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ARTICLE OPEN

Efficient computation of the Nagaoka–Hayashi bound for
multiparameter estimation with separable measurements
Lorcán O. Conlon 1✉, Jun Suzuki 3✉, Ping Koy Lam 1,2 and Syed M. Assad1,2✉

Finding the optimal attainable precisions in quantum multiparameter metrology is a non-trivial problem. One approach to tackling
this problem involves the computation of bounds which impose limits on how accurately we can estimate certain physical
quantities. One such bound is the Holevo Cramér–Rao bound on the trace of the mean squared error matrix. The Holevo bound is
an asymptotically achievable bound when one allows for any measurement strategy, including collective measurements on many
copies of the probe. In this work, we introduce a tighter bound for estimating multiple parameters simultaneously when performing
separable measurements on a finite number of copies of the probe. This makes it more relevant in terms of experimental
accessibility. We show that this bound can be efficiently computed by casting it as a semidefinite programme. We illustrate our
bound with several examples of collective measurements on finite copies of the probe. These results have implications for the
necessary requirements to saturate the Holevo bound.

npj Quantum Information           (2021) 7:110 ; https://doi.org/10.1038/s41534-021-00414-1

INTRODUCTION
Quantum mechanics simultaneously offers unique opportunities
and limitations for metrology. On the one hand, uniquely
quantum mechanical effects such as squeezing allow greater
measurement sensitivity than is classically possible1,2. This is most
evident in the search for gravitational waves, where the injection
of squeezed light into LIGO has resulted in a significant increase in
sensitivity3. Furthermore, quantum resources have been shown to
offer enhanced measurement capabilities in a range of applica-
tions, including optical interferometry4–8, quantum superresolu-
tion9,10, quantum-enhanced phase tracking11,12 and quantum
positioning13,14 to name but a few examples. Fundamental limits
to single-parameter measurement precisions can be computed
using the quantum version of the Cramér–Rao bounds15–17. On
the other hand, the uncertainty principle places fundamental
limits on how well two or more non-commuting observables can
be simultaneously measured18. Many of the applications of
quantum estimation require the simultaneous measurement of
multiple parameters19,20, which in general will not commute with
each other. This means that a measurement that is optimal for one
parameter may not be optimal for another which limits the
precision with which we can measure them simultaneously21–25.
Thus, in an effort to fully exploit quantum resources in real-world
applications, there has been great experimental26–30 and theore-
tical interest in quantum multiparameter estimation31–43. Reviews
of recent progress on the subject are given in refs. 24,25,40,44,45.
Except for special cases involving qubits46 or estimating

Gaussian amplitudes47,48, in general the problem of finding the
optimal measurement that minimises the sum of the mean
squared error (MSE) in multiparameter estimation is a non-trivial
problem. Instead, one resorts to finding bounds on these errors49.
Some of these bounds are the bounds based on the symmetric
logarithmic derivatives (SLD)15,16 and the right logarithmic
derivatives50 as well as the Gill–Massar51 bound. While these
bounds are easy to compute, they are in general not tight.

A tighter bound for the sum of the MSE which can be achieved in
the asymptotic limit is given by the Holevo Cramér–Rao bound52.
The computation of the Holevo bound was recently cast as a
semidefinite programme which has made it easy to compute. This
was first performed for the Gaussian amplitude estimation
problem47 and was later generalised to an arbitrary model53.
Furthermore, analytic expressions which upper and lower bound
the Holevo bound have recently been found54. In some special
cases, the measurement strategy required to reach the Holevo
bound is known, for example, with pure state probes55 or for
estimating a single parameter.
In general, the Holevo bound is only asymptotically achiev-

able56–58, requiring a collective measurement over infinitely many
copies of the probe state. A collective measurement here means
that all copies of the probe state are measured simultaneously. In
contrast, a separable measurement restricts the probe states to be
measured individually. In practice, collective measurements are
extremely challenging to perform and are not accessible to most
experimental teams. Thus, it would be useful to have a tighter
bound on the minimum achievable error when restricted to
separable, single-copy measurements. One such bound for
simultaneously estimating two parameters was introduced by
Nagaoka59. This bound is at least just as tight as the Holevo
bound and it can be saturated for probes in a two-dimensional
Hilbert space60. However, just like the Holevo bound, Nagaoka’s
bound is not an explicit bound—it requires a further a non-trivial
minimisation.
In this work, we generalise the Nagaoka bound to estimating

more than two parameters, and we call this generalised bound the
Nagaoka–Hayashi bound. This bound applies to separable
measurements on a finite number of copies of the probe state,
unlike the Holevo bound which, as mentioned above, is only
asymptotically attainable in general. We further show that the
minimisation required in the Nagaoka–Hayashi bound can
computed using a semidefinite programme. This makes its
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computation accessible. We illustrate our results with two
examples which highlight some of the interesting features of
finite copy metrology which are inaccessible with conventional
techniques. In both of these examples, we are able to find the
positive operator valued measure (POVM) which saturates the
bound, however whether this is always possible remains an open
question.

RESULTS
Consider an n-parameter family of states Sθjθ 2 Θ � Rnf g in a
finite d dimensional Hilbert space Hq with θ ¼ θ1; ¼ ; θnð Þ>
denoting the n independent true values that we wish to estimate.
Let Π ¼ ðΠ1; ¼ ;ΠMÞ> be a column vector of M POVM elements,
where (⋅)⊤ denotes partial transpose with respect to the classical
subsystem. We require Πm ≥ 0 and ∑mΠm= 1. Each outcome m
assigns an estimated value for θj through the classical estimator
function θ̂jm. The standard measure of estimation error when
restricted to separable measurements is through the n-by-n MSE
matrix VθðΠ; θ̂Þ with entries

VθðΠ; θ̂Þ
h i

jk
¼

X
m

θ̂jm � θj
� �

θ̂km � θk
� �

Tr½SθΠm�; for j; k ¼ 1; ¼ ; n:

(1)

The notation Tr½�� in serif font is used to represent the trace of an
operator in Hq. For brevity of notation, hereafter we drop the
argument and write the MSE matrix as Vθ. We aim to minimise the
trace of the MSE matrix under the condition that our estimates
are locally unbiasedX
m

Tr½SθΠm�θ̂jm ¼ θj and
X
m

∂

∂θk
Tr½SθΠm�θ̂jm ¼ δjk : (2)

The Nagaoka bound for two-parameter estimation gives a lower
bound on the trace of the MSE matrix as59

Tr½Vθ� � min
X

Tr½SθX1X1 þ SθX2X2� þ TrAbs Sθ½X1; X2�f g ¼: cN;

(3)

where Tr½�� denotes the trace of a classical matrix in Hc , an n
dimensional vector space, TrAbs A is the sum of the absolute
values of the eigenvalues of the operator A, and X ¼
ðX1; X2; :::; XnÞ> is a vector of Hermitian estimator observables Xj
that satisfy the locally unbiased condition at θ

Tr½SθXj� ¼ θj and
∂

∂θj
Tr½SθXk � ¼ δjk : (4)

The Nagaoka bound was conjectured to be a tight bound for
Tr½Vθ�60.

Computable multiparameter bound
As we shall shortly prove, the Nagaoka bound can be generalised
to more than two parameters. This result is stated as the following
theorem.

Theorem 1 (Nagaoka–Hayashi bound). Let Vθ be the MSE matrix
of an unbiased estimate of θ for a separable measurement on a
model Sθ. Then, the trace of Vθ is bounded by

Tr½Vθ� � min
L; X

Tr½SθL� j Ljk ¼ Lkj Hermitian
�

;

L � XX>; Xj Hermitian satisfying ð4Þ� ¼: cNH;

(5)

where Sθ ¼ 1n � Sθ and L is an n-by-n matrix of Hermitian
operators Ljk .

We use the symbol Tr½�� to denote trace over both classical and
quantum systems, i.e., over both Hc and Hq . We call this bound

the Nagaoka–Hayashi bound. However, the Nagaoka–Hayashi
bound is not an explicit bound. Our second main result is that this
bound, cNH can be computed as a semidefinite programme.

Related bounds
Before proceeding on the proof and computation of the
Nagaoka–Hayashi bound, we digress briefly to mention two
related bounds. The first is the Holevo bound which can be
written as52

Tr½Vθ� � min
L; X

Tr½SθL� j Tr½SθL� real symmetric;f
Tr½SθL� � Tr½SθXX>�; Xj Hermitian satisfying ð4Þ� ¼: cH:

(6)

As mentioned before, the Holevo bound is a tight bound for
collective measurements in the asymptotic limit. Since the
conditions in the Nagaoka–Hayashi bound Ljk ¼ Lkj Hermitian
implies Tr½SθL� real symmetric and L � XX> implies
Tr½SθL� � Tr½SθXX>�, it is clear that the Nagaoka–Hayashi bound
is more restrictive and hence is more informative compared to
the Holevo bound. In other words cNH ≥ cH.
The second related bound concerns estimation of physical

observables. In this setting, the operators Xj are given to us as
Hermitian operators and the task is to estimate the expectation
values Tr½SθXj� ¼ xj . This situation is common, for example, in state
tomography. Here, in place of the parameter-MSE matrix Eq. (1),
we have the operator-MSE matrix

~UθðΠ; x̂Þ
� �

jk ¼
X
m

x̂jm � xj
� 	

x̂km � xkð ÞTr½SθΠm�; for j; k ¼ 1; 2; ¼ ; n

(7)

where we require the classical estimator x̂ and POVM Π to satisfyX
m

x̂jmΠm ¼ Xj: (8)

The derivatives of the state S with respect to θ do not play any role
here. A bound on the trace of ~Uθ is given by Hayashi’s bound61

Tr½~Uθ� � min
L

Tr½SθL� �
X
j

x2j j Ljk ¼ Lkj Hermitian;L � XX>
( )

¼: cNH�U:

(9)

As Hayashi’s work is only available in Japanese, we summarise its
main results in Supplementary Note 1. If the given matrices X
happen to satisfy the locally unbiasedness condition Eq. (4) for θ,
then ~Uθ also forms a valid parameter-MSE matrix for those θ.
In this case, because of the additional restriction Eq. (8), it is clear
that cNH−U ≥ cNH. Also in this setting, Watanabe et al.62 derived
bounds for estimating two observables when restricted to certain
classes of random and noisy measurements. In the case when
both the observables and state S are two-dimensional, these
bounds are achievable. In fact, when the number of observables
n= 2, the minimisation over L can be performed analytically and
cNH−U takes the explicit form61

cNH�U ¼ Tr½SθX1X1 þ SθX2X2� þ TrAbs Sθ½X1; X2� � x21 � x22: (10)

Proof of main results
In this section, we shall prove Theorem 1. To that end, we need to
introduce some definitions. We rewrite the elements of the MSE
matrix as

Vθ½ �jk ¼ Tr



Sθ

X
m

θ̂jm � θj
� �

Πm θ̂km � θk
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
½Lθ�jk

�
;

(11)

where the MSE-matrix operator LθðΠ; θ̂Þ is an n-by-n matrix with
operator elements. We introduce a classical matrix ξ with elements
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ξ jm :¼ θ̂jm � θj so that

Lθ ¼
X
m

ξ1mΠmξ1m ξ1mΠmξ2m ξ1mΠmξ3m

ξ2mΠmξ1m ξ2mΠmξ2m ξ2mΠmξ3m

ξ3mΠmξ1m ξ3mΠmξ2m ξ3mΠmξ3m

0
B@

1
CA (12)

¼
X
m

ξ1m

ξ2m

ξ3m

0
B@

1
CA ξ1m ξ2m ξ3mð Þ � Πm; (13)

where we have set n= 3 to simplify the presentation. The
generalisation to arbitrary n is straightforward. With this notation,
it is clear that Lθ is an operator on the extended Hilbert space
Hc �Hq. To anticipate the proof, it is useful to write Lθ in the
following form:

Lθ ¼
Ξ11 Ξ12 ¼ Ξ1M

Ξ21 Ξ22 ¼ Ξ2M

Ξ31 Ξ32 ¼ Ξ3M

0
B@

1
CA

Π1 0 ¼ 0

0 Π2 ¼ 0

..

. ..
. . .

. ..
.

0 0 ¼ ΠM

0
BBBB@

1
CCCCA

Ξ11 Ξ21 Ξ31

Ξ12 Ξ22 Ξ32

..

. ..
. ..

.

Ξ1M Ξ2M Ξ3M

0
BBBB@

1
CCCCA;

(14)

where M is the number of POVM outcomes and Ξij ¼ ξ ij1. We can
also introduce the following extension to Sθ, Sθ ¼ 1� Sθ so that
the expression for the MSE matrix can be written as
Vθ ¼ Tr SθLθ½ �. We are now ready to prove Theorem 1.

Proof. Suppose the optimal POVM and unbiased estimator
have been found and are given by Π and X�

j ¼P
m
ξ jmΠm ; for j ¼ 1; ¼ ; n which leads to the optimal MSE

v� ¼
X
jm

ξ2jmTr½Sθ Πm� ¼ Tr½SθL�
θ�: (15)

We use asterisk to denote the optimal values and optimal
operators. From Π and θ̂, we can construct the estimator matrices
X�
j ¼

P
m
ξ jmΠm; for j ¼ 1; ¼ ; n so that

X�
1

X�
2

X�
3

0
B@

1
CA X�

1 X�
2 X�

3

� 	 ¼ Ξ11 Ξ12 ¼ Ξ1M

Ξ21 Ξ22 ¼ Ξ2M

Ξ31 Ξ32 ¼ Ξ3M

0
B@

1
CA

Π1

Π2

..

.

ΠM

0
BBBB@

1
CCCCA Π1 Π2 ¼ ΠMð Þ

Ξ11 Ξ21 Ξ31

Ξ12 Ξ22 Ξ32

..

. ..
. ..

.

Ξ1M Ξ2M Ξ3M

0
BBBB@

1
CCCCA:

(16)

Comparing the above with Eq. (14) and using the result

Π1 0 ¼ 0

0 Π2 ¼ 0

..

. ..
. . .

. ..
.

0 0 ¼ ΠM

0
BBBB@

1
CCCCA �

Π1

Π2

..

.

ΠM

0
BBBB@

1
CCCCA Π1 Π2 ¼ ΠMð Þ (17)

which holds because Πj are positive operators that sums up to 1
(see Proposition II.9.1 of Holevo52), we arrive at L�

θ � X�X�>. With
this, we can bound v* as

v� ¼ Tr½SθL�
θ� (18)

� min
L

Tr½SθL� j Ljk ¼ Lkj Hermitian;L � X�X�>� �
(19)

� min
L; X

Tr½SθL� j Ljk ¼ Lkj Hermitian;L � XX>;
�

Xj Hermitian satisfying ð4Þg (20)

¼ cNH: & (21)

In the two-parameter case, we show in Supplementary Note 2 that
cNH reduces to the original Nagaoka bound cN in Eq. (3). More
generally, we are interested in minimising the weighted sum of
the covariances which can be formalised with a positive weight

matrix W ≥ 0 and minimising Tr½W Vθ�. This problem can be
handled by a suitable reparametrisation of the model which is
presented in Supplementary Note 3.
The Nagaoka–Hayashi bound is not an explicit bound as it still

requires a minimisation over L and X. Our next result concerns
with the computation of this minimisation. Since L� XX> is the

Schur’s complement of the identity operator in
L X
X> 1


 �
, the

condition L � XX> is equivalent to
L X
X> 1


 �
� 0. With this, cNH

can be written as the semidefinite programme

cNH ¼ min
L; X

Tr½SθL�;

subject to
L X

X> 1


 �
� 0

(22)

where Ljk ¼ Lkj Hermitian and Xj Hermitian satisfying the
conditions Eq. (4) for local unbiasedness. The conversion to a
standard semidefinite programme is performed in Supplementary
Note 4. We also show in the same Supplementary Note that the
worst case computational complexity for solving the SDP to an

accuracy ϵ is O ðndÞ3=2log ð1=ϵÞ
� �

.

The computation of the Holevo bound cH was shown to be a
semidefinite programme by Albarelli et al.53. The difference
between the Holevo bound and the Nagaoka–Hayashi bound is
that in the former, the optimisation is performed directly on the
covariance matrix V ¼ Tr½SθL�, while in the latter the optimisation
is performed on the operator L. We note that both programmes
can also be applied to compute the bound on the operator-MSE
cNH−U Eq. (9) with little modification—the only changes needed
are to replace the minimisation variables X with the given
observables and ignore the conditions Eq. (4).
In the following, we demonstrate our results by computing the

Holevo and Nagaoka–Hayashi bounds for two illustrative exam-
ples—the estimation of orthogonal qubit rotations on the Bloch
sphere in a phase damping channel and the simultaneous
estimation of phase and loss in an interferometer. In the former,
we find that the Holevo bound is always smaller than the
Nagaoka–Hayashi bound, and in the latter we find that the two
bounds are always equal. The minimisation problem was solved
with the Yalmip toolbox63 for Matlab using the Mosek solver64.
Even though the semidefinite programme only returns numer-

ical values for X and L, in some of these examples, the analytical
forms for them can be inferred from the numerical solutions.
Furthermore, every semidefinite programme Eq. (22) has a dual
programme that involves performing a maximisation over the
Lagrange multipliers associated with the primal programme65.
That the inferred solutions are indeed optimal can then be verified
by checking that the values for the primal and dual programmes
coincide. For both of the examples considered, we present the
dual solutions in Supplementary Note 7.

Example 1: estimation of qubit rotations with a two-qubit
probe
Our first example concerns estimating the rotation experienced by
qubit probes subject to the phase damping channel. This channel
has particular relevance for modelling decoherence in trapped
ions66–68. We consider the maximally entangled two-qubit state
01j i þ 10j ið Þ= ffiffiffi

2
p

as a probe. The first qubit acts as a signal-probe
which passes through a channel imparting three small rotations:
θx, θy, and θz about the x, y, and z axes of the Bloch sphere. The
rotated probe is then subject to the phase damping channel E
with a known damping strength ϵ

E½S� ¼ 1� ϵ

2

� �
Sþ ϵ

2
σz � 1ð ÞS σz � 1ð Þ: (23)

L.O. Conlon et al.
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The second idler qubit is stored in a perfect quantum memory
and remains unaffected by the rotation or phase damping. The
resulting two-qubit state then has an approximate matrix
representation in the computational basis as

Sθ ¼ 1
4

0 �iθx � θy ð1� ϵÞð�iθx � θyÞ 0

iθx � θy 2 2ð1� ϵÞð1� iθzÞ ð1� ϵÞðiθx þ θyÞ
ð1� ϵÞðiθx � θyÞ 2ð1� ϵÞð1þ iθzÞ 2 iθx þ θy

0 ð1� ϵÞð�iθx þ θyÞ �iθx þ θy 0

0
BBB@

1
CCCA;

(24)

which is valid to the first order in θ. The partial derivatives of
Sθ with respect to θ evaluated at θ= 0 are

∂Sθ
∂θx

¼ 1
4

0 �i �ið1� ϵÞ 0

i 0 0 ið1� ϵÞ
ið1� ϵÞ 0 0 i

0 �ið1� ϵÞ �i 0

0
BBB@

1
CCCA;

∂Sθ
∂θy

¼ 1
4

0 �1 �ð1� ϵÞ 0

�1 0 0 ð1� ϵÞ
�ð1� ϵÞ 0 0 1

0 ð1� ϵÞ 1 0

0
BBB@

1
CCCA and

∂Sθ
∂θz

¼ 1
2

0 0 0 0

0 0 �ið1� ϵÞ 0

0 ið1� ϵÞ 0 0

0 0 0 0

0
BBB@

1
CCCA :

(25)

Single-parameter estimation. Let us start with the simple case
when θy= θz= 0 and we are only estimating the single parameter
θx. In a single-parameter estimation problem, the Holevo bound
coincides with the Nagaoka–Hayashi bound and can always be
saturated by a separable measurement. In this case, the two
bounds can be achieved by the estimator operator

Xx ¼

0 �i 0 0

i 0 0 0

0 0 0 i

0 0 �i 0

0
BBB@

1
CCCA (26)

which gives cH,1= cNH,1= 1, independent of ϵ. The optimal
measurement that saturates this bound is a projective measure-
ment on the four orthogonal eigenvectors of Xx

Π1

Π2

�
¼ 1

2

1 ∓ i 0 0

± i 1 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA;

Π3

Π4

�
¼ 1

2

0 0 0 0

0 0 0 0

0 0 1 ∓ i

0 0 ± i 1

0
BBB@

1
CCCA:

(27)

This together with the estimation coefficients ξ= (1, −1, −1, 1)
gives an estimation variance of vx= 1. The phase damping
channel has no effect on the estimation precision.

Two-parameter estimation. Next, for estimating the two para-
meters θx and θy when θz= 0, the Holevo and Nagaoka bounds no
longer coincide. The optimal matrices that achieve the minimum
in the Holevo bound are found to be

Xx ¼

0 �i 0 0

i 0 0 0

0 0 0 i

0 0 �i 0

0
BBB@

1
CCCA; Xy ¼

0 �1 0 0

�1 0 0 0

0 0 0 1

0 0 1 0

0
BBB@

1
CCCA (28)

which gives cH,2= 2. This means that there exists a sequence of
collective measurements that can saturate a variance of vx= vy=
1 in the asymptotic limit.
Unlike the single-parameter case, the optimal Xx and Xy

operators for the Nagaoka bound are different from those which
optimise the Holevo bound. For the Nagaoka bound the optimal
matrices are

Xx ¼ 1
2� ϵ

0 �i �i 0

i 0 0 i

i 0 0 i

0 �i �i 0

0
BBB@

1
CCCA ; Xy ¼ 1

2� ϵ

0 �1 �1 0

�1 0 0 1

�1 0 0 1

0 1 1 0

0
BBB@

1
CCCA
(29)

which gives cNH,2= 4/(2− ϵ). Since there is a gap between the
Holevo and Nagaoka bounds, a separable measurement
cannot saturate the Holevo bound—a collective measurement is
required. We show in Supplementary Note 5 that the Nagaoka
bound is saturated by a family of five-outcome POVMs which gives
vx= vy= 2/(2− ϵ). This means that when restricted to separable
measurements, this is the smallest pair of variances possible.

Three parameter estimation. Finally, for estimating all three
angles θx, θy, and θz simultaneously, we find the Holevo and
Nagaoka–Hayashi bounds are

cH;3 ¼ 2þ 1

ð1� ϵÞ2 and cNH;3 ¼ 4
2� ϵ

þ 1

ð1� ϵÞ2 : (30)

Just like the two-parameter case, the gap between the two
bounds implies that a collective measurement is required to
saturate the Holevo bound. These bounds are achieved by the
same estimator operators Eq. (28) for the Holevo bound and
Eq. (29) for the Nagaoka–Hayashi bound with the additional

Xz ¼ 1
1� ϵ

0 0 0 0

0 0 �i 0

0 i 0 0

0 0 0 0

0
BBB@

1
CCCA: (31)

We write down an explicit POVM that can approach cNH,3 with
vx= vy= 2/(2− ϵ) and vz→ 1/(1−ϵ)2 in Supplementary Note
5 showing that this bound is tight.
In order to quantify the estimation accuracy, we define the

average preciseness for simultaneous estimation of n parameters
with n/(v1+⋯+ vn) as a figure of merit on how good the
estimators perform. By construction, a large average preciseness
implies that all n parameters can be determined accurately. We
plot this quantity in Fig. 1 for all three estimation cases. We also
note that in the two and three parameter examples, it is easy to
check that the SLD Fisher information matrix is diagonal.
Furthermore, the model is asymptotically classical and the Holevo
bound coincides with the SLD bound21,69.

Estimation on multiple copies. We now demonstrate the useful-
ness of the Nagaoka–Hayashi bound and the associated SDP by
examining the precision limits when we perform collective
measurements on finite copies of the probe state. We denote
the Nagaoka–Hayashi bound for N copies of the same probe as
cNHðS�N

θ Þ. For a large number of copies of the probe state, we
expect the Nagaoka–Hayashi bound to tend to the Holevo bound,
limN→∞NcNHðS�N

θ Þ= cH. For any finite N, we know that
NcNHðS�N

θ Þ ≥ cH which follows from NcHðS�N
θ Þ= cH. Figure 2 shows

how the gap between the two bounds shrinks for an increasing
number of copies of the probe state. We consider up to three
copies of the probe state. Without the Nagaoka–Hayashi bound, a
brute force search for the optimal measurement strategy for three
copies would require optimising an M outcome POVM, where
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each outcome is a 64-by-64 matrix. Thus, the Nagaoka–Hayashi
bound and the associated SDP offer an efficient way to investigate
the asymptotic attainability of the Holevo bound. It provides a tool
to address how fast optimal estimators on finite copies can
converge to the asymptotic bound.
This example demonstrates several interesting features of finite

copy metrology. First, we are able to definitively show that there
exists a gap between the attainable precision with collective and
separable measurements. Without a separable measurement
bound, such a claim is not possible as any gap between a
numerically optimal POVM and the Holevo bound may be a result
of a deficiency in the numerical search as opposed to a physically
meaningful gap. Second, as we are able to find a POVM which
coincides with the Nagaoka–Hayashi bound, we are able to say
with certainty that this POVM is optimal. Finally, we are able to
investigate the attainability of the Holevo bound. While it is known
that the Holevo bound is asymptotically attainable, it is not known
how many copies of the probe state are required to get close to
the Holevo bound. As mentioned above, to investigate this
numerically with a POVM search is computationally very
expensive. The SDP presented circumvents this and allows us to

investigate the attainability of the Holevo bound in a numerically
efficient manner.

Example 2: Phase and transmissivity estimation in
interferometry
In our next example, we consider the problem of estimation of
phase change ϕ and transmissivity η in one arm of an
interferometer as shown in Fig. 3. Following Crowley et al.33, we
consider initial pure states with a definite photon-number N across
the two modes ψinj i ¼ PN

k¼0 k;N � kj iak , where N1;N2j i repre-
sents a state with N1 photons in the first mode and N2 photons in
the second mode. One family of states with a fixed photon
number is the Holland–Burnett states which are obtained by
interfering two Fock states with an equal number of photons on a
balanced beam splitter. These states lead to a phase estimation
precision better than an interferometer driven by a coherent light
source with the same number of photons70. The Holevo bound for
the Holland–Burnett state was computed by Albarelli et al.53 for up
to N= 14. In general, the Holevo bound requires a collective
measurement on several probes to be saturated. But for some
values of N and η, the Holevo bound can be saturated by a
separable measurement, Π(ϕ) that optimally measures the phase53.
We compute the Nagaoka bound for these states for different

values of η with ϕ= 0 for N up to 14 using our SDP. We find that
the Nagaoka and Holevo bounds always coincide (up to numerical
noise). This is to be expected when Π(ϕ) saturates the Holevo
bound, but is not so obvious when it does not. The fact that there
is no gap between the Holevo and Nagaoka bound implies one of
the two possibilities: either (i) the Nagaoka bound is not tight or
(ii) separable measurements are always optimal for simultaneous
estimation of ϕ and η, in other words, collective measurements
cannot do better. In the following, we show that the second
statement is true.

Measurement saturating the Nagaoka bound. The initial pure
state ψinj i ¼ PN

k¼0 k;N � kj iak transforms in the lossy interferom-
eter channel to the following state:

Sϕ;η ¼
MN
l¼0

ψlj ipl ψlh j; (32)

where each term in the direct sum

ψlj i ¼
XN
k¼l

k � l;N � kj iakeikϕ
ffiffiffiffiffiffi
bkl
pl

s
(33)

Fig. 2 Estimating multiple parameters with collective measurements on finite copies of the probe state. Both figures show how the gap
between the Holevo and Nagaoka–Hayashi bounds shrinks as the number of copies of the probe state increases for estimating two (a) and
three (b) parameters. The Nagaoka–Hayashi bounds are rescaled by the number of copies of the probe state to account for the resources used.

Fig. 1 Holevo and Nagaoka–Hayashi bounds for estimating
multiple orthogonal rotation parameters simultaneously. For a
maximally entangled two-qubit probe under the action of the phase
damping channel, we plot the Holevo bounds (solid lines) and
Nagaoka–Hayashi bounds (dashed lines) in terms of average
preciseness for estimating two (blue) and three (red) orthogonal
rotation parameters simultaneously. The Nagaoka–Hayashi bounds
can be achieved by a separable measurement on a single probe,
while the Holevo bound requires a collective measurement on a
possibly infinite number of copies. The shaded area shows the gap
between the two bounds. For estimating a single parameter, the
Holevo and Nagaoka–Hayashi bounds coincide and are equal to the
two-parameter Holevo bound.
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represents a state with l lost photons. The state Sϕ,η is a mixed

state with rank N+ 1. Here, bkl ¼ k
l


 �
ηk�lð1� ηÞl are the beam-

splitter coefficients and pl represents the probability of losing l
photons. The partial derivatives of Sϕ,η share the same direct sum
structure

∂Sϕ;η
∂ϕ ¼ LN

l¼0
∂ϕψl

�� �
pl ψlh j þ ψlj ipl ∂ϕψl

� ��� 	
;

∂Sϕ;η
∂η ¼ LN

l¼0
ψlj i ∂pl∂η ψlh j þ ∂ηψl

�� �
pl ψlh j þ ψlj ipl ∂ηψl

� ��� �
;

(34)

with each block having at most rank 2. Thus, what we have is a
direct sum of pure state models, and for such a model, we have a
separable measurement with a direct sum structure that can
achieve the Holevo bound55. Each block can be measured
separately but we cannot minimise vη+ vϕ separately in each
block. This is because how much weight we attach to η or ϕ in one
block will depend on how much information about them that we
can get from the other blocks. But regardless of the weights, each
l ≠ N block requires at most a three outcome POVM to saturate the
Holevo bound, so the total number of POVM outcomes needed is
at most 3N+ 1. The extra 1 comes from the l= N block where all
photons are lost. An analytic POVM that saturates the Holevo
bound for the N= 1 case is given in Supplementary Note 6. The
dual solution to the Nagaoka–Hayashi bound is presented in
Supplementary Note 7.
This problem demonstrates a very different but equally

insightful feature of finite copy metrology compared to the qubit
rotation problem. The simultaneous estimation of phase and loss
has been very well studied in the literature6,8,33,53, however until
now the fact that separable measurements are sufficient to reach
the ultimate attainable precision had remained unknown. This
insight was only possible with our SDP, which allowed the
Nagaoka–Hayashi and Holevo bounds to be compared for large N.
We plot the numerically calculated Nagaoka–Hayashi and Holevo
bounds for different N and η in Fig. 4. The fact that collective
measurements are not required to reach the Holevo bound in this
example may be important from a fundamental viewpoint.

DISCUSSION
We have presented the Nagaoka–Hayashi bound for the
simultaneous estimation of multiple parameters when
restricted to separable measurements. This ensures it is always
tighter or just as tight as the Holevo bound. A gap between the
two bounds would imply that the Holevo bound cannot be

achieved with a separable measurement and a collective
measurement is needed to saturate it. In addition, we have
shown that the Nagaoka–Hayashi bound can be formulated as a
semidefinite programme, allowing it to be solved efficiently.
We have demonstrated our results with two examples. These
examples illustrate how our results can be used to recognise
when a collective measurement is essential and when it is not.
Our results can be applied to many other problems in
multiparameter quantum metrology and will help quantify the
maximal advantage collective measurements have to offer. In
some cases, a separable measurement is already optimal,
simplifying any experimental realisation.
In the first example, we have assumed that the damping

strength ϵ is known. However, in a practical setting, it would be
more realistic to consider ϵ as a nuisance parameter, an unknown
parameter that we are not interested in which nevertheless may
hinder our measurement precision25,42,71. The quantum
Cramér–Rao bound in the presence of nuisance parameters can
be computed utilising a low-rank weight matrix25,71. As we show
in Supplementary Note 3, our SDP formalism can be immediately

Fig. 4 The Holevo and Nagaoka–Hayashi bounds multiplied by
photon number for estimating phase change ϕ and transmissivity
η using the Holland–Burnett states. The numerical results show
that the two bounds coincide for N up to and including 14 for any
value of η. We show in the main text that there exists a separable
measurement that reaches the ultimate attainable precisions in this
example. In this case, a collective POVM cannot perform better than
a separable POVM. Different shades correspond to different η values,
with darker colours corresponding to larger η. Results are shown for
η= 0.01, 0.25, 0.5, 0.75, and 0.99.

Fig. 3 Schematic for optimal estimation of the phase shift ϕ and interferometer transmissivity η using a two mode state ψin

�� �
having

definite photon-number N. The measurement can be performed in two stages. The first stage (green block) involves performing a projective
measurement over the photon-number subspace to determine the number of photons lost, l. The outcome of this measurement is then used
to select a three-outcome POVM {Π(l)} for the second stage (black box). This measurement strategy saturates not only the Nagaoka bound, but
also the Holevo bound.
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applied to such cases. An interesting extension to this work would be
to investigate examples which incorporate nuisance parameters.
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