, we randomly
select one frame from each fragment and add it to the reference
frames. We also add the annotated first frame into the set
of reference frames, which encloses the groundtruth reference
information. Each reference frame generates segmentation pre-
diction on the target frame. The final segmentation prediction
on the target frame is calculated as the average of all the results
generated with different reference frames.

2) Feature Extractor: In this section, we introduce how to
encode the input frames and masks (either predicted masks or
ground truth) into the feature space. We use It to denote the
input tth frame to segment, Mt to denote the predicted binary
mask of tth frame. M0 denotes the ground-truth mask of the
first annotated frame.

Our Feature Extractor takes It (resp.,I0 for annotated frame)
and Mt−1 (resp., M0 for annotated frame) as inputs and
outputs Ft ∈ RW×H×C as the encoded feature of the input
frames and masks. Here we use W ,H ,C to denote the width,
height, and dimension (number of channels) of the feature
maps.

Our Feature Extractor is mainly based on the backbone
of the ResNet101. Similar to RGMP [52], we modify our
network to adapt 4 channel input by implanting an additional
single channel convolution with the first convolution network
from our the backbone, which is depicted as the masked input
images in Figure 1. The predicted mask of the previous frame
always provides a localization cue of the current frame. We
combine the current frame It, and it is previously predicted
mask Mt−1 and feed into our Feature Extractor to capture
the short term inter-frame relationship. We input It and Mt−1
(or It−n and Mt−n) into our Feature Extractor to generate
the encoded feature Ft (or Ft−n ). All the Feature Extractor
depicted in Figure 1 share the weights and are fixed after pre-
training.

3) Co-segmentation Module: In our Co-segmentation Mod-
ule, we aim to mine out the common objects which exist both
in tth frame (current frame) and (t − n)th ( n ∈ [0, T − 1],
randomly chosen) frame (reference frame), based on the
assumption that the frames in different frames usually possess
common foreground objects.

We illustrate the structure of our Co-segmentation Mod-
ule in Figure 2. For simplicity, we denote F1 = Ft and
F2 = Ft−n. Our Co-segmentation Module takes F1 and F2 as
inputs and outputs G1 and G2. The output feature encodes the
similarity between the current tth frame and (t−n)th frame. It
is worth noticing that we encode short-term, middle-term, and
long-term inter-frame relationships with such similarity since
the reference frame is randomly chosen from the previous
frames with a broad range of time intervals.

The structure of our Co-segmentation Module is described
as follows: first we input F1 (resp., F2) into an average
pooling and fully connected layer to obtain f1 (resp.,f2). The
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output feature is calculated by G1 = F1·f2 and G2 = F2·f1,
in which · denotes the operation of broad-cast element-wise
multiplication between the input feature vector and the feature
vector at each spatial position of the input feature matrix.

The results of G1 and G2 incorporate the similarity in-
formation between the input feature maps corresponding to
two frames. Another explanation is that f1 (resp., f2) is
an attention from another frame feature F1 (resp., F2), and
G2 (resp.,G1) is the attended feature which highlight the
feature which is similar to the objects in another frame. For
implementation details, we input different levels of output
feature maps of Feature Extractor into our Co-segmentation
Module. We use different levels of features base on the fol-
lowing consideration: lower level features are more precise on
the spatial localization while the higher-level features contain
more semantic information. We concatenate different levels of
feature maps from the co-segmentation module as the final
generated feature G (For simplicity, we utilize G to denote
G1 and G2 for short).

4) Reference Module: Our Reference Module is aimed to
mine out the features which are similar to the reference fea-
tures. The reference feature is generated by our mask encoder,
which encodes the foreground property of the reference frame.

In this section, we first introduce how to generate reference
feature rt−n using mask encoder and then describe how to

mine out the features using the Reference Module.
(a) Mask Encoder Our Mask Encoder takes inputs of

Fn−t and Mn−t into a Mask Encoder to generate rn−t as the
reference feature of the reference frame foreground mask. We
illustrate the structure of Mask encoder in Figure 3. Our Mask
encoder is built as follows: we first element-wise multiply
Ft−n with Mt−n to zero-out background features. Then we
perform pyramid ROI pooling based on the predicted mask
bounding box of Mt−n. Specifically, we divide the bounding
box into 3 × 3 grid and perform ROI pooling for each gird
and the whole bounding box region. In this way, we get
the features of not only the whole objects but also objects
parts. We perform such pyramid pooling in order to tackle the
problem of object occlusion and deformation. Normally we
could identify the whole objects by mining the similar whole
object region. When an occlusion occurs, we are still able to
identify the object by mining similar parts.

To decide whether to use object regions or part regions as
the reference features, we adaptively learn which feature to
emphasize. Specifically, We concatenate all 10 ROI-pooled
features to obtain feature map of 10 × C, and input the
concatenated feature into a 10×1 convolutional layer to obtain
a 1×C feature as the final representation feature rt−n. Here
we use C to denote the dimension (number of channels) of
the feature.
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(b) Reference Module The structure of our Reference
Module is illustrated in Figure 4. Given the features F1
and features F2 generated by the Feature Extractor, and the
reference feature rt−n generated by Mask Encoder, we aim to
encode similarity between reference feature rt−n and features
F1 (resp. F2) by our reference module and output the features
Rt (resp. Rt−n).

As is depicted in Figure 1, the Reference Module for F1

and F2 are of the same structure with the same weight. For
simplicity, we disregard the frame indices and denote the input
as F and the output as R. The reference module is illustrated
in Figure 4, we encode the similarity between the features
rt−n and F with a two-stream structure and combine outputs
of the two-stream as the final similarity features. In the upper
stream, we first input F and rt−n into 1 × 1 convolutional
layer to generate F ′ and R′. Such an operation aims to
map the features into the same space. The output feature R1
is calculated as follows: We first incorporate the similarity
between R′ and F ′ with D1 = R′ ∗ F ′, where * denotes
matrix multiplication. Next, we perform spatial normalization
to generate attention feature D1′. We apply the attention to
the D1 to generate attended feature D1 to highlight the most
confident feature. This process is described in Equation 1 and
Equation 2 as follows:

f ijc =
exp(fa

ijc)∑
i,j exp(fa

ijc)
, (1)

fb
ijc = f ijcfa

ijc. (2)

Here, i,j and c denote the spatial index corresponding to
height H ,width W and dimension C (number of channels)

of the feature maps. fa
ijc refers to gird value of D1 at

corresponding value, and fb
ijc refers to gird value of D1′ at

corresponding value. Finally, the output feature of our upper
Reference Module R1 is calculated by R1 = F ′+D1′, which
takes both the original feature and the attended feature into
consideration. In the bottom stream, we mine out the similarity
between feature rt−n and F with a different but simple way.
We resize and concatenate the feature map rt−n and F , and
input the concatenated feature maps into a convolutional block
to generate similarity feature R2. Finally, we concatenate R1
and R2 and input the concatenated features into a convolution
block to generate the final similarity features R.

5) Decoder: In our Decoder Module, we aim to decode
R generated by Reference Module and G generated by Co-
segmentation Module into predicted segmentation mask Mt.
The structure of the Decoder is illustrated in Figure 5.

Our Decoder sequentially consists of three parts: a global
convolution block [53], a residual block [54] without batch
normalization and ASPP [55] Block. Global convolution block
and ASPP block are aimed to enlarge the receptive field to
overcome the locality limitation of convolution operations. As
illustrated in Figure 5, we concatenate feature G and R and
input it into our Decoder and a channel-wise softmax layer
to obtain the predicted mask Mt and Mt−n. Based on the
ground-truth mask GTt and GTt−n The segmentation loss is
formulated as Equation 3 .

Loss = Lbce(Mt, GTt) + Lbce(Mt−n, GTt−n)

+Lbce(M
′

t , GTt) + Lbce(M
′

t−n, GTt−n),
(3)

where Lbce denotes sum of pixel-wise Binary Cross En-
tropy loss between the predicted mask and corresponding
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groundtruth mask. As illustrated in Figure 1, M
′

t and M
′

t−n
are the result masks of sequentially inputting feature G1 and
G2 into Decoder and and channel-wise softmax layer. Mt ( or
Mt−n) is the result mask of concatenating G1 (or G2) with
features Rt−n and sequentially being input into Decoder and
softmax layer.

B. Adaptive Search Strategy

One of the most challenging problems of video object
segmentation is the object re-appearance in the current tth
frame caused by the object occlusion or disappearance in the
previous frames. In such situation, the predicted masks of the
last previous frame, which is denoted as Mt−1, is misleading
for the segmentation for tth frame, since there is no target
object is the (t − 1)th frame and errors will be propagated
in the latter frames. Thus, we propose an Adaptive Search
strategy to tackle this error propagation problem.

In our Adaptive Search Strategy, we first utilize a Judgment
Module to decide whether Mt−1 is reliable enough based
on the reference features. If Mt−1 is reliable, we keep the
last previous frame predicted mask as input Mt−1 in the co-
segmentation stream. Otherwise, we set Mt−1 as the zero-
mask, which means our feature extractor only encodes the
feature of the current frame It. Consequently, the network
discards the short-term relationship and relies on middle-term
and long-term relationships to guide the segmentation of the
current frame.

Judgement Module is aimed to decide whether the last
previous predict mask Mt−1 is reliable enough. Given the
feature F0 (resp.,Ft) and the mask M0 (resp.,Mt−1), we
perform ROI pooling on F0 (resp., Ft) over the bounding
box region of M0 (resp.,Mt−1). Then we calculate cosine
similarity between these two ROI-pooled features. If the
similarity score is higher than some threshold (e.g., 0.7), we
decide that Mt−1 is confident enough. Otherwise, Mt−1 is not
reliable and should be zeroed-out. During training, we random
zero out the previous mask with a possibility of 0.5 to simulate
the non-confident situation.

IV. EXPERIMENTS

A. Experimental Set-up

We perform our experiments on Davis-2016 [56], Davis-
2017 [57] and YoutubeObject [22] datasets. Davis-2016 con-
tains 30 training videos and 20 validation videos. Each of the
videos has single-instance pixel-wise groundtruth annotations.
Davis-2017 is a more complicated and challenging dataset.
It contains 60 training videos and 30 validation videos with
multiple instance cases and frequent occurrence of object
occlusion, object disappearance/reappearance, camera motion,
etc. Our pipeline is intended for binary segmentation for
every single instance. To cope with the multi-instance case of
Davis-2017, we input the annotation of every single instance
independently into the model for mask propagation and merge
the instance binary mask with an argmax operation. Since
the YoutubeObject dataset does not have splits of training
and testing data, we do not train on the YoutubeObject
dataset. We apply the model trained on Davis-2017 to evaluate
YoutubeObject.

Following [56], we use the same evaluation metrics to
measure the segmentation performance in terms of intersection
over union (J ) and contour accuracy (F). We also report the
mean of J and F metrics, which is denoted as J&F .

Following [52], we pre-train our model first on the sim-
ulated augmented datasets and then perform finetuning on
the target video segmentation training datasets. We perform
data augmentation by generating simulated video datasets
from other static images datasets (i.e., Pascal VOC [58] and
MSRA10K [59]). We generate the augmented dataset in two
ways. Way-1: we randomly scale/deform the foreground image
and paste into the same background with a small shift to
simulate the case of motion between adjacent frames. Way-
2: we randomly scale/deform the foreground and paste into a
different background to simulate the case of fast motion and
object occlusion. The examples of this simulated dataset are
illustrated in Figure 8.

To simulate the case of error accumulation over time, we
finetune our model on video frames in a recurrence way
similar to MaskRNN [9]. Specifically, we use the predicted
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output from the last frame as a guidance score map for the
current frame. Note that all the operations in our network are
differentiable, which allows us to perform end-to-end training.

B. Comparison with the State-of-the-art

We report our results and compare with the state-of-the-art
methods. We report the results on the datasets of YoutubeOb-
ject [27], Davis-2016 [56] and Davis-2017 [57] in Table IV ,
Table II and Table III, respectively.

Some existing methods usually apply some time-consuming
techniques in the prediction stage. These time-consuming
techniques can be roughly categorized into 3 types: Finetuning
(FT), Optical flow (OF) and Post-processing (PP). Finetuning
(FT) refers to finetuning the models using the available anno-
tated frames in the testing phases. Optical flow (OF) means
extracting inter-frame optical flow to obtain accurate pixel-
wise motion information. Post-processing (PP) means per-
forming computationally expensive refinement post-processing
step, such as DenseCRF [27], on the predicted masks. For clear
analysis and fair comparison, we also indicate the usage of
these test-stage processing techniques in the tables for every
comparison method. Kindly note that our method does not
apply any of these test-stage processing techniques. We also
list the average time for predicting each frame for an accurate
comparison of the efficiency.

In these three result tables, the comparison methods are
grouped into two parts. The upper part of the tables presents
the methods which perform a time-consuming finetuning step
in the test stage. Finetuning will lead to additional model
training in the inference stage and hinders the efficiency of
these methods. The lower parts in these result tables present
the methods which do not rely on finetuning step. Such
methods are potentially efficient for real-time object video
segmentation. Our method belongs to the second category,
which does not involve a finetuning step. Since we do not ap-
ply the time-consuming techniques such as finetuning, optical
flow generation, and post-processing refinement, our method
is efficient in the inference stage and could be applied for
real-time/online video segmentation purpose.

As is reported in Table II, Table III, and Table IV, we
achieve the best performance among the methods with com-
parable computational efficiency. It is worth noticing that we
utilize none of the time-consuming techniques in the inference
stage ( i.e., finetuning, optical flow, and post-processing) which
makes our method as one of the most efficient ones. We also
present the qualitative examples of our segmentation results in
Figure 9.

C. Ablation study

1) Components of GCSeg Network: We conduct ablation
studies on Davis-2016 [56] to evaluate the contribution of
different components of our network. We report the ablation
results on Davis-2016 in Table V.

Our baseline model refers to the setting of removing both
the Reference Module and Co-segmentation Module, which
means that we directly use Feature Extractor to encode the
current frame and the associated mask and input the resulting

TABLE II
RESULTS ON THE VALIDATION SET OF DAVIS-2016 DATASET. FT:

FINE-TUNING WITH THE FIRST FRAME OF THE VIDEO IN THE TESTING
PHASE; PP: POST-PROCESSING; OF: OPTICAL FLOW; † : WITHOUT

PRE-TRAINING ON OTHER DATASETS; AD: PRE-TRAIN ON ADDITIONAL
DATA ; TIME(S): THE AVERAGE TIME (IN SECONDS) SPENT ON

PREDICTING EACH FRAME. OUR METHOD OUTPUT-PERFORMS OTHER
METHODS WITH COMPARABLE PREDICTION SPEED.

Method FT PP OF AD J (%) F (%) J&F (%) Time(s)
MSK [17] X X X X 79.7 75.4 77.5 12s

MaskRNN [9] X X X 80.7 80.9 80.8 0.6s
OnAVOS [18] X X X 86.1 84.9 85.5 13s

OSVOS [3] X X X 79.8 80.6 80.2 9s
Lucid [11] X X X X 84.8 - - 190s

STCNN[60] X X X X 83.8 83.8 83.3 3.9
OSVOSs [12] X X X 85.6 87.5 86.5 4.5s

PReMVOS [21] X X X 85.5 88.6 87.0 70s
OnAVOS[18] X 39.5 – – 3.78s

BVS [24] 60.0 58.8 59.4 0.37s
OTP [61] X 77.9 76.0 76.9 0.6s
PML [62] X 79.3 75.5 77.4 0.27s

A-GAME [63] X 82.2 82.0 82.1 0.07s
OSMN [64] X 74.0 - - 0.14s

SiamMask[4] X 71.7 67.8 69.7 0.02s
FEELVOS[8] X 81.1 82.2 81.7 0.5s
FAVOS[61] X 82.4 79.5 80.8 1.8s
RGMP [52] X 81.5 82.0 81.7 0.13s

RGMP † [52] 68.6 68.9 68.7 0.13s
Ours † 70.5 71.7 71.1 0.28s
Ours X 82.6 81.7 82.2 0.28s

      Way 1       Way 2

Fig. 8. The example images of the augmented dataset simulated from static
images.

features into the Decoder to predict the mask for the current
frame. We train the baseline module using the Binary Cross
Entropy loss. The results are shown in the first row of Table V.

Next, we add our Reference Module to the baseline module.
In this case, we apply our Reference Module directly onto
the result features of the Feature Extractor and input into the
Decoder to generate the predicted masks. This model is trained
with the Binary Cross Entropy loss. This result is shown in
the second row of Table V (denoted as ”Ref”).

Third, we add our Co-segmentation Module to the baseline
model without using the Reference Module. In this case, we
directly input the feature maps of our Co-segmentation Stream
into the Decoder to obtain the predicted mask of the input
frame. The results are shown in the third row of Table V
(denoted as “Co-seg”).

Finally, we add both the Reference Module and Co-
segmentation Module to the baseline module and report the
results in the last row of Table V. Note the in this table; we
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Fig. 9. The qualitative results on DAVIS-2016 (The first two rows) and DAVIS-2017 (The last two rows)

TABLE III
RESULTS ON DAVIS-2017 VALIDATION DATASET. FT: FINE-TUNING ON

THE FIRST FRAME OF THE TEST VIDEO; PP: POST-PROCESSING; OF:
OPTICAL FLOW; AD: PRE-TRAIN ON ADDITIONAL DATA ; TIME(S): THE
AVERAGE TIME (IN SECONDS) SPENT ON PREDICTING EACH FRAME; OUR

METHOD OUTPERFORM OTHER METHODS WITH COMPARABLE
PREDICTION SPEED.

Method FT PP OF AD J (%) F (%) J&F (%) Time(s)
MaskRNN [9] X X X 60.5 – – 9s
OSMN [64] X X X 60.8 – – –

OnAVOS [18] X X X 61.6 69.1 65.3 13s
OnAVOS-Ensemble [18] X X X 64.5 71.2 67.8 30s

VideoMatch [65] X X 61.4 – – 2.62s
ReID [28] X X X 67.3 71.0 69.1 2.33s

OSVOSS [12] X X X 64.7 71.3 68.0 –
CINM† [66] X X X X 67.2 74.4 70.7 ∼ 108s

PReMVOS† [21] X X X 74.3 82.2 78.2 ∼ 70s
OnAVOS [18] X 39.5 – – 3.78s
MaskRNN [9] X X 45.5 – – 0.6s

VideoMatch [65] X 56.5 – – 0.35s
RGMP [52] X 64.8 68.6 66.7 –

Ours X 65.5 68.4 67.0 0.92s

do not pre-train the networks on other augmented datasets for
ablation analysis. Thus, the results shown here are different
from that in the results Table II.

We observe that using a single component, either Ref-
erence Module or Co-Segmentation Module improves the
segmentation results over the baseline. It demonstrates the
effectiveness of each component. Moreover, adding both of
the components could further increase the performance, which
indicates that the Reference Module and Co-Segmentation
Module capture complementary information to improve the
system performance.

2) Adaptive Search: We perform ablation study of our
Adaptive Search strategy on Davis-2017 [57], since this dataset

TABLE IV
RESULTS ON YOUTUBEOBJECT DATASET.PERFORMANCE MEASURED IN

THE MEAN OF J . FT: FINE-TUNING ON THE VIDEO WITH THE FIRST
FRAME OF THE TEST VIDEO; OF: OPTICAL FLOW; PP: POST-PROCESSING;

AD: PRE-TRAIN ON ADDITIONAL DATA; TIME(S): THE AVERAGE TIME
(IN SECONDS) SPENT ON PREDICTING EACH FRAME. OUR METHOD

PERFORMS THE BEST COMPARED TO THOSE METHODS WITH COMPARABLE
PREDICTION SPEED.

Method YoutubeObjs FT OF PP AD Speed(s)
MaskTrack [17] 71.7 X X 12s

OSVOS [3] 74.1 X X 10s
OFL [67] 67.5 - X X 42.2s
BVS [24] 58.4 - X 0.37s

MaskTrack-B [17] 66.5 0.24s
OSVOS-B [3] 44.7 0.14s
OSNM [64] 69.0 X 0.14s

Ours 71.2 X 0.19s

has more frequent occurrences of object occlusion and dis-
appearance/reappearance cases. We report the results without
and with the Adaptive search strategy in Table VI. We observe
that using Adaptive Search helps to improve the segmentation
results.

3) Data augmentation: Applying data augmentation is a
common practice in recent video segmentation methods. As
is introduced in Sec. IV-A, we follow the method in [52] to
generate simulated datasets for data augmentation. We perform
ablation studies on Davis-2016 to evaluate the effectiveness of
pre-training the model on augmented simulated datasets. The
results are reported in Table VII, which shows that such data
augmentation helps to improve the segmentation performance.
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TABLE V
ABLATION STUDY ON DAVIS-2016 VALIDATION DATASET OF EACH

NETWORK COMPONENT. REF: USING REFERENCE MODULE ONLY.
CO-SEG: USING CO-SEGMENTATION MODULE ONLY. REF + CO-SEG:

USING BOTH REFERENCE AND CO-SEGMENTATION MODULES. IT
CLEARLY SHOWS THAT EACH STEAM CLEARLY IMPROVES THE

PERFORMANCE AND COMBINING THEM FURTHER IMPROVE THE
PERFORMANCE.

Method J (%) F (%) J&F (%)
baseline 55.2 51.3 53.2
Ref (ours) 62.5 61.2 61.9
Co-seg (ours) 61.1 59.7 60.4
Ref + Co-seg (ours) 70.5 71.7 71.1

TABLE VI
ABLATION STUDY ON ADAPTIVE SEARCH ON DAVIS-2017 VALIDATION

DATASET.

- J (%) F (%) J&F (%)
Adaptive Search off 65.1 68.0 66.6
Adaptive Search on 65.5 68.4 67.0

V. CONCLUSION

In this paper, we propose a novel approach for instance-
level semi-supervised video object segmentation which in-
corporates short-term, middle-term, and long-term temporal
inter-frame relationships. We demonstrate that our GCSeg
network achieves state-of-the-art performance without using
time-consuming techniques in the prediction stage. Thus, our
approach is applicable for realtime video object segmentation
tasks since it achieves a balance between the segmentation
accuracy and prediction efficiency.
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