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Abstract

With the rapid development of sensing and communication technologies, the Internet
of Things (loT) is becoming a global data generation infrastructure. To utilize the mas-
sive data generated by 0T for achieving better system intelligence, machine learning and
inference on the 10T data at the edge and core (i.e., cloud) of the 10T are needed. How-
ever, the pervasive data collection and processing engender various privacy concerns.
While various privacy preservation mechanisms have been proposed in the context of
cloud computing, they may be ill-suited for 10T due to the resource constraints at the
0T edge. This thesis primarily studies data obfuscation as a lightweight method to pre-
serve data privacy for cloud-based collaborative machine learning and inference in 10T.
Speci cally, it presents three approaches: the rst is for cascadable, collusion-resilient,
and privacy-preserving cloud-based inference and the other two are for privacy-preserving
collaborative training of a deep neural network based on distributed loT data. All ap-
proaches protect the privacy contained in the data contributed by distributed 10T devices
as the participants against a honest-but-curious coordinator in the centralized cloud sys-
tem. They deliver di erent privacy protection properties. The rst approach protects
the raw forms and certain privacy attributes of the inference data from the participants
by applying participant-speci c¢ obfuscation neural networks; the second approach pro-
tects the raw forms of the training data contributed by the participants by applying
multiplicative random projection; the third approach protects the di erential privacy
of the contributed training data via additive perturbation. These three approaches are
computationally lightweight and can be executed by resource-limited edge devices includ-
ing smartphones and even mote-class sensor nodes. Extensive performance evaluation
performed on multiple datasets and real implementations on 10T hardware platforms
show the e ectiveness and e ciency of these approaches in protecting data privacy while
maintaining the learning and inference performance.
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Chapter 1

Introduction

1.1 Background

With the advances of sensing and communication technologies, the Internet of Things
(1oT) will become a main data generation infrastructure in the future. The drastically
increasing amount of data generated by loT will create unprecedented opportunities for
various novel applications powered by machine learning (ML). However, various system
challenges need to be addressed to implement the envisaged intelligent 10T.

10T in nature is a distributed system consisting of heterogeneous nodes with distinct
sensing, computation, and communication capabilities. Speci cally, it consists of massive
sensors with small form factors deeply embedded in the physical world, personal devices
that move with people, intermediate network such as wireless access points, as well as
the cloud backend.

IoT adopts the three-layer computing stack model as shown in Fig. 1.1. The model
consists of edge computing layer, fog computing layer and cloud computing layer. The
edge computing layer is based on the 10T end devices and performs computation at the
data sources. Most time-sensitive data is analyzed on the edge nodes. For example, a
smart home sensor can detect unsafe high temperatures and smoke in a house and then
raise re alarm. In the fog computing layer, the device with computing, storage, and
network connectivity can be a fog node. Examples include various controllers, switches,
routers, embedded servers, and 10T gateways. The fog computing layer analyzes the IoT
data close to where it is collected to minimize latency and avoid the transmissions of
massive data to the Internet’s computing core. The core part is the cloud computing

2
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Cloud | Data Centers

Fog | Nodes

Edge | Devices

Sensors

Fig. 1.1: Three-layer computing stack model in IoT.

layer. In this layer, the resourceful backend can deal with the summarized loT data
transmitted from the previous layers. It saves the cost by avoiding purchasing expensive
systems and equipment for the local network.

The separation of data sources and the computation power needed for processing
massive data is a key characteristic of 1o0T. Most l0T data are generated by the end
devices that often have limited computation resources, while the computation power
needed by ML model training and execution are located at the fog nodes and in the
cloud. Besides, the communication channels between the end devices and the cloud are
often constrained, in that they are limited in bandwidth and of intermittent availability
and considerable latencies. Due to this separation, to enable advanced data processing
for better intelligence, a possible approach is to transmit the data from the data sources
to the higher layers with su cient computation power for advanced ML processing.

However, the above approach engenders privacy concerns. As the end devices can
be deeply embedded in the user’s private spaces and times, the data generated by these
end devices can contain privacy-sensitive information. To gain wide acceptance, the
loT-ML fabric must respect the users’ privacy. The lack of privacy preservation may
even go against the recent legislation such as the General Data Protection Regulation in
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Participants Coordinator

Fig. 1.2: System model.

European Union. However, privacy preservation often presents substantial challenges to
the system design.

1.2 System and Privacy Models

To address the privacy concerns, this thesis mainly considers a distributed ML system
consisting of multiple participants and a coordinator in the context of 10T. Fig. 1.2 illus-
trates the distributed ML system. In this thesis, the participants are resource-constrained
data generators with many training and/or inference data samples. The coordinator is an
honest-but-curious 10T backend with su cient computation power to orchestrate the ML
processes. The participants and coordinator collaborate to realize a classi cation system
in the context of 10T. As the learning process is often compute-intensive, most of the
learning computation should be accomplished by the coordinator. This thesis focuses on
the problem of distributed machine learning while protecting certain privacy contained in
the data samples. This thesis mainly focuses on protecting the con dentiality of raw form
of the data, while in Chapter 3 the thesis also considers the private attribute contained
in the inference data.

The privacy concern regarding the data samples is primarily due to that the data
samples may contain information beyond the classi cation objective in question. For
example, consider a privacy-preserving collaborative learning (PPCL) system for training
a classi er to recognize human body activity (e.g., sitting, walking, climbing stairs, etc).
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The recognition is based on various body signals (e.g., motion, heart rate, breath rate,
etc) that are captured by wearable sensors. However, the raw body signals can also be
used to infer health statuses of the participants and even pinpoint the patients of certain
diseases. This thesis adopts the following threat and privacy models.

honest-but-curious coordinator: This thesis assumes that the coordinator will
honestly coordinate the distributed learning process and inference process, aiming
to realize the best ML performance. Thus, it will neither tamper with any data
or parameters collected from or transmitted to the participants. However, the
coordinator is curious about the participants’ privacy contained in the data samples.
The coordinator may bene t from the private information irrelevant to the objective
of the supervised classi er.

Potential collusion between participants and coordinator: This thesis as-
sumes that the participants are not trustworthy in that they may collude with the
coordinator in nding out other participants’ privacy contained in the data samples.
The colluding participants are also honest, i.e., they will faithfully contribute their
training data to improve the supervised classi er. The design of the distributed
system should maintain the privacy preservation for a participant when any or all
other participants are colluding with the coordinator. In this thesis, the potential
collusion among participants is not considered, since the privacy concern of the
participants is mainly from the honest-but-curious cloud.

Label privacy: The class labels may also contain information about the partic-
ipant. This thesis does not consider label privacy. This thesis assumes that the
participant willingly contributes the labeled data samples and should have no ex-
pectation of privacy regarding labels. In the future research, I will consider how to
protect the label privacy of the participants with unsupervised learning, which will
be discussed in Chapter 6.

1.3 EXxisting Solutions

Privacy-preserving ML has received extensive research in the context of cloud com-
puting. Thus, it is of great interest to investigate whether the existing solutions can
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be applied in the context of lIoT. To this end, this section provides a brief review of
the existing privacy-preserving ML approaches, which are classi ed into two categories:
privacy-preserving training and privacy-preserving inference. The nodes in a privacy-
preserving ML system often have two roles: participant and coordinator. The partici-
pants are often the data generators (e.g., smartphones), whereas the coordinator (e.g.,
a cloud server) orchestrates the ML process. The privacy-preserving training schemes
aim to learn a global ML model or multiple local ML models from disjoint local datasets
which, if aggregated, would provide more useful/precise knowledge. Thus, the primary
objective of privacy protection is to preserve the privacy of the data used for building an
ML model in the training phase. Di erently, privacy-preserving inference schemes focus
on the scenario where a global ML model at the coordinator has been trained and the
participants transmit the unlabeled data to the coordinator for inference. The aim is to
protect the privacy of the input data in the inference phase and maintain the inference
accuracy. Since the computation and communication overheads are the key consider-
ations in the design of 10T systems, ML for 10T should be of low overhead and with
privacy preservation.

In a privacy-preserving training process orchestrated by the coordinator, the partici-
pants collaboratively train a global model from their disjoint training datasets while the
privacy of the training datasets is preserved. Distributed machine learning (DML) [1{6]
is a typical scheme of this category, in which only the model parameters are exchanged
among the nodes. However, the local model training and the iterative information ex-
changes are compute- and communication-intensive. Recently, the federated learning
scheme [7] has received wide research interests. Federated learning is a typical type of
DML. During the training process of federated learning, the training data possessed by
each participant is not exchanged. Instead, only the gradients of the model trained by
each participant are transmitted to the coordinator. Thus, federated learning is consid-
ered promising for privacy preservation. However, it requires each participant to train
a local model based on the training data it possesses. The intensive computation of
the local training renders federated learning ill-suited for 10T devices especially for the
battery-powered devices to act as participants. Therefore, federated learning is mostly
studied under the context where each participant is an enterprise that has su cient com-
putation power. Besides, there exist a few examples of federated learning on the mobile
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devices, such as Google Fed-GBoard [8]. However, Google Fed-GBoard requires at least
2 gigabytes of memory available and it only works when the mobile device is charging,
connected to an un-metered network, and idle without other tasks.

If the training data samples are to be transmitted to the coordinator, they can be
obfuscated or encrypted for data privacy protection. Obfuscation is often achieved via
additive perturbation and multiplicative projection. Additive perturbation implemented
via Laplacian [9], exponential [10], and median [11] mechanisms can provide di erential
privacy [12]. Multiplicative projection [13,14] protects the con dentiality of the raw forms
of the original data. In [13], the participants use distinct secret projection matrices, where
the Euclidean distances among the projected data samples are no longer preserved. This
can degrade the performance of distance-based ML algorithms. To address this issue,
in [13], the participants need to project a number of public data samples and return
the results to the coordinator that will learn a regress function to preserve Euclidean
distances. However, this approach is only applicable to distance-based classi er. The
conventional classi er does not scale well with the volume of the training data and the
complexity of the data patterns. ML can be also performed based on homomorphically
encrypted data samples [15{18]. However, homomorphic encryption incurs high compute
overhead compared with additive perturbation and multiplicative projection.

Privacy-preserving inference approaches assume that the ML model at the coordi-
nator has been previously trained using public plaintext data. They aim to protect
the privacy contained in test data samples while maintaining the inference accuracy.
Additive perturbation is generally not advisable for deep models because the inference
accuracy of deep models can be signi cantly degraded by small perturbations on input
data [19]. In order to achieve privacy preservation in the inference phase against an
honest-but-curious coordinator running the ML model, CryptoNets [20] and Multi-party
Computation (MPC) [21] are proposed. CryptoNets [20] adjusts the feed-forward neural
network trained with plaintext data so that it can be applied to the homomorphically
encrypted data to make encrypted inference. Unfortunately, the high computational com-
plexity of homomorphically encrypted renders CryptoNets unpractical for 10T devices.
Moreover, although CryptoNets does not need to support training over ciphertext, the
neural network still needs to satisfy certain conditions. MPC [22] enables the parties in-
volved to jointly compute a function over their inputs while keeping those inputs private.
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The work [21] applies MPC to achieve privacy-preserving inference. However, MPC
requires many rounds of communication between the participant and the coordinator,

representing considerable communication overhead.

1.4 Main Contributions

To address the computation and communication overheads with privacy preservation
approaches, this thesis proposes and studies three novel privacy preservation techniques
for deep learning and inference. The rst scheme is a privacy-preserving inference ap-
proach. It is a scalable, cascadable, and collusion-resilient privacy preservation approach
for mobile devices to use the cloud inference services. By executing a small-scale neural
network on the mobile devices to obfuscate inference data, the privacy contained in the
inference data is preserved. The second scheme is a lightweight privacy-preserving col-
laborative learning (PPCL) scheme. It applies independent Gaussian random projection
at each 10T object to obfuscate data and trains a deep neural network at the coordina-
tor based on the projected data from the 10T objects. This approach introduces light
computation overhead to the 10T objects and moves most workload to the coordinator
that can have su cient computing resources. The last scheme is also a PPCL approach,
in which the fog nodes and the cloud train di erent stages of a deep neural network, and
the data transmitted from a fog node to the cloud is perturbed by Laplacian random
noises to achieve n-di erential privacy. The three proposed approaches are all designed
for an 10T system consisting of distributed 10T nodes with limited computation powers.

The main contributions of each chapter are summarized as follows.

1.4.1 Chapter 3

Mobile cloud o oading is indispensable for inference tasks based on large-scale deep
models. However, transmitting privacy-rich inference data to the cloud incurs concerns.
This chapter presents the design of a system called PriMask, in which the mobile device
uses a secret small-scale neural network called MaskNet to mask the data before transmis-
sion. PriMask signi cantly weakens the cloud’s capability to recover the data or extract
certain private attributes. The MaskNet is cascadable in that the mobile can opt in to
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or out of its use seamlessly without any modi cations to the cloud’s inference 