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Abstract

With the rapid development of sensing and communication technologies, the Internet

of Things (IoT) is becoming a global data generation infrastructure. To utilize the mas-

sive data generated by IoT for achieving better system intelligence, machine learning and

inference on the IoT data at the edge and core (i.e., cloud) of the IoT are needed. How-

ever, the pervasive data collection and processing engender various privacy concerns.

While various privacy preservation mechanisms have been proposed in the context of

cloud computing, they may be ill-suited for IoT due to the resource constraints at the

IoT edge. This thesis primarily studies data obfuscation as a lightweight method to pre-

serve data privacy for cloud-based collaborative machine learning and inference in IoT.

Specifically, it presents three approaches: the first is for cascadable, collusion-resilient,

and privacy-preserving cloud-based inference and the other two are for privacy-preserving

collaborative training of a deep neural network based on distributed IoT data. All ap-

proaches protect the privacy contained in the data contributed by distributed IoT devices

as the participants against a honest-but-curious coordinator in the centralized cloud sys-

tem. They deliver different privacy protection properties. The first approach protects

the raw forms and certain privacy attributes of the inference data from the participants

by applying participant-specific obfuscation neural networks; the second approach pro-

tects the raw forms of the training data contributed by the participants by applying

multiplicative random projection; the third approach protects the differential privacy

of the contributed training data via additive perturbation. These three approaches are

computationally lightweight and can be executed by resource-limited edge devices includ-

ing smartphones and even mote-class sensor nodes. Extensive performance evaluation

performed on multiple datasets and real implementations on IoT hardware platforms

show the effectiveness and efficiency of these approaches in protecting data privacy while

maintaining the learning and inference performance.
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Chapter 1

Introduction

1.1 Background

With the advances of sensing and communication technologies, the Internet of Things

(IoT) will become a main data generation infrastructure in the future. The drastically

increasing amount of data generated by IoT will create unprecedented opportunities for

various novel applications powered by machine learning (ML). However, various system

challenges need to be addressed to implement the envisaged intelligent IoT.

IoT in nature is a distributed system consisting of heterogeneous nodes with distinct

sensing, computation, and communication capabilities. Specifically, it consists of massive

sensors with small form factors deeply embedded in the physical world, personal devices

that move with people, intermediate network such as wireless access points, as well as

the cloud backend.

IoT adopts the three-layer computing stack model as shown in Fig. 1.1. The model

consists of edge computing layer, fog computing layer and cloud computing layer. The

edge computing layer is based on the IoT end devices and performs computation at the

data sources. Most time-sensitive data is analyzed on the edge nodes. For example, a

smart home sensor can detect unsafe high temperatures and smoke in a house and then

raise fire alarm. In the fog computing layer, the device with computing, storage, and

network connectivity can be a fog node. Examples include various controllers, switches,

routers, embedded servers, and IoT gateways. The fog computing layer analyzes the IoT

data close to where it is collected to minimize latency and avoid the transmissions of

massive data to the Internet’s computing core. The core part is the cloud computing
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Chapter 1. Introduction

Fig. 1.1: Three-layer computing stack model in IoT.

layer. In this layer, the resourceful backend can deal with the summarized IoT data

transmitted from the previous layers. It saves the cost by avoiding purchasing expensive

systems and equipment for the local network.

The separation of data sources and the computation power needed for processing

massive data is a key characteristic of IoT. Most IoT data are generated by the end

devices that often have limited computation resources, while the computation power

needed by ML model training and execution are located at the fog nodes and in the

cloud. Besides, the communication channels between the end devices and the cloud are

often constrained, in that they are limited in bandwidth and of intermittent availability

and considerable latencies. Due to this separation, to enable advanced data processing

for better intelligence, a possible approach is to transmit the data from the data sources

to the higher layers with sufficient computation power for advanced ML processing.

However, the above approach engenders privacy concerns. As the end devices can

be deeply embedded in the user’s private spaces and times, the data generated by these

end devices can contain privacy-sensitive information. To gain wide acceptance, the

IoT-ML fabric must respect the users’ privacy. The lack of privacy preservation may

even go against the recent legislation such as the General Data Protection Regulation in
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Fig. 1.2: System model.

European Union. However, privacy preservation often presents substantial challenges to

the system design.

1.2 System and Privacy Models

To address the privacy concerns, this thesis mainly considers a distributed ML system

consisting of multiple participants and a coordinator in the context of IoT. Fig. 1.2 illus-

trates the distributed ML system. In this thesis, the participants are resource-constrained

data generators with many training and/or inference data samples. The coordinator is an

honest-but-curious IoT backend with sufficient computation power to orchestrate the ML

processes. The participants and coordinator collaborate to realize a classification system

in the context of IoT. As the learning process is often compute-intensive, most of the

learning computation should be accomplished by the coordinator. This thesis focuses on

the problem of distributed machine learning while protecting certain privacy contained in

the data samples. This thesis mainly focuses on protecting the confidentiality of raw form

of the data, while in Chapter 3 the thesis also considers the private attribute contained

in the inference data.

The privacy concern regarding the data samples is primarily due to that the data

samples may contain information beyond the classification objective in question. For

example, consider a privacy-preserving collaborative learning (PPCL) system for training

a classifier to recognize human body activity (e.g., sitting, walking, climbing stairs, etc).
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The recognition is based on various body signals (e.g., motion, heart rate, breath rate,

etc) that are captured by wearable sensors. However, the raw body signals can also be

used to infer health statuses of the participants and even pinpoint the patients of certain

diseases. This thesis adopts the following threat and privacy models.

• honest-but-curious coordinator: This thesis assumes that the coordinator will

honestly coordinate the distributed learning process and inference process, aiming

to realize the best ML performance. Thus, it will neither tamper with any data

or parameters collected from or transmitted to the participants. However, the

coordinator is curious about the participants’ privacy contained in the data samples.

The coordinator may benefit from the private information irrelevant to the objective

of the supervised classifier.

• Potential collusion between participants and coordinator: This thesis as-

sumes that the participants are not trustworthy in that they may collude with the

coordinator in finding out other participants’ privacy contained in the data samples.

The colluding participants are also honest, i.e., they will faithfully contribute their

training data to improve the supervised classifier. The design of the distributed

system should maintain the privacy preservation for a participant when any or all

other participants are colluding with the coordinator. In this thesis, the potential

collusion among participants is not considered, since the privacy concern of the

participants is mainly from the honest-but-curious cloud.

• Label privacy: The class labels may also contain information about the partic-

ipant. This thesis does not consider label privacy. This thesis assumes that the

participant willingly contributes the labeled data samples and should have no ex-

pectation of privacy regarding labels. In the future research, I will consider how to

protect the label privacy of the participants with unsupervised learning, which will

be discussed in Chapter 6.

1.3 Existing Solutions

Privacy-preserving ML has received extensive research in the context of cloud com-

puting. Thus, it is of great interest to investigate whether the existing solutions can
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be applied in the context of IoT. To this end, this section provides a brief review of

the existing privacy-preserving ML approaches, which are classified into two categories:

privacy-preserving training and privacy-preserving inference. The nodes in a privacy-

preserving ML system often have two roles: participant and coordinator. The partici-

pants are often the data generators (e.g., smartphones), whereas the coordinator (e.g.,

a cloud server) orchestrates the ML process. The privacy-preserving training schemes

aim to learn a global ML model or multiple local ML models from disjoint local datasets

which, if aggregated, would provide more useful/precise knowledge. Thus, the primary

objective of privacy protection is to preserve the privacy of the data used for building an

ML model in the training phase. Differently, privacy-preserving inference schemes focus

on the scenario where a global ML model at the coordinator has been trained and the

participants transmit the unlabeled data to the coordinator for inference. The aim is to

protect the privacy of the input data in the inference phase and maintain the inference

accuracy. Since the computation and communication overheads are the key consider-

ations in the design of IoT systems, ML for IoT should be of low overhead and with

privacy preservation.

In a privacy-preserving training process orchestrated by the coordinator, the partici-

pants collaboratively train a global model from their disjoint training datasets while the

privacy of the training datasets is preserved. Distributed machine learning (DML) [1–6]

is a typical scheme of this category, in which only the model parameters are exchanged

among the nodes. However, the local model training and the iterative information ex-

changes are compute- and communication-intensive. Recently, the federated learning

scheme [7] has received wide research interests. Federated learning is a typical type of

DML. During the training process of federated learning, the training data possessed by

each participant is not exchanged. Instead, only the gradients of the model trained by

each participant are transmitted to the coordinator. Thus, federated learning is consid-

ered promising for privacy preservation. However, it requires each participant to train

a local model based on the training data it possesses. The intensive computation of

the local training renders federated learning ill-suited for IoT devices especially for the

battery-powered devices to act as participants. Therefore, federated learning is mostly

studied under the context where each participant is an enterprise that has sufficient com-

putation power. Besides, there exist a few examples of federated learning on the mobile
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devices, such as Google Fed-GBoard [8]. However, Google Fed-GBoard requires at least

2 gigabytes of memory available and it only works when the mobile device is charging,

connected to an un-metered network, and idle without other tasks.

If the training data samples are to be transmitted to the coordinator, they can be

obfuscated or encrypted for data privacy protection. Obfuscation is often achieved via

additive perturbation and multiplicative projection. Additive perturbation implemented

via Laplacian [9], exponential [10], and median [11] mechanisms can provide differential

privacy [12]. Multiplicative projection [13,14] protects the confidentiality of the raw forms

of the original data. In [13], the participants use distinct secret projection matrices, where

the Euclidean distances among the projected data samples are no longer preserved. This

can degrade the performance of distance-based ML algorithms. To address this issue,

in [13], the participants need to project a number of public data samples and return

the results to the coordinator that will learn a regress function to preserve Euclidean

distances. However, this approach is only applicable to distance-based classifier. The

conventional classifier does not scale well with the volume of the training data and the

complexity of the data patterns. ML can be also performed based on homomorphically

encrypted data samples [15–18]. However, homomorphic encryption incurs high compute

overhead compared with additive perturbation and multiplicative projection.

Privacy-preserving inference approaches assume that the ML model at the coordi-

nator has been previously trained using public plaintext data. They aim to protect

the privacy contained in test data samples while maintaining the inference accuracy.

Additive perturbation is generally not advisable for deep models because the inference

accuracy of deep models can be significantly degraded by small perturbations on input

data [19]. In order to achieve privacy preservation in the inference phase against an

honest-but-curious coordinator running the ML model, CryptoNets [20] and Multi-party

Computation (MPC) [21] are proposed. CryptoNets [20] adjusts the feed-forward neural

network trained with plaintext data so that it can be applied to the homomorphically

encrypted data to make encrypted inference. Unfortunately, the high computational com-

plexity of homomorphically encrypted renders CryptoNets unpractical for IoT devices.

Moreover, although CryptoNets does not need to support training over ciphertext, the

neural network still needs to satisfy certain conditions. MPC [22] enables the parties in-

volved to jointly compute a function over their inputs while keeping those inputs private.
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The work [21] applies MPC to achieve privacy-preserving inference. However, MPC

requires many rounds of communication between the participant and the coordinator,

representing considerable communication overhead.

1.4 Main Contributions

To address the computation and communication overheads with privacy preservation

approaches, this thesis proposes and studies three novel privacy preservation techniques

for deep learning and inference. The first scheme is a privacy-preserving inference ap-

proach. It is a scalable, cascadable, and collusion-resilient privacy preservation approach

for mobile devices to use the cloud inference services. By executing a small-scale neural

network on the mobile devices to obfuscate inference data, the privacy contained in the

inference data is preserved. The second scheme is a lightweight privacy-preserving col-

laborative learning (PPCL) scheme. It applies independent Gaussian random projection

at each IoT object to obfuscate data and trains a deep neural network at the coordina-

tor based on the projected data from the IoT objects. This approach introduces light

computation overhead to the IoT objects and moves most workload to the coordinator

that can have sufficient computing resources. The last scheme is also a PPCL approach,

in which the fog nodes and the cloud train different stages of a deep neural network, and

the data transmitted from a fog node to the cloud is perturbed by Laplacian random

noises to achieve n-differential privacy. The three proposed approaches are all designed

for an IoT system consisting of distributed IoT nodes with limited computation powers.

The main contributions of each chapter are summarized as follows.

1.4.1 Chapter 3

Mobile cloud offloading is indispensable for inference tasks based on large-scale deep

models. However, transmitting privacy-rich inference data to the cloud incurs concerns.

This chapter presents the design of a system called PriMask, in which the mobile device

uses a secret small-scale neural network called MaskNet to mask the data before transmis-

sion. PriMask significantly weakens the cloud’s capability to recover the data or extract

certain private attributes. The MaskNet is cascadable in that the mobile can opt in to
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or out of its use seamlessly without any modifications to the cloud’s inference service.

Moreover, the mobiles use different MaskNets, such that the collusion between the cloud

and some mobiles does not weaken the protection for other mobiles. We devise a split

adversarial learning method to train a neural network that generates a new MaskNet

quickly (within two seconds) at run time. We apply PriMask to three mobile sensing

applications with diverse modalities and complexities, i.e., human activity recognition,

urban environment crowdsensing, driver behavior recognition. Results show PriMask’s

effectiveness in all three applications.

1.4.2 Chapter 4

The Chapter 4 of this thesis considers the design and implementation of a practical

privacy-preserving collaborative learning scheme, in which a curious learning coordina-

tor trains a better machine learning model based on the data samples contributed by a

number of IoT objects, while the confidentiality of the raw forms of the training data

is protected against the coordinator. Existing distributed machine learning and data

encryption approaches incur significant computation and communication overhead, ren-

dering them ill-suited for resource-constrained IoT objects. This chapter studies an ap-

proach that applies independent random projection at each IoT object to obfuscate data

and trains a deep neural network at the coordinator based on the projected data from the

IoT objects. This approach introduces light computation overhead to the IoT objects and

moves most workload to the coordinator that can have sufficient computing resources.

Although the independent projections performed by the IoT objects address the po-

tential collusion between the curious coordinator and some compromised IoT objects,

they significantly increase the complexity of the projected data. This chapter leverages

the superior learning capability of deep learning in capturing sophisticated patterns to

maintain good learning performance. Extensive comparative evaluation shows that this

approach outperforms other lightweight approaches that apply additive noisification for

differential privacy and/or support vector machines for learning in the applications with

light to moderate data pattern complexities.
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1.4.3 Chapter 5

The Chapter 5 of this thesis presents the design of a privacy-preserving collaborative

learning approach, in which the edge devices and the cloud train different stages of a deep

neural network, and the data transmitted from an edge device to the honest-but-curious

cloud is perturbed by Laplacian random noises to achieve n-differential privacy. The

proposed approach is evaluated on a case study of collaboratively training a convolutional

neural network for handwritten digit recognition. The results show that the proposed

approach maintains 99% and 96% classification accuracy in implementing privacy loss

levels of n = 5 and n = 2, respectively.

1.5 Comparison of Proposed Techniques

Basic requirement of privacy protection is to protect the confidentiality of raw forms of

the data samples. Besides that, Chapter 3 considers a cloud inference system in which the

mobile sends the inference sample to the Inference Service Provider (ISP) and receives

the inference result. In this case, since the mobiles are often used in private spaces

and times, the inference samples may contain privacy-sensitive information. This thesis

proposes a PriMask approach to obfuscate the inference data before transmission. The

approach does not require any changes to the cloud inference system that is designed to

handle plaintext inference data samples. Differently, Chapter 4 and Chapter 5 consider

privacy-preserving collaborative learning, which aims to protect the privacy contained

in the training data samples. aChapters 4 and 5 assume that the training data are

sensed and collected by IoT end devices in private spaces and times, whereas Chapter 3

assumes that the ISP has pretrained a deep model with public or self-collected dataset.

Thus, the privacy of the training data is not considered. In summary, the proposed

approach in Chapter 3 is more suitable for the existing mobile inference applications

while the proposed approaches in Chapters 4 and 5 are to build new inference systems

from scratch.

The main difference of the approaches in Chapters 4 and 5 is on the application

scenario. Chapter 4 considers the training data sensed by the mote-class sensors and

resource-constraint IoT end devices. Therefore, Chapter 4 adopts the random projection
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scheme to project the training data since the random projection operation on these

devices is feasible. Differently, Chapter 5 considers the training data contributed by the

more resourceful edge devices such as smartphones. In these edge devices, some layers of

a neural network model can be trained. To utilize the computation power of such edge

devices, Chapter 5 proposes a split training approach with data noisification to preserve

the privacy in the transmitted features.

1.6 Thesis Organization

The remaining part of this thesis is organized as follows. Chapter 2 reviews state-of-

the-art privacy-preserving machine learning approaches in the context of cloud computing

and present the taxonomy of these approach in the context of IoT. Chapter 3 presents

a lightweight privacy-preserving inference approach with PriMask to obfuscate the infer-

ence data. Chapter 4 presents a lightweight privacy-preserving training approach based

on the random projection to obfuscate the training data. Chapter 5 presents a lightweight

privacy-preserving training approach to obfuscate transmitted features, which fulfills the

requirement of the differential privacy. Finally, the thesis is concluded in Chapter 6, with

discussions on relevant future directions.
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Chapter 2

Existing Privacy-Preserving
Machine Learning Approaches

2.1 Existing Approaches & Limitations

Fig. 2.1 illustrates the taxonomy of the existing privacy-preserving ML schemes. The

nodes in a privacy-preserving ML system often have two roles: participant and coordi-

nator. The participants are often the data generators (e.g., smartphones), whereas the

coordinator (e.g., a cloud server) orchestrates the ML process. Since ML has two phases,

i.e., training and inference, this chapter classifies the existing approaches into two groups

at the top level. The privacy-preserving training schemes (§2.1.1) aim to learn a global

ML model or multiple local ML models from disjoint local datasets which, if aggregated,

would provide more useful/precise knowledge. Thus, the primary objective of privacy

protection is to preserve the privacy of the data used for building an ML model in the

training phase. Differently, privacy-preserving inference schemes (§2.1.2) focus on the

scenario where a global ML model at the coordinator has been trained and the partici-

pants transmit the unlabeled data to the coordinator for inference. The aim is to protect

the privacy of the input data in the inference phase and maintain the inference accuracy.

The work in this chapter has been published as Mengyao Zheng, Dixing Xu, Linshan Jiang,
Chaojie Gu, Rui Tan and Peng Chen. Challenges of privacy-preserving machine learning in
IoT.The First International Workshop on Challenges in Artificial Intelligence and Machine
Learning for Internet of Things (AIChallengeIoT), New York, NY, 2019, co-located with
ACM SenSys.
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Fig. 2.1: The hierachical taxonomy of privacy-preserving machine learning approaches.
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Privacy-preserving training schemes can be further classified based on whether the

privacy-sensitive training data samples are transmitted or only the model parameters

are transmitted for model training. Parameter transmission-based approaches (§2.1.1.1)

include distributed machine learning and model personalization. The approaches that

need to transmit local data samples (§2.1.1.2) can be classified into anonymization, cryp-

tographic methods, obfuscation, and data synthesis according to the processing made on

the training data. (1) Anonymization approaches de-identify data records but do not

change the data of interest for model training. (2) Cryptographic methods apply crypto-

graphic primitives to encrypt the data transmitted. (3) Obfuscation methods transform

the training data vectors through additive perturbation, multiplicative perturbation, and

generative obfuscation. (4) Data synthesis generates a new dataset that resembles the

original dataset. Note that some of the data transmission-based approaches for privacy-

preserving training are data publishing techniques, which focus on the proper sharing of

the data or query results and in general do not explicitly address the problem of ML

model training. The taxonomy in this chapter includes them for the completeness of the

related work review.

Most existing privacy-preserving ML approaches were designed in the context of cloud

computing. The participants are often resource-rich nodes from smartphones to cloud

servers. In particular, the overhead of communications is not a key concern due to the

availability of high-speed connections (e.g., wireline networks and 4G cellular networks).

Differently, in the context of IoT, the participants are often resource-constrained devices.

Moreover, the communication links among them are generally constrained. Therefore, in

the review of the privacy-preserving training (§2.1.1) and inference (§2.1.2) approaches,

their computation overhead and communication overhead will be qualitatively discussed.

Here are the qualitative labels used in this chapter regarding the computation and com-

munication overheads:

• Computation overhead: This chapter classifies the level of computation overhead

into high, medium, and low, with homomorphic encryption, neural network train-

ing/inference, and additive/multiplicative noisification as the representative exam-

ples, respectively. The high-overhead computation tasks are in general infeasible

for IoT end devices. For the medium-overhead computation, IoT end devices are
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increasingly capable of neural network inference computation due to the emerging

inference chips such as Google’s Edge TPU [37]. However, neural network training

is still largely infeasible for IoT end devices at present.

• Communication overhead: This chapter classifies the communication overheads

of the existing approaches into three categories: iterative communication, data

swelling, data retention/compression, with distributed machine learning, homo-

morphic encryption, and additive/multiplicative perturbation as the representative

examples, respectively. Specifically, distributed machine learning requires iterative

model parameter exchanges among the training participants. Such iterative com-

munications will cause significant challenges for IoT networks due to the bandwidth-

limited and intermittent communication links. The ciphertexts produced by homo-

morphic encryption algorithms often have higher data volumes than the plaintexts.

In contrast, the additive and multiplicative perturbation will retain and even reduce

the data volumes.

Storage overhead is also a factor of concern for IoT end devices. However, this chapter

primarily focuses on computation and communication overhead.

2.1.1 Privacy-Preserving Training

The latest privacy-preserving training approaches that leverage distributed privacy-

sensitive data to construct a global ML model or multiple local ML models can be divided

into parameter transmission-based (§2.1.1.1) and data transmission-based (§2.1.1.2) tech-

niques.

2.1.1.1 Parameter Transmission-Based Approaches

Approaches of this category transmit model parameters instead of data samples

for model training. In this way, parameter transmission-based approaches to privacy-

preserving training push computation towards participants rather than the coordinator.
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Distributed Machine Learning Distributed Machine Learning (DML) is a repre-

sentative approach of this category. In DML [1–6, 24], data owners do not reveal their

own datasets to anyone in the training phase. In each iteration, the participants upload

merely the locally computed parameters or gradients to the coordinator to achieve col-

laborative learning [38]. Conventional DML algorithms [1,2,5,6] exploit the fact that the

optimization algorithms based on stochastic gradient descent (SGD) can be parallelized,

if the data held by different participants are independently and identically distributed

(i.i.d.). Variants of SGD such as Selective SGD [2], parallel SGD [5], Alternating Direc-

tion Method of Multipliers SGD [6] and Downpour SGD [4] are normally used to update

the model weights in the distributed fashion.

Federated learning [3, 24, 39] is another prevailing DML approach with more gener-

alized assumptions. In each iteration, a fraction of participants are randomly selected

to retrain the model with their local data using the current global model as the starting

point and then individually upload the local stochastic gradient descents. The coordina-

tor will then average the gradient descents and update the global model. However, while

federated learning [3,24,39] manages to reduce communication overhead, it increases the

local computation overhead.

Arguably, model parameters contain some information about the local training data.

Therefore, in [1,2,24], differential privacy [12] is achieved by adding noises to the locally

computed parameter updates. Such schemes thwart definitive inferences about an indi-

vidual participant if an adversary intentionally collects the obfuscated model updates.

Besides, secure data aggregation is applied to aggregate the updates from individual

participants [40]. Phong et al. [41] also use additively homomorphic encryption [15]

to encrypt model parameters in the federated learning scheme to prevent information

leakage. Secure multi-party computation (MPC) is also applied in the federated learn-

ing scheme [42–44]. In the subsection 2.1.2.2, the limitation of MPC-based approach is

discussed.

Limitations: First, training a deep model locally may be impractical for resource-

constrained IoT devices. The paper [39] proposes a secured and privacy-preserving smart

home architecture implementing federated learning in which the dedicated computers in

home are the federated learning trainers. Second, many iterations are required for the
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learning process to converge in these approaches, which results in substantial communi-

cation overhead. Due to the computation and communication overhead incurred, DML

is mainly deployed in the context of cloud computing with enterprise settings. As shown

in [45, 46], federated learning is vulnerable to backdoor attacks. Hitaj et al. [47] devise

a powerful attack based on generative adversarial networks [48] for local data recovery.

The attack is still effective even when the communicated parameters are perturbed for

differential privacy and secure multi-party computation [22] is applied.

Model Personalization The aim of model personalization [23] is not to learn a global

model from privacy-sensitive data owned by the participants, but to learn a personal

model for each participant based on a public model trained with public data as the

starting point. Specifically, the public model is firstly trained with a set of public data at

the coordinator and then distributed to each participant. Then, each participant retrains

the model with local data. The idea of transfer leaning [49] is leveraged to achieve better

performance than the model training with merely local data.

Limitations: This approach may be ineffective for some tasks where the local classes

have significantly different patterns from the public data. Additionally, the local training

is unsuitable for resource-constrained IoT devices.

2.1.1.2 Data Transmission-Based Approaches

This category of approaches allows participants to send local data samples to the

honest-but-curious coordinator, while protects certain aspect or attribute of the data

samples, e.g., user identity, data contents, or raw form of data. It has the following sub-

categories: anonymization, cryptographic methods, data obfuscation, and data synthesis.

Anonymization Anonymization techniques are designed to anonymize the partici-

pant’s identity in a group of users, changing the value of quasi-identifiers and remov-

ing explicit identifiers. Since the aim is to remove the association between data entries

and the data owner, the data samples of interest used for model training remains un-

changed. For field-structured data, anonymization techniques include :-anonymity [25],

;-diversity [26], and C-closeness [27]. The :-same family of algorithms [28–30] are designed

to de-identify face images.
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Limitations: As analyzed in [26], anonymization techniques are vulnerable to homo-

geneity attack and background knowledge attack. Furthermore, anonymization techniques

are traditional data publishing techniques proposed for a centralized database. As com-

mented in a survey [50], these anonymization techniques in crowdsensing applications

have a main drawback of the need for a trusted proxy to produce the anonymized values

and send them to each participant. This implies the risk of single point of failure.

Cryptographic Methods Cryptographic methods encrypt the training data before

transmission. However, traditional cryptographic methods suffer from high computation

complexity and the sophistication of key management [51]. The method of Homomorphic

Encryption (HE) [15] does not need key propagation and has attracted research interest.

With HE, computation on ciphertexts generates an encrypted result which matches the

result of the operations performed on the plaintext data after decryption. In [16–18],

the ML model is trained at the coordinator on the HE ciphertexts. During the inference

phase, the data is also encrypted before transmission.

Limitations: However, in HE, operations on the ciphertexts are required to be

expressed as polynomials of a bounded degree. Thus, HE is normally applied to the

operations with a linear discrimination nature. Furthermore, HE involves intensive com-

putation and leads to data swelling. HE causes computation overhead millions times

higher than a multiplicative obfuscation approach that will be discussed shortly in Chap-

ter 4. Additionally, HE will make the training process at least an order of magnitude

slower [20].

Data Obfuscation Data obfuscation methods perturb the data samples used for train-

ing a global model. These methods include additive perturbation, multiplicative pertur-

bation, and generative obfuscation.

• Additive Perturbation: Normally, additive obfuscation is often associated with Dif-

ferential Privacy (DP) [12]. DP is a formal and quantifiable measure of privacy

protection, which can be incorporated in data mining and data publishing [52].

The key idea of differentially private data mining [53–55] is to learn a model with

plaintxt data but perturb the value computed in a certain step (e.g., gradients in
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optimization) with noises during the training. Such techniques, as discussed ear-

lier, are often used in DML (§2.1.1.1). Differentially private data publishing aims

to output aggregate information without revealing any specific entry. It can be

achieved by adding noises to the query results using Laplacian [9], exponential [10],

and median [11] mechanisms.

Limitations: Differentially private data publishing techniques are often used to

support the release of limited data representations, such as contingency tables or

histograms [52]. The amount of noise increases dramatically when the queries are

correlated [52]. Besides, differentially private data publishing often caters into the

setting of centralized systems, where a curator collects all the data and respond to

queries. But such a trusted curator can be questionable and costly in the context of

IoT. Moreover, it incurs the risk of single-point failure. If the curator is not avail-

able, each data contributor perturbs its own result, which leads to an aggregated

noise that significantly exceeds the required amount to ensure n-DP of the final

result. Besides, in practical scenarios [47,56], it has been proved that the trade-off

between model usability and privacy is not easy to balance such that it limits the

implementation of the DP-based approach in a real application.

• Multiplicative Perturbation: Random projection [13,14,31] is a typical multiplica-

tive perturbation. Some random projection schemes [31] preserve the dimensional-

ity of the data but are susceptible to approximate reconstruction attack [57]. Other

schemes [13, 14] reduce the dimensions of the data to better preserve privacy. The

approach in [14] standardizes the projection matrix ' for all participants. How-

ever, this design may scale poorly since any collusion between participants would

breach data privacy. In [13], participants use different private matrices for random

projection. Therefore, the Euclidean distances for the perturbed data are no longer

preserved, which can significantly degrade the classification accuracy for distance-

based classifiers. To tackle this problem, in [13], the coordinator uses regression to

reconstruct the pairwise distances between the original data vectors based on each

participant’s obfuscated projection results of a set of public data samples. However,

the coordinator can use the public samples and their projections to recover random

projection matrix of each participant.
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Limitations: In summary, there exists a trade-off between privacy and utility when

applying multiplicative perturbation. If each participant uses a different random

projection matrix, privacy can be better preserved but classification accuracy in

the cloud is likely degraded.

• Generative Obfuscation: Different from additive/multiplicative perturbation tech-

niques, generative models can also produce obfuscated data. Huang et al. [32]

propose a Generative Adversarial Privacy (GAP) algorithm, which is composed of

a privatizer and an adversary network. GAP formulates a minimax game-theoretic

problem where the privatizer aims to obfuscate the original data - to render a spec-

ified privacy-sensitive attribute . non-classifiable by the adversary network. The

privatizer and adversary are trained in an iterative manner. A recent study [33]

applies the generative adversarial network (GAN) approach to address the problem

of how a data owner publishes labeled training data with certain private attributes

preserved while maintaining the utility of the published data for learning.

Limitations: Running a generative model locally for obfuscation incurs high com-

putation overhead. As a data publishing technique, although GAP [32] restricts

the ;2 distance between the original data vector and the obfuscated data vector to

control the distortion level, there is no guarantee of the utility of the obfuscated

data. However, as the GAN training is highly compute-intensive, the approach [33]

is suitable for resource-rich data owners.

Data Synthesis Data synthesis methods use generative models that capture the un-

derlying distribution of a private dataset and generate resembling data samples. Such

generalization, ideally, would protect individual-specific information. In [34], differen-

tially private :-means clustering is applied on the raw dataset. Then, generative models

are trained only on their own cluster using differentially private gradient descent [34].

Limitations: Data synthesis is a data publishing technique and is usually imple-

mented in a centralized database with massive data samples. As generative models often

incur high computation overhead, this approach is not suitable for resource-limited IoT

devices.
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2.1.2 Privacy-Preserving Inference

Compared with a body of research on privacy-preserving training, less work is ded-

icated to privacy-preserving inference. Privacy-preserving inference approaches assume

that the ML model at the coordinator has been previously trained using public plaintext

data. They aim to protect the privacy contained in test data vectors while maintaining

the inference accuracy. Additive perturbation is generally not advisable for deep mod-

els because the inference accuracy of deep models can be significantly degraded by small

perturbations on input data [19]. In order to achieve privacy preservation in the inference

phase against an honest-but-curious coordinator running the ML model, CryptoNets [20]

and Multi-party Computation (MPC) [21] are proposed.

2.1.2.1 CryptoNets

Gilad-Bachrach et al. [20] adjust the feed-forward neural network trained with plain-

text data so that it can be applied to the homomorphically encrypted data to make

encrypted inference. A secret key is needed to decrypt the result. Through the process,

not only the data but also the inference result are kept secret against the honest-but-

curious coordinator.

Limitations: Unfortunately, the high computational complexity of HE renders Cryp-

toNets unpractical for IoT devices. Moreover, although CryptoNets does not need to

support training over ciphertext, the neural network still needs to satisfy certain condi-

tions. For example, a square polynomial function instead of a sigmoid or ReLU function

should be used as the activation function. However, using square polynomial function as

the activation function is rare for existing neural networks. Scaling is also required since

encryption scheme does not support floating-point numbers.

2.1.2.2 Multi-Party Computation (MPC)

MPC [22] enables the parties involved to jointly compute a function over their inputs

while keeping those inputs private. Barni et al. [21] apply MPC in privacy-preserving

inference. Specifically, the participant encrypts the data and sends it to the coordinator.

The coordinator computes an inner product between the data and the weights of the

first layer and sends the results back to the participant. Then, the participant applies
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decryption and non-linear transformation. Results are again encrypted before being

transmitted to the coordinator. The process continues until all the layers have been

computed. In this scheme, the input data and the knowledge embedded in the neural

networks are both protected.

Limitations: MPC requires many rounds of communication between the participant

and the coordinator, representing considerable communication overhead.

2.1.2.3 Autoencoder

Two recent studies [35,36] apply autoencoder to publish time series data (i.e., accel-

erator data) for inference. The autencoder is trained such that the encoder can weaken

a certain private attribute and the decoder’s output that is published largely preserves

the raw form of the original data.

Limitations: The autencoder requires moderate computability of excuting an au-

toencoder which is a complete neural network, denoting to considerable computation

overhead especially on the edge devices. Besides, their approach needs to retrain the in-

ference model based on the encoded training data, which incurs additional computation

on the cloud.

2.1.3 Remark

The existing approaches reviewed in §2.1.1 and §2.1.2 have different threat, privacy

and system models. The anonymization and additive/multiplicative perturbation ap-

proaches often introduce affordable overheads and thus are feasible in the context of

IoT. However, anonymization mainly focuses on private data publishing and does not

address the problem of model training. Thus, additive and multiplicative perturbation

approaches are promising for privacy-preserving training in IoT. In contrast, lightweight

privacy-preserving inference approaches for IoT are lacking.

2.2 Chapter Summary

This chapter reviews the existing privacy-preserving ML approaches that were de-

veloped largely in the context of cloud computing and discusses their limitations in the
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context of IoT. From the above survey, there is a body of research on privacy-preserving

training. Additive and multiplicative perturbation approaches are promising for privacy-

preserving training in IoT due to their low computation and communication overhead.

In contrast, lightweight privacy-preserving inference received limited research. Chapter

3 of this thesis proposes a lightweight privacy preservation technique for inference.
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Chapter 3

PriMask: Cascadable and
Collusion-Resilient Data Masking
for Mobile Cloud Inference

3.1 Background and Introduction

Recent years have witnessed the forming fabric of machine learning and mobile com-

puting. While running neural networks on resource-constrained mobile devices has re-

ceived extensive research [58, 59], large-scale neural networks may still incur lengthy

execution times that impede user experiences and drain excessive battery energy. For

instance, on Huawei P20 Pro, recognizing a face using Inc-ResNet-V1 with hardware

acceleration requires 26 seconds [60]. Such neural networks and those beyond the mo-

biles’ capabilities should be executed in the cloud. Besides technical constraints, neural

networks may have high commercial values and design costs (e.g., 1.3 million US$ cost

for training a natural language processing model [61]). Thus, many inference services are

proprietary and remain in the owners’ clouds. As such, the cloud inference is indispens-

able.

To use cloud inference, the mobile sends the inference sample to the Inference Service

Provider (ISP) and receives the result. As mobiles are often used in private spaces and

The work in this chapter has been submitted as Linshan Jiang, Qun Song, Rui Tan and Mo Li.
PriMask: Cascadable and Collusion-Resilient Data Masking for Mobile Cloud Inference.
to a conference.
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times, the samples may contain privacy-sensitive information. For instance, the voice

samples for using a virtual assistant contain rich information about the user, e.g., gender,

age, mood, and voiceprint. Although the network transmissions can be protected by

cryptography against the external eavesdroppers, protecting the user’s privacy against

an honest-but-curious ISP while maintaining the accuracy of the cloud inference is a

challenging problem. While the ISP honestly executes inference, it may purposely or

accidentally extract the users’ privacy.

To achieve privacy-preserving inference, homomorphic encryption and neural network

masking approaches have been proposed. In the homomorphic encryption approaches

[16–18, 20], the data owner sends the homomorphically encrypted sample to the ISP

for performing inference in the encryption domain. However, for resource-constrained

mobiles, homomorphic encryption incurs high computation overhead. For instance, it

takes more than ten minutes for a 900 MHz quad-core processor to encrypt a 28 × 28

grayscale image [62]. Differently, neural network masking views several neural network

layers as a data masking operation. Thus, the data owner runs these layers and sends

the output to the ISP that runs the inference neural network (InferNet) on the masked

data. However, the existing neural network masking approaches [63–67] only counteract

the privacy threat from the external eavesdroppers who do not have the details of the

masking. In these approaches, since the ISP knows the layers used for masking, it can

launch the model inversion attack [68, 69] to reconstruct the original data.

Running a small-scale neural network has become feasible on mobiles and even lower-

profile wearables. Thus, from the perspective of engineering an workable privacy-respected

cloud inference system for mobiles, neural network masking is a promising basis. This

chapter designs such a system called PriMask with the following four objectives. First,

different from the existing studies [63–67] that address external eavesdroppers, PriMask

considers the privacy threat from the honest-but-curious ISP. Second, PriMask is re-

silient to the collusion between any mobile and ISP, in that the collusion does not weaken

the privacy protection for non-colluding mobiles. This collusion-resilient property is im-

portant because otherwise the system is susceptible to any compromised individual among

many mobiles. Third, PriMask does not require any changes to the ISP’s InferNet that

was designed without privacy preservation considerations. This frees the ISP from the
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costly redesign and/or retraining of the InferNet. Thus, both the new and legacy mo-

biles with and without neural network masking, respectively, can coexist in using the

cloud inference service. Depending on the remaining battery energy, a mobile can also

opt in to or out of PriMask seamlessly without needing to inform the ISP. This kind of

privacy preservation mechanism is called cascadable. Fourth, PriMask scales well with

the number of mobiles using the inference service.

Now, the basic design to meet the first three objectives except scalability is described

here. To implement the cascadable feature, the mobile applies a small-scale mask neural

network (MaskNet) on the inference sample and then transmits the output to the ISP.

The MaskNet can be obtained by training the concatenation of MaskNet and InferNet.

During the training, the InferNet’s parameters are fixed and only the training loss is

backpropagated from the InterNet to the MaskNet. Fig. 3.1(a) illustrates the cascadable

feature achieved by MaskNet. To counteract the privacy threat from the curious ISP,

the training is performed by a Privacy Service Provider (PSP) that is trusted by both

the mobiles and the ISP. To keep the confidentiality of the ISP’s proprietary InferNet,

split learning [70] is applied such that the MaskNet and InferNet are not revealed to

ISP and PSP, respectively. To be collusion-resilient, independent split learning processes

can be performed with distinct initialization seeds to yield heterogeneous MaskNets for

mobiles. The heterogeneity is essential to collusion resilience, because otherwise the

model inversion attack [68, 69] launched by the ISP using a colluding mobile’s MaskNet

is effective to all mobiles using the same MaskNet. Fig. 3.1(b) illustrates the heterogeneity

that provides the resilience against the potential collusion.

The above basic design requires a separate split training process for each mobile,

rendering it non-scalable. For scalability, this chapter advances the design with inspira-

tion from HyperNet [71], which is a generative neural network supervising the parameter

updates of another neural network. Given random seeds, a HyperNet generates neural

networks with identical architecture but distinct parameters for the same inference task.

This is consistent with the heterogeneity requirement for collusion resilience. Thus, if the

process of training a MaskNet in the basic design is replaced with inferencing a HyperNet

that is much faster, PriMask becomes more scalable in terms of the generation speed of

MaskNets. However, the approach needs to address two issues. First, different from the
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Fig. 3.1: Properties of heterogeneous MaskNets.

original concept of HyperNet that generates neural networks for a certain inference task,

the approach needs a new design of HyperNet to generate MaskNets subject to the ISP’s

existing InferNet. Second, as HyperNet-generated MaskNets are correlated, the model

inversion attack constructed against a specific MaskNet may be transferable to other

MaskNets. To address these two issues, this chapter designs a split adversarial learning

(SAL) method for training the HyperNet. Specifically, the PSP iteratively trains the

HyperNet as defender and an attack neural network (AttackNet) as attacker that imple-

ments model inversion or private attribute extraction. During SAL, the HyperNet and

InferNet are not revealed to the ISP and PSP, respectively. On the completion of SAL,

it is difficult for any adversary who has obtained any HyperNet-generated MaskNet to

construct an effective AttackNet.

This chapter’s contributions are summarized as follows:

• Different from the existing neural network masking methods [63–67] addressing

external eavesdroppers, PriMask counteracts curious ISP, mobile-ISP collusion, and

requires no changes to the ISP’s service.

• This chapter designs HyperNet and its SAL training method to improve PriMask’s
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scalability. Inferencing the HyperNet to generate a MaskNet takes only milliseconds

up to two seconds on a workstation-class PSP.

• This chapter applies PriMask to three mobile sensing applications with diverse

modalities and complexities, i.e., human activity recognition with inertial time

series data, urban environment crowdsensing with one-shot tabular data, and driver

behavior recognition with image. Evaluation shows PriMask’s privacy protection

performance and scalability to support up to 100,000 mobiles.

For simplicity of exposition, this chapter assumes that the PSP is trusted by the

mobiles. Understood in a different way, PriMask escalates the trustworthiness of the ISP

to the level of the PSP, which is useful in practice. For instance, a major cloud computing

service provider (e.g., Google) can act as the PSP to escalate the trustworthiness of its

small-business tenants who provide inference services. As such, the mobile users can

trust the inference services at the level that they trust the major cloud computing service

provider.

Chapter organization: §3.2 states the problem. §3.3 presents the design of PriMask.

§3.4, §3.5, and §3.6 present the three mobile sensing applications and evaluation. §3.7

discusses related issues. §3.8 concludes this chapter.

3.2 Problem Statement

3.2.1 System Overview and Threat Model

As illustrated in Fig. 3.2, this chapter considers a system consisting of a cloud-based

Inference Service Provider (ISP), many mobile devices that desire to use the ISP’s service,

and a Privacy Service Provider (PSP) that aims at enabling the mobiles to use the ISP’s

service with certain privacy preserved. The privacy notion will be defined in §3.2.2. We

assume that the ISP uses a deep neural network called InferNet to provide the inference

service based on raw input data. InferNet can be large-scale and/or proprietary. Before

PSP can serve the mobiles, it collaborates with the ISP by following a protocol to train

a neural network called HyperNet. The details of the training approach and the protocol

are in §3.3. The mobiles that do not desire privacy preservation can send the raw data to
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Fig. 3.2: System model.

ISP for inferencing InferNet. For each mobile that desires privacy preservation, the PSP

inferences the HyperNet with a random seed to generate a small-scale neural network

called MaskNet and releases it to the mobile. The MaskNet has identical input and

output dimensions. The MaskNets used by the mobiles are identical in architecture but

heterogeneous in parameters. When a mobile desires privacy preservation, it feeds the

raw data to its MaskNet and sends the output (i.e., masked data) to the ISP. Then, the

ISP feeds the masked data to InferNet and returns the result to the mobile. Each mobile

should keep its MaskNet confidential.

PriMask’s threat model has three aspects:

� Honest-but-curious ISP: The ISP honestly executes the InferNet and does not

tamper with the received data and the inference results. The ISP also honestly follows

the protocol with the PSP to train the HyperNet. However, the ISP is curious about the

private information contained in the data received from mobiles and aims at launching

privacy attack.

� Potential collusion between mobiles and ISP: Some mobiles may collude with the

ISP to find out other mobiles’ privacy. Such colluding mobiles surrender their MaskNets

to the ISP, which tries to launch privacy attack on non-colluding mobiles. In practice,

the ISP may recruit such colluding mobiles by offering monetary benefits. The privacy

preservation for such compromised mobiles becomes void. The case in which the ISP

pretends mobiles to request MaskNets from the PSP is equivalent to colluding with

mobiles.
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� PSP trusted by mobiles and semi-trusted by ISP: The PSP honestly performs its

role aiming at ensuring the ISP’s quality of service while protecting the privacy of the

mobiles. Thus, the PSP is trusted by the mobiles. However, it is only semi-trusted by

the ISP in that the ISP cannot trustfully disclose its role-defining property of InferNet

to the PSP.

PriMask aims at preserving the non-colluding mobiles’ privacy from the privacy at-

tacks launched by the ISP solely or in collaboration with the colluding mobiles. PriMask

does not regard the inference result as private information. CryptoNets [20] protects con-

fidentiality of inference result since ISP can only obtain the homomorphically encrypted

result. However, the homomorphic encryption of CryptoNets is still not practical for

resource-constrained devices. CryptoNets is also not cascadable and requires a redesign

of the InferNet.

3.2.2 Privacy Notation and Attacks

Adversary goal: After receiving the masked inference samples from the non-colluding

mobiles, the ISP aims at either reconstructing the original inference samples, or extract-

ing a certain private attribute from each masked sample. These two adversary goals

are referred to as inversion attack and private attribute extraction. The level of privacy

protection can be measured by the average dissimilarity between the original and recon-

structed samples and the accuracy of the extracted private attributes, respectively. This

chapter adopts both mean squared error (MSE) and structural similarity index measure

(SSIM) as the dissimilarity/similarity metric. Note that recent studies also consider the

same privacy notions defined by inversion attack [65,66,68,69,72,73] and private attribute

extraction [33,36,65,66].

Now, the implementations of the privacy attacks after the ISP obtains the MaskNet

are discussed. The discussions also explain PriMask’s system model presented in §3.2.1.

� Inversion attack: The study [68] presented an inversion attack approach using

maximum likelihood estimation. Here this section describes a training-based approach.

Specifically, the ISP feeds many samples to the MaskNet and obtains the outputs to form

a training dataset. Then, the ISP trains a neural network called InvNet that estimates

the MaskNet’s input from its output. The InvNet can use a mirrored architecture of the
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(a) Original (b) Masked (c) Reconstructed

Fig. 3.3: Inversion attack on MNIST dataset.

MaskNet. Now, the effectiveness of the inversion attack using the MNIST handwritten

digit dataset is shown in [74]. The MaskNet is generated using our approach described

in §3.3. It is a two-layer multilayer perceptron (MLP). The InvNet with a mirrored

architecture is trained with MSE of the inversion as the loss function.

Fig. 3.3 shows the original, masked, and reconstructed samples for two handwritten

digits. The MaskNet can effectively mask the data. However, once the ISP obtains

the used MaskNet, it can train the InvNet and reconstruct the original data to certain

extents.

� Private attribute extraction: Once the ISP obtains the MaskNet, it can also train

a neural network called ExtNet to extract a certain private attribute from the masked

data. Specifically, the ISP can feed many samples with private attribute labels to the

MaskNet. The MaskNet’s outputs labeled with the corresponding private attributes form

a training dataset that can be used to train ExtNet. As shown in our human activity

recognition application (§3.4), once the ISP obtains the MaskNet, it can train the ExtNet

to re-identify the user among 30 users with 63% accuracy.

The above results give the following implications. First, the generation and release of

MaskNets should be performed by the PSP. An authority or a certified organization can

be the PSP. Moreover, as discussed in §3.1, a major cloud computing service provider can

be the PSP to pass the same trustworthiness on to its small-business tenants that provide

inference services. Second, the mobiles’ MaskNets should not be identical. Otherwise,

the ISP can launch effective privacy attacks on all mobiles once any one of them colludes

with ISP. Third, the MaskNets and proprietary InferNet should be kept confidential to

the ISP and PSP, respectively.
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Fig. 3.4: Split adversarial learning (SAL) framework for training the HyperNet used to
generate MaskNets. In SAL, the PSP needs unlabeled training data x, which can be
from an open dataset or the ISP as illustrated in the figure.

3.3 PriMask Design & Implementation

§3.3.1 presents the preliminary on HyperNet. §3.3.2 presents the split adversarial

learning (SAL) framework for the HyperNet used to generate MaskNets. §3.3.3 presents

the SAL protocol between the PSP and ISP. §3.3.4 discusses the generalizability and

implementations of PriMask. §3.3.5 presents the results on MNIST as a simple case

study.

3.3.1 Preliminary on HyperNet

HyperNet [71] is a neural network generating the parameters of the target neural

network. This chapter uses HyperNet to generate MaskNets. As illustrated in Fig. 3.4,

the HyperNet consists of an encoder network and = weight generator networks, where the

HyperNet’s parameters 5 = {5� , 5�}, 5� denotes the encoder’s parameters, 5� denotes

all generators’ parameters. The encoder takes as input a random vector z sampled

from a normal distribution N(0, I). The encoder maps z to = latent codes denoted by

{28 |8 = 1, 2, . . . , =}, which are then fed to = weight generators, respectively. Each weight

generator outputs the parameters of a layer of the target neural network. The above

process of inferencing the HyperNet, which is represented by ℎ(z; 5), can complete in

a short time. By repeating the process with different inputs z, many distinct neural
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networks can be generated. The training of HyperNet is addressed in the following

subsections.

3.3.2 Split Adversarial Learning Framework

Fig. 3.4 illustrates the SAL framework for training HyperNet to generate MaskNets.

It integrates the principles of split learning [70] and adversarial learning [75]. It consists

of four modules: InferNet at ISP, HyperNet and " AttackNets at PSP, and " temporary

MaskNets generated by HyperNet. The " is a training hyperparameter. The AttackNets

trained by the PSP form the adversary of the adversarial learning [75], which assists the

PSP to train the HyperNet that can generate MaskNets more robust against the privacy

attack launched by the ISP. Depending on the privacy protection goal (inversion attack

or private attribute extraction), the AttackNet can be either InvNet or ExtNet. The core

of SAL is the definitions of the training loss functions.

The notation used in this subsection is defined as follows. Denote by x = {G1, G2, . . . , G# }
the set of training samples, by y = {H1, H2, . . . , H# } the corresponding class labels, and by

a = {01, 02, . . . , 0# } the corresponding private attribute labels, where # is the cardinality

of the training dataset. Denote by 5Mask(·; )<) the <th temporary MaskNet, where )<

represents the parameters generated by the HyperNet, i.e., )< = ℎ(z<; 5). Denote by

5Inf (·;7) the pre-trained proprietary InferNet, where 7 represents the parameters that

are constant during SAL. Denote by 5Att(·; /<) the <th AttackNet, where /< represents

the parameters. During adversarial learning, the <th AttackNet is used as the adversary

against the <th temporary MaskNet. Denote by � (ypred, y) the cross-entropy loss func-

tion, where y and ypred are the ground-truth and predicted labels. The cross-entropy loss

function also admits privacy labels, i.e., � (apred, a). Denote by � (x0, x) the MSE loss,

where x and x0 are the original samples and those reconstructed by InvNet.

Now, in this section, the loss functions are defined here. When a batch of " HyperNet-

generated MaskNets are used, the ISP’s quality of service is characterized by the following

cross-entropy loss:

�1 =
1

"

"∑
<=1

� ( 5Inf ( 5Mask (x; ℎ (z<; 5)) ;7) , y) . (3.1)
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Depending on the privacy protection goal, effectiveness of PSP’s <th AttackNet is char-

acterized by the following loss:

�2,<(/<)=
{
�

(
5Att

(
5Mask(x; ℎ(z<; 5)); /<

)
, x

)
, for InvNet;

�
(
5Att

(
5Mask(x; ℎ(z<; 5)); /<

)
, a

)
, for ExtNet.

The SAL flow is as follows. First, HyperNet is trained to minimize �1, i.e., 5∗ =

arg min5 Ez<∼N(0,I),∀<∈[1,"] [�1]. Then, each AttackNet is trained against the correspond-

ing temporary HyperNet-generated MaskNet to minimize �2,<: /∗< = arg min/<
�2,< (/<),

∀< ∈ [1, "]. Lastly, the HyperNet is refined to achieve a multi-objective goal of mini-

mizing �1 and maximizing each �2,< (/∗<), where the latter aims at defeating the privacy

attack. This section represents the multi-objective goal using a single composite loss

function to direct the refinement of the HyperNet:

5∗∗=arg min
5
Ez<∼N(0,I)

[
�1−

_

"

"∑
<=1

�2,< (/∗<)
]
, (3.2)

where the adversarial learning factor _ balances the objectives of maintaining the ISP’s

quality of service and defeating the privacy attack. The _ can be used to tune the trade-

off between the inference service quality and the privacy protection level. In §3.3.3, this

section will discuss how to set _.

3.3.3 Split Adversarial Learning Protocol

This section presents the protocol between ISP and PSP to implement SAL. To drive

SAL, the PSP needs to feed unlabeled data samples X from the training dataset (X,Y)
to the HyperNet-generated MaskNets. If the training dataset is not publicly available,

the ISP transmits X (excluding Y) to the PSP, as illustrated by step À in Fig. 3.4. Then,

ISP and PSP start training. In each loop of a training epoch, the SAL protocol has the

following three phases.

(1) Updating HyperNet: The PSP samples a mini-batch x from X. On x, the PSP

draws " random vectors z1, z2, . . ., z" from N(0, I) and generates " MaskNets using

the current HyperNet, as illustrated by step Á in Fig. 3.4. The masked mini-batch by the

<th MaskNet is denoted by xmask
< . To compute the gradient of Eq. (3.1), the PSP sends

{xmask
1 , xmask

2 , . . . , xmask
< } to the ISP, as illustrated by step Â in Fig. 3.4. The ISP feeds the
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received masked data to the InferNet to obtain the predictions {ypred1 , ypred2 , . . . , ypred
"
}.

Then, the ISP computes the cross-entropy loss �1 for the mini-batch using the ground

truth labels y and sends the backward gradients of {xmask
1 , xmask

2 , . . . , xmask
< } to the PSP,

as illustrated by step Ã in Fig. 3.4. The InferNet’s parameters remain unchanged dur-

ing SAL; they are solely used to compute the backward gradients. Upon receiving the

backward gradients, the PSP backpropagates them through the MaskNets without up-

dating their parameters and then through the HyperNet to update its parameters 5 for

minimizing �1.

(2) Updating AttackNets: After updating 5 on x, PSP enters the adversar-

ial learning phase to update the " AttackNets. Specifically, the PSP regenerates "

MaskNets using newly sampled random vectors {z1, z2, . . . , z"} and the latest 5. The

masked mini-batch xmask
< produced by the <th updated MaskNet is fed into the corre-

sponding AttackNet, as illustrated by step Â in Fig. 3.4. The MSE/cross-entropy loss

is backpropagated to update the AttackNets’ parameters {/1, /2, . . . , /"} to minimize

�2,<, as illustrated by step Ä in Fig. 3.4. For the same mini-match, the PSP repeats the

above process for multiple times to gain better AttackNets.

(3) Refining HyperNet: The last phase on the current mini-batch x is to refine

the HyperNet according to the composite loss function in Eq. (3.2). Similar to Phase (1),

the PSP sends the latest {xmask
1 , xmask

2 , . . . , xmask
< } to the ISP and receives the backward

gradients corresponding to the loss �1. The PSP also computes the backward gradients of

the AttackNets corresponding to the losses {�2,1, �2,2, . . . , �2,"}. PSP updates HyperNet’s

parameters 5 according to Eq. (3.2).

The PSP repeats the above three phases on multiple mini-batches in the current

training epoch. Once all the training samples are utilized in the current epoch, the PSP

proceeds to the next epoch. Upon the completion of the training, the PSP is ready to

serve the mobiles. Specifically, to respond to a mobile’s service request, the PSP feeds

a random vector z sampled from N(0, I) to the HyperNet to generate a MaskNet and

releases it to the mobile.

Now, this section discusses the setting of the adversarial learning factor _. The

PSP may perform SAL for multiple rounds with different _ settings to train multiple

HyperNets. For each SAL process, the PSP may measure the average test accuracy and
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Table 3.1: PriMask applications and benchmark results including model sizes and com-
pute times (unit: ms).

Application MNIST HAR UEC DBR

Sensor camera IMU multiple∗ camera
Data type 28x28 time one-shot 240x240

image series tabular image
Sample size 784 1,152 5 57,600
Private attribute n/a identity location identity

InferNet size (MB) 0.08 8.35 0.06 226.37
HyperNet size (MB) 12.64 113.01 0.20 3310
MaskNet size (MB) 0.20 1.76 0.003 54

MaskNet generation† 1.5 2.3 1.6 2130
MaskNet execution‡ 0.011 1.33 0.03 42.02
MaskNet execution★ 0.078 1.14 0.05 21.24
∗Light, microphone, air pressure, temperature.
†On a computer with an i7-6850K CPU and a Quadro RTX 6000 GPU.
‡On Jetson Nano’s quad-core Cortex-A57 processor.
★On Google Pixels 4’s octa-core Qualcomm Snapdragon 855 processor.

the metric characterizing the effectiveness of the privacy attack (e.g., the average MSE

of the inversion attack on non-colluding mobiles). The PSP can publish a table of _

settings and the associated test accuracy and privacy attack effectiveness metric. Each

mobile may inform the PSP with its preferred _ setting and obtain a MaskNet generated

by the PSP using the corresponding HyperNet.

3.3.4 Generalizability and Implementations

As SAL is agnostic to InferNet, PriMask can be applied to different inference tasks. In

§3.3.5, PriMask is applied to a simple handwritten digit recognition task as a starting case

study. In §3.4, §3.5, and §3.6, PriMask is applied to three mobile sensing tasks of human

activity recognition (HAR), urban environment crowdsensing (UEC), and driver behavior

recognition (DBR). As summarized in Table 3.1, the three applications have diverse

sensing modalities, data types, and InferNet complexities. All these four applications

use similar MaskNet and HyperNet architectures, with minor differences in the numbers

of neurons in the layers to be compatible with the dimensions of the input/output data.

Therefore, PriMask has good generalizability.
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PyTorch [76] is used to implement the InferNets and HyperNets on workstation com-

puters. PyTorch and PyTorch Mobile [77] are used to implement the MaskNet-based

data masking on Jetson Nano [78] running Ubuntu OS and Google Pixel4 smartphone

running Android OS, respectively.

Table 3.1 shows the sizes of the models used by PriMask and the compute overhead

measurements for all the four applications. The compute times in Table 3.1 are average

values over 1,000 executions. For each application, the size of HyperNet is larger than

the size of InferNet. As HyperNets are executed on PSP’s server-class computers, their

large sizes are not a concern. The time for executing HyperNet to generate a MaskNet is

at most 2.13 seconds. Executing MaskNet to mask a sample on Jetson Nano and Pixel4

just takes tens of milliseconds at most, representing low overheads.

3.3.5 A Simple Case Study on MNIST

As the MNIST dataset facilitates visualization, it is used as a starting and simple

case study. MNIST consists of 60,000 training samples and 10,000 testing samples. Each

sample is a 28 × 28 image showing a handwritten digit. The pixel value is normalized

to [0, 1]. A convolutional neural network (CNN) is designed as the InferNet. The CNN

consists of two convolutional layers with max pooling, three dense layers with Rectified

Linear Unit (ReLU) activation, and a softmax function to generate the classification

result. The test accuracy of the InferNet on raw testing samples is 98.7%. The MaskNet

adopts an MLP architecture with a single hidden layer consisting of 32 neurons. There are

25,120 trainable parameters between the input and hidden layers, and 25,872 trainable

parameters between the hidden and output layers. Thus, HyperNet’s output consists

of two parts corresponding to the above two groups of parameters. Fig. 3.5 shows the

HyperNet’s architecture.

The training samples including labels are used by ISP to build InferNet. The training

samples excluding labels are used by PSP to build HyperNet in collaboration with ISP

according to the SAL protocol. To evaluate a MaskNet generated by HyperNet, all test

samples are fed to the MaskNet-InferNet pipeline and measure the test accuracy. Since

our focus is to understand the impact of MaskNet on the inference, there is no need to
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Fig. 3.5: HyperNet architecture.
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Fig. 3.6: Impact of PriMask on MNIST test accuracy and privacy protection. _ is
adversarial learning factor (_ = 0 means that adversarial learning is not enabled).
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(a) Original (b) Masked
(_=0)

(c) Inverted
(_=0)

(d) Masked
(_=0.6)

(e) Inverted
(_=0.6)

Fig. 3.7: Original, masked, reconstructed samples. (c) and (e) show ISP’s reconstructions
with the smallest MSEs when adversarial learning factor _ is 0 and 0.6.

simulate the system by assigning disjoint portions of the test dataset to all mobiles. This

evaluation methodology is followed throughout this chapter.

Impact of PriMask on InferNet accuracy: The HyperNet is used to generate MaskNets

for 100 mobiles. First, the InferNet’s test accuracies are evaluated when the 100 MaskNets

are used. Fig. 3.6(a) shows the cumulative distribution functions (CDFs) of test accura-

cies when the adversarial learning factor _ = 0 and _ = 0.6. When _ = 0, the adversarial

learning of SAL is not enabled. In this case, the InferNet’s test accuracies corresponding

to the 100 MaskNets are mostly within (95.5%, 97.6%), with an average value of 97.2%.

When _ = 0.6, the test accuracies are mostly within (91.5%, 95.9%), with an average

value of 94.5%. Compared with the original test accuracy of 98.7%, PriMask results in

average test accuracy losses of 1.5% and 4.2%, when the adversarial learning is disabled

and enabled, respectively. This chapter will show shortly that the adversarial learning

enhances the privacy protection. Therefore, there is a trade-off between maintaining test

accuracy and preserving privacy.

Resilience against mobile-ISP collusion: For this MNIST example, this chapter only

consider the privacy threat of inversion attack. Suppose one of the 100 mobiles colludes

with ISP. The MSEs and SSIMs of the inversion attack on the non-colluding mobiles are

measured. MSE and SSIM are complementary in characterizing the privacy loss caused by

the inversion attack. MSE measures the average pixel-wise difference between the original

and reconstructed samples. However, MSE falls short of characterizing their correlation.

SSIM, which is a perceptual metric quantifying quality degradation of reconstructed

image, captures the correlation. Fig. 3.6(b) shows the CDFs of the MSEs when _ = 0

and _ = 0.6. The vertical line in Fig. 3.6(b) shows the inversion MSE for the colluding
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mobile when _ = 0, which is 0.71. The inversion MSEs for the non-colluding mobiles are

distributed from 0.76 to 1.25, larger than that for the colluding mobile. When adversarial

learning is not adopted (i.e., _ = 0), the inversion MSEs for all the non-colluding mobiles

are higher than that of the colluding mobile. When adversarial learning is adopted with

_ = 0.6, the inversion MSEs of the non-colluding mobiles are dispersed in a much wider

range of 1.77 to 2,630, larger than the MSEs when _ = 0. Fig. 3.6(c) shows the CDFs of

SSIMs when _ = 0 and _ = 0.6. Note that the maximum value of SSIM is 1, indicating the

highest structural similarity. From Fig. 3.6(c), the SSIMs when _ = 0.6 are smaller than

those when _ = 0, suggesting that adversarial learning reduces the structural similarity.

Fig. 3.7 shows the original and masked samples and the ISP’s inversion results with the

smallest MSE for a non-colluding mobile when _ = 0 and _ = 0.6. These samples show

that the adversarial learning is effective in strengthening the privacy protection against

the collusion-based inversion attack.

The existing neural network masking approaches [63–67] designed to address external

eavesdroppers are vulnerable to the inversion attack and private attribute extraction after

the curious ISP obtains the MaskNet via collusion. The effect of inversion as a result of

collusion has been shown in §3.2.2. Due to the basic difference in the resilience against

collusion, this chapter does not compare PriMask with these neural network masking

approaches in evaluation.

3.4 Human Activity Recognition

Human activity recognition (HAR) with the data from the inertial measurement

units (IMUs) of a user’s mobile is a basic building block of mobile sensing applications

for human-computer interaction, human behavior characterization, and smart health.

However, IMU data may contain private information related to identity, gender, and

age [79, 80]. In this section, PriMask is applied to an HAR system to counteract both

the inversion attack and private attribute extraction.

3.4.1 HAR Dataset, InferNet, and HyperNet

A public dataset [81] is used which is collected from 30 human volunteers performing

six types of daily activities (walking, walking upstairs, walking downstairs, sitting, stand-

40



Chapter 3. PriMask: Cascadable and Collusion-Resilient Data Masking for Mobile
Cloud Inference

ing, and laying). Each volunteer carried a waist-mounted smartphone for recording the

accelerometer and gyroscope data. The recorded data include 3-axial linear acceleration

with/without gravity and 3-axial angular velocity sampled at 50 sps. Thus, each record

has nine components. The record traces are pre-processed by noise filters and then ar-

ranged in sliding windows of 2.56 seconds with 50% overlap. The trace within a window

is referred to as a data sample. Thus, each data sample is a tensor sized 9 × 1 × 128.

Each data sample has an activity label. The dataset contains 10,299 data samples that

are partitioned into the training and testing subsets by 7:3. Each data sample also has a

volunteer identity label to indicate which volunteer that the sample was collected from.

The identity is regarded as the private attribute.

A CNN InferNet is designed, consisting of two convolutional layers with max pooling,

three dense layers with ReLU activation, and softmax function. The first convolutional

layer admits a 1,152-dimensional vector flattened from the data sample tensor and applies

32 1 × 9 convolution filters. The second convolutional layer applies 64 1 × 9 filters. The

three dense layers have 1,000, 500, and 6 neurons. To avoid overfitting, dropout is

adopted on dense layers. The test accuracy of the trained InferNet on raw data samples

is 92.5%.

The MaskNet adopts a two-layer MLP architecture. For both the input and output

layers, the number of neurons is 1,152. The middle layer has 200 neurons. There are

230,600 trainable parameters between the input and middle layers, and 231,552 between

the middle and output layers. The HyperNet adopts a similar architecture as shown in

Fig. 3.5, with slight modifications on the number of the neurons.

3.4.2 Evaluation Results for HAR

Three HyperNets are trained. For the first HyperNet, adversarial learning is disabled

(i.e., _ = 0). Therefore, this HyperNet is agnostic to the type of privacy attack. The

other two HyperNets are adversarially trained to counteract the inversion attack (with

_ = 0.3) and private attribute extraction (with _ = 0.1), respectively. By default, each

HyperNet is used to generate 100 MaskNets for evaluation. 100,000 MaskNets are also

generated to evaluate scalability of PriMask.
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Fig. 3.8: Impact of PriMask on HAR test accuracy and privacy protection. Legends
denoted by ‘r’ and ‘p’ are for HyperNets adversarially trained with inversion attack and
private attribute extraction, respectively.

Table 3.2: Statistics of InferNet’s test accuracies across 100,000 MaskNets (_ = 0.1;
AttackNet = ExtNet).

Post-generation validation test accuracy range mean

Not applied (0.52, 0.90) 0.87
Applied (0.80, 0.90) 0.88

3.4.2.1 Impact of PriMask on InferNet accuracy

Fig. 3.8(a) shows the CDF of the InferNet’s test accuracy corresponding to the three

HyperNets. The test accuracies are distributed within (80%, 90%). The average test

accuracies for the three CDFs are 87.6%, 87.0%, 87.5%. Therefore, on average, there are

accuracy drops of 5% to 5.5%.

This section further evaluates PriMask’s scalability in terms of InferNet accuracy.

100,000 MaskNets are generated using the HyperNet adversarially trained against private

attribute extraction with _ = 0.1. The first row of Table 3.2 summarizes InferNet’s test

accuracies across all MaskNets. The mean value of the test accuracies (i.e., 87%) remains

at the same level as in Fig. 3.8(a). This result is supportive of PriMask’s scalability in

terms of InferNet accuracy. However, a few MaskNets lead to low InferNet accuracy of

down to 52%. Less than 2% of all the MaskNets lead to InferNet accuracy lower than

80%. This suggests a long-tail distribution of InferNet’s accuracies across the MaskNets.
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To avoid outlier MaskNets, a post-generation validation process is applied. Specifically,

for each generated MaskNet, the PSP uses a small validation dataset and works with the

ISP to measure the InferNet’s test accuracy. The PSP regenerates the MaskNet until the

InferNet’s test accuracy exceeds a passing threshold. Only the validated MaskNets are

released to mobiles. The second row of Table 3.2 summarizes the results if the validation

is applied, where PSP’s validation dataset includes 100 samples and passing threshold is

80%. The average test accuracy increases to 88%. In addition, outlier MaskNets are not

released.

3.4.2.2 Resilience against a single colluding mobile

A system of 100 mobiles is considered and one of them colludes with ISP. Fig. 3.8(b)

shows the CDFs of MSEs achieved by InvNet for non-colluding mobiles when the Hyper-

Net is trained without or with adversarial learning. The vertical line represents the inver-

sion MSE (i.e., 0.02) for the colluding mobile when _ = 0. The MSEs for non-colluding

mobiles are higher than that for the colluding mobile. In addition, when adversarial

learning is applied, MSEs are larger.

Fig. 3.8(c) shows the CDF of the attack success rate (ASR), i.e., the accuracy of the

extracted private attribute, achieved by ExtNet on raw IMU data and masked data from

non-colluding mobiles. The two CDFs are results for the HyperNets with and without

adversarial learning against ExtNet. The vertical line represents ASR on raw IMU data

(i.e., 84%). Note that since the data samples are collected from 30 volunteers [81], the

random guessing strategy yields an ASR of 1/30 = 3.3%. The 84% ASR suggests that

the IMU data contains abundant information regarding user identity. When adversarial

learning is applied, the CDF is higher than that without adversarial learning. This

shows that adversarial learning is effective in reducing ASR. The average ASRs with and

without adversarial learning are 28.3% and 17%, respectively. Although MaskNets under

the setting of _ = 0.1 cannot reduce ASR to the random guessing level, they have already

achieved significant reductions in ASR compared with the case without private attribute

protection. By setting larger _, the ASRs for non-colluding mobiles will further decrease.

But InferNet’s accuracy will decrease too.

The three subfigures of Fig. 3.9 show the traces of the raw and ISP’s reconstructed

data for the first axis of linear acceleration, and the first dimension of the masked data,
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(a) HyperNet trained without adversarial learning, i.e., _ = 0
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(b) HyperNet trained against inversion attack (_ = 0.3)
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(c) HyperNet trained against private attribute extraction (_ = 0.1)

Fig. 3.9: Traces of raw and ISP’s reconstructed data for the first axis of linear acceleration,
as well as the first dimension of masked data for a certain non-colluding mobile. The
ground truth human activity is standing.

44



Chapter 3. PriMask: Cascadable and Collusion-Resilient Data Masking for Mobile
Cloud Inference

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

#1 #2 #3 #4

A
S

R

(a) ASR vs.
ExtNet

 0

 0.1

 0.2

 0.3

1 2 4 10 40 100 200 300 400 500 600 700 800

A
S

R

(b) ASR vs. # of colluders

Fig. 3.10: Impact of ISP’s ExtNet architecture and number of colluding mobiles on ASR.
In (a), ExtNet#1 is also the architecture used by PSP in SAL. Whiskers of an error bar
represent maximum and minimum.

for a certain non-colluding mobile adopting the three HyperNets, respectively. For linear

acceleration, the peaks are salient features. From Fig. 3.9, the masked traces do not have

salient peaks. In Fig. 3.9(a), without adversarial learning, the reconstructed trace still

pronounces peaks at the same times of the original peaks. In Fig. 3.9(b), with adversarial

learning, the reconstructed trace no longer pronounces peaks at the same times of the

original peaks, suggesting better protection against inversion attack.

Next, the impact of the ExtNet architecture used by ISP is investigated on ASR of

private attribute extraction. A system of 1,000 mobiles is considered and one of them

colludes with ISP. The HyperNet adversarially trained against ExtNet with _ = 0.1 is

used to generate MaskNets. Four ExtNet architectures are designed to be used by ISP,

which are illustrated as:

• ExtNet#1: C32-C64-D1664-D1000-D500-D30-softmax

• ExtNet#2: C32-C64-C128-D1152-D500-D30-softmax

• ExtNet#3: D1152-D100-D50-D30-softmax

• ExtNet#4: D1152-D500-D100-D30-softmax

where C= represents a convolutional layer with = filters followed by max pooling, D=

represents a dense layer of = neurons with ReLU activation. The ExtNet#1 architecture

is identical to that used by the PSP’s adversarial learning. In Fig. 3.10(a), each error

bar shows the average, maximum, minimum of the ASRs across the 999 non-colluding

mobiles when ISP adopts a certain ExtNet architecture. No ExtNet architecture shows

clear advantage for ISP in terms of average ASR. This suggests that the resilience against

collusion is insensitive to the ExtNet architecture used by the ISP.
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3.4.2.3 Resilience against multiple colluding mobiles

A system of 1,000 mobiles is considered and the number of mobiles colluding with ISP

varies. For a certain set of colluding mobiles, to build the training dataset for constructing

ExtNet, ISP feeds each original training sample to all colluding mobiles’ MaskNets to

obtain multiple samples for training ExtNet. Thus, the ISP’s trained ExtNet is expected

to address all colluding mobiles’ MaskNets. Fig. 3.10(b) shows the error bars of non-

colluding mobiles’ ASRs versus the number of colluding mobiles. While the average ASR

exhibits an increasing trend when the number of colluding mobiles is lower than 10, it

becomes flat at around 20% when the number of colluding mobiles is up to 800. Recall

that, without PriMask’s protection, ASR is up to 84% (cf. §3.4.2.2). The above results

suggest that PriMask is resilient to increase of colluding mobiles. Note that the range

of ASR shows a decreasing trend with the number of colluding mobiles. This is partly

due to decreasing number of non-colluding mobiles for generating the ASR statistics (i.e.,

minimum/maximum).

3.5 Urban Environment Crowdsensing

The data collected in a city-wide experiment that involves over 10,000 school students

is studied in our city to understand urban environment in a crowdsensing manner.1 In the

experiment, each participant carries a wearable device on a neck lanyard which integrates

several sensors to record the surrounding environment conditions of the participant. The

sensor measurements are transmitted opportunistically to a central cloud portal through

over 18,000 Wi-Fi hotspots deployed across our city. On this crowdsensing platform,

an urban environment crowdsensing (UEC) application is developed that classifies the

ambient conditions of participants and identifies those which may result in discomfort

for human beings. The potential of location leakage are investigated and apply PriMask

to protect participants’ location privacy in such a circumstance.

1Ethical approvals for the city-wide experiment were obtained. This work only uses anonymized
data from the experiment.
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3.5.1 Dataset, InferNet, ExtNet, and PriMask

The dataset consists of 640,000 samples. Each sample includes five sensor readings

of light intensity, noise level, atmospheric pressure, ambient temperature, and body-

reflected temperature. Each sample is geotagged using the location information inferred

from the wearable device’s nearby Wi-Fi hotspots. To build the UEC application, the

five sensor readings are used. To investigate the potential location privacy leakage, the

correlation is studied between the five sensor readings and the geotags. The city-wide

experiment collected geotags for ground truth only. After the privacy-preserving UEC

application is developed and deployed, geotags are no longer needed.

The wearable device used in the experiment does not support the participants to key

in their real-time comfort feelings. In fact, requesting the participants to continuously or

frequently provide feedback is impractical. Thus, several first principles are followed to

generate the ground truth information regarding the discomfort level of the environment

condition. The procedure is as follows. First, each sensor reading is normalized to [0, 1].
Then, the following three scoring functions is applied on the normalized sensor readings

to generate discomfort scores: 31(G) = G, 32(G) = 1 − G, and 33(G) = 4 · (G − 0.5)2. As

human discomfort in general increases with noise level, 31(G) is applied to score noise

level. In the climate zone of our city, as low atmospheric pressure is in general positively

correlated with human discomfort, 32(G) is applied to score atmospheric pressure. As the

light intensity, ambient temperature, and body-reflected temperature should be in their

respective proper ranges, the quadratic function 33(G) is applied with the minimum (i.e.,

the least discomfort) at G = 0.5 on them.

Lastly, the five scores is sum up to obtain a final score to characterize the over-

all human discomfort. The users with high discomfort scores may need attention and

preventative actions.

The private attribute labels are generated as follows. First, the :-means algorithm is

applied with : = 10 to cluster the data’s geotags into ten zones. The zone ID is viewed as

the private attribute. However, the numbers of samples in the clusters are imbalanced.

To simplify the presentation of the evaluation results, the data is resampled to ensure

class balance. The re-sampling generates a training dataset of 60,000 samples (i.e., 6,000
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samples in each zone) and a testing dataset of 4,481 samples (i.e., about 448 samples in

each zone).

Transmitting the participants’ data to the cloud portal is preferred, because it sup-

ports various posterior data analytics including UEC. If raw data is transmitted, the

scoring functions can be applied directly. However, to admit masked data, a regression

InferNet is needed to approximate the sum of the scoring functions. An MLP is designed

with three hidden layers as the InferNet, which have 10, 20, and 10 neurons with ReLU

activation, respectively. The output layer is a single neuron giving the predicted discom-

fort score. The test accuracy is used to characterize the performance of the InferNet.

Specifically, if the difference between the predicted score and the ground truth is less than

0.5 (i.e., 10% of the maximum discomfort score), the prediction is regarded as correct.

The trained InferNet achieves a test accuracy of 99.2% on the raw testing data.

Then, an ExtNet is trained using the training data and the associated zone IDs.

The ExtNet has two hidden layers, with 200 and 50 neurons using ReLU activation,

respectively. It has an output layer with 10 neurons corresponding to the 10 zones. On

the raw testing data, the ExtNet’s ASR is 42%. As the strategy of randomly guessing

the zone has 10% ASR only, the ExtNet’s 42% ASR suggests that the sensor readings

leak information regarding the participants’ locations.

The MaskNet is an MLP with a single hidden layer. The input, hidden, and output

layers have five neurons each. The MaskNet has 60 trainable parameters. The HyperNet

adopts a similar architecture as shown in Fig. 3.5, with minor modifications on the

number of neurons for MaskNet compatibility.

3.5.2 Evaluation Results for UEC

Three HyperNets are trained with the following settings: 1) _ = 0; 2) _ = 0.2 against

inversion attack; 3) _ = 0.1 against private attribute extraction. Fig. 3.11(a) shows

the CDFs of the test accuracies when the three HyperNets are used. The average test

accuracy for the first and the second HyperNets are 98.3% and 96.2%, respectively. Thus,

compared with the test accuracy obtained on raw testing data (i.e., 99.2%), there are

0.9% and 3% accuracy drops. When the third HyperNet is used, the average test accuracy

drops to 80.1%. This is because _ = 0.1 is an aggressive setting against private attribute
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Fig. 3.11: Impact of PriMask on UEC test accuracy and privacy protection. Legends
denoted by ‘r’ and ‘p’ are for HyperNets adversarially trained with inversion attack and
privacy extraction.

extraction. This issue is presented along with the achieved privacy protection strength

shortly.

Suppose a mobile colludes with ISP. Fig. 3.11(b) shows the CDFs of inversion MSEs

when the first and the second HyperNets are used. The adversarial learning improves

resilience against inversion attack in the presence of collusion. Fig. 3.11(c) shows the

CDFs of ASRs when the first and the third HyperNets are used. When no adversarial

learning (i.e., _ = 0) is applied, PriMask reduces ASR from the original 42% to 14.2%

on average. As the 14.2% ASR is close to its lower bound of 10%, intuitively, more data

utility will be sacrificed to further reduce ASR. Thus, when _ = 0.1 that produces an

average ASR of 11%, significant test accuracy drops is observed in Fig. 3.11(a). Smaller

_ settings can restore the test accuracy, while the resulting average ASRs will be within

(11%, 14.2%), which are satisfactory.

3.6 Driver Behavior Recognition

In U.S., one in five car accidents is caused by a distracted driver [82]. Thus, using

smartphone to detect driver’s engagement in distracted behaviors is useful. To incen-

tivize drivers’ participation, the car insurance companies may provide premium discounts

according to the monitoring results. To facilitate the design of driver behavior recogni-

tion (DBR), an insurance company initiated a competition [83] by providing a dataset of
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images captured in cars regarding drivers’ behaviors. In this section, a CNN is trained

based on the dataset . From our implementation, the CNN is heavy (226 MB) and in-

appropriate for local execution on phones. If it runs in the cloud, transmitting the raw

images to the cloud inevitably incurs privacy concerns. Thus, in this section, PriMask is

applied to design privacy-preserving cloud-based DBR.

3.6.1 DBR Dataset and System Design

The dataset consists of 22,424 grayscale images, each sized 240 × 240. Each sample

has a driver behavior label (in 10 classes) and driver identity as a private attribute label

(in 26 classes). Examples of the driver behavior include safe driving, drinking, etc. The

dataset is partitioned into training samples and testing samples by following a ratio of

8:2.

DBR is a complex task. A 32-layer CNN architecture described in [84] is imple-

mented . Specifically, the CNN consists of 6 groups of convolutional, ReLU, and batch

normalization, max pooling, and dropout layers, followed by 3 dense layers with ReLU,

batch normalization, and dropout. The CNN’s test accuracy on raw testing samples is

98.46%. It consists of more than 59 million parameters and requires 226 MB memory

space. Thus, this CNN is heavy for smartphones. Continuously running it on smart-

phone drains battery quickly. Thus, running it in the cloud is preferred. The overhead

for the phone to transmit the images to the cloud is low. Assuming the phone records

an image every five seconds and no image compression is applied, the phone only needs

a bandwidth of 92 kbps to sustain the transmission, which is little for today’s broadband

cellular connectivity.

The MaskNet uses a two-layer MLP architecture. For both the input and output

layers, the number of neurons is 57,600. The middle layer has 120 neurons. The MaskNet

has 13.9 million parameters and requires 53.61 MB memory space. Thus, it is 7x smaller

than InferNet in terms of memory usage. Moreover, MaskNet’s dense layers require much

less compute time than InferNet’s convolutional layers. HyperNet architecture is similar

to Fig. 3.5, with minor changes on neuron numbers for MaskNet compatibility.
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Fig. 3.12: Impact of PriMask on DBR accuracy & privacy.

3.6.2 Evaluation Results for DBR

A HyperNet is trained with _ = 0. As this HyperNet achieves good privacy preser-

vation as shown shortly and adversarial learning often requires more training epochs,

adversarial learning is omitted. Fig. 3.12(a) shows CDF of the test accuracies corre-

sponding to all MaskNets. The average accuracy is 93.4%. Compared with that on the

raw data (i.e., 98.46%), there is an accuracy drop of 5.1% on average.

Suppose a mobile colludes with ISP. As shown in Fig. 3.12(b), the ISP achieves

an inversion MSE of 14,069. This MSE is much larger than those seen for the MNIST

example in §3.3.5, because the MNIST and DBR samples have different pixel value ranges

(i.e., [0, 1] vs. [0, 255]). Fig. 3.12(b) also shows the CDF of the inversion MSEs for the

non-colluding mobiles. Such MSEs are distributed in a wide range from 16,429 to 556,000,

with mean and median of 75,484 and 31,304, respectively. Fig. 3.13 shows an original

sample in subfigure (a), a non-colluding mobile’s masked data in (b), and ISP’s inversion

results for two non-colluding mobiles in (c) and (d). The inversion MSEs of Fig. 3.13(c)

and (d) are 28,886 and 16,429, which are smaller than the average MSE and the smallest

MSE among the non-colluding mobiles, respectively. Thus, Fig. 3.13(d) is the worst

case for the non-colluding mobiles. However, useful information can not be observed,

specific to the original sample in Fig. 3.13(a). In this section, onlya priori information

is observed that is applicable to the whole dataset, e.g., rough contours of a car window

and a driver. Such a priori global information of the DBR application should not be

viewed as a particular driver’s privacy. In fact, the ISP can generate an image similar to
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(a) Original (b) Masked (c) Inversion (d) Inversion

Fig. 3.13: Original, masked, reconstructed samples. The inversion MSE for (d) is the
smallest among all non-colluding mobiles, i.e., this example is the worst case for non-
colluding mobiles. Only a priori global information of the dataset (e.g., rough contours
of car window and driver) can be seen from reconstructed samples, which are not specific
to a certain driver and thus not private. In fact, ISP can generate an image similar to
(d) by averaging all training samples.

Fig. 3.13(d) by averaging all training samples. The example shown in Fig. 3.13 suggests

that the HyperNet achieves good privacy preservation against the inversion attack.

PriMask’s resilience against private attribute extraction in the presence of collusion

is also evaluated. ExtNet adopts the same architecture as InferNet, except that the last

layer has 26 neurons corresponding to the volunteers. On raw data, ExtNet achieves

99.2% ASR. Fig. 3.12(c) shows the ASRs based on raw data and the colluding mobile’s

masked data (i.e., 84.4%), as well as CDF of ASRs for non-colluding mobiles. The mean

ASR for non-colluding mobiles is 14.8%. Thus, PriMask significantly reduces the attack

effectiveness.

3.7 Discussions

Composite privacy threats: In this chapter, the inversion attack and private attribute

extraction are mainly handled. The SAL method can be extended to jointly address

multiple privacy attacks. Specifically, the composite loss function in Eq. (3.2) can incor-

porate multiple attack losses (i.e., inversion MSE and ASRs regarding multiple private

attributes). During the adversarial learning phase, an InvNet and multiple ExtNets can

be trained against a temporary MaskNet. The evaluation of this extended SAL is left to

future work.
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Validated privacy protection: In §3.4.2.1, the section presented a post-generation vali-

dation process to check the quality of a generated MaskNet in terms of InferNet accuracy.

Similarly, this chapter can also check in terms of privacy protection against potential

mobile-ISP collusion. Now, the private attribution extraction is used as an example to

discuss this. Two MaskNets are conflicting if the collusion between any of them and the

ISP leads to ASR against the other MaskNet higher than a passing threshold. The ASR

can be measured using a validation dataset and the two MaskNets’ respective ExtNets

trained by the PSP. When generating the (= + 1)th MaskNet, the PSP regenerates the

candidate until it does not conflict with any of the previously released = MaskNets. Now,

this section analyzes the computation complexity of the above validation process. As-

sume that the probability that any two freshly generated MaskNets are conflicting is ?

and the conflict statuses of any two MaskNet pairs are independent. Then, the expected

number of generation processes needed for the (= + 1)th MaskNet is 1
(1−?)= . Although

the validation process is not scalable in general due to the exponential complexity, it can

support a large enough system depending on the needed level of privacy protection. For

instance, for the HAR application, the ASR on the raw IMU data is 84%. By setting the

ASR passing threshold to 58%, the validation process enables the system with PriMask

to provide privacy protection that is validated and better than the system without Pri-

Mask. From our measurements, the corresponding conflict probability is about 0.01. As

the time for generating an HAR MaskNet is 2.3 ms, if the tolerable validation time is one

minute, the validation can support 1,011 mobiles.

Privacy guarantee: The neural network masking approach belongs to a broader cat-

egory of instance encoding. The formal analysis in a recent study [73] has given the

theoretical limits of instance encoding in protecting privacy under the notation defined

by distinguishing attack. However, the privacy guarantee of instance encoding under the

notations of inversion attack and private attribute extraction is still an open problem.

Despite this uncertainty, instance encoding has been increasingly used in recent ap-

proaches for resource-constrained devices [35,36,63–67]. This can be due to the practical

limitations of other two families of approaches despite their theoretical guarantees [73]:

cryptographic techniques (including multiparty computation and homomorphic encryp-

tion) incurs large computation and communication overheads; differential privacy is typi-
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cally achieved with high utility losses. Nevertheless, the theoretic limits of neural network

masking against inversion attack and private attribute extraction deserve future research.

3.8 Summary

This chapter presented PriMask, a cascadable and collusion-resilient data masking

approach for mobile devices to use the cloud inference services. In PriMask, the mobile

only needs to execute a small-scale neural network called MaskNet to mask the inference

data and then sends the result to the cloud. This helps preserve certain private informa-

tion contained in the inference data. A split adversarial learning method is designed to

train a neural network used to generate MaskNet for many mobiles. The heterogeneity of

MaskNets provides desirable resilience to the potential collusion between any mobile and

the cloud. PriMask is applied to three mobile sensing tasks of human activity recogni-

tion, urban environment crowdsensing, and driver behavior recognition. The results show

PriMask’s good generalizability and effectiveness in preserving privacy while maintaining

the cloud inference accuracy.
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Chapter 4

On Lightweight Privacy-Preserving
Collaborative Learning for Internet
of Things by Independent Random
Projections

4.1 Background and Introduction

The recent research advances of machine learning have led to performance break-

throughs of various tasks such as image classification, speech recognition, and language

understanding. The drastically increasing amount of data generated by the Internet of

Things (IoT) will further foster machine learning performance and enable new applica-

tions in various domains.

In particular, collaborative learning, which builds a machine learning model (e.g., a

supervised classifier) based on the training data contributed by many participants, is a

desirable and empowering paradigm for smarter IoT systems. By leveraging on the in-

creased volume of training data and coverage of data patterns, collaborative learning will

The work in this chapter has been published as Linshan Jiang, Rui Tan, Xin Lou and Gu-
osheng Lin. On Lightweight Privacy-Preserving Collaborative Learning for Internet of
Things by Independent Random Projections. ACM Transactions on Internet of Things
(TIOT). vol. 2, no. 11, pp 1–32. May 2021. A preliminary version of this work is published
by the same authors in The 4th ACM/IEEE International Conference on Internet of Things
Design and Implementation (IoTDI), April 16-18, 2019, Montreal, Canada.
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approach the intelligence of a crowd and improve the learning performance beyond that

achieved by any single participant alone. Moreover, a resource-rich learning coordinator

(e.g., a desktop-class edge device or a cloud computing service) allows the execution of

advanced, compute-intensive machine learning algorithms to capture deeper structures

in the aggregated data, whereas the participants (e.g., IoT objects) are often resource-

constrained and insufficient for intensive computation. By contributing training data,

the individual participants will benefit from the improved machine intelligence in return.

However, the data contributed by the participants may contain privacy-sensitive infor-

mation. Various web services (e.g., webmail and social networking) generally collect and

analyze the user data in the raw forms. Thus, users risk their privacy due to both inad-

vertent or malicious actions by the service provider and due to targeted cyber-attacks by

external parties. This risk has been evidenced by several recent large-scale user privacy

leak incidents [85–87].

Data anonymization can mitigate the concern; but it is inadequate for privacy preser-

vation, because cross correlations among different databases may be used to re-identify

data [88]. Moreover, the correlations between different properties of anonymous indi-

viduals (e.g., race, income, political views, etc.) can be exploited to identify people to

target for advertisement and advocacy. In the coming era of IoT with many smart ob-

jects penetrating into user’s private spaces and times, the current raw data collection

approach will only raise significant privacy concerns and may potentially violate rele-

vant laws such as the recent General Data Protection Regulation in European Union

and Personal Data Protection Act in Singapore. Therefore, to be successful, IoT-driven

collaborative learning applications must preserve privacy.

Privacy-preserving collaborative learning (PPCL) has received increasing research re-

cently under the enterprise settings, where the participants are entities with rich comput-

ing resources. The existing approaches can be broadly classified into two categories. The

first category of approaches [3, 89–92] follows the distributed machine learning (DML)

scheme, such that the participants need not transmit the training data to the coordinator.

Instead, the participants and the coordinator will exchange the parameters of machine

learning models. The recently proposed federated learning [3] is a type of DML. In the

second category of approaches [16,20,93], each participant applies the homomorphic en-

cryption on the data before being transmitted to the coordinator such that the training
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and inference computation can be performed on ciphertexts. However, for resource-

constrained IoT objects, these DML and data encryption approaches incur significant

and even prohibitive computation overhead. The DML will require the participants to

execute machine learning algorithms to train local models, which is often too compute-

intensive for IoT objects. Moreover, the iterative communication rounds of DML intro-

duce large communication overhead. Currently, the homomorphic encryption algorithms

are still too compute-intensive to be realistic for resource-constrained devices. Therefore,

these existing approaches are ill-suited or unpractical for the resource-constrained smart

objects beneath at the IoT edge.

This chapter studies the design and implementation of a PPCL approach that is

lightweight for resource-constrained participants, while preserving privacy against an

honest-but-curious learning coordinator. The coordinator can be a cloud server or a

resource-rich fog device, e.g., access points, base stations, network routers, etc. It pro-

poses to apply (1) multiplicative random projection at the resource-constrained IoT ob-

jects to obfuscate the contributed training data and (2) deep learning at the coordinator

to address the much increased complexity of the data patterns due to the random projec-

tion. Specifically, each participant uses a private, time-invariant but randomly generated

matrix to project each plaintext training data vector and transmits the result to the coor-

dinator. This chapter primarily focuses on Gaussian random projection (GRP), because

GRP gives several privacy preservation properties of (1) the computational difficulty for

the coordinator to reconstruct the plaintext without knowing the Gaussian matrix [94,95],

and (2) quantifiable plaintext reconstruction error bounds even if the coordinator obtains

the Gaussian matrix [94]. This chapter also considers other random projection matrices

such as Rademacher and binary matrices. From a system perspective, random projec-

tion is computationally lightweight and does not increase the data volume. Thus, random

projection is a practical privacy protection method suitable for resource-constrained IoT

objects. Regarding random projection’s impact on the design of the machine learning

algorithms, the projection can be viewed as a process of mapping the original data vec-

tors to some domain in which the data vectors in different classes are less separable. If

the original data vectors are readily separatable (that is, they are features), the inverse

or pseudoinverse of the random matrix can be considered as a linear feature extraction
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matrix. With the deep learning’s unsupervised feature learning capability, this inverse

matrix can be implicitly captured by the trained deep model.

To achieve robustness of the privacy preservation against the collusion between any

single participant and the curious learning coordinator, each participant should generate

its own projection matrix independently. However, this presents a challenge on the PPCL

system’s scalability with respect to the number of participants (denoted by #). Specifi-

cally, assuming that the training data samples for each class are horizontally distributed

among the participants, the number of data patterns for a class will increase from one

in the plaintext domain to # in the projection data domain. This increased pattern

complexity can be addressed by the strong learning capability of deep learning. Thus,

in the proposed PPCL approach, most of the computational workload is offloaded to the

resourceful coordinator in the fog or in the cloud. This is different from the existing

DML and homomorphic encryption approaches that introduce significant or prohibitive

compute overhead to the smart objects beneath at the IoT edge.

To understand the effectiveness of the GRP approach and its scalability with the

number of participants, this chapter conducts extensive evaluation to compare GRP

with several other lightweight PPCL approaches. The evaluation is based on four exam-

ple applications with data pattern complexity from low to high. They are handwritten

digit recognition, spam e-mail detection, free spoken digital recognition, and vision-based

object classification. The baseline approaches include various combinations between (1)

multiplicative GRP versus additive noisification for differential privacy (DP) at the par-

ticipants, and (2) deep neural networks (DNNs), including multilayer perceptron (MLP)

and convolutional neural network (CNN), versus support vector machines (SVMs) at the

coordinator. The results show that, for the handwritten digit recognition and spam e-mail

detection applications with low- and moderate-complexity data patterns, the proposed

GRP-DNN approach can support up to hundreds of participants without sacrificing the

learning performance much, whereas the GRP-SVM approach may fail to capture the

projected data patterns and the performance of the DP-DNN approach is susceptible

to additive noisification. The results of this chapter suggest that GRP-DNN is a prac-

tical PPCL approach for resource-constrained IoT objects observing data with low- or

moderate-complexity patterns. The learning performance and computation overhead of

GRP with the Rademacher and binary random projections are also compared.
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This chapter implements GRP-DNN, Crowd-ML [89] (a federated learning approach

based on shallow learning), and CryptoNets [20] (a homomorphic encryption approach)

on a testbed of 14 Raspberry Pi nodes. Experiments show that, compared with GRP-

DNN, Crowd-ML incurs 350x compute overhead and 3.5x communication overhead to

each Raspberry Pi node. Deep federated learning will only incur more compute overhead.

CryptoNets incurs 2.6 million times higher compute overhead to the Raspberry Pi node,

compared with GRP.

4.2 Preliminaries

4.2.1 Supervised Collaborative Learning

Supervised machine learning has two phases, i.e., the learning phase and the classi-

fication phase. The collaborative learning scheme is formally described as follows. The

trained classifier, denoted by ℎ(x|)), can classify a 3-dimensional data vector x ∈ R3 to

be one of a finite number of classes represented by a set C, where ) is the classifier param-

eter and R3 denotes 3-dimensional Euclidean space. The learning process determines the

parameter ) based on the training data. Let # denote the number of participants of the

collaborative learning. Let D8 denote a set of "8 training data samples generated by the

participant 8, i.e., D8 = {(x8, 9 , H8, 9 ) | 9 ∈ {1, ..., "8}, H8, 9 ∈ C}, where x8, 9 is the training data

vector and H8, 9 is the corresponding class label. For a training data sample consisting

of (x, H), denote by ; (ℎ(x|)), H) the loss function. The collaborative learning solves the

following problem to determine the optimal classifier parameter denoted by )∗:

)∗ = argmin
)

#∑
8=1

1

"8

"8∑
9=1

;
(
ℎ

(
x8, 9 |)

)
, H8, 9

)
+ _‖) ‖2, (4.1)

where the _‖) ‖2 is the regularization term , ‖ · ‖ represents 2-norm, and _ is a parameter

affecting the strength of the regularization. With )∗, the classification for a test data

sample x is to compute ℎ(x|)∗).
A simple approach is to collect all the plaintext training data to the coordinator and

solve Eq. (4.1). However, this approach raises the concern of privacy breach, as the raw

training data are generally privacy-sensitive. The problem of solving Eq. (4.1) without

threatening the participants’ privacy contained in D8, 8 = 1, . . . , #, is called PPCL.
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4.2.2 Random Gaussian Projection (GRP) and Other Random
Projections

This section reviews three random projection approaches: GRP, Rademacher random

projection, and binary random projection. Note that this chapter primarily focuses

on GRP. First, this chapter reviews two properties of GRP. Let R ∈ R:×3 represent a

random Gaussian matrix, i.e., each element in R is drawn independently from the normal

distribution N(0, f2). GRP has the following two properties [94]:

Property 1 For data vectors x1, x2 and their projections y1 = 1√
:f

Rx1, y2 = 1√
:f

Rx2,

the dot product and Euclidean distance between y1 and y2 are unbiased estimates of those

between x1 and x2, i.e., E
[
y
ᵀ
1 y2

]
= x
ᵀ
1 x2 and E

[
‖y1 − y2‖22

]
= ‖x1−x2‖22 . The estimation

error bounds are Var[yᵀ1 y2] ≤
2
:

and Var
[
‖y1 − y2‖22

]
≤ 32

:
.

Property 2 Given a Gaussian matrix instance R ∈ R:×3 where : < 3 and the projection

y = 1√
:f

Rx, the minimum norm estimate of x, denoted by x̂, is an unbiased estimate of x,

i.e., E [x̂] = x. The estimation error for the 8th element of x is Var[G8] = 2
:
G2
8
+ 1
:

∑
9 , 9≠8 G

2
9
.

Based on Property 1, the study [94] shows that a trained SVM classifier can be

transferred to classify the projected data. In a recent study [96], a random projection

layer that can be implemented by GRP is added to an MLP for dimension reduction.

Such design is also based on Property 1. However, the studies [94, 96] do not address

collaborative learning and privacy. The estimation error given by Property 2 will be used

in the later sections of this chapter to measure the degree of privacy protection provided

by the proposed approach.

Rademacher and binary matrices have also been used for random projections [97,98].

In a Rademacher random matrix, each element is either 1√
"

or − 1√
"

with a probability

of 0.5, where " is the number of rows in the matrix. In a binary random matrix, each

column of the matrix has ( ones and " − ( zeros, where ( is a small integer and " is

the number of rows. The position of the ( ones are uniformly distributed in a column.
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Fig. 4.1: A collaborative learning system.

4.3 Problem Statement and Approach

This section states the PPCL problem in §4.3.1 and presents the proposed indepen-

dent random projection approach in §4.3.2. §4.3.3 provides two illustrating examples for

insights into understanding the effect of GRP on training DNN-based classifiers. §4.3.4

discusses two other alternative approaches for lightweight PPCL and their limitations.

4.3.1 Problem Statement

This chapter considers a PPCL system with # resource-constrained participants and

an honest-but-curious coordinator with sufficient computation power. It is assumed that

the data distributed among the participants is homogeneous. Thus, the participants

will contribute data in the same format. Fig. 4.1 illustrates the system. During the

learning phase, the participants contribute training data samples to build a supervised

classifier. As discussed in §4.2.1, the training dataset D8 contributed by the participant

8 consists of "8 data vectors {x8, 9 | 9 ∈ {1, ..., "8}} and the corresponding class labels

{H8, 9 | 9 ∈ {1, ..., "8}}. As the learning process is often compute-intensive, most of the

learning computation should be accomplished by the coordinator. This chapter focuses

on addressing the problem of building an effective supervised classifier while protecting

certain privacy contained in the data vectors. Several aspects of the problems are now

discussed as follows.

The privacy concern regarding the data vectors is primarily due to the fact that the

data vectors may contain information beyond the classification objective in question.

61



Chapter 4. On Lightweight Privacy-Preserving Collaborative Learning for Internet
of Things by Independent Random Projections

For example, consider a PPCL system for training a classifier to recognize human body

activity (e.g., sitting, walking, climbing stairs, etc). The recognition is based on various

body signals (e.g., motion, heart rate, breath rate, etc) that are captured by wearable

sensors. However, the raw body signals can also be used to infer the health statuses of

the participants and even pinpoint which people have certain diseases.

This chapter adopts the following threat and privacy models.

Threat model: It consists of the following three aspects:

• Honest-but-curious coordinator: This chapter assumes that the coordinator

will honestly coordinate the collaborative learning process, aiming to train

the best supervised classifier. Thus, it will neither tamper with any data col-

lected from or transmitted to the participants. However, the coordinator is

curious about the participants’ private information contained in the training

data vectors. The coordinator may analyze the data received from the par-

ticipants to infer the participants’ privacy. For instance, the coordinator may

attempt to reconstruct and manually inspect the original data captured by

the participants.

• Potential collusion between participants and coordinator: This chapter assumes

that the participants are not trustworthy in that they may collude with the

coordinator in finding out other participants’ private information contained

in the data vectors. The colluding participants are also honest, i.e., they will

faithfully contribute their training data to improve the supervised classifier.

However, the colluding participants may reveal the details of the adopted

privacy-preservation approach to the coordinator. Thus, the design of the

PPCL system should maintain the privacy for a participant when any or all

of the other participants are colluding with the coordinator.

• No known input-output attack on non-colluding participants: This chapter

assumes that the coordinator cannot launch the known input-output attack

on the non-colluding participants due to the following reasons. In the known

input-output attack, the adversary can train an inverse neural network to

reconstruct the original data samples. First, the coordinator cannot access the
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original data stored at the participants. Second, in the PPCL approach, the

communication channel is merely used for uploading obfuscated data samples

and their labels. Thus, in the approach, there is no way for the coordinator

to obtain the original input of a non-colluding participant. This is different

from the approach [13] in which each participant also uses the communication

channel to respond to the coordinator’s queries by returning obfuscated public

data vectors. Without the known input-output attack, it is computationally

difficult (practically impossible) for the coordinator to meaningfully estimate

the projection matrix and reconstruct the original data vector [94, 95]. Note

that, as the participants apply independent Gaussian random projections,

the collusion between some participants and the curious coordinator will not

enable the known input-output attack on the non-colluding participants.

Privacy model: The raw form of each data vector contains the participant’s private

information (e.g., health status) and must be protected from snooping by the cu-

rious coordinator. The error in estimating the data raw form by the coordinator

can be used as a metric to measure the degree of privacy protection. Data form

confidentiality is an immediate and basic privacy requirement in many applications.

Four issues that are related to privacy protection and threat model are discussed in

what follows.

• Training data anonymization: This chapter aims to support anonymization of the

training data. That is, the coordinator should not expect to know the participant’s

identity for any received training data sample. Moreover, the coordinator cannot

determine whether any two training data samples are from the same participant.

To achieve the above anonymity, the training data samples can be transmitted in

separate sessions via an anonymous communication network [99]. Moreover, the

transmissions of the data samples from all participants can be interleaved ran-

domly, such that the coordinator cannot associate the data samples from the same

participant by their arrival times. Note that the training data anonymization re-

quirement is not mandatory, because the anonymous communication may incur
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large overhead for some resource-constrained IoT objects. However, the design

of the proposed PPCL approach will not leverage the participants’ identities to

support data anonymization.

• Label privacy: The class labels {H8, 9 | 9 ∈ {1, ..., "8}} may also contain information

about the participant. This chapter does not consider label privacy because the

participant willingly contributes the labeled data vectors and should have no ex-

pectation of privacy regarding labels. In practice, several means can be taken to

mitigate the concern of label privacy leak. First, the training data anonymization

mitigates the concern during the learning phase. Second, during the classification

phase, if the participant has sufficient processing capability to perform the classifi-

cation computation, the coordinator may send the trained model to the participant

for local execution. Existing studies have enabled the execution of deep models on

personal and low-end devices [100, 101]. Low-power inference chips (e.g., Google’s

Edge TPU [102]) will further enhance low-end devices’ capabilities in executing

classification models. Note that the studies [100, 101] and the inference chips are

not to support the much more compute-intensive training.

• Other privacy models: Differential privacy [103] aiming at achieving indistinguisha-

bility of different data vectors is another widely used quantifiable privacy definition.

However, as discussed in §4.3.4 and evaluated in §4.4, the additive noisification im-

plementation of differential privacy is ill-suited for PPCL.

• Tramer et al.’s work [104] focuses on the threat of model extraction and reversal

to duplicate the functionality of the model. Differently, this chapter focuses on

the threat from the coordinator on the participants’ data privacy. In the problem

formulation of this chapter, the deep model trained by the coordinator is also

available to the coordinator. Tramer et al.’s work is applicable to the external

threats that aims at extracting the coordinator’s model. Thus, their work is out of

the scope of this chapter.
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4.3.2 Gaussian Random Projection Approach

Existing DML and homomorphic encryption approaches incur significant computation

and communication overhead due to the many computation/communication rounds and

data volume swell. The §4.5 provides benchmark results to show this. Thus, these ap-

proaches are not promising for resource-constrained participants. This section describes

a GRP-based approach that is computationally lightweight and communication efficient

for the participants. The overview of the proposed approach is presented as follows.

At the system initialization, each participant 8 independently generates a random

Gaussian matrix R8 ∈ R:×3, where 3 is the dimension of the data vector. During the

learning phase, the participant 8 keeps R8 secret and uses it to project all the training data

vectors. The participant 8 transmits the projected training dataset D8 = {R8x8, 9 , H8, 9 | 9 ∈
{1, ..., "8}, H8, 9 ∈ C} to the coordinator. After collecting all projected training datasets

D8, 8 = 1, . . . , #, the coordinator applies deep learning algorithms to train the classifier

ℎ(·|)∗). During the classification phase, the participant 8 still uses R8 to project the

test data vector x and obtains the classification result ℎ(R8x|)∗). As discussed in §4.3.1,

the classification computation can be carried out at the participant or the coordinator,

depending on whether the participant is capable of executing the trained deep model. In

the proposed approach, each participant independently generates its random projection

matrix to counteract the collusion between participants and coordinator. The two key

components of the proposed approach, i.e., GRP and deep learning on projected data,

are discussed in the following section.

4.3.2.1 Gaussian random projection

This work mainly considers Gaussian matrices. Specifically, each element of R8 is

sampled independently from the standard normal distribution [105]. The rationale of

choosing Gaussian matrices will be explained in §4.3.3.3. This chapter sets the row

dimension of R8 smaller than or equal to its column dimension, i.e., : ≤ 3. Thus, the

GRP can also compress the data vector. This chapter defines the compression ratio as

d = 3/:. The understanding regarding the admission of compression into the training

data projection is as follows. From the compressive sensing theory [106], a sparse signal

can be represented by a small number of linear projections of the original signal and
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recovered faithfully. Therefore, in the compressively projected data vector, the feature

information still exists, provided that the adopted compression ratio is within an analytic

bound [106]. In §4.4, the impact of the compression ratio d on the learning performance

is evaluated.

With GRP, if R8 is kept confidential to the coordinator, it is computationally difficult

(practically impossible) for the coordinator to generate a meaningful reconstruction of the

original data vector from the projected data vector [94,95]. Thus, GRP protects the form

of the original data. With sufficient pairs of input and output vectors, the coordinator

can train a well-designed deep neural network (e.g., the decoder of an autoencoder) to

reconstruct the raw forms of original data vectors. However, as discussed in §4.3.1, the

coordinator cannot launch the known input-output attack in this chapter’s considered

context. In the worst case where the coordinator obtains R8, the estimation error

given by Property 2 in §4.2.2 can be used as a measure of privacy protection. Random

projection has been used as a lightweight approach to protect data form confidentiality

in various contexts [107–110].

4.3.2.2 Deep learning on projected data

Feature extraction is a critical step of supervised learning. With the traditional

shallow learning, the classification system designer needs to handcraft the feature. As an

example, in the study [13], the system trains a regress function to recover the Euclidean

distance between any two projected samples as the feature. However, the training of

the regress function creates a privacy vulnerability. The proposed approach uses deep

learning to avoid involving feature engineering that can potentially introduce privacy

vulnerabilities. The emerging deep learning method [111] automates the design of feature

extraction by unsupervised feature learning, which is often based on a neural network

consisting of a large number of parameters. Thus, the deep model is often a tandem of

the feature extraction stage and the classification stage. For example, a convolutional

neural network (CNN) for image classification consists of convolutional layers and dense

layers, which are often considered performing the feature extraction and classification,

respectively.

The proposed approach utilizes the unsupervised feature learning capability of deep

learning to address the data distortion introduced by the GRP. A simple example system
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is now used to illustrate this. In this example, in which there is only one participant

and the projection matrix R is a square invertible matrix. Moreover, this example makes

the following two assumptions to simplify the discussion. First, it is assumed that a

linear transform 	 ∈ R 5×3 gives effective features of the data vectors, where 5 is the

feature dimension. That is, f = 	x is an effective representation of the data vector x

for classification. Second, it is assumed that 	 can be learned in the form of a neural

network by the unsupervised feature learning. The impact of the random projection on

the unsupervised feature learning is now discussed. After the projection, the data vector

becomes Rx. Moreover, the linear transform 	R−1 will be an effective feature extraction

method, since f =
(
	R−1

)
(Rx). It is reasonable to expect that the unsupervised feature

learning can also build a neural network to capture the linear transform 	R−1, similar to

the unsupervised feature learning to capture the 	 based on the plaintext training data

x. When the projection matrix is non-invertible, its pseudoinverse denoted by R+ [112]

can be used. As the Gaussian random projection matrix is most likely of full rank [113],

the linear transform 	R+ can be regarded as an effective feature extraction. Similarly,

it is reasonable to assume that the unsupervised feature learning can capture the linear

transform 	R+ by a neural network. As a result, the deep model trained using the

projected data can still classify future projected data vectors. The §4.3.3 will use a

numerical example to illustrate this.

The above discussion based on linear features provides a basis for us to understand

how the unsupervised feature learning helps address the distortion caused by the GRP. In

practice, effective feature extractions are generally non-linear mappings. Neural network-

based deep learning has shown strong capability in capturing sophisticated features be-

yond the above ideal linear features. This chapter will use multiple datasets to investigate

the effectiveness of deep learning to address the distortion caused by the GRP.

As discussed earlier, each participant independently generates a Gaussian matrix to

counteract the potential collusion between participants and the coordinator. However,

this introduces a challenge to deep learning, because the pattern for a class of projected

data vectors from # participants will be a composite of # different patterns. Thus,

intuitively, a deeper neural network and a larger volume of training data will be needed

to well capture the data patterns with increased complexity due to the participants’
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independence in generating their projection matrices. The participants’ independence

can also cause the following possible situation leads to classification errors: RDxD = RExE,

where xD and xE are respectively generated by participants D and E and belong to different

classes. However, the probability of the above situation is low, especially when the data

vectors are of high dimension. Instead, the overlaps between the distributions of any two

classes’ projected data vectors should receive attention. Fortunately, advanced machine

learning algorithms such as SVM and deep learning can learn the mapping from the space

of the input data in which the classes overlap to a different space possibly with higher

dimensions in which the classes are separated. This issue will be discussed in detail

with examples. Nevertheless, the more complex data patterns due to the independent

projection matrix generation do cause a challenge. This chapter conducts extensive

experiments to assess how well deep learning can scale with the number of participants,

compared with the traditional learning approaches.

4.3.3 Illustrating Examples

This section presents a number of examples to illustrate the intuitions discussed in

§4.3.2.

4.3.3.1 A 2-dimensional example

Consider a PPCL system with four participants (i.e., # = 4) to build a two-class

classifier. The original data vectors in the two classes follow two 2-dimensional Gaus-

sian distributions with means of [−2,−2]ᵀ and [2, 2]ᵀ, and the same covariance matrix of

[1, 0; 0, 1]. Fig. 4.2(a) shows the plaintext data vectors generated by the four participants.

From the figure, the plaintext data vectors of the two classes can be easily separated us-

ing a simple hyperplane. Each participant independently generates a Gaussian random

matrix. Figs. 4.2(b)-4.2(e) show the projected data vectors of each participant. It can

be seen that the patterns of the projected data vectors are different across the partici-

pants. Fig. 4.2(f) shows the mixed projected data vectors received from all participants.

Compared with Fig. 4.2(a), the pattern of the mixed projected data from all partici-

pants is highly complex. Moreover, no simple hyperplane can well divide the two classes.

Two other sets of the random projection matrices for all participants are also generated.
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(a) Original data (b) Participant 1 (c) Participant 2 (d) Participant 3

(e) Participant 4 (f) Coordinator (g) Coordinator (h) Coordinator

Fig. 4.2: Two-dimensional example. Original data vectors and projected data vectors
(red: class 0; blue: class 1). The ranges for the G and H axes are [−10, 10].

Figs. 4.2(g) and 4.2(h) show the mixes of all participants’ projected data vectors with

the two sets of random projection matrices, respectively. Similarly, the pattern of the

mixed projected data from all participants is highly complex.

Then, a classifier based on an MLP with two hidden layers of 30 and 40 rectified

linear units (ReLUs) is constructed, respectively. The input layer admits a 2-dimensional

data vector, whereas the output layer consists of two ReLUs. The final classification

result is generated using a softmax function based on the output layer’s ReLU values.

Moreover, an SVM classifier as a baseline approach is constructed. LIBSVM [114] is

used to implement the classifier. The SVM classifier uses the radial basis function (RBF)

kernel with two configurable parameters � and _. During the training phase, grid search

is applied to determine the optimal settings for � and _.

First, disjoint subsets of the original data is used as shown in Fig. 4.2(a) to train

and test the MLP and SVM classifiers. Both classifiers can achieve 99% test accuracy.

This shows that the MLP and the SVM are properly designed for the 2-dimensional data

vectors.
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Fig. 4.3: Test accuracy based on projected data vs. the number of participants.

Then, disjoint subsets of the randomly projected data shown in Fig. 4.2(f) is used to

train and test the MLP and SVM classifiers. Moreover, the number of participants in the

PPCL system is increased. Fig. 4.3 shows the test accuracy versus the number of par-

ticipants. It can be seen that the MLP classifier always outperforms the SVM classifier.

Moreover, the test accuracy decreases with the number of participants. This is because,

with more participants, the pattern of the projected data becomes more complex, intro-

ducing challenges to both MLP and SVM. The mean test accuracy difference between

MLP and SVM increases from 2% to 7%, when the number of participants increases from

4 to 20. This result is also consistent with the understanding that deep learning is more

effective in capturing complex patterns than traditional learning.

4.3.3.2 Impact of inter-class overlaps on learning performance

After the participants apply independent GRPs, the consolidated training samples

at the coordinator may have inter-class overlaps. A set of numerical experiments based

on the previous 2-class 2-dimensional example system is constructed to investigate the

impact of the inter-class overlaps on the learning performance.

For each set of the random projection matrices, the cumulative distribution function

(CDF) of the Euclidean distance between any two projected data vectors is computed

respectively from the two classes. The solid curves in Fig. 4.4(a) are the CDFs, each

corresponding to one set of the random projection matrices among the 20 sets. The

dashed curve shows the CDF of the Euclidean distance between any two original data
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Fig. 4.4: Impact of inter-class overlaps.

vectors respectively from the two classes. It can be seen that the solid curves are in

general below the dashed curve, which suggests that the GRPs likely disperse the two

classes in terms of inter-sample Euclidean distance.

Fig. 4.4(b) shows the consolidated data vectors after GRPs corresponding to the

highest solid CDF curve shown in Fig. 4.4(a). Among the 20 cases, the two classes

in the case shown in Fig. 4.4(b) are most overlapped. The inter-class overlap using a

metric called overlap rate is quantified. It is defined as the ratio of overlapped data

vectors to all data vectors. A data vector is overlapped if there are : data vectors of

different classes within a distance of A from the considered data vector. In this set of

experiments, : = 3, A = 0.01. Note that as the data vectors shown in Fig. 4.4(b) are

distributed in a 10×10 area, the distance threshold A = 0.01 is a stringent requirement on

the proximity of data vectors in defining overlap. Fig. 4.4(c) shows the ordered overlap

rates of the projected data in the 20 cases. The case shown in Fig. 4.4(b) has the largest

overlap rate, i.e., 0.705. For this most overlapped case, SVM and MLP achieve test

accuracies of 87.24% and 91.08%, respectively, which are still satisfactory. SVM projects

the overlapped distributions of the classes to a space with a higher dimension, such that

the higher-dimension data distributions of different classes can be separated by linear

planes. Compared with SVM, MLP can better handle the overlaps among the data

distributions of different classes. The above results show that, although different classes
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Fig. 4.5: Test accuracy based on projected data vs. the condition number.

may have overlapped areas in the projected data domain, advanced machine learning

algorithms such as SVM and MLP may still be able to differentiate the two classes.

4.3.3.3 A 10-dimensional example

Now, another example system is shown to understand the effect of deep learning’s

unsupervised feature learning capability in addressing the data distortion caused by the

random projection. This example is a PPCL system with only one participant (i.e.,

# = 1). The original data vectors in two classes follow two 10-dimensional Gaussian

distributions, with the [−2,−2, . . . ,−2]ᵀ and [2, 2, . . . , 2]ᵀ as the respective mean vectors,

and the 10-dimensional identity matrix as their identical covariance matrix.

In the discussions in §4.3.2.2, it is assumed that the projection matrix R is invertible

and the unsupervised feature learning tend to capture 	R−1. As learning algorithms are

based on numerical computation on the training data, an ill-conditioned matrix R will

impede efficient fitting of 	R−1. The subsection verifies this intuition by assessing the

learning performance of the single-participant PPCL system using different R matrices

with varying condition numbers. Specifically, by following a method described in [115],

the participant generates a random square matrix R that has a certain condition number

value. The condition number is defined as ‖R‖� ‖R+‖� [113], where R+ denotes the

pseudoinverse of R and ‖ · ‖� represents the Frobenius norm. Fig. 4.5 shows the test

accuracy of the MLP and SVM classifiers trained using data projected by R versus the

condition number of R. Note that a larger condition number means that the matrix is
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Fig. 4.6: The distributions of the condition number of Gaussian, Rademacher, binary
random matrices with dimension 28 × 28.

more ill-conditioned. The test accuracy decreases with the condition number, consistent

with the intuition.

4.3.3.4 Condition numbers of various projection matrices

§4.3.3.3 shows that the condition number affects the impact of the random projection

on the learning performance. This subsection compares the condition numbers of Gaus-

sian, Rademacher, and binary random matrices. The comparison will help understand

the superior learning performance of the GRP-based approach. In this section, the Gaus-

sian, Rademacher, and binary random matrices have an identical dimension of 28 × 28.

For each type of random matrix, 1,000 instances are generated and the distribution of

their condition numbers is investigated. Fig. 4.6 shows the distributions of the condition

numbers for the three types of random matrices. The condition number distributions of

Gaussian and Rademacher matrices are similar, while Rademacher’s distribution has a

longer tail. Specifically, the probability that a Rademacher matrix’s condition number is

within [104, 105] is 0.8%. In contrast, the corresponding probability of Gaussian matrix’s

condition number within same range is 0.5%. In addition, a binary random matrix can

be extremely ill-conditioned. For instance, as shown in Fig. 4.6, the condition number of

a binary random matrix can be up to 107. The study [116] has analyzed the distribution

of the condition numbers of Gaussian random matrices. The results show that a Gaus-

sian random matrix is well-conditioned with a high probability. For instance, it is shown

in [116] that for a 10 × 5 Gaussian random matrix, the probability that its condition
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number is larger than 100 is less than 6 × 10−7. From the above discussions, Gaussian

random matrices are preferred based on their condition numbers. However, Gaussian ran-

dom projection has higher computation overhead than binary and Rademacher random

projections. With a binary matrix defined in §4.2.2, the projection can be implemented

using (# − " addition operations. With a Rademacher matrix defined in §4.2.2, the

projection can be implemented with " (# − 1) addition operations and just one multipli-

cation operation. In contrast, GRP needs " (# − 1) additions and "#2 multiplications.

Thus, there is a trade-off between the condition of the chosen random matrix type and

the associated computation overhead that will be borne by the collaborative learning

participants.

4.3.4 Alternative Approaches and Limitations

This section discusses two alternative approaches to PPCL and their limitations.

These two alternatives will be used as the baseline approaches in the comparative per-

formance evaluation in §4.4.

4.3.4.1 Non-collaborative learning

If the data anonymity requirement is not enforced, the coordinator can train a separate

deep model based on the projected data vectors contributed by each participant. This

alternative approach can address the challenge of the complex mixed patterns due to

different random projection matrices adopted by different participants as illustrated in

§4.3.3. However, it loses the advantages of collaborative learning, i.e., the increased data

volume and pattern coverage. From the evaluation in §4.4, compared with the proposed

approach, despite that this non-collaborative learning approach additionally uses the

participant identity information, it yields inferior average accuracy.

4.3.4.2 Differential privacy

Differential privacy (DP) [103] is a rigorous information-theoretic approach to prevent

leak of individual records by statistical queries on a database of these records. The n-

DP [103] is formally defined as follows:
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Definition 1 A randomized algorithm A : D → RC gives n-DP if for all adjacent

datasets �1 ∈ D and �2 ∈ D differing on at most one element, and all ( ⊆ '0=64(A),
Pr(A(�1) ∈ () ≤ exp(n) · Pr(A(�2) ∈ ().

The n , a positive real number, is a measure of privacy loss, i.e., a smaller n im-

plies better privacy. When n is very small, Pr(A(�1) ∈ () ' Pr(A(�2) ∈ () for all

( ⊆ '0=64(A), which means that the query results A(�1) and A(�2) are almost in-

distinguishable based on any “test criterion” of (. The indistinguishability between the

query results A(�1) and A(�2) decreases with n . The study [117] develops the Laplace

mechanism of adding Laplacian noises to implement n-DP. Specifically, for all function

F : D → RC , the randomized algorithm A(�) = F (�) + [=1, =2, . . . , =C]ᵀ gives n-DP,

where each =8 is drawn independently from a Laplace distribution Lap(((F )/n) and ((F )
denotes the global sensitivity of F . Note that Lap(_) denotes a zero-mean Laplace dis-

tribution with a probability density function of 5 (G |_) = 1
2_4

|G |
_ ; the global sensitivity

is

((F ) = max
∀� ′∈D,∀� ′′∈D

| |F (�′) − F (�′′) | |1.

Essentially, n-DP gives quantifiable indistinguishability of the query results based on

different datasets. The n-DP framework has been applied in various privacy preserva-

tion problems in machine learning. The DML approaches to PPCL [89, 90] add ran-

dom noises to the parameters exchanged between the participants and the coordinator

to achieve n-DP. The original parameters can be viewed as deterministic query results

of the training data. Adding random noises to the parameters ensures certain levels

of indistinguishability between the noise-added parameters based on different training

datasets. The achieved n-DP mitigates the privacy concern that the curious coordinator

may use the received parameters to infer the existence of particular data vectors in the

training dataset. However, these DML approaches [89, 90] incur significant overhead to

resource-constrained participants. For PPCL based on resource-constrained participants,

an approach to achieving n-DP is to add a Laplacian noise vector to the original data

vector x and then transmit the noise-added data vector to the coordinator for building

the classifier. By doing so, certain levels of indistinguishability between the noise-added

data vectors based on different original data vectors are achieved.
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The recently proposed local differential privacy (LDP) [118] is an n-DP realization

different from the Laplace mechanism. It allows statistical computation while protecting

each individual user’s privacy. As LDP does not require the global sensitivity, it does not

depend on the trust in a central authority, which presents practical advantages. However,

as shown in [119], LDP needs greater noise levels than the Laplace mechanism and thus

reduces the utility of data. Google has implemented LDP in the RAPPOR project [119].

This chapter applies RAPPOR to achieve LDP.

Additive noisification and multiplicative GRP preserve different forms of privacy.

Compared with protecting indistinguishability under the DP framework, it is believed

that protecting the confidentiality of the raw data form, which can be achieved by GRP,

is a more immediate and basic privacy requirement in many applications. The additive

noisification, though achieving n-DP, falls short of protecting the confidentiality of the

raw data form. Specifically, under the n-DP framework based on zero-mean Laplacian

noises, a noise-added data vector can be considered an unbiased estimate of the original

data vector with an estimation variance related to n . Thus, the coordinator always

has a meaningful (i.e., unbiased) estimate of the raw data. According to Property 2

in §4.2.2, this only happens to the GRP approach in the worst (and unrealistic) case

that the projection matrix is revealed to the coordinator; other than the worst case,

the coordinator cannot have a meaningful estimate of the raw data form. In the image

classification case studies in §4.4, it shows that when n is small (i.e., good DP), the

contents of the noise-added images can still be interpreted. In contrast, the projected

images cannot be interpreted visually at all.

Applying n-DP to PPCL with resource-constrained participants also introduces the

following two challenges:

• Non-trivial computation overhead: From the DP theory, an independent random

noise vector should be generated and added to every data vector x. However,

random number generation is often a costly operation due to the use of various

mathematical functions. The continuous generation of Laplacian noises will incur

non-trivial computation overhead for the resource-constrained participants. Dif-

ferently, in the proposed approach, the random projection matrix generation is a
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one-off overhead. The projection to compute Rx is a lightweight operation consist-

ing of multiplications and additions only. A previous work [108] has implemented

the projection operation on an MSP430-based platform. Moreover, the projection

can be sped up if a parallel computing chip (e.g., Google’s Edge TPU [102]) is avail-

able. In the RAPPOR implementation of LDP, randomized response [120] needs

to generate random numbers continuously. Note that continuous random number

generation presents substantial overhead to resource-constrained platforms [54].

• Learning performance degradation: As discussed in §4.3.2.2, the projection matrix

can be implicitly learned by the deep learning algorithms. Differently, the additive

Laplacian noises to ensure n-DP can be considered neither a pattern nor an embed-

ding that can be learned by learning algorithms. Thus, the Laplacian noises will

only negatively affect the learning performance. Similarly, the random response

mechanism of LDP cannot be considered as a pattern that can be learned. The

evaluation in §4.4 shows that both the Laplace mechanism and RAPPOR signifi-

cantly degrade the learning performance.

From the above discussions and the evaluation results in §4.4, adding Laplacian noises

to the training data for n-DP is not a promising approach to PPCL with resource-

constrained participants.

4.4 Performance Evaluation

The accuracy achieved by various approaches is extensive compared in this section.

The computation and communication overhead of these approaches will be profiled in

§4.5 based on their implementations on a testbed. The source code of the evaluation can

be found from [121].

4.4.1 Evaluation Methodology and Datasets

Extensive evaluation to compare several approaches is conducted here:

• GRP-DNN: This is the main proposed approach consisting of GRP at the partic-

ipants and collaborative learning based on a DNN at the coordinator. The design
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or choice of the DNN model will be application specific. The DNN models and

training algorithms are implemented based on PyTorch [76].

• RRP-DNN: This approach replaces the GRP in GRP-DNN with Rademacher

random projection (RRP). The DNN models and training algorithms are same as

GRP-DNN.

• BRP-DNN: This approach replaces the GRP in GRP-DNN with binary random

projection (BRP). The DNN models and training algorithms are same as GRP-

DNN.

• GRP-SVM: This baseline approach applies GRP at the participants and trains

an SVM-based classifier at the coordinator. The SVM-based classifier is imple-

mented using LIBSVM [114]. The classifier uses RBF kernel with two configurable

parameters � and _. During the training phase, this chapter applies grid search to

determine the best settings for � and _. This grid search is often lengthy in time

(e.g., several days).

• GRP-NCL: This is the non-collaborative learning (NCL) baseline approach de-

scribed in §4.3.4.1. It runs GRP at the participants and trains a separate DNN

for each participant at the coordinator. Compared with other approaches, this ap-

proach additionally requires the identity of the participant for each training sample.

• n-DP-DNN: As described in §4.3.4.2, this approach implements n-DP by adding

Laplacian noise vectors to the data vectors and performs collaborative deep learning

based on a DNN at the coordinator. Note that this implementation corresponds

to the case where F (�) defined in Definition 4.1 returns � itself. This case is

more related to the privacy objective of protecting the raw form of the original data

vector. If the DP noises are added to a certain statistics as usually performed in DP

applications, the relationship between the additive perturbation and the objective

of protecting the raw data form is weakened. As a result, the DP approach and the

proposed GRP approach become less comparable. Thus, the DP implementation

adds noises to the individual records.
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(a) Original images

(b) Projected images in GRP-DNN

(c) Noise-added images in n-DP-DNN (n = 50)

(d) Noise-added images in n-DP-DNN (n = 10)

Fig. 4.7: Example images from MNIST dataset.

• n-DP-SVM: This approach implements n-DP by adding Laplacian noise vectors

to the data vectors and performs collaborative learning based on SVM at the co-

ordinator.

• n-LDP-DNN: This approach implements n-LDP using RAPPOR [120] and per-

forms collaborative deep learning based on a DNN at the coordinator.

• CNN, SVM, MLP, ResNet-152: These are the plain learning approaches based

on the CNN, SVM, MLP, and ResNet-152 models, respectively. They do not protect

any privacy.

The performance evaluation is performed based on four datasets, i.e., MNIST [122],

spambase [123], FSD [124], and CIFAR-10 [125].
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• MNIST: The MNIST dataset consists of 60,000 training samples and 10,000 testing

samples. Each sample is a 28 × 28 grayscale image showing a single, handwritten

digit. Fig. 4.7(a) shows an instance of each digit.

• Spambase: The spambase dataset consists of 4,601 samples. Each sample consists

of (i) a 57-dimensional feature vector that is extracted from an e-mail message and

(ii) a class label indicating whether the e-mail message is an unsolicited commercial

e-mail. The details of the feature vector can be found in [123]. As the data volume

of this spambase dataset is limited, this chapter applies data augmentation to the

spambase by adding zero-mean Gaussian noises, resulting in 40,000 training samples

and 400 testing samples.

• FSD: The free spoken digit (FSD) dataset consists of 2,000 WAV recordings of

spoken digits from 0 to 9 in English. The data is randomly splitted into 80%

for training, 10% for validation, and 10% for testing. The mel-frequency cepstral

coefficients (MFCC) [126] are extracted as the features to represent a segment of

audio signal. MFCC can well represent the pertinent aspects of the short-term

speech spectrum. As the recordings are of different lengths, this chapter applies

constant padding to unify the number of MFCC feature vectors for each recording.

As a result, the extracted MFCC feature vectors over time for each recording form

a 20 × 45 matrix.

• CIFAR-10: The CIFAR-10 dataset consists of 60,000 32 × 32 RGB color images

in ten classes, in which 50,000 images are for training and 10,000 images are for

testing. The 10 classes are airplanes, cars, birds, cats, deers, dogs, frogs, horses,

ships, and trucks. Each class has 6,000 images. Fig. 4.17(a) shows an instance of

each class.

These four datasets are chosen because the small sizes of the data vectors are commen-

surate with the limited computing and communication capabilities of IoT end devices.

Training a spam detector based on user-contributed samples (e.g., e-mails) may cause

privacy concerns. Thus, the proposed approach is quite appropriate. The choice of the

vision-based character recognition and object classification tasks with the MNIST and
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CIFAR-10 datasets allows exploiting the learning capabilities of the latest deep models

that are often designed for image classification. Moreover, by using images as the data

vectors, the effect of the distortion caused by noise adding or random projection can be

visualized for intuitive understanding. The CIFAR-10 images have varying backgrounds

and object appearances, i.e., complex patterns. Thus, the vision-based object recognition

task using CIFAR-10 is more challenging. Although the character and object recognition

tasks are not privacy-sensitive, the results based on MNIST and CIFAR-10 will provide

understanding on other image classification-based privacy-sensitive applications, such as

collaboratively training a mood classifier using the photos in the album of the users’

smartphones. The choice of the FSD dataset is to diversify the application scenarios in

evaluating the proposed approach. Recently, voice recognition has been integrated into

various smart systems such as smartphones and voice assistants found in households and

cars. In many scenarios, voice recordings are privacy sensitive. The proposed approach

matches the privacy expectations for PPCL applied to voice recognition. In summary,

the evaluation datasets cover image, text, and voice modalities, and represent important

IoT applications.

For a PPCL system with # participants, by default both the training and testing

samples are split evenly into # disjoint sets. Each set is assigned to a participant.

Note that in §4.4.2.3, it evaluates the impact of the horizontal distribution of the data

on the learning performance, where the training and testing samples are not evenly

distributed among the participants. Under GRP-DNN, GRP-SVM,GRP-NCL, RRP-

DNN, and BRP-DNN, each participant independently generates its random matrix and

uses the matrix to project its plaintext data vectors. The coordinator trains the deep

models and SVM based on the projected or noise-added training data vectors from the

participants. The trained deep models and SVM are used to classify the projected or

noise-added testing data vectors to measure the test accuracy as the evaluation results.

4.4.2 Evaluation Results with MNIST Dataset

A CNN is designed that is used in the GRP-DNN, GRP-NCL, and n-DP-DNN ap-

proaches. The CNN consists of two convolutional layers and three dense layers of ReLUs.

Max pooling is used after each convolutional layer to reduce the dimension of data after
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Fig. 4.8: CNN with a projected MNIST image as input.
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Fig. 4.9: Impact of the number of participants (MNIST). The error bars represent min
and max.

convolution. The max pooling controls overfitting effectively and improves the CNN’s

robustness to small spatial distortions in the input image. The last dense layer has ten

ReLUs corresponding to the ten classes of MNIST. A softmax function is used to make

the classification decision based on the outputs of the last dense layer. Fig. 4.8 illustrates

the design of the CNN. Note that, without random projection, the CNN and the SVM

with grid search for kernel parameters achieves test accuracy of 98.7% and 98.52%. This

shows that the CNN and SVM capture the patterns of MNIST well.

4.4.2.1 Impact of # on learning performance

The impacts of the number of participants # on the learning performance of GRP-

DNN, GRP-NCL, and GRP-SVM are evaluated. The training data and testing data are

randomly and equally split into # parts and assigned to # participants. The amount

of data with a participant decreases with the increase of # since the total amount of
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Fig. 4.10: The F1 scores of different handwritten digits in the MNIST dataset under the
CNN and the GRP-DNN approaches (MNIST).

data is fixed. Fig. 4.9 shows the results. The two horizontal lines in Fig. 4.9 represent

the test accuracy of the plain CNN and SVM without any privacy protection. The two

lines overlap. When # increases from 40 to 400, the mean test accuracy of GRP-DNN

decreases from 96.87% to 86.18%. If # is no greater than 280, GRP-DNN maintains a test

accuracy greater than 90%. The drop of accuracy with increased # is consistent with the

understanding that distinct random projection matrices increase the pattern complexity

of the aggregated data. However, for MNIST data with light pattern complexities, the

GRP-DNN approach can support up to 280 IoT objects for a satisfactory classification

accuracy of 90%. Under the GRP-NCL approach, the deep models corresponding to

the participants have different test accuracy values. The histogram and error bars in

Fig. 4.9 represent the average, minimum, and maximum of the test accuracy values

across all trained deep models. Under each setting of #, the maximum test accuracy

is 100%. However, the average test accuracy is consistently lower than that of GRP-

DNN. This shows that the GRP-NCL that needs to compromise data anonymity yields

inferior average learning performance compared with GRP-DNN. This result shows the

advantage of collaborative learning. Lastly, the GRP-SVM approach gives poor test

accuracy around 17.5% because no efficient RBF kernels can be found to create proper

hyperplanes for classification. This observation suggests that DNNs are more efficient in

coping with the distortions caused by projections.
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Fig. 4.11: Four horizontal distributions of the training data among 10 participants. The
test accuracies for the four distributions are 96.17%, 96.33%, 96.24%, 96.32%, respectively
(MNIST).

4.4.2.2 Classification accuracy of different classes

The F1 scores of different classes (i.e., different handwritten digits) under the GRP-

DNN and the plain CNN approaches are evaluated. The F1 score of a particular class

characterizes the classification accuracy for the class. Thus, from the F1 score distribution

among all classes, it can assess whether the classifier is biased for certain classes. Fig. 4.10

shows the results. The F1 score distributions of the GRP-DNN with 40, 80 and 120

participants are similar with the F1 score distribution of the plain CNN. Thus, the DNN

trained with the projected data is not biased towards certain classes.

4.4.2.3 Impact of the horizontal distribution of data

In practice, different participants may have different amounts of training data. This

set of experiments evaluates the impact of the horizontal distribution of the training

data on the learning performance. Fig. 4.11 shows four different horizontal distributions

of the training data among 10 participants. During the collaborative learning phase,

the participants contribute different amounts of training data. During the classification

phase, the horizontal distribution of the testing data is same as that of the learning

phase. The corresponding test accuracies of the four horizontal distributions are 96.17%,

96.33%, 96.24%, and 96.32%, respectively. From the results, the horizontal distribution

of the data has little impact on the collaborative learning performance.
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Fig. 4.12: Impact of data compression on learning performance (MNIST, # = 100).

4.4.2.4 Impact of data compression

This subsection evaluates the impact of GRP’s data compression on the learning

performance. Fig. 4.12 shows the results when # = 100. When the compression ratio

increases from 1 (i.e., no compression) to 2.33 (i.e., 43% of data volume is retained), the

test accuracy of GRP-DNN decreases from 95.52% to 92.85% only. From the discussion

in §4.3.2.1, the good tolerance of GRP-DNN against data compression is due to the high

sparsity of the MNIST images. In contrast, the GRP-SVM approach performs poorly

under all compression ratio settings.

4.4.2.5 Various random projection approaches

This set of experiments compares the performance of collaborative learning from the

data obfuscated using GRP, RRP, and BRP. Fig. 4.13 shows the test accuracy of GRP-

DNN, RRP-DNN, and BRP-DNN when the number of participants # varies. For all three

projection approaches, when # increases from 40 to 400, the test accuracy drops. The

GRP-DNN approach gives higher test accuracy than the other two approaches. Recall

that §4.3.3.3 has shown the better condition of Gaussian random matrices compared

with Rademacher and binary random matrices. The results here are consistent with the

understanding that better condition numbers will lead to better learning performance.

The learning performance of GRP-DNN, RRP-DNN, BRP-DNN is compared when the
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Fig. 4.15: Impact of privacy loss of DP and LDP on learning performance (MNIST).

compression ratio d varies. The number of participants is 100. Fig. 4.14 shows the

results. When the compression ratio increases, the test accuracy of all the three projection

approaches decreases. From Fig. 4.14, in terms of test accuracy, GRP-DNN outperforms

RRP-DNN and BRP-DNN.

4.4.2.6 Impact of DP noises

This set of experiments evaluates the impact of adding Laplacian noises to implement

n-DP and RAPPOR to implement LDP on the learning performance. Fig. 4.15(a) shows

the test accuracy of n-DP-DNN versus the privacy loss level n . Under the considered

n-DP-DNN or n-DP-SVM approaches, an n setting smaller than 1 (which is the usual n

setting range [103]) will lead to large noise levels such that the learning performance is

very poor. To achieve the learning performance comparable to that of the proposed GRP

approach, this set of experiments relaxes the range for n . When n = 100 (small Laplacian

noises and large differential privacy loss), the n-DP-DNN achieves a test accuracy of

86.6%, lower than those achieved by GRP-DNN when # is up to 400. When n = 10,

the performance of n-DP-DNN drops to 11.4%, close to the performance of random

guessing. For comparison, the projected and noise-added images with two n settings in

Fig. 4.7 are visualized. From Fig. 4.7(b), the projected images can not be visualized.

However, from Figs. 4.7(c) and 4.7(d), the noise-added images are easily interpreted
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when n is down to 10. Note that in the evaluation, it uses the same CNN model as shown

in Fig. 4.8 for the GRP-DNN, GRP-NCL, and n-DP-DNN approaches. This chapter

does not spend special efforts to improve the CNN design in favor of any approach; the

CNN fed with the original MNIST images achieves satisfactory performance. The poor

performance of n-DP-DNN is consistent with the understanding that the performance of

deep learning can be susceptible to small perturbations to the data vectors [19]. There

are also systematic approaches to generating adversary examples with small differences

from the original samples [127,128]. The adversary examples will be wrongly classified by

the deep models. Special care is needed in the deep model design to improve robustness

against human-indiscernible perturbations [19]. Significant noises, which are required to

achieve good DP protection, are still open challenges to deep learning. Thus, under the

n-DP framework, it is challenging to achieve a desirable trade-off between the privacy

protection strength and learning performance.

It is discussed in §4.3.4.2 that the additive noisification for n-DP is ineffective in

achieving a good trade-off between learning performance and protecting the confidential-

ity of the raw forms of the training data. The results of GRP-DNN (# = 1, : = 3 − 1)

and n-DP-DNN are compared. The worst case is considered for GRP-DNN, i.e., the

projection matrix R is revealed to the curious coordinator. From Property 2 in §4.2.2,

the minimum norm estimate of the original data vector by the coordinator will have a

per-element variance of about 410 for any MNIST image. Under this setting, GRP-DNN

achieves a test accuracy of 94.82%. To achieve the same per-element variance of 410,

the n value adopted by the n-DP-DNN should be 18.89. Under this n setting, the test

accuracy of n-DP-DNN is only 12.86%.

Fig. 4.15(a) also shows the test accuracy of the n-DP-SVM approach. It performs

poorly when n ≤ 100. This approach achieves good test accuracy only when the added

noises are very small under the settings of n = 400 and n = 500.

The BASIC RAPPOR [119] is adopted for n-LDP-DNN on MNIST dataset. BASIC

means that each string can be deterministically mapped to a single bit in the bit array. By

arranging the pixels of an MNIST sample into a 8-bit array, this experiment adjusts the

parameter 5 , ?, @ in BASIC RAPPOR to achieve the required privacy loss n . Fig. 4.15(b)

shows the test accuracy of n-LDP-DNN versus the privacy loss level n . When n = 3.21,
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Fig. 4.16: Impact of the number of participants (spambase). The error bars represent
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the n-LDP-DNN only achieves a test accuracy of 11.35%, which is just slightly higher

than that of random guessing (i.e., 10%). When n = 121.74, the n-LDP-DNN achieves

a test accuracy of 22.21%, much lower than that achieved by n-DP-DNN when n = 100.

This result is consistent with the observation in [129] that LDP requires larger noise

levels than the Laplace mechanism.

4.4.3 Evaluation Results with Spambase Dataset

This chapter designs a 5-layer MLP classifier to detect spams. The numbers of ReLUs

in the five layers are 57, 100, 50, 10, and 2, respectively. A softmax function is used

lastly to make the final detection decision. Dropout is used during training to suppress

overfitting. Without random projection, the MLP and the SVM with grid research for

kernel parameters achieve test accuracy of 96.52% and 96.25%, respectively. This shows

that the MLP and SVM can capture the patterns of spambase well.

The impact of the number of participants # on the learning performance of GRP-

DNN, GRP-NCL, and GRP-SVM is evaluated here. Fig. 4.16 shows the results. The

two horizontal lines in Fig. 4.16 represent the test accuracy of the plain MLP and SVM

without any privacy protection. When # increases from 1 to 200, the test accuracy of

GRP-DNN decreases from 96% to 83.25%. If # is no greater 100, GRP-DNN can main-

tain a test accuracy of about 90%. The average test accuracy of GRP-NCL is about 5%

lower than that of the GRP-DNN, because GRP-NCL lacks the advantages of collabora-

tive learning. The test accuracy of the GRP-SVM is about 1.25% to 2.75% lower than
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(a) Original images

(b) Projected images in GRP-DNN

(c) Noise-added images in n-DP-DNN (n = 100)

(d) Noise-added images in n-DP-DNN (n = 10)

Fig. 4.17: CIFAR-10 image samples. The classes are airplanes, cars, birds, cats, deers,
dogs, frogs, horses, ships, and trucks.
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that of the GRP-DNN. Thus, the GRP-SVM performs satisfactorily for this spambase

dataset. The reasons are two-fold. First, in this spambase dataset, the classifiers operate

on the e-mail features, rather than the raw data. Second, the RBF kernel is effective in

capturing the features. In fact, the nature of this spambase dataset is similar to that of

the 2-dimensional and 10-dimensional generated feature datasets used in §4.3.3, on which

the GRP-DNN and GRP-SVM perform similarly.

4.4.4 Evaluation Results with FSD Dataset

This chapter adopts a modified version of the CNN used in [130] to recognize spoken

digits. Fig. 4.18 shows the structure of the CNN. The CNN consists of three convolutional

layers, one max-pooling layer, and three dense layers. Zero padding is performed to the

input image in the convolutional layers and the maxpooling layer. This chapter applies

ReLu activation function to the output of every convolutional and dense layer except

for the last layer. ReLU rectifies a negative input to zero. The last dense layer has 10

neurons with a softmax activation function corresponding to the 10 classes of FSD. Three

dropout layers with dropout rates of 0.25, 0.1 and 0.25 are applied after the max-pooling

layer and in the first two dense layers. Specifically, 25%, 10%, and 25% of the neurons

will be abandoned randomly from the neural network in the training process. Without

random projection, the CNN achieves test accuracy of 98.24%.

The impact of the number of participants # on the learning performance of GRP-

DNN in Fig. 4.19 is evaluated. Without any projection, the CNN achieves test accuracy

of 98.24%. When # increases from 10 to 50, the test accuracy decreases from 95.27% to

86.21%. The results imply that the proposed approach works well on the FSD Dataset.

4.4.5 Evaluation Results with CIFAR-10 Dataset

To classify the more complex CIFAR-10 images, the residual neural network (ResNet)

[131] is adopted. In general, to capture more complex patterns, deeper neural networks

will be needed, which often face degraded learning performance, however. ResNet is

designed to address this challenge for very deep neural networks. In the experiments,

the ResNet-152 is used, which contains 152 layers. Specifically, it consists of blocks,

each of which consists of convolutional layers and ReLU-based dense layers. After the
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Fig. 4.18: Structure of CNN for FSD recognition.
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Fig. 4.20: Impact of the number of participants on the learning performance (CIFAR-10).

blocks, ResNet-152 has a fully-connected neural network to make the final classification

decision. Without random projection, the ResNet-152 achieves a test accuracy of 95%.

This shows that the ResNet-152 can capture the patterns of CIFRA-10 well. In contrast,

without random projection, the SVM with grid search for kernel parameters achieves a

test accuracy of 33% only. This shows that, due to the high complexity of the patterns

in CIFAR-10, no efficient RBF kernels can be found to create proper hyperplanes for

classification.

First, the impact of the number of the participants # on the learning performance

of different approaches is evaluated. Fig. 4.20 shows the results. The two horizontal

lines in Fig. 4.20 represent the test accuracy of the plain ResNet-152 and SVM without

any privacy protection. When # = 1, the test accuracy of GRP-DNN is 80.6%. Thus,

compared with the test accuracy of ResNet-152 without privacy protection, the random

projection results in a test accuracy drop of 14.4%. The test accuracy of GRP-DNN

decreases with the number of participants. The performance drops are caused by the

much more complicated data patterns after the projection, that exceed the complexity

that ResNet-152 can handle well. Note that CIFAR-10 had been a challenging dataset

until the high accuracy achieved by deep models in recent years. To address the sub-

stantially additional pattern complexity introduced by GRP, deeper ResNets may help.

But they will require more training data to avoid overfitting. The average test accuracy

of the GRP-NCL is slightly lower than the test accuracy of the GRP-DNN. This result

is similar to that based on the MNIST and spambase datasets. The test accuracy of

GRP-SVM is around 11%, close to that of random guessing.
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Fig. 4.21 shows the impact of the compression ratio of the projection on the learning

performance. The test accuracy of the GRP-DNN decreases with the compression ratio.

Compared with the results in Fig. 4.12 for MNIST, the GRP-DNN on the CIFAR-10 is

more sensitive to the compression ratio because that CIFAR-10 images are less sparse,

and thus less compressible, than the MNIST images. In Fig. 4.21, under all settings for

compression ratio, the GRP-SVM’s performance is consistently close to random guessing.

Fig. 4.22 shows the test accuracy of n-DP-DNN versus the DP loss level n . When n =

100 (small Laplacian noises and large differential privacy loss), the n-DP-DNN achieves

a test accuracy of 75.9%, almost 20% lower than the test accuracy achieved without

Laplacian noises. Fig. 4.17(c) shows the noise-added CIFAR-10 images under the setting

n = 100. It is almost identical to the original CIFAR-10 images in Fig. 4.17(a). This

result echos the understanding that deep learning is not robust to small perturbations

[19,127,128]. When n = 10, the content of the noise-added images as shown in Fig. 4.17(d)

can still be interpreted. However, from Fig. 4.22, the test accuracy further reduces to

59.8% only. For comparison, Fig. 4.17(b) shows the projected images. The content of

the projected images cannot be interpreted.

4.4.6 Summary and Discussion

Several observations from the results in §4.4.2, §4.4.3, and §4.4.5 are as follows.

• Compared with SVM, deep learning can better adapt to the complexity introduced

by the multiplicative projections.

• Although the GRP-NCL approach additionally uses the identities of the partici-

pants, it gives inferior performance compared with the collaborative GRP-DNN.

This shows the advantage of collaborative learning even with the privacy preserva-

tion requirement.

• Compared with RRP-DNN and BRP-DNN, GRP-DNN gives higher test accuracy.

However, there exists a trade-off between computation overhead and test accuracy

in choosing the type of random projection.
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• Compared with GRP-DNN, the additive noisification for n-DP achieves inferior

trade-off between learning performance and protecting confidentiality of raw forms

of training data.

• GRP-DNN shows promising scalability with the number of participants sensing

modalities including image, text and voice with low-complexity patterns to be rec-

ognized. For the MNIST and spambase datasets, the GRP-DNN can well support

100 participants with a few percents test accuracy drop. For the FSD dataset,

the GRP-DNN can support at least 40 participants at a cost of a few percentage

points in test accuracy. Besides, as the proposed approach is based on the deep

learning in IoT, sufficient amount of labeled training data from each participant

is needed. For large-scale PPCL systems involving more participants, a two-tier

system architecture can be envisioned as follows. The participants are divided into

groups. At the first tier, the proposed GRP-DNN is applied within each group; at

the second tier, the DML approach is applied among the group coordinators.

4.5 Implementation and Benchmark

In this section, the overhead of two PPCL approaches are measured (i.e., the GRP-

DNN and Crowd-ML [89]) and a privacy-preserving classification outsourcing approach

(i.e., CryptoNets [20]) on a testbed of 14 Raspberry Pi 2 Model B nodes [132] and

a powerful workstation computer. The Raspberry Pi nodes act as PPCL participants

and the workstation acts as the coordinator. They are interconnected using a 24-port

network switch. This section benchmarks these approaches using the MNIST dataset.

The training and testing samples are evenly allocated to the participants, resulting in

4,285 training samples and 714 testing samples on each participant. The implementations

of the three approaches (GRP-DNN, Crowd-ML, CryptoNets) on the same platform, i.e.,

Raspberry Pi, allow fair comparisons. The participant part of the proposed GRP-DNN

can be implemented on mote-class platforms. The previous work [108] has implemented

Gaussian matrix generation and GRP on the MSP430-based Kmote platform. However, it

is difficult/impossible to implement Crowd-ML and CryptoNets on mote-class platforms.
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Table 4.1: The overhead of various approaches.
Overhead GRP-DNN Crowd-ML CryptoNets

T
ra

in
in

g Participant comm. vol. 33.6 MB 117.2 MB n/a
Participant compute time 0.96 s 367.24 s n/a
Coordinator compute time 928.34 s 1.04 s n/a

T
es

ti
n
g Participant comm. vol. 5.6 MB n/a 15.0 MB

Participant compute time 0.16 s 4.67 s 116 hours
Coordinator compute time 40.88 s n/a

n/a represents “not applicable.”

The GRP-DNN approach is evaluated on the testbed. The compression ratio d = 1

(i.e., no compression). Table 4.1 shows the benchmark results. During the training

phase, each GRP-DNN participant needs to transmit a total of 33.6 MB projected data.

A participant can complete projecting all the 4,285 training images within 0.96 s. The

coordinator needs 928.34 s to train the CNN. In the GRP-DNN implementation, the

testing phase is performed on the coordinator. During the testing phase, each participant

completes projecting all the 714 testing images within 0.16 s and transmits a total of

5.6 MB data to the coordinator. The coordinator needs 40.88 s to classify all projected

testing images from the participants. Note that GPU acceleration is not used in this

benchmark for GRP-DNN during both the training and testing phases.

The Crowd-ML [89] is a DML approach. In Crowd-ML, a participant checks out

the global classifier parameters from the coordinator and computes the gradients using

its own training data. Then, the participants transmit the gradients to the coordinator

that will update the global classifier parameters. Thus, during the training phase, the

participants and the coordinator repeatedly exchange parameters. This section applies

an existing implementation of Crowd-ML [133] on the testbed. The measurement shows

that, during the training phase, each participant needs to upload and download a total

of 117.2 MB data, which is 3.5x of the proposed GRP-DNN. The participant compute

time is more than 350x of that under GRP-DNN. Despite the larger volume of data

exchanges, Crowd-ML achieves 91.28% test accuracy only, which is lower than the 95.58%

test accuracy achieved by GRP-DNN. This is because Crowd-ML uses a simple multiclass

logistic classifier, which is inferior compared with the CNN used by GRP-DNN in terms of

learning performance. Note that during the testing phase of Crowd-ML, the participants
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execute their local classifiers. Thus, they do not need to transmit the testing samples to

the coordinator for classification.

CryptoNets [20] uses homomorphic encryption to encrypt a testing sample during

the classification phase and transmits the encrypted sample to the coordinator. Then,

the coordinator uses a neural network trained with plaintext data to classify the en-

crypted testing sample. Within the homomorphic encryption implementation provided

by Microsoft SEAL [134], the homomorphic encryption part of CrytoNets that runs on

the Raspberry Pis is implemented. The volume of the 714 encrypted testing images is

15 MB, almost 3x of the data volume generated by random projection. In particular, a

Raspberry Pi node takes about 10 minutes and a total of 116 hours to encrypt an image

and all the testing images, respectively. This is 2.6 million times slower than the random

projection computation. This result clearly shows that the high computation complex-

ity of the homomorphic encryption makes CryptoNets ill-suited for resource-constrained

devices.

4.6 Chapter Summary

This chapter proposes a practical privacy-preserving collaborative learning approach,

in which the resource-constrained learning participants apply independent random pro-

jections on their training data vectors and the coordinator applies deep learning to train

a classifier based on the projected data vectors. The proposed approach protects the

confidentiality of the raw forms of the training data against the honest-but-curious coor-

dinator. Evaluation using four datasets shows that the proposed approach outperforms

various baselines and exhibits promising scalability with respect to the number of par-

ticipants observing low- to moderate-complexity data patterns. Benchmark on a testbed

shows the practicality and efficiency of the proposed approach.
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Chapter 5

Differentially Private Collaborative
Learning for the IoT Edge

5.1 Background and Introduction

Recent years have witnessed the performance breakthroughs of various pattern recog-

nition tasks due to the research advances in machine learning. In the area of Internet

of Things (IoT), many edge devices distributed in urban areas will generate massive

data, which can be used to further improve the performance of various machine learning

systems. In particular, the collaborative learning that builds deep models based on the

massive IoT data is envisioned as an important learning paradigm to implement crowd in-

telligence. In this paradigm, the increased volume and expanded coverage of the training

data will significantly improve the quality of the learned model.

However, the training data contributed by the edge devices may contain privacy

sensitive information. Data anonymoization can mitigate some concern about privacy

breach; but it is inadequate, because cross correlations among different databases may be

used to re-identify data [88]. Note that recent legislation (e.g., General Data Projection

Regulation in European Union and Personal Data Protection Act in Singapore) imposes

The work in this chapter has been published as Linshan Jiang, Xin Lou, Rui Tan, and Jun
Zhao. Differentially Private Collaborative Learning for the IoT Edge. The 2nd Interna-
tional Workshop on Crowd Intelligence for Smart Cities: Technology and Applications
(CICS), Beijing, China, 2019, co-located with EWSN.
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stricter requirements for privacy protection. To gain wide adoption in the era of IoT, the

collaborative learning systems that rely heavily on the data contributed by the individual

edge devices should be designed with proper privacy preservation mechanisms.

This chapter presents the design of a collaborative learning approach that uses the

computation capabilities of the edge devices and implements the differential privacy (DP)

for the data transmitted to the cloud for building the machine learning model. Specif-

ically, the edge devices collaboratively train a deep neural network, where the training

of a number of front layers of the neural network is executed on each edge device and

the training of the remaining layers is executed in the cloud. During the training phase,

whenever any edge device contributes a training sample, it forward-propagates the train-

ing sample over the front layers and transmits the intermediate result data vector to

the cloud. The cloud will further forward-propagates the remaining layers to compute

the training loss. The training loss is finally fed back to all participating edge devices

to update their front layers. Thus, the front layers at all the participating edge devices

remain the same during the training phase. On the completion of the training, the layers

maintained by the cloud can be disseminated to all the edge devices, such that the whole

neural network can be executed locally on the edge devices.

This chapter considers a honest-but-curious cloud that aims to infer private infor-

mation from the data uploaded by the edge devices during the training phase. The

n-DP [103] is adopted as the privacy definition, which gives quantifiable indistinguisha-

bility of different data vectors yielded by the edge devices against the honest-but-curious

cloud. To implement n-DP, a Laplacian random noise vector is added to the data vector

generated by the front layers before being transmitted to the cloud. In the design, batch

normalization is applied to the data vector generated by the front layers at the edge

device to attain an analytic upper bound of the normalized data. The bound is used as

the global sensitivity in setting the Laplacian noise generator parameters to guarantee

n-DP.

The proposed approach is applied to a case study of collaboratively training a convo-

lutional neural network (CNN) for image classification. MNIST [122] is used, an image

dataset of handwritten digits, to train the CNN. Two convolutional layers with max

pooling are trained by the edge devices, while six dense layers are trained by the cloud.
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Results show that the proposed approach maintains 99% and 96% classification accuracy

in implementing privacy loss levels of n = 5 and n = 2, respectively. Note that, to provide

good DP protection, the typical privacy loss level, i.e., n , is often set to a value below

10. For example, in [89], to obtain the balance between system performance and data

privacy, the n is set to be 10. In [135], the n is set to 0.5, 2, or 3. Thus, the case study

based on MNIST shows that the proposed approach can achieve good DP protection

while maintaining satisfactory classification performance.

5.2 Approach Design

This section presents the design of the proposed differentially private collaborative

learning approach. The system model and the proposed approach in Section 5.2.1 and

Section 5.2.2 are described, respectively. Section 5.2.3 presents an analysis that guides

the setting of the Laplacian noise generator to achieve n-DP.

5.2.1 System Model

This chapter considers a collaborative learning system consisting of multiple learning

participants and an honest-but-curious learning coordinator to realize a classification

system. In practice, the learning coordinator and participants can be a cloud server

and edge devices, respectively. This study only considers the privacy contained in the

original data due to potential leakage threat in which the data is used in unauthorized

applications. For example, in an activity recognition system based on wearable devices,

three-axis acceleration data can be used to infer human body activity. However, the

acceleration data can be also exploited to infer the health status of the wearer. With

such inferred health status, targeted advertisement can be performed. Thus, protecting

the data privacy in a collaborative system is important. Privacy-preserving approach can

prevent data abuse.

The coordinator in the system model is honest but curious. Specifically, it honestly

supports the collaborative learning process to compute correctly and send results truth-

fully. However, it is curious about the privacy contained in the data, since it may exploit

the privacy for irrelevant applications. This chapter does not consider the privacy con-

tained in the label of the contributed training data since it is assumed that the participant
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willingly contributes the labeled data to perform supervised learning and should have no

expectation on the privacy contained in the labels. The proposed approach supports

anonymization of the training features and labels. Specifically, the coordinator should

not expect to know the participant’s identity for the received training samples. More-

over, the coordinator cannot determine which two training samples come from the same

participant. This can be achieved via an anonymous communication network [99] to

transmit the training features and labels to the coordinator.

5.2.2 Approach Overview

This chapter proposes an approach which can protect the privacy of the extracted

features before being transmitted to the coordinator to preserve the privacy contained

in the original data. Perturbing original data directly to protect privacy may lead to

significant learning performance degradation which will be shown in Section 5.3. From

the analysis in Section 5.2.3, the results computed from the original data can be per-

turbed before being transmitted to the coordinator to protect the privacy contained in

the original data can be obfuscated.

To realize the advantages of collaborative learning, the classification computation

during the learning phase is performed on the coordinator to make good use of various

data from different participants. This chapter considers convolutional neural network

(CNN) to design collaborative learning system, since CNN is an effective machine learning

model. In CNN, convolutional layers fold data in several channels to extract features

with specific pooling layers and activation layers. The dense layers (i.e., fully-connected

layers) classify the extracted features to yield class labels. In the proposed collaborative

learning system, each participant runs convolutional layers to extract features that will be

transmitted to the coordinator. The coordinator maintains the dense layers and forward-

propagates them with the received features during the learning phase. Moreover, the

participants will perturb the features before transmitting them to the coordinator.

Figure 5.1 illustrates the system architecture. Each participant collects data and ex-

tracts features locally. Under the privacy-preserving mechanism that will be presented in

Section 5.2.3, participant sends privacy-preserving features and original labels to the co-

ordinator such that the coordinator can train the fully-connected layers. The coordinator

102



Chapter 5. Differentially Private Collaborative Learning for the IoT Edge

...

Coordinator

Fe
at

ure
 w

ith
 n

oise

M
odel p

ar
am

ete
rs

...

Fig. 5.1: Overview of the proposed privacy-preserving collaborative learning approach.

uses the backpropagation algorithm to update the fully-connected layer parameters and

meanwhile sends back the propagated loss to the participants which will update convo-

lutional layers accordingly. Once a participant finishes the above training process among

their training data, it sends the parameters of the convolutional layers to the coordinator

for updating the convolutional layers in the coordinator. Another participant downloads

the updated convolutional layers and repeats the above training process. By repeating

the above process for all participants, the convolutional layers of all the participants are

updated based on each contributed training data sample. Thus, the participants enjoy

the advantages of collaborative learning, which help them better extract features.

Several design issues are discussed as follows.

• During the classification phase after the completion of the collaborative learning,

the participant can send testing data features to the cloud, which will then per-

form classification using the dense layers. Alternatively, on the completion of the

collaborative learning, the coordinator can disseminate the dense layers to all par-

ticipants. Then, each participant can run the full CNN to perform classification

without transmitting testing data.
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• In order to utilize the large volume of training data to improve the effectiveness of

the convolutional layers, it is desirable to maintain the same convolution layers at

all the participants. The following method is adopted to keep convolutional layer

consistency among participants. After the coordinator updates dense layer parame-

ters, it broadcasts propagated loss to all the participants. Thus, all the participants

can update their own convolutional layers simultaneously. Since the same hyper-

parameters for the convolutional layers at all the participants can be configured,

the convolutional layers at all the participants can be maintained consistent.

• The system will have significant overhead if each participant immediately sends

new extracted features once it generates new data. To solve this issue, in the

proposed design, if the data exceeds a specified value, the participant starts to

process data to extract feature and transmit it. This method matches well with

the proposed privacy-preserving approach which adopts batch normalization and

Laplacian noisification, which will be presented in the next subsection.

5.2.3 Achieving n-Differential Privacy

Differential privacy is an information-theoretic approach to protecting data privacy.

It aims to confound the query results based on adjacent datasets. The proposed ap-

proach adopts n-differential privacy [103] as the privacy definition. The n-differential

privacy (n-DP) is formally defined as follows: A randomized algorithm A : D → RC

gives n-DP if for all adjacent datasets �1 ∈ D and �2 ∈ D differing on at most one

element, and all ( ⊆ '0=64(A), Pr(A(�1) ∈ () ≤ exp(n) × Pr(A(�2) ∈ (). Here, the

differential privacy level n , is a positive number which measures privacy loss. Smaller n

always means better protection: when n is very small, Pr(A(�1) ∈ () ≈ Pr(A(�2) ∈ ()
for all ( ⊆ '0=64(A). Thus, the query results A(�1) and A(�2) are nearly indis-

tinguishable, which prevents the attackers from recognizing the original dataset. An

approach to implementing n-DP is to add Laplacian noise [136]. Concretely, for all func-

tion F : D → RC , the randomized algorithm A(�) = F (�) + [=1, =2, . . . , =C]ᵀ gives

n-DP, where each =8 is drawn independently from a Laplace distribution Lap(((F )/n)
and ((F ) denotes the global sensitivity of F . Note that the global sensitivity ((F )
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is ((F ) = maxneighboring databases �, � ′∈D | |F (�) − F (�′) | |1 while Lap(_) is a zero-mean

Laplace distribution with a probability density function of 5 (G |_) = 1
2_4
− |G |

_ .

A challenge in implementing n-DP is the determination of the global sensitivity ((F ).
It is hard to determine global sensitivity after convolutional layers. Theoretically, the out-

put of convolutional layers can continuously increase or decrease during training epochs.

However, too large or too small outputs of the convolutional layers may cause the gradient

exploding problem or gradient vanishing problem [137]. Batch normalization (BN) [137]

is developed to normalize the output of hidden layers to avoid the problems to support

neural network training. Using each batch as a unit, BN normalizes the output of specific

layers and then forwards it to the next layer. It limits the range of the output, enabling

the determination of the global sensitivity ((F ). The proposed approach applies stan-

dard BN parameters: fixed variance 1 and fixed mean 0. The following explains the

method to compute the global sensitivity ((F ).
For simplicity, it is assumed that there is only one channel in the CNN and the

dimension of the output of the convolutional layers is ! ×, . Denote the batch size in

the convolutional neural network as #, the output of convolutional layers in a position

〈8, 9〉 of element : in the batch as -8, 9 ,: . The difference between two adjacent datasets

� and �′ in the current scenario is -8, 9 ,: and -′
8, 9 ,:

, while the other elements are the

same. The query request in the current scenario is to read each element in the dataset

because the coordinator can access all data sent from the participants. Thus, the global

sensitivity ((F ) is equal to the maximum difference between -8, 9 ,: and -′
8, 9 ,:

, ((F ) =
max〈8, 9 ,:〉∈〈!,,,#〉{-8, 9 ,:−-′8, 9 ,: }. Due to the constraint imposed by BN, I have

∑#
:=1 -8, 9 ,: =

0 and
∑#
:=1 -8, 9 ,:

2 = #.

To analyze ((F ), the following proves that for any ℓ ∈ {1, 2, . . . , #} that −
√
# − 1 ≤

-8, 9 ,ℓ ≤
√
# − 1 and both equal signs are applicable in special cases.

From the Cauchy–Schwarz inequality, the following can be derived:

©«
∑

C∈{1,2,...,#}\{ℓ}
-8, 9 ,C

ª®¬
2

≤ (# − 1)
∑

C∈{1,2,...,#}\{ℓ}
-8, 9 ,C

2. (5.1)

Applying
∑
C∈{1,2,...,#}\{ℓ} -8, 9 ,C = −-8, 9 ,ℓ and

∑
C∈{1,2,...,#}\{ℓ} -8, 9 ,C

2 = #−-8, 9 ,ℓ2 to Inequality

(5.1), I obtain -8, 9 ,ℓ
2 ≤ (# − 1) · (# − -8, 9 ,ℓ2), which leads to

−
√
# − 1 ≤ -8, 9 ,ℓ ≤

√
# − 1. (5.2)
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The equal sign in the first “≤” of Inequality (5.2) is applicable when -8, 9 ,ℓ = −
√
# − 1

and -8, 9 ,C = 1/
√
# − 1 for C ∈ {1, 2, . . . , #} \ {ℓ}. Similarly, the equal sign in the second

“≤” of Inequality (5.2) is taken when -8, 9 ,ℓ =
√
# − 1 and -8, 9 ,ℓ = −1/

√
# − 1 for C ∈

{1, 2, . . . , #} \ {ℓ}.
From the above analysis, ((F ) denoting max〈8, 9 ,:〉∈〈!,,,#〉{-8, 9 ,: − -′8, 9 ,: } is equal to

2
√
# − 1. By adding a random noise from Lap(((F )/n) [117], the n-DP is achieved to

protect original data privacy. Without loss of generality, it also succeeds when there are

multiple channels in CNN.

5.3 Performance Evaluation

This section evaluates the proposed approach in an application of image-based hand-

written digit recognition.

5.3.1 Evaluation Methodology and Settings

The evaluation is based on a public dataset MNIST [122]. MNIST is a hand written

dataset which consists of 60,000 training samples and 10,000 testing samples. Each

sample is a 28 × 28 gray scale image showing a handwritten number within 0 to 9. It is

widely used in machine learning literature as a basic benchmark dataset to eveluate the

learning performance.

In the considered model, the CNN deployed at the participants has two convolutional

layers with 30 and 80 channels, respectively. After each conventional layer, max-pooling

layers is applied to reduce the size of the output. In neural networks, the max-pooling

layer can accelerate learning with reduced parameter dimension while extracting features

of subregion in a sample. In dense layers, the ReLU activation layer is used to increase

the nonlinearity of the neural network. After the second conventional layer, a BN layer is

used to accelerate the learning rate and prevent gradient vanishing problem and gradient

exploding problem. Then, the DP technique is applied to perturb the output of the BN

layer to preserve data privacy.

After adding the DP noise, the participants send perturbed features to the coordinator

as the input for the dense layers. In the proposed model, the dense layers contain four

106



Chapter 5. Differentially Private Collaborative Learning for the IoT Edge

30
3×

3
co

n
v

fi
lt

er
s

p
o
ol

in
g

(2
x
2
)

80
3×

3
co

n
v

fi
lt

er
s

p
o
ol

in
g

(2
x
2)

B
N

la
ye

r

n
o
is

ifi
ca

ti
on

fo
r

D
P

⇒

3
92

0
R

eL
U

s

60
0

R
eL

U
s

10
0

R
eL

U
s

30
R

eL
U

s

20
R

eL
U

s

10
R

eL
U

s

so
ft

m
ax

conv layers for DP dense layers

Fig. 5.2: CNN structure.
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Fig. 5.3: Impact of privacy loss level n on the test accuracy of the collaboratively learned
model with DP.

hidden layers for reducing the data dimension gradually and one output layer with a

dimension of 10 which is the dimension of labels. Finally, softmax layer is used to predict

label and compute loss. The structure of the CNN is shown in Figure 5.2.

In the experiments, the hyperparameters of CNN are set as follows: the learning rate

is equal to 0.01 and the batch size is equal to 64. Thus, the global sensitivity ((F ) is equal

to
√

63. Therefore, various privacy loss levels n are applied to evaluate the performance

of the differentially private collaborative learning based on MNIST.

5.3.2 Evaluation Results

For comparison, the centralized training approach without any privacy consideration

is used as the baseline. The corresponding CNN excludes the noisification layer as shown
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in Figure 5.2. This centralized non-DP approach achieves 99.58% test accuracy. From

Figure 5.3, with the proposed differentially private collaborative learning approach, the

test accuracy increases with the privacy loss level n . Note that a large n means less privacy

protection. Thus, there exists a trade-off between the test accuracy and the degree of

privacy protection. Generally, when the n is chosen to be 5, which is often considered

providing satisfactory privacy protection [89,135], the proposed approach can still achieve

99.18% test accuracy. When n is reduced to 1, the test accuracy decreases to 84.33%,

because large DP noises start to undermine the performance of the classification system.

However, when n is around 2 to 5, the system shows good classification performance.

Specifically, only 3% of accuracy reduction is observed when n reduces from 5 to 2.

In the second set of experiments, the impact of BN’s batch size on the classification

performance of the collaboratively learned model is investigated. For training CNN, a

smaller batch size often results in more accurate estimation of the gradient descent, but

longer convergence time of the training process. Moreover, in the proposed approach,

the batch size # determines the global sensitivity ((F ), i.e., ((F ) =
√
# − 1. Thus, the

smaller batch size also results in lower noise levels for the same n setting. The n is set to be

2. Figure 5.4 shows the test accuracy of the CNNs trained by the proposed differentially

private collaborative learning approach and the centralized learning approach without

privacy preservation, under different batch size settings. When the batch size # = 32,

the test accuracy is 99.5% and 98.1% for the centralized non-DP learning approach and

the proposed DP approach, respectively. When # increases to 128, the accuracy drops

to 99.3% for the centralized non-DP approach and 94.0% accuracy for the proposed

approach. For the proposed approach, with a larger batch size, both the global sensitivity

and noise level become larger, leading to performance drop.

Adding Laplacian noises to the original data to achieve n-DP is an alternative ap-

proach. This section investigates its effectiveness. Under this alternative approach, the

global sensitivity ((F ) of the original data (i.e., the pixel values) is the maximum dif-

ference between any two pixels. Since the pixel value in MNIST is within the range of

(0, 255), the global sensitivity is a fixed value of 255. Figure 5.5 shows the test accuracy

of the CNN trained by this alternative approach under various n settings. It can be seen

that, when n = 10, the test accuracy is 11.35% only, which is close to the performance
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Fig. 5.4: Impact of batch size on the test accuracy of the collaboratively learned model
with DP (n = 2).

of random guessing (i.e., 10%). When n ≥ 100, although the approach can achieve good

test accuracy, the privacy loss is too high to be meaningful in a collaborative learning

system. Thus, the results show that adding Laplacian noises to the original data signifi-

cantly degrades the learning performance. Moreover, by comparing the results obtained

with this alternative approach and the proposed approach, it can be seen that the un-

supervised feature learning performed by the convolutional layers is susceptible to the

DP noises, whereas the classification boundary learning performed by the dense layers is

more robust to the DP noises.

5.4 Chapter Summary

This chapter presents the design of a collaborative learning approach that trains dif-

ferent stages of a deep neural network at the edge devices and the cloud, respectively. The

deep neural network model is constructed based on the training samples contributed by

all the participating edge devices. To protect the privacy contained in the data communi-

cated to the honest-but-curious cloud during the collaborative learning process, Laplacian

random noises are added to the communicated data. The proposed approach is applied

to a case study of collaboratively learning a CNN for handwritten digit classification.
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approach that perturbs the original data for DP.

Results show that collaboratively learned CNN with n-DP has about 3% classification

accuracy loss only, when the DP loss level n is down to 2.
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Chapter 6

Conclusion and Future Research

6.1 Conclusion

This thesis reviews the existing privacy-preserving ML approaches that were devel-

oped largely in the context of cloud computing and discusses their limitations in the

context of IoT. Furthermore, this thesis proposes three different privacy preservation

techniques for machine learning. First, in the proposed privacy-preserving inference ap-

proach, a small-scale non-linear transform in the form of a neural network is used to

obfuscate data samples. Second, in the proposed lightweight privacy-preserving collabo-

rative learning approach, the resource-constrained learning participants apply indepen-

dent Gaussian projections on their training data samples and the coordinator applies deep

learning to train a classifier based on the projected data. The above two approaches pro-

tect the confidentiality of the raw forms of the inference or or training data transmitted

to the honest-but-curious coordinator. In addition, the first approach can also protect

specified private attributes contained in the inference data. Third, in the proposed def-

erentially private collaborative learning approach, the different stages of a deep neural

network are trained at the fog nodes and the cloud, respectively, using the training sam-

ples contributed by all the participating fog nodes. To protect the differential privacy

contained in the data communicated to the honest-but-curious cloud during the collab-

orative learning process, Laplacian random noises are added to the communicated data.

Extensive evaluation and implementation show the practicality and efficiency of the three

proposed approaches.
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In summary, this thesis adopts three different lightweight operations (neural obfusca-

tion, Gaussian projection, and noise addition) on the two phases (training and inference)

of the ML to preserve the privacy contained in the data samples. From the system

perspective, the lightweight operations are more suitable on the resource-constraint IoT

objects compared with the encryption-based approaches, e.g., homomorphic encryption.

With the advance of the microchip and battery technologies, the IoT end devices may

have compute capability and per-watt compute efficiency. Such a trend may enrich the

design spaces of the low-power privacy preservation techniques for ML in IoT, which is

of interest for the extensions of the approaches proposed in this thesis.

6.2 Future Research

6.2.1 Privacy-Preserving Unsupervised Learning

This thesis mainly focuses on the privacy-preserving supervised learning in the con-

text of IoT. The proposed approaches solely consider a classification system consisting

of a resourceful coordinator and many resource-constraint participants. However, the

coordinator has the capability to provide unsupervised applications to the participants,

for example, an aggregated clustering application, which is not considered in the afore-

mentioned sections. Indeed, the unsupervised learning in the context of IoT is important

as well.

Unsupervised learning uses machine learning algorithms to analyze and cluster un-

labeled datasets. These algorithms discover hidden patterns or data groupings without

the need for human intervention. Its ability to discover similarities and differences in

information make it the ideal solution for exploratory data analysis, cross-selling strate-

gies, customer segmentation, and image recognition. Unsupervised learning provides an

exploratory path to view data, allowing businesses to identify patterns in large volumes

of data more quickly when compared to manual observation. Especially in the context

of IoT, the labeling of the large volumes of data cost too much since the data are always

the complex signals sensed from the diverse sensor. Thus, the labeling of the dataset is

always artificially generated by the crowd [138], which bring huge cost for a well-labeling

dataset.
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Privacy-preserving unsupervised learning in the context of IoT is lacking. Autoen-

coder is one of the tools to achieve unsupervised learning. Although two recent stud-

ies [35,36] apply autoencoder to publish time series data (i.e., accelerator data) for infer-

ence, the training of their autoencoder still needs labeled data. An autoencoder leverages

neural networks to compress data and then recreates a new representation of the orig-

inal data’s input. Therefore, applying the autoencoder on the distributed participants

may bring the new representation for better analysis and novel application is feasible.

Since the unlabeled data sensed from the IoT end device may contain privacy-sensitive

information, designing privacy-preserving autoencoder is an open research problem.

6.2.2 Adversarial Protection Schemes

Chapter 3 involves adversarial learning framework into the proposed PriMask to en-

hance the privacy protection level. Within the adversarial learning framework, the PSP

tranins Attacknets as the adversary to make PriMask more robust against the potential

privacy attacks. Intuitively, the information dispensable to the recognition task is likely

to be removed along the adversary training direction [65]. The experiment results in

this thesis show that it achieves satisfactory effectiveness in defending against the pri-

vacy attacks. Besides, the studies [65] and [66] apply adversarial learning to train the

neural obfuscation, aiming at negating the adversary’s capability of reconstructing the

original data or extracting private attributes. Their results also show the robust defense

against the malicious adversary. Therefore, adversarial learning can be a promising tool

for developing various privacy protection schemes in the context of IoT.

However, utilizing the strength of adversarial learning framework in the context of

IoT still faces some challenges. First, the adversarial learning process usually costs huge

computation overhead due to the complex learning procedure. Thus, a proposed mech-

anism should consider the adversarial learning process on the resourceful backend for

solving the related issues. Besides, in the adversarial learning framework, the resource-

ful backend plays the role of simulated malicious attacker. There, the defense against

the corresponding attack in the adversarial learning performs well. However, the effect

against other similar attack is not investigated. What’s more, if the malicious attacker

adopts the advanced attacknet which is more complex than the simulated attacknet, the
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performance in the adversarial learning framework is not evaluated. The robustness of

the adversarial learning in the context of IoT is an open research challenge.
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