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A B S T R A C T

Safety is a top priority for civil aviation. Data mining in digital Flight Data Recorder (FDR) or
Quick Access Recorder (QAR) data, commonly referred to as black box data on aircraft, has
gained interest for proactive safety management. New anomaly detection methods, primarily
clustering methods, have been developed to monitor pilot operations and detect any risks from
such flight data. However, all existing anomaly detection methods are offline learning — the
models are trained once using historical data and used for all future predictions. In practice,
new flight data are accumulated continuously and analyzed every month at airlines. Clustering
such dynamically growing data is challenging for an offline method because it is memory and
time intensive to re-train the model every time new data come in. If the model is not re-
trained, false alarms or missed detections may increase since the model cannot reflect changes
in data patterns. To address this problem, we propose a novel incremental anomaly detection
method based on Gaussian Mixture Model (GMM) to identify common patterns and detect
outliers in flight operations from digital flight data. It is a probabilistic clustering model of
flight operations that can incrementally update its clusters based on new data rather than to
re-cluster all data from scratch. It trains an initial GMM model based on historical offline data.
Then, it continuously adapts to new incoming data points via an expectation–maximization
(EM) algorithm. To track changes in flight operation patterns, only model parameters need to be
saved, not the raw flight data. The proposed method was tested on three sets of simulation data
and two sets of real-world flight data. Compared with the traditional offline GMM method, the
proposed method can generate similar clustering results with significantly reduced processing
time (57 %–99 % time reduction in testing sets) and memory usage (91 %–95 % memory usage
reduction in testing sets). Preliminary results indicate that the incremental learning scheme is
effective in dealing with dynamically growing data in flight data analytics.

1. Introduction

Recently, flight data analytics has gained great attention in the aviation industry for safety management and efficiency
improvement (Kang and Hansen, 2018; Qian et al., 2017; Sun et al., 2019). A number of machine learning methods have been
developed to recognize patterns and (or) detect anomalies in massive amounts of operational data generated by computer systems
onboard and on the ground, including digital flight data recorder (FDR) data and aircraft position tracking data by radar or Automatic
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Fig. 1. Digital flight data devices and capacity.

Dependent Surveillance-Broadcast (ADS-B), etc. These methods help to unravel patterns in flight operations and aircraft movement,
and gain a better understanding of aircraft system conditions, pilot behaviors, and traffic flow dynamics. The results can be used to
monitor system health conditions, detect any safety risks, and inform improvement strategies.

Among various digitized operational data, the digital flight data recorded by Quick Access Recorder (QAR) or FDR records
detailed and comprehensive information of an airplane throughout a flight. As shown in Fig. 1, on modern aircraft, the digital flight
data consist of tens to thousands of flight parameters recorded throughout a flight. These parameters include altitude, airspeed,
accelerations, thrust, engine pressures, engine temperatures, control surfaces, and autopilot modes. A large amount of flight data
are generated by every flight every day. Many airlines have implemented Flight Operational Quality Assurance (FOQA) programs,
also known as Flight Data Monitoring (FDM) programs, to collect, store and analyze such data. The objective of these programs is
to find new ways to improve flight safety and increase overall operational efficiency by analyzing digital flight data.

However, methods to analyze such data are still lagging behind. Current methods adopted by airlines are based on a rule-
based anomaly detection technique, which is referred to as Exceedance Detection (ED). In the past decade, a number of advanced
analytical methods have been proposed to find anomalies, patterns, and correlations within large sets of FDR data or QAR data
of airline routine operations. The earliest effort was the Morning Reporting Package (Amidan and Ferryman, 2005). The software
modeled the time series data of selected flight parameters using a quadratic equation to identify abnormal flights. The Sequence
Miner was a method to detect anomalies focusing on pilot cockpit inputs. The Sequence Miner algorithm can detect anomalies in
pilot switch operations by inputting discrete flight data based on Longest Common Subsequence (LCS) metric (Budalakoti et al.,
2006). A statistical framework was proposed by Srivastava to combine discrete data (e.g. pilot switch operations) with continuous
data (e.g. airspeed, altitude) in digital flight data (Srivastava, 2005). Based on this framework, Das et al. (2010) developed Multiple
Kernel Based Anomaly Detection (MKAD). This method adopted a one-class Support Vector Machine (SVM) to detect anomalies from
a large set of continuous and discrete data based on the theory of multiple kernel learning. These methods were all based on the
assumption that the normal patterns of digital flight data all belong to one class. To deal with multiple classes of normal patterns, two
cluster-based anomaly detection algorithms, ClusterAD-Flight and ClusterAD-DataSample, were developed (Li et al., 2015, 2016).
The core concept of these two algorithms was to identify the norms of flight data and detect any outliers (shown in Fig. 2), in order
to reveal hidden patterns in flight data without specifying exceedance criteria. ClusterAD-Flight used a transformation method that
converted each flight’s multivariate time series into a high-dimensional vector, and then adopted density-based spatial clustering of
applications with noise (DBSCAN) to identify the common operations (Li et al., 2015). ClusterAD-DataSample was a related method
that identified clusters from data samples at each time point during a flight. In this method, Gaussian Mixture Model (GMM) was
used to automatically recognize multiple typical patterns of flight operations, and the results were characterized by probabilistic
models (Li et al., 2016). Melnyk et al. (2016) adopted a semi-Markov switching vector autoregressive (SMS-VAR) model to represent
each flight and detect anomalies based on measuring the difference between the model’s prediction and data observation.

All these methods above have one common limitation — they can only perform offline learning. The models are trained using
historical data in one batch. For unsupervised learning, all data need to be put in the memory at the same time. For supervised
learning, the model cannot be updated based on new data unless the model is re-trained. This does not accommodate airlines’
current practice of FOQA/FDM programs. In practice, flight data are collected from aircraft each time it comes to the base, while
data analysis and reporting are conducted every month. Using offline methods requires extremely large memory capacity and long
computational time because data accumulated over months need to be repeatedly processed and analyzed. Incremental methods
offer a better choice. Incremental methods process data elements one (or a small amount) at a time and need much less memory
space than the offline methods which store the whole dataset. The only work that we found to address the data size problem in
flight data analysis was the Logarithmic multivariate Gaussian models developed by Li et al. (2020) to detect anomalies in flight
data via a mini-batch training process. However, it could not deal with changes in the number of clusters. Therefore, this work aims
at further development in this direction, an incremental clustering method that can process the data and update its model (including
cluster number and cluster structure) online as new data come in.
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Fig. 2. Core concept of cluster analysis and anomaly detection in ClusterAD-Flight and ClusterAD-DataSample (Li et al., 2015, 2016).

Incremental methods receive data elements or batches one at a time and typically use much less space than what is needed to
store the complete dataset. Incremental clustering aims to identify inherent structures of the whole dataset, yet can only observe
a few data points each time. Several papers discussed the challenges in developing incremental clustering methods (Ackerman and
Dasgupta, 2014). Meanwhile, many incremental or online clustering algorithms have been developed for stream data (Bao et al.,
2018; Gupta and Grossman, 2004; Li et al., 2010; Lin et al., 2004). The most relevant ones are summarized here. One of the early
tries of data stream clustering was CluStream (Aggarwal et al., 2003). This method is suited best to the clusters with the shape of
spherical, and it has been enhanced to deal with uncertainty in the data stream. HPStream (Aggarwal et al., 2004) is a modification
of CluStream, which can deal with high-dimensional data. This method reduces the dimension of the data by conducting a projection
method that can minimize the radius of the clusters. Algorithms for stream data based on k-median and k-means have been developed
by O’callaghan et al. (2002) and Beringer and Hüllermeier (2006). Although this kind of algorithms can reduce the consumption of
the use of memory and has low computational complexity, users need to provide the number of clusters and the shape of the clusters
are likely to be spherical. DenStream is another data stream algorithm based on DBSCAN (Cao et al., 2006). The algorithm uses
microclusters to summarize the overall shape of clusters without the need to save all data in memory. Gao et al. (2005) introduced
a grid-based method called DUCstream where they applied CLIQUE algorithm to find the dense regions. The algorithm disregards
the regions whose density fades as new data come in to adapt to changes in the data stream. There is another incremental clustering
method called IncDBSCAN proposed by Ester et al. (1998) which is a density-based algorithm. The method is based on DBSCAN.
However, the algorithm does not consider the relationships among each update, so the efficiency of the algorithm is low. Al-SL (Patra
et al., 2013) is a distance-based incremental clustering algorithm that can find clusters with any shape. The method calculates the
distance between the new point and the closest leader point of a cluster to determine whether the new data point belongs to a cluster.
The deficiencies of this method are that it is time-consuming to search the whole data space to find the surrounding leader points
and the method is sensitive to noise. Another distance-based incremental clustering method is developed by Ibrahim et al. (2012)
which can discover clusters of arbitrary shapes and densities in high dimensional data. Ning et al. (2010) proposed an incremental
spectral clustering method by efficiently updating the Eigensystem. It can discover not only the stable clusters but also the evolution
of the individual clusters, but it focuses only on the dynamic graphs. Bandyopadhyay and Murty (2016) proposed a Frequent Pattern
Tree (FP tree) based incremental algorithm. Although this method considers the quality and the computational complexity, it can
only deal with discrete data and is invalid for continuous data. Pensa et al. (2014) developed a hierarchical co-clustering method
where a partition of objects and features were computed at the same time.

There are also several online methods that are based on GMM (Wu et al., 2005). The method developed by Hall et al. (2000)
merges Gaussian components in a pair-wise manner by considering volumes of the corresponding hyper-ellipsoids. Song and Wang
(2005) proposed a more principled method which uses two statistics to compare equivalence of the GMM parameters, the W statistic
for covariance and the Hotelling’s T2 statistic for the mean. A common drawback of the previous two methods is that they fail to
use the original model when they fit new data. A consequence is that the new model fitted by new data can only explain the new
data which leads to the separation of the new model and the original one. Hicks et al. (2003) proposed a method to overcome
this drawback. The method allows a change in the number of components, does not assume independence of the components to
be added, and ignores the order that the training data arrives. Vasconcelos and Lippman (1998) also proposed a similar approach
of combining Gaussian components. Although these methods can solve the problem of updating the models according to the newly
arrived data, they fail to consider outliers while updating the models, resulting in two problems: (1) clustering results would be
biased by outliers; and (2) outlier flights could not be identified for safety management.

In response, this study aims to develop an incremental clustering method to identify common patterns and detect outliers in
flight operations from digital flight data recorder data as new data come in. The results can help airlines to identify safety risks,
3
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Fig. 3. An Incremental Clustering Method for Anomaly Detection in Flight Data.

understand pilot behaviors, and track training effectiveness. Compared with existing methods, the advantages of the new method lie
in that it can (1) detect outliers from flight data that accumulated periodically, (2) update the original model based on information
from both new data and historical data, (3) identify new clusters if any, and (4) track changes in clusters over time.

The rest of this paper is organized as follows. Section 2 presents the proposed incremental clustering method for flight data
analysis. In Section 3, three sets of simulation data are used to test the proposed method. In Section 4, the proposed incremental
method is tested on two sets of flight data from real-world operations. In Section 5, we discuss the limitations of the proposed
incremental clustering method. Finally, Section 6 summarizes our study and suggests future research directions.

2. Method

In order to achieve the aforementioned objectives, this paper presents the development of an incremental clustering method for
anomaly detection with dynamically growing datasets. Under the assumption that most flights show common data patterns under
routine operations, the proposed method detects these common patterns based on GMM and the incremental clustering method can
update cluster parameters as new flight data come in. The statistical properties of each cluster, representing a common pattern in
flight data, are described with Gaussian parameters and updated incrementally each time a new batch of data comes in.

Our proposed incremental clustering method contains two parts: offline and online. The offline part runs only once on a large set
of historical flight data to get the initial parameters of a cluster model. Then, the online part runs whenever a new batch of flight
data comes in and the cluster model is updated accordingly. Both clusters and outliers are then passed to airline safety experts
or flight operations managers to review to identify safety risks, understand pilot behaviors, and track training effectiveness. The
workflow of the proposed method is illustrated in Fig. 3. The details are described in the following subsections. The pseudo codes
of the algorithms are given in Algorithm 1 and Algorithm 2.

2.1. Pre-processing

A pre-processing step is needed to prepare the raw flight data for cluster analysis. After a certain part of a flight is selected for
the analysis, flight data are mapped into comparable vectors in a high-dimensional space, anchored by a specific event in time.
Because flight parameters have different ranges and units, the values of each flight parameter are normalized to have zero mean
and unit variance for offline data. As for online data, we normalize them using the same standard as used for offline data. As a
result, a certain part of a flight considering selected parameters is represented by a vector 𝒙 shown in Eq. (1). More details about
this preprocessing step are introduced in Li et al. (2016).

𝒙 =
[

𝑥11, 𝑥
1
2,… , 𝑥1𝑛,… , 𝑥𝑖𝑗 ,… , 𝑥𝑚1 , 𝑥

𝑚
2 ,… , 𝑥𝑚𝑛

]

(1)

where xij is the value of the 𝑖th flight parameter at time 𝑗; 𝑚 is the number of flight parameters; 𝑛 represents the total number of
samples for every flight parameter.
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Fig. 4. Initial GMM.

2.2. Offline part: Initial Gaussian mixture model

In the offline part, an initial GMM is learned from a set of historical flight data by a robust GMM clustering method, and a set of
outliers, 𝑶0, is detected based on the learned GMM parameters. Fig. 4 shows the initial offline model that we get from the offline
part of the method.

The learned initial GMM is described by Eq. (2):

𝑝0
(

𝒙 ∣ 𝝀0,𝑶0) =
𝐾0
∑

𝑖=1
𝜔0
𝑖 𝑔

(

𝒙 ∣ 𝜇0
𝑖 , 𝛴

0
𝑖 ,𝑶

0) (2)

where 𝒙 is a random m-dimensional vector representing a random sample of flight data as described in Eq. (1); 𝝀0 =
{

𝜔0
𝑖=1…𝐾0 , 𝜇

0
𝑖=1…𝐾0 , 𝛴

0
𝑖=1…𝐾0

}

are GMM parameters estimated based on the historical flight dataset 𝐷0; 𝐾0 is the number of

components in the initial GMM; 𝜔0
𝑖 is the mixture weight of Gaussian component 𝑖, satisfying ∑K0

i=1 𝜔
0
i = 1; 𝜇0

i and 𝛴0
i is the mean

and the covariance matrix of Gaussian component 𝑖. 𝑶0 represents a set of outliers, data points that do not belong to any clusters
based on the learned GMM.

As many studies pointed out, the standard GMM clustering results are sensitive to the presence of outliers in the data.
Cluster centers and model parameter estimates can be severely biased by a few outliers. Therefore, we adopted a robust GMM-
based clustering method, introducing outlier-aware probability density functions and solving the associated maximum likelihood
estimation problem via EM-like algorithms, as proposed in several robust GMM clustering methods (Forero et al., 2012; Gao et al.,
2014; Chang et al., 2005; Hodge and Austin, 2004; Hautamäki et al., 2005). The basic idea is to look for a set of GMM parameters
and a corresponding set of outliers that minimize the regularized negative log-likelihood as Eq. (3).

min
𝝀,𝑶

−𝐿(𝒙 ∣ 𝝀,𝑶) + 𝜋
𝑁
∑

𝑛=1

‖

‖

𝒐𝑛‖‖(𝛴)−1

=min
𝝀,𝑶

𝑁
∑

𝑛=1
log

(

−𝑝
(

𝒙𝑛 ∣ 𝝀,𝑶
))

+ 𝜋
𝑁
∑

𝑛=1

‖

‖

𝒐𝑛‖‖(𝛴)−1

= min
𝜔,𝜇,𝛴,𝑶

𝑁
∑

𝑛=1
log

⎛

⎜

⎜

⎝

𝐾0
∑

𝑖=1
𝜔𝑖𝑔

(

𝒙𝑛 ∣ 𝜇𝑖 + 𝒐𝑛, 𝛴𝑖
)

⎞

⎟

⎟

⎠

+ 𝜋
𝑁
∑

𝑛=1

‖

‖

𝒐𝑛‖‖(𝛴)−1

(3)

where the outlier vector 𝑜𝑛 is defined to be deterministically nonzero if 𝑥𝑛 corresponds to an outlier, and 𝟎 otherwise. 𝑶 ∶=
{

𝑜𝑛 ∶ 𝑜𝑛 ≠ 0∀𝑛 = {1, 2,… , 𝑁}
}

indicates a set of outliers. 𝜋 ≥ 0 is an outlier-controlling parameter that can be defined by the user.
For 𝜋 = 0, the cost in (3) becomes unbounded from below, and all 𝑥𝑛 are declared as outliers. For 𝜋 → ∞, the optimum ‖

‖

𝒐𝑛‖‖ is zero,
the dataset is deemed outlier-free, and (3) reduces to the conventional maximum likelihood estimation of a GMM.

To solve the minimization problem of Eq. (3), we adopted an expectation–maximization (EM) approach and block coordinate
0

5

descent (BCD) iterations as proposed by Forero et al. (2012). Given the number of mixture components 𝐾 and the value of the
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Fig. 5. Distribution of the log-likelihood of a set of flight data based on an initial GMM.

outlier-controlling parameter 𝜋, the algorithm updates a set of GMM parameters and a set of outliers iteratively until convergence.
In each iteration, the algorithm updates each set of parameters in one at a time with all other ones fixed. Specifically, the
cost in Eq. (3) is minimized with respect to one of the parameters: 𝜔, 𝜇,𝛴,𝑶, while keeping the rest as fixed to their updated
values in each iteration. The final result generated from the iterations are the learned GMM parameters 𝝀0, which can also be
described as (𝝎0,𝝁0,𝜮0), and a corresponding set of outliers 𝑶0. The robust clustering scheme for the offline part is presented in
Algorithm 1.

In this robust clustering scheme, two parameters need to be specified as algorithm inputs: the number of mixture components
𝐾0 and the outlier-controlling parameter 𝜋. 𝐾0 is determined by sensitive analysis. A range of 𝐾0 values are tested and the best
𝐾0 is chosen with the lowest Bayesian Information Criterion (BIC) (Schwarz et al., 1978). The value of 𝜋 is determined by 𝛼, the
percentage of the data that we want to detect as outliers. In the offline stage, we first set the size of outliers to be detected via 𝛼

based on user‘s preference. Then the robust clustering algorithm is run for a sequence of 𝜋 with decreasing values,
{

𝜋𝑔
}

, until the
expected number of outliers is identified (Forero et al., 2012). The expected number of outliers is calculated by 𝛼 ×𝑁 , where 𝑁 is
the total number of data points in the offline stage.

A by-product of Algorithm 1 is the outlier detection criterion which will be used in the online part to detect outliers when each
batch of new data comes in. After the initial GMM is learned, the outlier detection criterion is defined below.

𝑟 = ln
(

𝑝0
(

𝒔
⌈𝛼𝑁⌉

∣ 𝝀0,𝑶0)) (4)

where 𝒔 is a set of ordered 𝒙 sorted by ln
(

𝑝0
(

𝒙 ∣ 𝝀0,𝑶0)) in ascending order. Thus, 𝑟 is the log-likelihood of the ⌈𝛼𝑁⌉

𝑡ℎ outlier
belong to the GMM estimated in the offline part. This value will be used as a threshold to label out new outliers 𝑶𝑛𝑒𝑤 in the online
part.

𝑥 =
{

outlier, ln
(

𝑝0
(

𝑥 ∣ 𝝀0,𝑶0)) ≤ 𝑟
normal, ln

(

𝑝0
(

𝑥 ∣ 𝝀0,𝑶0)) > 𝑟
(5)

Therefore, 𝛼, the percentage of the data that we want to detect as outliers, is a user-specified parameter that affects the clustering
results in multiple ways. It determines the value of the outlier-controlling parameter 𝜋, which is used in the offline part, as well as
the value of outlier detection threshold 𝑟, which is used in the online part. In practice, the value of 𝛼 can be set based on the user‘s
preference, i.e. an airline can manually review at most a certain number of outlier flights per month due to the man-power constraint,
while considering the distribution of the log-likelihood of all historical data on an initial GMM. For example, the distribution of the
log-likelihood of the Digital Flight Data Recorder dataset in Section 4.2 has a long left tail (as shown in Fig. 5). The value of 𝛼 is set
to 0.1% to best separate the outliers from the rest. Testing on both simulation data and real-world data, we found that any value
between the 0.1th percentile and the 10th percentile can be chosen as the target outlier percentage 𝛼 according to different dataset
sizes.
6



Transportation Research Part C 132 (2021) 103406W. Zhao et al.

c

Algorithm 1 Incremental Gaussian Mixture Model Estimation — Offline Part
1: Input:
2: A set of historical flight 𝐷0

3: Outlier-controlling parameter 𝜋 > 0
4: Output:
5: An initial GMM 𝑝𝑜

(

x ∣ 𝝀0,𝑶0), with 𝐾0 components that best fit the data
6: The number of data points in each Gaussian component 𝑁0

𝑖 , for 𝑖 = 1…𝐾0

7: An initial outlier dataset 𝑶0

8: Parameter Selection:
9: 𝐾0, the number of Gaussian components, is chosen based BIC via sensitive analysis

10: Initialize 𝑶0 to zero
11: Procedure:
12: Initialize GMM parameters 𝝀 based on K-means results
13: t = 0
14: while convergence not reached do
15: t = t + 1
16: Update the posterior probabilities for all n, i via

17: Pr
(

𝑖 ∣ 𝒙𝑛; 𝜆0
(𝑡−1) ,𝑶0(𝑡−1)

)

=
𝜔0(𝑡−1)
𝑖 𝑔

(

𝒙𝑛 ∣𝜇0
(𝑡−1)

𝑖 +𝒐(𝑡−1)𝑛 ,𝛴0(𝑡−1)
𝑖

)

∑𝐾0
𝑖=1 𝜔

0(𝑡−1)
𝑖 𝑔

(

𝒙𝑛 ∣𝜇0
(𝑡−1)

𝑖 +𝒐(𝑡−1)𝑛 ,𝛴0(𝑡−1)
𝑖

)

18: Update 𝜔0(𝑡) via
19: 𝜔0(𝑡)

𝑖 = 1
𝑁

∑𝑁
𝑛=1 Pr

(

𝑖 ∣ 𝒙𝑛; 𝜆0
(𝑡−1) ,𝑶0(𝑡−1)

)

20: Update 𝜇0(𝑡) via

21: 𝜇0(𝑡)
𝑖 =

∑𝑁
𝑛=1 Pr

(

𝑖∣𝒙𝑛;𝜆0
(𝑡−1) ,𝑶0(𝑡−1)

)(

𝒙𝑛−𝒐
(𝑡−1)
𝑛

)

∑𝑁
𝑛=1 Pr

(

𝑖∣𝒙𝑛;𝜆0
(𝑡−1) ,𝑶0(𝑡−1)

)

22: Update 𝑶0(𝑡−1) via

23: 𝒐(𝑡)𝑛 = arcmin
𝒐𝑛

∑𝐾0

𝑖=1
Pr
(

𝑖∣𝒙𝑛;𝜆0
(𝑡−1) ,𝑶0(𝑡−1)

)

2
‖

‖

‖

𝒙𝑛 − 𝜇0(𝑡)
𝑖 − 𝒐𝑛

‖

‖

‖

(

𝛴0(𝑡−1)
𝑖

)−1

24: Update 𝛴0(𝑡) via

25:

𝛴0(𝑡)
𝑖 = min

𝛴0
𝑖 ≻0

𝑁
∑

𝑛=1

𝐾0
∑

𝑖=1

Pr
(

𝑖 ∣ 𝒙𝑛; 𝜆0
(𝑡−1) ,𝑶0(𝑡−1)

)

2
‖

‖

‖

𝒙𝑛 − 𝜇0(𝑡)
𝑖 − 𝒐𝑛

‖

‖

‖

2
(

𝛴0
𝑖

)−1

+ 𝑁
2

log det 𝛴0
𝑖 + 𝜋

𝑁
∑

𝑛=1

‖

‖

‖

𝒐(𝑡)𝑛
‖

‖

‖(𝛴0)−1

26: Convergence test: Calculate Eq. (3) and check if convergence is reached
27: end

2.3. Online part: Incremental Gaussian mixture model

After the offline part is completed, the algorithm’s online part runs whenever new flight data come in. It identifies emerging
lusters and updates existing clusters using new data. It is performed in four steps: (1) classify new data and identify outliers based

on previous GMM; (2) identify emerging clusters; (3) combine emerging clusters with existing ones to form extended GMM; and
(4) update GMM using new data. The pseudo-code of the online part is presented in Algorithm 2.

2.3.1. Classify new data and identify outliers based on previous GMM
When new flight data are collected and fed into the model, the algorithm first classifies these new data based on existing clusters

learned from the offline model or the previous update, which is denoted as Eq. (6):

𝑝𝑇−1
(

𝒙 ∣ 𝝀𝑇−1
)

=
𝐾𝑇−1
∑

𝑖=1
𝜔𝑇−1
𝑖 𝑔

(

𝒙 ∣ 𝜇𝑇−1
𝑖 , 𝛴𝑇−1

𝑖
)

(6)

where 𝑇 records the number of rounds that the online part has been performed. If it is the first time to run the online part, 𝑇 = 1,
the current mixture model is the initial model learned from offline data without the outliers 𝑝0

(

𝒙 ∣ 𝝀0
)

; if not the first time, the
current mixture model is the GMM updated from the last round.

Outliers that do not belong to any existing clusters are detected if the log-likelihood of a data point is smaller than the threshold 𝑟,
whose value has been defined in the offline part. After this step, new outliers from the new data are identified, and they are combined
with previous outliers 𝑶𝑇−1 to form a set 𝑶𝑛𝑒𝑤 to be fed in the next step to identify any emerging clusters. Fig. 6 illustrates this
step. New data points are either classified into existing clusters or detected as new outliers.
7
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Fig. 6. Classify new data and identify outliers based on previous GMM.

Fig. 7. Identify emerging clusters.

2.3.2. Identify emerging clusters
The objective of this step is to find any emerging clusters from all outliers in new data and offline data. DBSCAN (Ester et al.,

1996) is used to initialize clusters, if any. Then, GMM is used to parameterize identified emerging clusters. Fig. 7 illustrates the step
of identifying emerging clusters. DBSCAN is chosen to identify emerging clusters because it responds well to dense areas with sparse
data points. We set the clustering criteria (MinPts and 𝜀) to make the emerging clusters have a similar level of density compared
to the existing clusters. The value of MinPts is set to 5 because the clustering result is insensitive to MinPts. The value of 𝜀 is set to
the 90th percentile of the distance to the 5th neighbor of all data points in existing clusters.

The emerging clusters identified by DBSCAN are then parameterized by GMM to be combined with existing clusters. To initialize
the parameters of these emerging clusters, we use Eq. (7)–(9).

𝜔emerging internal
𝑖 =

𝑁emerging
𝑖

𝑁emerging (7)

𝜇emerging
𝑖 =

∑

𝒙𝑖
𝑁emerging

𝑖

(8)

𝛴emerging
𝑖 =

∑

(

𝐱𝑖 − 𝜇emerging
𝑖

)(

𝐱𝑖 − 𝜇emerging
𝑖

)𝑇

𝑁emerging
𝑖

(9)

where 𝒙𝑖 represents data points belonging to emerging cluster 𝑖 identified by DBSCAN, 𝑁emerging is the total number of data points
in all emerging clusters, 𝑁emerging

𝑖 is the number of data points belonging to emerging cluster 𝑖, 𝑁emerging =
∑

𝑁emerging
𝑖 .

Then all these parameters are further optimized using the standard EM algorithm based on data points in all emerging clusters
identified by DBSCAN. Finally, to make the emerging components compatible with existing ones, we adjust the weights of emerging
8
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𝑤
H

components using Eq. (10):

𝜔emerging
𝑖 = 𝜔emerging internal

𝑖 ∗ 𝑁emerging

𝑁𝑇−1 +𝑁emerging (10)

Now we have 𝝀emerging =
{

𝜔emerging
𝑖=1…𝐾emerging , 𝜇emerging

𝑖=1..𝐾emerging , 𝛴emerging
𝑖=1…𝐾emerging

}

, 𝝀i =
{

𝜔i, 𝜇i, 𝛴i
}

, a set of GMM parameters for the
emerging clusters. 𝐾emerging is the number of emerging Gaussian components. 𝑁𝑇−1 is the total number of data points in all existing
clusters.

2.3.3. Combine emerging clusters with existing ones to form extended GMM
After the parameters of emerging clusters are estimated, these new clusters are added with the existing ones to form an extended

GMM by row addition. The parameters of the extended GMM are represented by 𝝀extended, as shown in Eq. (11).

𝝀extended =
[

𝝀𝑇−1

𝝀emerging

]

(11)

2.3.4. Update and consolidate GMM
In this step, the structure and parameters of the extended GMM are updated and optimized to reach two objectives: (1) the

centroid, shape, and weight of all components are adjusted considering new data; (2) any similar components are merged to maintain
the compactness of a GMM and avoid overfitting.

First, all new data in this batch 𝐷𝑇 and outliers from the previous batch 𝑶𝑇−1 are re-classified based on the extended GMM.
Anomaly detection is first performed for each data point based on the log-likelihood criteria 𝑟, and the outlier dataset 𝑶𝑇 are updated
accordingly. Then classification is conducted for each data point that passed the anomaly detection test according to the conditional
probability. The number of data points belonging to component 𝑖, 𝑁newdata

𝑖 , for 𝑖 = 1…𝐾extended , are recorded.
Second, the algorithm updates the parameters of the extended GMM considering the new information. Let 𝝀updated

𝑖 denote a set
of updated GMM parameters for cluster 𝑖, 𝝀updated

𝑖 =
{

𝜔updated
𝑖 , 𝜇updated

𝑖 , 𝛴updated
𝑖

}

. Eqs. (12)–(14) describe how they are updated.

𝜔updated
𝑖 = (1 −𝑤)𝜔extended

𝑖 +𝑤𝜔newdata
𝑖 (12)

𝜇updated
𝑖 = (1 −𝑤)𝜇extended

𝑖 +𝑤𝜇newdata
𝑖 (13)

𝛴updated
𝑖 = (1 −𝑤)𝛴extended

𝑖 +𝑤𝛴newdata
𝑖 + (1 −𝑤)𝜇extended

𝑖 𝜇extended
𝑖

𝑇 +𝑤𝜇newdata
𝑖 𝜇newdata

𝑖
𝑇

−𝜇updated
𝑖 𝜇updated

𝑖
𝑇 (14)

where:

𝜔newdata
𝑖 =

∑

∀𝒙𝑗∈𝑿newdata
𝑖

Pr
(

𝑖 ∣ 𝒙𝑗 ,𝝀extended
𝑖

)

𝑁newdata
𝑖

(15)

𝜇newdata
𝑖 =

∑

∀𝒙𝑗∈𝑿newdata
𝑖

Pr
(

𝑖 ∣ 𝒙𝑗 ,𝝀extended
𝑖

)

𝒙𝑗
∑

∀𝒙𝑗∈𝑿newdata
𝑖

Pr
(

𝑖 ∣ 𝒙𝑗 ,𝝀extended
𝑖

)
(16)

𝛴newdata
𝑖 =

∑

∀𝒙𝑗∈𝑿newdata
𝑖

Pr
(

𝑖 ∣ 𝒙𝑗 ,𝝀extended
𝑖

)

(

𝒙𝑗 − 𝜇updated
𝑖

)(

𝒙𝑗 − 𝜇updated
𝑖

)𝑇

∑

∀𝒙𝑗∈𝑿newdata
𝑖

Pr
(

𝑖 ∣ 𝒙𝑗 ,𝝀extended
𝑖

)
(17)

is a weighting parameter to balance the impact of new data versus historical data on GMM estimations, with a range of [0, 1].
ere we set 𝑤 as Eq. (18):

𝑤 =
𝑁newdata

𝑖

𝑁𝑇−1
𝑖 +𝑁newdata

𝑖

(18)

𝑁𝑇−1
𝑖 is the number of data points in component i of the mixture model after the (𝑇 − 1)th round of update. If this component is

an emerging one, 𝑁𝑇−1
𝑖 = 0 since it did not exist in the model. If it is an existing component, 𝑁𝑇−1

𝑖 is retrieved from the (𝑇 − 1)th
round of model.

Third, since the components may grow, move, or shrunk with dynamically growing data, the algorithm needs to check if any
components become similar; if yes, they are merged to avoid overfitting with redundant components. Each pair of components
is searched and tested for the equality of the covariance matrix and the means using the two statistics, W and Hotelling’s T2, as
proposed by Song and Wang (2005). If a pair of components

(

𝝀updated ,𝝀updated
)

passed the equality test, they are merged into a
9

𝑖 𝑗
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Fig. 8. Update and consolidate GMM.

new component 𝝀merged
𝑖 following Eqs. (19)–(23) as proposed in Song and Wang (2005).

𝜔merged
𝑘 = 𝜔updated

𝑖 + 𝜔updated
𝑗 (19)

𝜇merged
𝑘 =

𝜔updated
𝑖 𝜇updated

𝑖 + 𝜔updated
𝑗 𝜇updated

𝑗

𝜔updated
𝑖 + 𝜔updated

𝑗

(20)

𝛴merged
𝑘 =

𝜔updated
𝑖 𝛴updated

𝑖 + 𝜔updated
𝑗

∑updated
𝑗

𝜔updated
𝑖 + 𝜔updated

𝑗

+
𝜔updated
𝑖 𝜇updated

𝑖 𝜇updated 𝑇

𝑗 + 𝜔updated
𝑗 𝜇updated

𝑗 𝜇 updated
𝑖

𝑇

𝜔updated
𝑖 + 𝜔updated

𝑗

(21)

𝑁merged
𝑘 = 𝑁𝑇−1

𝑖 +𝑁newdata
𝑖 +𝑁𝑇−1

𝑗 +𝑁newdata
𝑗 (22)

𝝀merged =
{

𝜔merged
𝑘=1…𝐾merged , 𝜇merged

𝑘=1…𝐾merged , 𝛴merged
𝑘=1…𝐾merged

}

(23)

For the unique components, they remain unchanged. 𝝀unique describes the collection of parameters of unique components by
Eqs. (24) and (25).

𝝀unique =
{

𝜔unique
𝑘=1…𝐾unique , 𝜇unique

𝑘=1…𝐾unique , 𝛴unique
𝑘=1…𝐾unique

}

(24)

𝑁unique
𝑘 = 𝑁𝑇−1

𝑖 +𝑁newdata
𝑖 (25)

Lastly, all merged and unique components are consolidated to a new GMM 𝑝T
(

𝒙 ∣ 𝝀𝑇
)

, and the number of data points in each
Gaussian component 𝑁𝑇

𝑖 , 𝑖 = 1…𝐾𝑇 is updated accordingly, shown in Eqs. (26)–(28):

𝑝𝑇
(

𝒙 ∣ 𝝀𝑇
)

=
𝐾𝑇
∑

𝑖=1
𝜔𝑇
𝑖 𝑔

(

𝒙 ∣ 𝜇𝑇
𝑖 , 𝛴

𝑇
𝑖
)

(26)

𝝀𝑇 =
[

𝝀merged

𝝀unique

]

(27)

𝑁𝑇 =
[

𝑁merged

𝑁unique

]

(28)

Fig. 8 illustrates the step of updating and consolidating GMM. The pseudocode of the incremental clustering method is presented
10

as below by Algorithm 1 for the offline part and Algorithm 2 for the online part.
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Algorithm 2 Incremental Gaussian Mixture Model Estimation — Online Part
1: Input:
2: Newly arrived flight data 𝐷𝑇 ; 𝑇 is the number of batches of flight data accumulated
3: Current GMM 𝑝𝑇−1

(

𝒙 ∣ 𝝀𝑇−1
)

, with 𝐾𝑇−1 components 𝛼, percentage of outliers that the user wants to detect
4: The number of data points in each Gaussian component 𝑁𝑇−1

𝑖 , for 𝑖 = 1,… , 𝐾𝑇−1

5: Outlier dataset 𝑶𝑇−1

6: Outlier detection threshold 𝑟
7: Output:
8: Updated GMM 𝑝𝑇

(

𝒙 ∣ 𝝀𝑇
)

, with 𝐾𝑇 , with 𝐾𝑇 components that best fit past accumulated data and the newly arrived data
9: Updated number of data points in each Gaussian component 𝑁𝑇

𝑖 , for 𝑖 = 1,… , 𝐾𝑇

10: Updated outlier dataset 𝑶𝑇

11: Parameter Selection:
12: MinPts and 𝜀, DBSCAN clustering criteria: MinPts = 5; 𝜀 = the 90th percentile of the distance to the 5th neighbor of all data

points in existing clusters
13: The statistical significance is set to 0.05 for the W and Hotelling’s T2 test
14: Procedure:
15: Detect outliers from newly arrived flight data 𝐷𝑇 based on previous GMM, 𝑝𝑇−1

(

𝒙 ∣ 𝝀𝑇−1
)

16: if ln
(

𝑝𝑇−1
(

𝒙 ∣ 𝝀𝑇−1
))

< 𝑟 then
17: Add 𝒙 to O𝑇−1

18: else
19: Assign 𝒙 to a component in GMM
20: Record the number of data points in each Gaussian component 𝑁𝑇−1

𝑖

21: end if
22: Combine new outliers with previous outliers 𝑂𝑇−1 to form a new set of outliers 𝑂𝑛𝑒𝑤

23: Identify emerging clusters from 𝑂𝑛𝑒𝑤 via DBSCAN
24: Estimate GMM parameters for these emerging clusters via EM algorithm
25: 𝝀emerging =

{

𝜔emerging
𝑖=1…𝐾emerging , 𝜇emerging

𝑖=1..𝐾emerging , 𝛴emerging
𝑖=1…𝐾emerging

}

26: Add emerging clusters with existing ones to obtain an extended GMM

27: 𝝀extended =
[

𝝀𝑇−1

𝝀emerging

]

28: Update the extended GMM with newly arrived data 𝐷𝑇 and previous outliers 𝑂𝑇−1

29: 𝝀updated = (1 −𝑤)𝝀extended +𝑤𝝀newdata

30: Obtain an updated outlier dataset 𝑂𝑇

31: Merge redundant components based on the W and Hotelling’s T2test
32: 𝝀merged

𝑘 = 𝝀updated
𝑖 + 𝝀updated

𝑗

33: 𝑁merged
𝑘 = 𝑁𝑇−1

𝑖 +𝑁newdata
𝑖 +𝑁𝑇−1

𝑗 +𝑁newdata
𝑗

34: Keep the unique components
35: 𝝀unique

𝑘 = 𝝀updated
𝑖

36: 𝑁unique
𝑘 = 𝑁𝑇−1

𝑖 +𝑁newdata
𝑖

37: Consolidate merged components and unique components

38: 𝝀𝑇 =
[

𝝀merged

𝝀unique

]

39: 𝑝T
(

𝒙 ∣ 𝝀𝑇
)

=
∑𝐾T

𝑖=1 𝜔
T
𝑖 𝑔

(

𝒙 ∣ 𝜇T
𝑖 , 𝛴

T
𝑖
)

40: 𝑁𝑇 =
[

𝑁merged

𝑁unique

]

3. Testing on simulation data

The performance of the proposed incremental clustering method was tested on three sets of simulation data: a low-dimensional
et, a high-dimensional set, and a three-dimensional set without distinctive cluster boundaries. The true cluster membership labels
f the simulation data were available to compare the performance of the proposed incremental clustering method and the traditional
MM method.

.1. Simulation data I

.1.1. Data description
The first set of simulation data is a low-dimensional unbalanced dataset from the School of Computing, University of Eastern

inland (Fränti and Sieranoja, 2018). As shown in Fig. 9, each data point is described by (x, y) in a two-dimensional space. There
11
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Fig. 9. Simulation Data I.

Fig. 10. Distribution of the log-likelihood of Simulation Data I based on an initial GMM.

are eight clusters in two well-separated groups: three clusters on the left side with 2000 data points in each cluster, and five clusters
on the right side with 100 points in each.

3.1.2. Testing procedure
To test whether the algorithm can detect new clusters and update existing clusters according to the new data, the dataset was

divided into six sets: a set of offline data and five sets of online data. The offline set contained the majority of the dataset except
for one dense cluster (Cluster 0). It included 85% of data randomly selected from Cluster 1–7 and 1% of data randomly selected
from Cluster 0. The rest of the data were equally assigned to one of the five online sets. The size of the offline set was 3845, and
the size of each online set was 431.

The effectiveness of the proposed method was compared with the traditional GMM method. We applied the proposed method
on the offline dataset and five online datasets sequentially. Meanwhile, we applied the traditional GMM method to the whole
set of original data. The clustering results from these two methods were compared. We used the W statistics and Hotelling’s T2

statistics (Song and Wang, 2005) to check the similarity of the covariance matrixes and mean vectors in our proposed online method
and traditional GMM method. Here we selected 𝛼=0.05 as the significance level.

The threshold of log-likelihood to detect outliers was set to −30 via testing, which was the 1st percentile of the log-likelihood
of offline data based on the initial GMM model, as shown in Fig. 10.

3.1.3. Results
Using the proposed incremental clustering method, the clusters can be updated with the growth of data, as shown in Fig. 11.

One can observe that when the first set of online data came in, a new cluster appeared (the blue cluster); as more online data came
in, this new cluster became bigger and the parameters of other existing clusters were updated accordingly. The log-likelihood of an
updated GMM after processing each batch of data is shown in Fig. 12.
12
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Fig. 11. Cluster updates with the growth of input data in Simulation Data I.

Fig. 12. Log-likelihood of each data sample in each round of analysis in Simulation Data I.

The testing results show that the proposed incremental GMM method and the traditional GMM method generated equivalent
clustering results. Fig. 13 shows the number of data points in each Gaussian component detected by the proposed incremental
13
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Fig. 13. Number of data in each cluster by the proposed incremental method and the traditional GMM in Simulation Data I.

Table 1
Statistics of comparing clusters identified by the proposed incremental method and the ones identified
by the traditional GMM in Simulation Data I.

W statistic for covariance T2 statistic for means

Cluster W p-value Cluster T2 p-value

0 0.674 0.078 0 1.935 0.093
1 0.232 0.134 1 1.128 0.218
2 0.193 0.218 2 0.356 0.434
3 0.293 0.112 3 1.004 0.199
4 0.339 0.198 4 0.633 0.320
5 0.109 0.235 5 0.645 0.309
6 0.013 0.309 6 0.711 0.286
7 0.132 0.228 7 0.229 0.485

Table 2
Computational costs of the proposed incremental method and the traditional GMM on Simulation Data I.
Incremental method Traditional GMM

Input data Running time Memory usage Input data Running time Memory usage
(s) (bytes) (s) (bytes)

Offline data 0.187 61,680 Offline data 0.185 61,680
Online set I 0.201 9,952 Offline data and Online set I 0.219 70,176
Online set II 0.161 9,520 Offline data and Online set I -II 0.255 78,672
Online set III 0.140 9,520 Offline data and Online set I - III 0.292 87,168
Online set IV 0.140 9,520 Offline data and Online set I - IV 0.294 95,664
Online set V 0.137 9,520 Offline data and Online set I - V 0.321 104,144

method and the numbers by the traditional GMM method. In the incremental method, the number of data points in each cluster
gradually increased and finally reached the same level as the numbers by the traditional GMM method. All Gaussian components
identified by the proposed incremental method and the traditional GMM method passed the similarity test based on the W statistics
and Hotelling’s T2 statistics, as shown in Table 1.

The computational cost of the proposed incremental method to analyze this dataset was smaller than that of the traditional GMM
method, in terms of both running time and memory usage, as shown in Table 2. When processing each batch of an online dataset,
the running time of the proposed method was 43% of the time required by the traditional GMM method, while the memory usage
was as low as 9.1% of the memory usage in the traditional GMM method. So testing on the first set of simulation data shows that
our algorithm is effective with low-dimensional data.

3.2. Simulation data II

The second set of simulation data is the DIM-sets (high) data which is also from the School of Computing, University of Eastern
Finland (Fränti and Sieranoja, 2018). This dataset contains 1024 data points distributed in 16 well-separated clusters in a high
dimensional space with 32 dimensions. Points within each cluster are randomly sampled from Gaussian distributions. We used this
set of data to test the effectiveness of the model for high-dimensional data. The clusters are illustrated in Fig. 14 via the T-distributed
Stochastic Neighbor Embedding (t-SNE) visualization method (Van der Maaten and Hinton, 2008).
14
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Fig. 14. T-SNE visualization of Simulation Data II.

Fig. 15. Number of data in each cluster by the proposed incremental method and the traditional GMM in Simulation Data II.

3.2.1. Testing procedure

The dataset was divided into six sets: a set of offline data and five sets of online data. The offline set contained the majority of
the dataset except for one cluster (Cluster 0). It included 10% of data randomly selected from this cluster and 85% of data from the
other 15 clusters. The rest of the data were equally assigned to one of the five online sets. The size of the offline set was 824, and
the size of each online set was 40. The same testing procedure as in the Simulation Data I test was used to evaluate the effectiveness
of the proposed method by comparing it with the traditional GMM method. The threshold of log-likelihood to detect outliers was
set as −130, which was the 1st percentile of the log-likelihood of offline data based on the initial GMM.

3.2.2. Results

Testing results showed that the proposed incremental clustering method updated existing clusters and detected the emerging
cluster with the growth of data. Comparing the results of the incremental clustering method and the ones of the traditional GMM
method, we found that most data were classified into the right clusters, but a few online data were misclassified. Fig. 15 shows
the number of data points in each cluster identified by the proposed method and the numbers by the traditional GMM method.
All clusters identified by the two methods passed the equality test using W statistic and Hotelling’s T2 statistic. Table 3 shows the
detailed statistical test results. In addition, Table 4 shows that the reduction in computational cost using the proposed incremental
method. This computational cost reduction was more significant in this dataset than the cost reduction in Simulation Data I due to
the increase of dimensionality. When processing each batch of an online dataset, the running time of the proposed method was 6.0%
of the time required by the traditional GMM method, while the memory usage was as low as 9.2% of the usage by the traditional
GMM method.
15



Transportation Research Part C 132 (2021) 103406W. Zhao et al.
Table 3
Statistics of comparing clusters identified by the proposed incremental method and the ones identified by the traditional GMM in Simulation
Data II.
Cluster W statistic for T2 statistic for Cluster W statistic for T2 statistic for

covariance means covariance means

W p-value T2 p-value W p-value T2 p-value

0 0.419 0.177 102.34 0.085 8 0.195 0.314 88.091 0.116
1 0.332 0.192 86.124 0.124 9 0.277 0.209 74.627 0.226
2 0.376 0.188 94.140 0.101 10 0.302 0.201 59.701 0.395
3 0.249 0.226 78.363 0.214 11 0.285 0.205 65.531 0.310
4 0.255 0.212 66.915 0.296 12 0.293 0.202 69.166 0.255
5 0.286 0.204 63.199 0.323 13 0.211 0.296 58.382 0.414
6 0.238 0.280 71.002 0.236 14 0.229 0.266 69.733 0.248
7 0.281 0.207 86.526 0.122 15 0.285 0.205 76.194 0.220

Table 4
Computational costs of the proposed incremental method and the traditional GMM on Simulation Data II.
Incremental method Traditional GMM

Input data Running time Memory usage Input data Running time Memory usage
(s) (mb) (s) (mb)

Offline data 0.202 0.206 Offline data 0.205 0.206
Online set I 0.041 0.025 Offline data and Online set I 0.216 0.212
Online set II 0.015 0.022 Offline data and Online set I -II 0.220 0.219
Online set III 0.014 0.022 Offline data and Online set I - III 0.227 0.225
Online set IV 0.015 0.022 Offline data and Online set I - IV 0.231 0.231
Online set V 0.014 0.022 Offline data and Online set I - V 0.236 0.238

Fig. 16. Simulation Data III.

3.3. Simulation data III

3.3.1. Dataset
To further test the performance of our proposed method, we generated a new 3-dimensional dataset that contains 5 clusters

with 600, 500, 400, 300, and 200 data points in each cluster. The clusters were not well-separated to test the performance of our
algorithm on data without distinctive cluster boundaries. Fig. 16 shows the five clusters of the datasets.

3.3.2. Testing procedure
This dataset was also divided into six sets: a set of offline data and five sets of online data. The offline set contained the majority

of the dataset except for one cluster (Cluster 0). It included 1% of data randomly selected from this cluster and 85% of data from the
other 4 clusters. The rest of the data were equally assigned to one of the five online sets. The size of the offline set was 1280, and
the size of each online set was 144. We applied the proposed method on the offline dataset and five online datasets sequentially,
and compared the results with the results we obtained from the traditional GMM method.

3.3.3. Results
Fig. 17 shows the original clusters (Figs. 17(a)–17(c)), the clusters detected by the traditional GMM method (Figs. 17(d)–17(f)),

and the ones by the proposed incremental method (Figs. 17(g)–17(i)). In general, the clusters detected by the proposed method
were similar to those detected by the traditional method and the original clusters. However, the clustering result of the proposed
incremental method was not exactly the same as the original cluster labels, nor was the result of the traditional GMM, especially
16
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Fig. 17. Clusters identified on Simulation Data III.

for the data points in the overlapped region of multiple clusters. This is caused by the nature of the GMM-based clustering methods.
The data points in the overlapped region cannot be separated without dimension augmentation or additional information.

To further compare the clusters identified by our proposed method and the clusters by the traditional GMM method, we applied
the W statistic and Hotelling’s T2 statistic. Results of the two statistics are shown in Table 5. All clusters passed the equality test,
which means that the proposed method can detect similar clusters as those in the traditional GMM method.

4. Testing on real-world flight data

This section presents the testing of the proposed method on flight data from real-world operations. Two sets of real-world data
were used to test the proposed method. One was the aircraft trajectory data with two classification labels based on the Standard
Terminal Arrival Route (STAR), and the other one was the digital flight data (QAR data) without any cluster label.
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Table 5
Statistics of comparing clusters identified by the proposed method and the ones identified by the
traditional GMM in Simulation Data III.
W statistic for covariance T2 statistic for means

Cluster W p-value Cluster T2 p-value

0 0.643 0.216 0 29.990 0.323
1 0.388 0.507 1 18.625 0.509
2 0.279 0.620 2 13.090 0.565
3 0.201 0.698 3 11.277 0.714
4 0.523 0.388 4 23.471 0.401

Fig. 18. Two Standard Terminal Arrival Routes (STARs).

Fig. 19. Selection of K for offline part.

4.1. Flight trajectory data

4.1.1. Dataset
The aircraft trajectory dataset includes 2297 arrival flights to Hong Kong international airport in November 2014, and April to

June 2015. The dataset is classified into two classes according to which STAR the flight belongs to. One class is ABBEY that contains
815 flight trajectories; the other class is SIERA that contains 1482 flight trajectories, as shown in Fig. 18.

4.1.2. Testing procedure
The dataset was divided into 2 parts: one offline dataset which contained 80% of data that were randomly selected from the

original dataset, and an online dataset which contained the other 20% data points. The online dataset was equally divided into 5
subsets. The number of data points in the offline dataset was 1186 and each online dataset was around 59.

4.1.3. Results
In the offline part of the algorithm, we found that when K was set to 7 the model resulted in the lowest BIC, as shown in Fig. 19.

An initial GMM with seven components was learned based on the offline data. As the five sets of online data came in, the model
updated itself accordingly. There was no new cluster detected in the online part. Seven final clusters were detected by the algorithm
18
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Fig. 20. Clusters detected by the proposed incremental method.

Table 6
Selected flight parameters in QAR data for analysis.
Number Flight parameter Number Flight parameter Number Flight parameter

1 Height Above Take-off 4 Gross weight 7 Roll Att.
2 Air Speed 5 Flap Angle 8 Pitch Att.
3 Vertical speed 6 Angle of Attack 9 N1 (mean of N1 Left and N1 Right)

as shown in Fig. 20. We compared the clusters detected from the proposed method with the true class membership (ABBEY and
SIERA), and found that clusters 1, 4, and 7 were part of ABBEY arrivals and clusters 2, 3, 5, and 6 were part of SIERA arrivals.
The proposed method detected more clusters than true labels. This is because these flight trajectories have another level of patterns
within each STAR depending on which runway the aircraft lands on.

4.2. Digital flight data recorded by QAR

Finally, we tested the proposed method on a set of digital flight data recorded by QAR for flight operations and safety analysis.
Since no ground truth (i.e. classification labels) was available — all flights were safe with no incident or accident, we evaluated
the proposed method by comparing it with the traditional GMM method and discussed the identified common patterns and outliers
from the perspective of aircraft performance and pilot operations based on the input of domain experts.

4.2.1. Dataset
The set of QAR data for testing records operations of an international airline’s B777 fleet in 11 months (December 1, 2016 to

October 30, 2017). The original data contains 10674 flights and 104 flight parameters. In this paper, the testing was only performed
on the take-off phase for demonstration. Nine flight parameters were selected with the help of domain experts for analysis of aircraft
performance and pilot operations during the take-off phase. The selected key flight parameters are summarized in Table 6.

Similar to previous testing using simulation datasets, the original dataset was divided into one offline set and five online sets.
To demonstrate the capability of the proposed method in capturing emerging clusters, we selected 99% of the flights of one cluster
(denoted as Cluster 0) identified by the traditional offline GMM method and 10% of the remaining data randomly as the online sets.
The rest of the data were used as the offline set. Therefore, the online sets included 2918 flights in total, 2068 flights from Cluster
3, and 850 flights from other clusters or outliers, which were evenly distributed into five sets. The offline set included 7748 flights
in total.

4.2.2. Testing procedure
Data preprocessing was first performed to re-sample and normalize the values of different flight parameters. Position-related

parameters were converted into values relative to the takeoff runway coordination system. After the data transformation, each
flight’s takeoff phase was represented by a vector with 810 dimensions (9 parameters 90 s). To reduce the dimensions, we performed
the principal component analysis (PCA) to keep the first few components that contain 99% information of the original data. After
PCA, the number of dimensions was reduced to 98.

Since there is no ground truth regarding cluster membership of each flight in the real-world data, the clustering result from a
traditional GMM method was used as the benchmark. Regarding the selection of K (number of mixture components), we found 3
to be the optimal value for this dataset as it gave the lowest BIC value, as shown in 21.
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Fig. 21. Selection of K for the traditional GMM method.

Fig. 22. Selection of K for offline part of the proposed incremental method.

4.2.3. Offline clustering
Then the offline part of the proposed method was performed on the offline dataset to establish an initial GMM. We tested different

K for our offline part and found 2 to be the best K for the offline data, shown in Fig. 22, which makes sense because we artificially
extracted one cluster out as our online dataset. After the initial GMM model is established, we calculated the log-likelihood of each
offline data and set a threshold of −500 which could detect 0.1% of data points in the offline part of the algorithm as outliers. The
threshold was used in the online part to detect outliers. If the log-likelihood of a data point was smaller than the threshold this data
point was regarded as an outlier, and if the log-likelihood of a data point was bigger than the threshold this data point was tagged
as a normal data point.

4.2.4. Online clustering
The online part of the proposed method was run each time a set of online data were fed into the algorithm. The clusters were

updated dynamically with each batch of online data. The number of points in each cluster identified in each round of incremental
clustering is summarized in Fig. 23. Compared with the traditional GMM method, the number of points in each cluster was similar.
The similarity of the clusters identified by the proposed incremental method and the ones identified by the traditional method was
checked using the W statistic and the Hotelling’s T2 statistic. We found that all three clusters identified by the two methods passed
the equality tests regarding the cluster centroid and the covariance matrix. The results are summarized in Table 7.

The computational cost of using the proposed incremental method was significantly smaller than the cost of using the traditional
GMM method on this set of flight data, as shown in Table 8. The running time of the proposed method was only 1.2% of the running
time of the traditional GMM method when dealing with each batch of online data, while the memory usage was as low as 4.7% of
the traditional GMM method. With the increase of data size and dimensionality, the benefit of reducing computational cost would
be more significant.

4.2.5. Common patterns of flight data
The common patterns of flight data identified by the proposed method are presented and discussed in this section. Using the

proposed incremental method, we expect to observe changes in the common patterns of flight data as new data come in, e.g. clusters
drift, emerge, or disappear, when any major changes are introduced in the flight procedures or pilot training methods. However,
there were three clusters in this set of data, and no major changes happened during the time period of collecting this dataset. So we
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Fig. 23. Number of data in each cluster by the proposed incremental method and the traditional GMM in QAR data.

Table 7
Statistics of comparing clusters identified by the proposed method and the ones identified by the
traditional GMM in QAR data.
Cluster W statistic for covariance T2 statistic for means

W p-value T2 p-value

0 0.565 0.148 18.72 0.412
1 0.319 0.218 20.32 0.335
2 0.541 0.166 34.14 0.138

Table 8
Computational costs of the proposed incremental method and the traditional GMM on QAR Data.
Incremental method Traditional GMM

Input data Running Memory Input data Running Memory
time(s) usage(mb) time(s) usage(mb)

Offline data 30.379 7.305 Offline data 30.379 7.305
Online set I 0.511 0.913 Offline data and Online set I 33.891 7.715
Online set II 0.397 0.404 Offline data and Online set I -II 36,932 8.125
Online set III 0.401 0.404 Offline data and Online set I - III 39.499 8.535
Online set IV 0.397 0.404 Offline data and Online set I - IV 41.832 8.945
Online set V 0.398 0.402 Offline data and Online set I - V 43.446 9.345

rtificially excluded data points of Cluster 3 from the offline data, and gradually inserted those data points back into each online
et, to test if the proposed incremental method is able to identify this emerging cluster.

Fig. 24 shows the two clusters identified from the offline dataset by the proposed method. The colored bands depict the value
ange of a flight parameter in a cluster. The blue bands represent Cluster 1, while the red ones represent Cluster 2. We can observe
hat flights in Cluster 1 are the ones with less load, used less power for take-off, climbed slower, and departed straight-out, while
lights in Cluster 2 were heavier, used higher power settings, accelerated faster, and made a turn after the initial climb.

Fig. 25 shows the three clusters identified after processing all five sets of online data. As the new data come in via each online
et, the proposed method was able to identify the emerging cluster. This emerging cluster, Cluster 0, is depicted in green in Fig. 24.
e observe that flights in Cluster 0 share similar patterns in Roll attitude as flights in Cluster 1. Flights in both Cluster 1 and

luster 0 were straight-out departures. The difference between Cluster 1 and Cluster 0 lies in Gross Weight and N1 (an engine
ower indicator). Flights in Cluster 0 had larger gross weight values and used higher take-off power settings than flights in Cluster
.

These clustering results can be used for safety management and efficiency improvement. The three clusters summarized the
ommon patterns of pilot operations during takeoff for this aircraft type at this airline. Airline safety experts and pilot training
anagers can check if these patterns meet operational standards. In this example, some potential issues were identified by the

irline flight operations expert in Cluster 1 and Cluster 0. Both clusters showed a tendency of double-rotation as exhibited in the
wo peaks in Pitch Attitude and Vertical Speed, while Cluster 2 had no such pattern, as shown in Figs. 24 and 25. An in-depth analysis
eeds to be carried out to understand why and if any flight operation or training procedure needs to be modified. As demonstrated
n this case study, the proposed incremental method was able to capture cluster changes over time, e.g. drift, emerge, or disappear.
urther analysis based on the clustering results can be carried out to identify the root causes for such changes, e.g. pilot training,
21
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Fig. 24. Two clusters identified in offline data by the proposed incremental method.

Fig. 25. Three clusters identified by the proposed incremental method after processing all online data.

aircraft performance, airport conditions, and arrival/departure procedures. If the airlines would like to measure the effectiveness of
particular training, using the proposed method to examine the cluster changes of flight data before and after the training can give
a quantitative assessment.

4.2.6. Outlier flights
Setting the outlier detection rate as 0.1%, we detected 14 outliers using our proposed incremental method and 12 outliers

using the traditional GMM method, among which 12 outliers were commonly detected by both methods. Table 9 summarizes the
abnormal behaviors of these outliers observed from the flight parameters. The detailed flight parameter profiles of example outliers
(highlighted in red in Table 9) are shown in Figs. 26 and 27.

Five outlier flights shared similar features of high-energy takeoffs. Fig. 29 shows one of the high-energy takeoffs, Flight 4618.
The gross weight of this aircraft was relatively light, but the take-off power was set close to the upper bound of any cluster, resulting
in fast acceleration and climb, and a significant reduction in power, flap setting, pitch attitude, and vertical speed around 75 s after
take-off. This type of outliers shows that the proposed method is able to detect atypical flight profiles, which need to be reviewed
by safety experts to evaluate potential risks, if any.

Another type of detected outliers may be caused by sensor or data recording issues. For example, abnormal values in the Angle
of Attack were observed in Flight 8298, 9084, and 10045. As shown in Fig. 27, the Angle of Attack had large negative values at the
beginning of the takeoff phase. This may be caused by sensor malfunctions, data recording issues, or other hardware/software issues
not related to pilot operations. If airlines would like to focus on monitoring pilot operations, a pre-processing step can be developed
to filter this kind of anomalies out. However, if airlines would also like to check if any hardware or software issues related to flight
data collection and recording, the proposed method can also be used to detect this type of anomalies.
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Table 9
Summary of outliers detected by the proposed incremental method and the traditional GMM method (* example flights shown in Figs. 26 and
27).
Flight ID Detected by the

proposed
incremental method

Detected by the
traditional GMM
Method

Brief summary of abnormal behaviors

2120 Y Y
2575 Y Y
3449 Y Y
4618* Y Y
5959 Y Y

High energy takeoff, high power setting for relatively light
gross weight, larger airspeed, larger vertical speed, climb out
faster and higher

5033 Y Y
6108 Y Y

Low energy takeoff, lower power setting,
slower airspeed, climb out slow and lower

7751 Y N Most flight parameters fit in Cluster 1, but flap setting matches
Cluster 0, climb out low

8627 Y Y
10382 Y N Flap change early

8298 Y Y
9084 Y Y
10045* Y Y

Abnormal values in Angle of Attack

9199 Y Y Late start of takeoff phase

Fig. 26. An example of high energy takeoff: Flight 4618.

5. Discussion on limitations

The testing results show that the proposed incremental method can generate statistically equivalent clustering results as the
traditional GMM method on simulated data as well as real-world digital flight data, with significantly reduced memory requirement
and processing time. However, there are limitations to the proposed method.

First, our proposed method cannot identify the nonlinearly separable clusters because Euclidean distance is used as a similarity
measure. To solve this problem, kernel methods can be used to solve this problem to extend the capability of the proposed method.

Second, no theoretical convergence analysis and optimality quantification is provided in this paper. On convergence, each step
of the proposed method, i.e. offline robust GMM, DBSCAN, EM algorithm for online GMM update, is guaranteed to converge under
certain conditions as they are standard methods and have been proved in past literature. Yet, the convergence of the overall
incremental method is challenging to prove. There are several papers on the convergence analysis on online EM algorithms. In
these papers, the number of clusters is fixed, and the clustering parameter updating is in the framework of EM. Unlike those papers,
in our proposed method, the number of clusters is not fixed, and both EM and non-parametric algorithms (i.e., DBSCAN) are applied.
So, the statistical convergence relies on model specifications. On optimality, the proposed method may generate a local minimum
result on two levels: (1) the modified EM iterations in the offline robust GMM and the online GMM update may be trapped in
local minimums; (2) existing clusters cannot be split into several clusters in the following online update part. In addition, clusters
with strange shapes may be detected by DBSCAN, such as long chains. Problems will arise when GMM is applied to describe these
23
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Fig. 27. An example of abnormal values in Angle of Attack: Flight 10045.

Fig. 28. Divergence of clustering results by the proposed incremental method and the traditional GMM with the increase of the relative size of online data in
Simulation Data I.

separated and dense or not, yet further work is needed to use these measures to calculate cluster validity indexes without performing
calculations on the entire data (including offline and online data batches).

In this section, we provide a set of sensitivity analyses on the internal validity of clustering results under different online-to-
offline data ratios to inform future studies. Intuitively, when the accumulated size of online datasets outweighs the size of the
offline dataset, it is more likely to result in local optimal using the incremental method. Therefore, the robustness of the proposed
method was tested by changing the relative size of the offline dataset and online datasets. The three simulation datasets and the
two sets of real-world flight data used in Sections 3 and 4 were randomly segmented into one offline set and 15 online sets. Each
online dataset contained data of 10% size of offline data. As online data came in, the total size of online data went up to 1.5 times
of offline data size. We compared the clustering results of the proposed incremental method after processing each set of online data
with the clustering results of re-training using a traditional GMM method based on the W statistics and Hotelling’s T2 statistics.

Figs. 28–32 shows the results of this set of sensitivity analyses. The difference between the clustering results of the two methods
becomes larger as the ratio of online data to offline data increases. The divergence increases significantly when the total size of
online data exceeds the size of offline data as indicated by the slope changes of the curves in Figs. 28–32. Therefore, we conclude
that full re-training, running the offline part of the algorithm on all available data, becomes necessary when the ratio between the
total size of online data and the size of offline data is close to 1.

6. Conclusion

A new incremental clustering method for anomaly detection in flight data is presented in this paper. The method can identify
emerging clusters, update existing clusters, and consolidate any redundant ones with dynamically growing data processed in batches.
The proposed method was tested on both labeled simulation data and unlabeled real-world data. The results show that the proposed
method can generate similar clustering results as the traditional one-off GMM clustering method.
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Fig. 29. Divergence of clustering results by the proposed incremental method and the traditional GMM with the increase of the relative size of online data in
Simulation Data II.

Fig. 30. Divergence of clustering results by the proposed incremental method and the traditional GMM with the increase of the relative size of online data in
Simulation Data III.

Fig. 31. Divergence of clustering results by the proposed incremental method and the traditional GMM with the increase of the relative size of online data in
flight trajectory data.

Further work will also be carried out on the testing and implementation of the proposed method. The proposed method needs
to be further validated by expert reviews, case studies, and cross-checking with existing tools. A set of tools need to be developed
for data flow management, feature engineering, parameter settings, and results interpretation to implement the proposed method
at airlines for safety management and pilot training.
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Fig. 32. Divergence of clustering results by the proposed incremental method and the traditional GMM with the increase of the relative size of online data in
QAR data.

Another direction of further work is to modify the current method to have theoretical convergence and provide theorems on the
incremental estimation of the mixture models, such as proving that an offline model for entire data at any time can be obtained by
incrementally updating an online model based on newly arrived data.
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