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Summary 

Cancer is a highly lethal disease. Epigenetics has been found to be 

influential in cancer biology. Acute Myeloid Leukemia (AML), a disease derived 

from the aberrant differentiation and proliferation of haematopoietic progenitor 

cells, has been found to have a tight connection with epigenetics.  

Here we investigated how chromatin interactions, a type of epigenetic, 

are dysregulated in AML clinical samples and DNMT3A mutant myeloid 

leukemia. We obtained and analyzed the 3D genome organization maps through 

Hi-C in both AML and normal CD34+ clinical haematopoietic stem cells as well 

as DNMT3A CRISPR knockout K562 cells. Altered chromatin interactions were 

found in AML and DNMT3A CRISPR knockout K562 cells.  

A Frequently Interacting Region (FIRE) in the MEIS1 region was found to 

be absent in half of AML samples (4 of 8) which showed low MEIS1 levels 

compared with normal samples and AML samples with the FIRE. The CRISPR 

excision of a CTCF binding site at the border of this FIRE led to MEIS1 

expression loss, loss of chromatin interactions between the MEIS1 promoter with 

enhancers, modulation of H3K27ac levels at enhancers, and reduced cell growth.  

To address the influence of DNMT3A mutations on chromatin interactions, 

clinical AML RNA-Seq from an online database was analyzed, which suggested 

that DNMT3A mutations are associated with dysregulated Topologically 

Associated Domain (TAD) boundaries. From Hi-C analysis, the loss of two 

FIREs and two loops were also observed in DNMT3A CRISPR knockout K562 

cells, which was associated with downregulation of PLOD2, MACC1, and 

ARID5B. Further integrated analysis of CTCF and histone mark ChIP-Seq, as 
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well as RNA-Seq, suggested that DNMT3A loss led to altered histone marks, 

CTCF binding, chromatin interactions, and gene expression. 

Taken together, our work provided a better understanding of chromatin 

interactions alterations and gene expression changes in AML and DNMT3A 

mutant myeloid leukemia. Our research indicates the relevance of chromatin 

interactions in cancer biology and suggests that drugs that modulate epigenetic, 

such as DNA methylation, may lead to changes in chromatin interactions. In 

future research, we are interested to develop therapeutic strategies for altering the 

dysregulated chromatin interactions seen in AML through epigenetic drugs. 
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1. Introduction 

1.1 Cancer: An Epigenetic Disease 

1.1.1 Epigenetics: Another Way to Influence Life 

Genes control many aspects of our lives. The DNA sequences of genes play 

crucial aspects in coding for many functions in our bodies. However, our 

appearances and health are not controlled just by genetics alone but also by our 

environment, our behaviors, and habits.  How do these factors engage in our lives 

without changing our DNA sequences? The study of these mysteries is called 

epigenetics.  

Previously, the concept of epigenetics was first defined by Conrad 

Waddington as “the branch of biology which studies the causal interactions 

between genes and their products which bring the phenotype into being” 

(Waddington, 1942, 1968). With the rapid development of biology research, 

scientists have become more familiar with this area, and our current definition 

has changed to “heritable changes in gene functions without changing DNA 

sequence" (Wu & Morris, 2001). Epigenetics includes many aspects, such as 3D 

genome organization, chromatin remodeling, DNA methylation, histone 

modification, and non-coding RNA, and so on. (Handy, Castro, & Loscalzo, 

2011; Portela & Esteller, 2010).  

In recent years, researchers have focused more on the 3D architecture of our 

genome, and they found that chromatin interactions as one type of 3D genome 
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organization have an important place in epigenetics. We will discuss more 3D 

genome organization and chromatin interactions in section 1.2. DNA methylation 

is the process by which DNA methyltransferases transfer a methyl group to the 

C-5 position of the cytosine ring of DNA and further influence the transcriptional 

process (Jin, Li, & Robertson, 2011). “Histone modifications” refer to 

modifications on the histone proteins. ~146bp long DNA sequence wraps around 

a core of histone proteins which contains 8 histones, and this structure is called a 

“nucleosome”. Nucleosomes, as an example of 3D genome organization 

architecture, will be introduced in section 1.2.1. Histones have five major 

families: H1/H5, H2A, H2B, H3, and H4. Acetylation, methylation, and 

phosphorylation on these histones play crucial roles in regulating gene expression 

and chromatin interactions (Bhasin, Reinherz, & Reche, 2006).  

In this thesis, we discuss Histone 3 Lysine 27 acetylation (H3K27Ac), 

which is regarded as a gene activating signal and usually used for calling super-

enhancers (Creyghton et al., 2010), Histone 3 Lysine 27 Tri-Methylation 

(H3K27Me3) which function as gene repression (Barski et al., 2007) and we used 

it to call super silencers (Yu Zhang, Cai, Roca, Kwoh, & Fullwood, 2021); 

Histone 3 Lysine 4 Tri-Methylation (H3K4Me3), as an activation signal of the 

gene (Koch et al., 2007), which we used for calling broad H3K4Me3 domain(Cao 

et al., 2017; Dahl et al., 2016) in our study. 

As epigenetic is heritable (Dupont, Armant, & Brenner, 2009), compared 

with gene alteration which may involve changes to the sequences of germline 

cells and the risks of changing human genome sequences, research in epigenetics 

might provide more conducive treatments for many diseases, both inherited and 
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sporadic. Epigenetics is involved in essential mechanisms for normal 

development and gene expression patterns in cells, especially for specific tissues. 

(Sharma, Kelly, & Jones, 2010), so that epigenetic research has become a hot 

topic today. 

In this thesis, we will mainly focus on 3D genome organization and discuss 

its relationship with other epigenetic such as DNA methylation and histone 

modifications, and how they work together to influence gene activation or 

repression.  

 

1.1.2 Cancer and Epigenetics 

As epigenetic can regulate gene expression without altering gene sequences, 

epigenetic is connected with good health. Aberrant epigenetic is associated with 

disease, and cancers are one of the most fatal of all diseases in human beings 

(Sharma et al., 2010).  

Cancer is defined as a group of diseases that contains hundreds of types. 

Cancer starts from abnormal cell growth and division and further leads to 

invasion or metastasis (spread to other parts of the body) (NIH, 2021; WHO, 

2021). According to WHO, in 2020, there were a total of 10 million deaths due to 

cancer (Ferlay J, 2020), making it one of the leading causes of death in the world 

today.  

By screening multiple breast cancer, colon cancer, and other cancers 

patients’ genome profile, researchers found that perturbed epigenetic mechanisms 
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can be found in a variety of cancers, especially in non-germ line cancer 

(Jasperson, Tuohy, Neklason, & Burt, 2010; Wood et al., 2007). Many cancers 

arise from gene mutations, and epigenetic alterations also can have effects similar 

to gene mutations. For example, mutations in the BRCA1 gene can increase the 

risk of breast cancer and other cancers, while hyper-DNA methylation at this 

gene increases predisposition to breast and other cancers. (Q. Tang, Cheng, Cao, 

Surowy, & Burwinkel, 2016). A similar phenomenon has been found in 

colorectal cancers: by checking the DNA methylation level of the SEPT9 gene, 

colorectal cancer can be detected in earlier stages (Johnson et al., 2014). Taken 

together, studies in epigenetics indicate that understanding epigenetic 

mechanisms might be useful for cancer prevention, detection, and therapy (Banno 

et al., 2012; Novak, 2004). 

 

1.2 Chromatin Interactions 

1.2.1 3-Dimensional Genome Architecture 

Humans, as a diploid species, have a total of around 6.27~6.37 Giga base 

pairs of DNA sequence with a total length around 205.00~208.23 cm in one cell 

(Piovesan et al., 2019). How could such lengths be contained in the ~10µm 

diameter human nucleus (H. B. Sun, Shen, & Yokota, 2000)? This question has 

triggered many scientists’ interest in looking into the tiny world: 3-Dimensional 

genome architecture.  

To understand how architecture looks like and how it works, scientists have 
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made plenty of efforts. With the development of the microscope, researchers 

found that the DNA double helix was folded in some specific manner, and the 

architecture dynamic changes with different cell stages (Kempfer & Pombo, 

2020). Later when more techniques came out, like 3D-fluorescence in situ 

hybridization (3D-FISH), Electron spectroscopy imaging, High-throughput 

chromosome conformation capture (Hi-C), and other chromosome conformation 

capture-based techniques, scientists realized that genome has a non-random and 

highly organized manner, and it has different function structure under different 

scales (Kempfer & Pombo, 2020) (Figure 1.1). 

Inside the nucleus, between the nuclear membrane and nucleolus, all the 

chromosomes are folded and clustered into this space to form chromosome 

territories (Figure 1.1a). These chromosomes have two types of compartments: 

compartment “A” which represents the active compartment and compartment “B” 

which is the inactivated compartment (Fortin & Hansen, 2015; Lieberman-Aiden 

et al., 2009) (Figure 1.1b). When we go to a smaller scale, those compartments 

can be further divided into many domains, which are called Topologically 

Associating Domains (TADs). The TAD provides a region inside this domain 

whereby DNA sequences have more chance to interact with each other (Figure 

1.1c). CCCTC binding factors (CTCF) and cohesins help to insulate TADs from 

each other (Pombo & Dillon, 2015).  

TADs are introduced in more detail in section 1.2.2.1, as this thesis has a 

large part mainly focused on TAD research. TAD is a large-scale chromatin 

interaction. Inside the TAD, more detailed interactions can be found. Loops are 

formed by the assistance of CTCF and cohesins to regulate gene expression 
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(Figure 1.1d). In a more linear format, we can find that there are nucleosomes 

with histone modifications that can also help to function in gene expression 

regulation. Considering smaller scales, we just have the DNA sequence itself left. 

This complicated and highly ordered structure ensures that the tiny nucleus can 

contain the huge amount of information that a human needs. 

 

Figure 1.1 Schematic of different scales of 3D genome organization. 

Different scales of genome organizations. From section a to e, scales decreased, 

and more details were shown. This figure is from (Haifeng Wang, Han, & Qi, 

2021), and is reproduced with permission from Springer Nature. 
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1.2.2 Different Scales of Chromatin Interactions 

Chromatin interactions start from the fundamental unit: nucleosomes, which 

is aproximately 146bp. In 1-100kb scales, chromatin interactions consist of 

mainly enhancer-promoter interactions, which contain different kinds of loops as 

introduced in section 1.2.1. TAD and chromosome territories are megabase size 

chromatin interactions. They tend to be more conserved during evolution(Rao et 

al., 2014). We speculate that since their sizes are large, compared with other 

smaller chromatin interactions, conservation would be more important because 

changes are likely to have a serious effect on the expression levels of many genes 

(Figure 1.2). 

 

Figure 1.2 Different scales of chromatin interactions.  From left to right is 

the larger scale to smaller scales of chromatin interactions. There are two types: 

structural interactions such as TADs and complex and duplex interactions such as 

enhancer-promoter interactions, enhancer-enhancer interactions, and so on. This 

figure is from (Babu & Fullwood, 2015) and can be reused without permission. 
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1.2.2.1 Topologically Associating Domain (TAD) 

Topologically Associating Domains (TADs) are self-interacting regions in 

the genome, first observed in 2009 by low-resolution Hi-C (Lieberman-Aiden et 

al., 2009) but did not termed as TAD, they called them some open and closed 

domains. In 2012, studies start to term this kind of domain as “TAD” (de Laat & 

Duboule, 2013; Dixon et al., 2012; Nora et al., 2012).Inside the TAD, DNA 

sequences have more chances to interact with each other. TADs have been 

discovered in many species, including Drosophila, mice, plants, fungi, and human 

beings (Szabo, Bantignies, & Cavalli, 2019). TAD isis considered to be 

conserved among different cell types and even different organisms(Dixon et al., 

2015).  

Once a TAD is altered, it can lead to dysregulation of gene expression of 

multiple genes and further lead to disease. As shown in Figure 1.3, gain or loss 

or inverse of TAD boundary might cause gene A to aberrantly interact with 

enhancer of gene B and influence both gene A and gene B’s expression (Norton 

& Phillips-Cremins, 2017).   
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Figure 1.3 How abnormal TAD influences gene expression. Boundary loss 

and gain of TADs may lead abnormal interactions between genes and gene 

regulators. 

 

1.2.2.2 Frequently Interacting Regions (FIRE) 

Schmitt et al. first discovered and defined “Frequently Interacting Region 

(FIRE)” from 21 primary human tissues and cell types in 2016 (Anthony D. 

Schmitt, Ming Hu, Inkyung Jung, et al., 2016). They conducted Hi-C experiments 

in these samples and figured out that one type of chromatin interaction usually 

appeared in the middle of TAD with high chromatin interaction contacts. They 

called this type of chromatin interactions Frequently Interacting Region (FIRE) 
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and defined four characteristics of FIREs: 

1. As a local interaction hotspot with high levels of local chromatin 

interactions 

2. Will be depleted at TAD boundaries, usually appears in the middle of TAD 

3. Associated with super-enhancers  

4. Formation is partially dependent on CTCF. (Anthony D. Schmitt, Ming Hu, 

Inkyung Jung, et al., 2016) 

They found that FIREs are tissue-specific. For instance, there was a FIRE 

present in two brain tissue samples around the gene ROBO1, which was absent in 

GM12878. FIREs in GM12878 are more related to the biological process of 

immune functions while brain-specific FIREs are more related to brain function 

(Anthony D. Schmitt, Ming Hu, Inkyung Jung, et al., 2016).  

 

1.2.3 Techniques: 3C based “C” techniques 

Many researchers have examined how chromatin is organized. In early 

studies, scientists used microscopes to observe the chromatin and used the 

fluorescence to help detect the structure of chromatin. In the 1980s, the 

fluorescence in situ hybridization (FISH) techniques came out (Langer-Safer, 

Levine, & Ward, 1982) and were widely used in the early study in the structur of 

chromatin (Garimberti & Tosi, 2010). Even though the “C” techniques are 

popular these days, because the “C” techniques required sequencing (except 3C), 
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while high throughput sequencing cost higher, FISH is still in use due to its cheap 

cost and easy handling as the low cost and easy handling can reduce a lot of 

commercial costs and labor intensity if the requirement of fineness is not high. 

FISH is quite suitable for a specific short region chromatin observation, but it is 

hard for FISH to study the whole genome chromatin structures. Along with the 

rapid development and spread out of high throughput sequencing techniques, the 

“C” techniques are taking place in studying 3D genome organizations.  

The “C” methods are derived from the Chromatin Conformation Capture 

(3C) method, which is first developed by Job Dekker and his colleagues (Dekker, 

Rippe, Dekker, & Kleckner, 2002). Then Circularised Chromosome 

Conformation Capture (4C) was developed in 2006 by Marieke Simonis and her 

colleagues (Simonis et al., 2006), and further 5C (Carbon Copy Chromosome 

Conformation Capture) was invented in the same year of 4C by Dostie et al. 

(Dostie et al., 2006). Later on, in 2009, Hi-C (High-throughput Chromosome 

Conformation Capture) was developed to allow a whole-genome analysis of 

chromatin interactions (Lieberman-Aiden et al., 2009), and ChIA-PET 

(Chromatin Interaction Analysis by Paired-End Tag) in 2009 by Fullwood et al. 

(Fullwood et al., 2009), which also can explore the whole genome chromatin 

interactions bound by a specific factor of interest.  

The “C” methods share the basic idea that chromatin interactions can be 

detected by cross-linking DNA and protein together, to reserve the chromatin 

interaction, and digest the DNA by some specific restriction enzymes, and ligate 

them by dilute proximity ligation. After all these procedures are done, it will lead 

to the formation of sequences made up of two or more genomic regions 
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indicating the chromatin interactions, and then we can use several PCR or 

sequencing methods to obtain the sequence information, which can indicate 

where the chromatin interaction happened (Figure 1.4). 

The differences between 3C, 4C, and 5C were that 3C is used for 

confirming the expected chromatin interaction, and the specific primer needs to 

be designed, so 3C is “one to one”. 4C is a “one to all” chromatin interaction 

detection method as it involves the design of a pair of inverse primers that can 

amplify a circularized chromatin interaction, and the resulting PCR product can 

then be sequenced by next-generation sequencing. 5C relies on ligation-mediated 

amplification (LMA) and ligates nearby LMA so that the primer does not need to 

fit the known chromatin side, but the LMA instead, thus it can be used to test 

“many to many” interactions.  

Among these techniques, Hi-C is an innovative method that can detect 

chromatin interaction in the whole genome, which can enable us to understand 

the global features of chromatin interactions. Hi-C is different from these “C”s 

because it does not need to design the primer, but just added biotin at the digest 

end, and enrich by this biotin, and then prepare the library to get the high 

throughput sequencing. By using paired-end sequencing, we can get sequencing 

pairs that can align to different locations that are not nearby, and therefore 

indicate that they are involved in chromatin interaction formation. Previous Hi-C 

experiments were usually conducted with cell lines(Burton et al., 2013), while 

recently scientists have used Hi-C to study cancer, for example, by examining: 

chromosomal rearrangement and copy number variations in anaplastic 

astrocytoma and glioblastomas (Harewood et al., 2017). 
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These methods above aim to detect chromatin interactions. However, 

functional chromatin interaction with specific transcription factors (TFs) and 

histone modifications cannot be specifically detected. Thus, the chromatin 

immunoprecipitation (ChIP) technique was taken into consideration. ChIP-loop, 

which is the method that combined ChIP and 3C together (Horike, Cai, Miyano, 

Cheng, & Kohwi-Shigematsu, 2005), and Chromatin Interaction Analysis by 

Paired-End Tag (ChIA-PET), which is similar to a combination of Hi-C and 

ChIP, but used ChIP but not biotin to enrich the specific signals like TF and 

histone marks and used the pair-end tag sequencing (Fullwood et al., 2009). 

Today, there are long-reads ChIA-PET and Hi-ChIP approaches that have made 

such analyses easier to perform (G. Li et al., 2012; Mumbach et al., 2016; Z. 

Tang et al., 2015).  

By using these techniques above, researchers can explore chromatin 

interactions and interrogate the relationship between chromatin interactions and 

health.  
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Figure 1.4 Different Chromatin Conformation Capture Genomic 

Techniques. Figure from (de Wit & de Laat, 2012) and can be reused without 

permission. 

 

1.2.4 Algorithms for Hi-C analysis 

As we introduced in section 1.2.3, Hi-C sequences multiple locations that 

are not near each other and then indicates whether two distant regions have 

chromatin interactions. By counting contact reads numbers for of every two 

positions, and setting each position as X and Y, we can get a 2D contact matrix. 

If we further analyze the matrix, we can get a profile of the whole genome 

chromatin interactions. That is the basic idea of Hi-C analysis. For analyzing the 
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matrix, the normalization method, TAD, loop, and another kind of chromatin 

interaction calling methods are needed. 

1.2.4.1 Hi-C matrix normalization methods 

All experiments, including Hi-C, come with a bias. In Hi-C, there are three 

major factors of systematic bias: the GC content of trimmed ligation junction, 

distances between restriction sites, and sequencing mappability (Yaffe & Tanay, 

2011). To eliminate biases, many normalization methods have been invented. 

These methods can be roughly divided into two groups: explicit and implicit 

(Lajoie, Dekker, & Kaplan, 2015). The difference between these two approaches 

is that explicit methods regard systematic biases as known information from the 

observed data, and they design a statistical model with the consideration of 

biases, while implicit methods believe that the biases are unknown and are 

cumulated in each bin, and the biases can be calculated by the sequencing 

average of each bin (Schmitt, Hu, & Ren, 2016).  

For the explicit approach, Yaffe & Tanay (2011) is the first group to discuss 

the Hi-C biases and give an explicit solution: the statistic model. Following this 

model, HiCNorm was developed (Hu et al., 2012), with higher computational 

efficiency, by improving the distribution method from Bernoulli distribution to 

Poisson distribution or a negative binomial distribution. (Anthony D. Schmitt, 

Ming Hu, & Bing Ren, 2016).  

As for the implicit approach, since the idea is that the biases can be counted 

in each bin, and each bin’s coverage should be balanced so that the solution based 

on this idea is aiming to balance the whole matrix by bins. Thus, this approach is 
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also known as the “matrix balancing” approach. Several normalization methods 

were developed relying on this assumption. Vanilla Coverage (VC) is one of the 

first methods to be published which is based on the implicit approach. Here, the 

observed contact frequency was divided by the sum of the respective row which 

is the whole-genome contact frequency of locus 1, and then divided by the sum of 

a respective column which is the whole-genome contact frequency of locus 2 

(Lieberman-Aiden et al., 2009). At first, this method was used for normalizing 

the inter-chromosomal matrix (Lieberman-Aiden et al., 2009), and later, this 

method was used for intra-chromosomal normalization (Rao et al., 2014).  

Based on the VC method, Imakaev et al. designed an optimized method 

called Iterative Correction and Eigenvector decomposition method (ICE) 

(Imakaev et al., 2012). This method iterates through the VC procedure until a 

normalized contact frequency convergence has been found (Anthony D. Schmitt, 

Ming Hu, & Bing Ren, 2016). With this optimization, the computational 

efficiency has been improved, but the sum of row and column is not equal to one, 

which seems to be not reasonable as the total contact frequency for one position 

should be one. Almost at the same time, Knight & Ruiz developed a fast 

algorithm termed “KR normalization”. This algorithm is used to normalize a 

symmetric matrix and its sum of row and column equals one (Knight & Ruiz, 

2013).  

Taken together, there are two approaches to normalize the Hi-C contact 

matrix to eliminate the biases, and each approach is based on different 

assumptions as to whether biases are known or cumulative in bins. There is no 

known gold standard on which way is the best. Since the biases are different 
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according to how you perform your experiment, it is better to try both approaches 

and compare the two results to select an appropriate approach. 

 

1.2.4.2 TAD calling algorithms 

TAD, as described in section 1.2.2.1, is a self-regulating region. Inside one 

TAD, the contact frequency for each element is higher than outside of this TAD. 

Thus, in the Hi-C contact matrix, it appears as a square block-like pattern (Figure 

1.5).  

To identify TADs, the Hidden Markov model (HMM) method was first 

used by Dixon et al. in 2012 (Dixon et al., 2012). HMM is a model first 

mentioned by Leonard E. Baum and his collaborators in the second half of the 

1960s (Baum, 1972; G. R. S. Leonard E. Baum, 1968; J. A. E. Leonard E. Baum, 

1967; T. P. Leonard E. Baum, 1966; T. P. Leonard E. Baum, George Soules, 

Norman Weiss, 1970). It is one of the statistical Markov models and is widely 

used in the natural sciences such as thermodynamics, chemistry, and so on. In the 

late 1980s, HMMs were first used in the biological analysis of sequences (Bishop 

& Thompson, 1986). In applying HMMs to TADs, Dixon et al. used this model to 

calculate a directionality index of one bin from upstream and downstream 

average contact frequency to find the sharp difference between the bins, and then 

regarded this bin as the TAD boundary (Dixon et al., 2012). 

Later in 2014, Rao et al. designed a new algorithm named Arrowhead, 

which used a parameter termed corner score to define TAD boundary (Rao et al., 
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2014). This score is to assess whether the locus is likely to be the boundary or 

not. Arrowhead is reported to perform well in computation efficiency, especially 

when working with high-resolution matrices, but Arrowhead identifies fewer 

TADs compared with another algorithm (Dali & Blanchette, 2017). 

Further, a variety of algorithms has been published, including HiCseg, 

which uses a block-wise segmentation model (Lévy-Leduc, Delattre, Mary-

Huard, & Robin, 2014), Armatus, the algorithm used the multiscale dynamic 

program to detect TAD in multiple resolutions (Filippova, Patro, Duggal, & 

Kingsford, 2014), TopDom which used a diamond-like window to slide along the 

diagonal line and seek the local minima contact frequency position to regard as 

boundary (Shin et al., 2016), TADtree, which is based on the empirical 

distributions to determine a hierarchy of nested TADs (Weinreb & Raphael, 

2016), deDoc, the graphic method using graph structure entropy, which can 

ensure that it is an approach that detects the global optimized structure of the 

genome (A. Li et al., 2018), and many other algorithms. 

Even though there are plenty of methods to predict the TAD profile, TAD 

prediction is still a not solved problem yet (Dali & Blanchette, 2017) and there 

are no gold standard algorithms to identify chromatin interaction from Hi-C data 

yet (Forcato et al., 2017). Each algorithm has its advantages and shortages. For 

example,  TADtree runs quite slowly and cannot analyze high-resolution data, but 

performs well in calculating CTCF enrichment at boundaries (Dali & Blanchette, 

2017). TopDom has higher robustness across different sequencing depths and 

resolutions while its predicted TAD numbers are lower (Dali & Blanchette, 

2017). HiCSeg has higher memory consumptions in working with high-resolution 
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Hi-C but has higher genome coverage of TAD (Dali & Blanchette, 2017). Also, 

there are no clear standard and statistical definitions of TADs which can be used 

to guide algorithm development. TADs are highly hierarchical, and the questions 

of how to define TADs, sub-TADs,  the typical sizes of TAD, and what should be 

the exact statistical characteristics to determine the boundaries of TAD, have yet 

to be resolved. 

Here, we chose the Arrowhead as the algorithms we used in this thesis, as 

other algorithms such as TopDom and HiCseg do not report overlapping TADs  

(Shin et al., 2016) (Lévy-Leduc et al., 2014) while Arrowhead uses definitions an 

overlapping list to identify TAD hierarchies, which we think is more reasonable. 

Since Arrowhead is reported to perform well in computation efficiency, 

especially when working with high-resolution matrices, as our Hi-C data is under 

10kb resolution which is a high resolution, Arrowhead becomes the choice. 

 

 

Figure 1.5 TAD and loop patterns marked on the contact matrix heatmap. 

The large yellow squares represent TADs while little blue squares represent 
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loops. Matrix data is adapted from GM12878 cell lines combined, 

primary+replicate matrix in (Rao et al., 2014), genome region: chr2:64,654,736-

65,230,735, normalization method: coverage, and visualized by Juicebox (J. T. 

Robinson et al., 2018).  

 

1.2.4.3 Loop calling algorithms 

Loop calling is also known as interaction calls because “loops” refer to 

chromatin interaction between two anchors. In genomic heatmaps, loops look like 

two small dots (Figure 1.5). There are fewer loop callers as compared with TAD 

callers. Typical methods used in the field include HOMER (Heinz et al., 2010), 

HiCCUPS (N. C. Durand, M. S. Shamim, et al., 2016), Fit-Hi-C (Ay, Bailey, & 

Noble, 2014), and diffHic (Lun & Smyth, 2015).  

Homer uses the implicit normalization method to deal with matrices and 

uses the binomial test to detect the significant interactions by p-values, FDR, 

interaction read pairs, and distance (Heinz et al., 2010). HiCCUPS is a part of 

Juicer tools (N. C. Durand, M. S. Shamim, et al., 2016) so that its input matrix is 

the juicer normalized Hi-C matrix with a specific format “. hic”. It uses pixel 

enrichment in the nearby bottom left, donut, horizontal, vertical area to calculate 

the centroid of the cluster of pixels to determine the loop coordinates(Rao et al., 

2014). Fit-Hi-C requires the raw matrix input and a bias file with ICE 

normalization, and it used a spline model with a function of distance to determine 

the significant chromatin interaction by FDR result. DiffHic uses a similar 

manner as HiCCUPS: it estimates the enrichment of neighbor areas to determine 



 

45 

 

the significant interactions, and it uses sequencing data to perform alignments.  

Similar to TAD callers, there is no gold standard for loop callers either. The 

requirements of input files are different, and the results that are obtained from 

different methods from the same data are also different (Lajoie et al., 2015). In 

contrast to the TAD calling, loop calling does not have the problem of definition, 

as loops can clearly be defined: loops are significant interactions between two 

genomic sites. However, loop calling is even more difficult than TAD calling as 

it requires higher resolution because detecting two points (loop) is harder than 

detecting two large areas (TAD). As higher resolution data requires deeper 

sequencing depth, this will increase the difficulty of processing Hi-C 

experimental data and the hardware required to deal with larger high-throughput 

sequencing data, as well as the algorithms to optimize the computation efficiency.  

Here in this thesis, we selected HiCCUPS for use to calculate loops, 

because it is reported to perform well in higher resolution (Heinz et al., 2010). 

 

1.2.4.4 The FIRE calling algorithm 

As FIREs are defined by Schmitt et al. in 2016 as described in section 

1.2.2.2, they also provide a package to call FIREs, FIREcaller (Crowley et al., 

2021). It requires the raw matrix and then processes the data to call FIRE as 

shown in Figure 1.6. After calculation of Z-scores, they further calculated the 

one-sided p-values based on standard normal distribution to determine the FIREs. 

The bins with p-values less than 0.05 are considered to be the FIREs. 
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Since the FIRE is a newly defined chromatin interaction and only one 

algorithm has been developed for calling it, the accuracy of prediction still needs 

more data to be applied to test. 

 

Figure 1.6 FIREcaller flow chart. Figure from (Crowley et al., 2021) and can 

be reused without permission. 
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1.2.5 Chromatin Interaction and Cancer 

Recent studies suggest that aberrant chromatin interactions might cause 

cancer. In one study in 2016, IDH mutant glioma with a disrupted TAD caused an 

aberrant interaction with an enhancer and PDGFRA (William A. Flavahan et al., 

2016). As shown in Figure 1.7, since the IDH is mutated, and IDH is involved in 

regulating DNA methylation levels in the cell, therefore in IDH1 mutated cells, 

the DNA methylation level will be altered. The CTCF binding site of one loop 

was methylated, and because CTCF cannot bind to methylated sites, the CTCF 

protein can no longer bind to this region  (Phillips & Corces, 2009; H. Wang et 

al., 2012). The chromatin interaction is lost due to the absence of CTCF, allowing 

the oncogene inside this loop to aberrantly interact with an enhancer inside 

another loop, which was previously insulated by the lost loop. Ultimately, this 

caused improper increases in oncogene gene expression, leading to cancer. In 

another study, new TAD boundaries which are commonly associated with copy-

number changes, are observed in the cancer genome (Achinger-Kawecka, 

Taberlay, & Clark, 2016).   
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Figure 1.7 IDH mutation caused CTCF binding site loss which further led 

to abnormal enhancer-promotor chromatin interactions in glioma. This 

figure is from (Grimmer & Costello, 2016) and is reproduced with permission 

from Springer Nature. 

 

1.3  Acute Myeloid Leukemia (AML) 

1.3.1 AML: A fatal disease 

Acute Myeloid Leukemia (AML) is one of the most lethal cancer types 

today. AML is derived from abnormal differentiation and proliferation of 

haematopoietic progenitor cells (including myeloid stem cells and myeloid blast) 

that are in the process of differentiating into myeloid cells, which further will 

develop abnormal red blood cells, platelets, and white blood cells (Figure 1.8), 

and causes dysregulation of the haematopoietic system. AML usually shows 

rapid growth of abnormal blood cells, with symptoms including tiredness, 

difficulty in breathing, easy bruising, and bleeding (NIH, 2020b).  

Although AML has been discovered over 50 years ago, the ratio of people 

in remission in older patients (>60 years old) remains low (5-15%). The median 

survival time for older patients who cannot tolerate intensive chemotherapy is 

only 5-10 months (Dohner, Weisdorf, & Bloomfield, 2015). Hence, there is a 

critical need for targeted therapies in AML with fewer side effects that can be 

tolerated by the elderly. 
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Figure 1.8 The haematopoietic development process and cell types in 

different stages. This figure is from (NIH, 2020a) and can be reused without 

permission. 

 

1.3.2 Epigenetics and AML 

The factors associated with increased risk of AML include smoking, 

chemical and radiation, and myelodysplastic syndrome (a group of cancer in 

immature blood cells), etc. (NIH, 2020b). In addition to these factors, epigenetics 

is also found to be important in AML. Leukemias display abnormal chromosomal 

characteristics (Fialkow, 1976). The Cancer Genome Atlas Research Network 

(TCGA) has amassed a huge amount of clinical sequencing data related to Acute 

Myeloid Leukemia wherein they found that 44% of mutated genes related to 

DNA methylation in clinical samples (Ley et al., 2013). In addition, one study 

indicates that DNA methylation might influence leukemic cells by altering gene 
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expression and phenotype rather than direct cytotoxicity to cells (Abdel-Wahab & 

Levine, 2013). In further research, AML was found to include many cases likely 

resulting from dysregulated epigenetic modulation, including DNA methylation, 

histone modifications, etc. (Guillamot, Cimmino, & Aifantis, 2016; Y. Sun, 

Chen, & Deshpande, 2018). Taken together, the evidence presented above 

suggests that epigenetic drugs targeted towards these epigenetic factors may be 

able to treat AML. 

 

1.3.3 Therapeutic Ways of AML 

Current treatment for AML is mainly distributed into two categories: stem 

cell transplantation and chemotherapy (Ferrara & Schiffer, 2013). Usually, 

chemotherapy is the first choice as stem cell transplantation requires careful 

matching between the donor and the recipient. Chemotherapy is typically given to 

eliminate the cancerous cells, after which stem cell transplantation is performed 

to restore the bone marrow ((ACS), 2020). Stem cell transplantation together with 

chemotherapy has a higher chance of success than chemotherapy. Chemotherapy 

is associated with severe side effects ((ACS), 2020), including hair loss, infection 

due to low levels of white blood cells, tiredness, skin and nail changes, etc. 

((URMC), 2021). 

As chemotherapy is intensive and has many side effects ((URMC), 2021), there is 

much interest in identifying additional therapies for AML. As mentioned in section 

1.3.2, AML might result from aberrant epigenetic modulation, many epigenetic 

drugs are designed (Table 1.1). The targeted epigenetic factors include DNMTs and 
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IDH1/2, which control the DNA methylation process, and EZH2, MLL-complexes 

including DOT1L which influence histone modifications. Some of them are already 

in use and some of them are still in the trialtrial process (Wouters & Delwel, 2016). 

We hope more and more efficient drugs can be invented and taken into routine 

clinical use to help more AML patients return to heal 

Table 1.1 Current drug treatment of AML on epigenetic. This table is 

adapted from (Wouters & Delwel, 2016) and is reproduced with permission from 

Elsevier. 

Class of epigenetic 
regulator 

Target Compound 

DNA 
methyltransferase 

DNMTs Azacitidine 
Decitabine 
Rationally designed 
novel inhibitors 

Regulator of 
methylation 

IDH1, IDH2 Inhibitors of mutant 
IDH1/2 

Histone lysine 
acetyltransferase 

CREBBP (CBP) CREBBP inhibitor 
EP300 (p300) EP300 inhibitor 

Histone deacetylase HDACs HDAC inhibitors 
Histone acetyl reader Bromodomain 

containing proteins 
(BET proteins) 

BET inhibitors 

Histone lysine 
methyltransferase 

EZH2 EZH2 inhibitors 
MLL-complexes DOT1L inhibitors 

Inhibitors of MLL-
Menin interface 
Inhibitors of MLL-
LEDGF interface 

Histone lysine 
demethylase 

LSD1 LSD1 inhibitors 
Jumonji family of 
KDMs 

Small molecular 
inhibitors competitive 
for 2-oxoglutarate 

Histone arginine 
methyltransferase 

PRMTs PRMT inhibitors 
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1.4 DNMT3A  

1.4.1 DNMT3A Controls DNA Methylation in the Genome 

The DNA Methyltransferase 3 Alpha (DNMT3A) is a gene that belongs to a 

gene family DNA methyltransferases, which is related to control of DNA 

methylation, both by maintaining existing DNA levels and by creating de novo 

DNA methylation (Rhee et al., 2000). As members of the DNMT family, 

DNMT3A and DMNT3B are responsible for de novo DNA methylation with the 

help of DNMT3L (Jia, Jurkowska, Zhang, Jeltsch, & Cheng, 2007). They are also 

essential for the construction of DNA methylation patterns during mammalian 

development (Chen, Ueda, Xie, & Li, 2002; Heyn et al., 2019; Viré et al., 2006).  

As described in section 1.1.1, DNA methylation can influence gene 

transcriptional levels. Thus, DNMT3A might be crucial for gene expression 

maintenance. DNMT3A mutations may cause aberrant methylation and lead to 

disease.  

 

1.4.2 DNMT3A is the Most Frequently Mutated Epigenetic 

Factor Gene in AML 

DNMT3A was found to be highly mutated in AML patients (Ley et al., 

2013). From Figure 1.9, we can conclude that DNMT3A is one of the most 

frequently mutated genes and the highest mutated epigenetic factor among AML 

patients.  
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As DNMT3A plays a crucial role in de novo DNA methylation, once it is 

mutated, the global DNA methylation level will be affected, which will cause 

cellular dysregulation. One study found that most of the genome is 

hypomethylated, but several repressed genes are hypermethylated upon DNMT3A 

mutation (Jeong et al., 2018).  Another study found that DNMT3A mutations are 

characterized by intermediate-risk cytogenetic profiles and poor outcomes (Ley et 

al., 2010).  

 

 

Figure 1.9 DNMT3A is a frequently mutated gene in AML. The 

significantly mutated genes ranking by TCGA. This figure is from (Ley et al., 

2013) and can be reused without permission. 
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1.4.3 DNMT3A Mutation Leads to Downregulation of 

Functional DNMT3A Protein Which Will Lead to DNA 

Methylation Level Change and Hematological 

Malignancies 

The DNMT3A protein has two domains: regulatory domain and catalytic 

domain (Figure 1.10). The regulatory domain is the domain that interacts with 

DNMT3B and DNMT3L proteins and other regulators such as EZH2, DNA 

protein NP53, and so on, to regulate its function (Chaudry & Chevassut, 2017). 

The catalytic domain is the functional domain with the ability to methylate DNA. 

Inside the catalytic domain, there is a site called the R882 mutation site. This site 

is the R882 codon which is frequently mutated. Approximately 22% of AML and 

36% cytogenetically normal AML patients carry the DNMT3A mutation, and of 

these cases, 60% have DNMT3A mutations at the R882 codon (Chaudry & 

Chevassut, 2017; Ley et al., 2010). With the R882 codon mutation, the formation 

of functional tetramers is impacted (Holz-Schietinger, Matje, & Reich, 2012), so 

the level of functional DNMT3A tetramers is reduced, which impacts the DNA 

methylation process, and further leads to hematological malignancies (Lin et al., 

2011; O'Brien, Brewin, & Chevassut, 2014; Russler-Germain et al., 2014). 
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Figure 1.10 Structure of the DNMT3A protein and its isoforms, DNMT3B 

and DNMT3L and their interaction regions. This figure is from (Chaudry & 

Chevassut, 2017) and can be reused without permission.  

 

1.5 Hypothesis and Aims 

1.5.1 Specific Aims 

In this thesis, we have the following aims: 

1. To understand whether Topologically Associating Domains (TADs) and 

chromatin loops are dysregulated in AML compared with normal haematopoietic 

cells. 

In this aim, we analyzed chromatin interaction information from Hi-C 
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analyses of clinical samples of AML compared with normal cells to see whether 

TADs and chromatin loops are dysregulated or not in AML. 

2. To understand whether DNMT3A mutations lead to dysregulated TADs, and 

chromatin loops in AML. 

As DNMT3A is highly mutated in AML and DNMT3A mutation leads to 

DNA methylation alteration, we inferred that DNMT3A might lead to TAD and 

chromatin loop alteration in leukemias. Thus, we designed two ways to 

investigate our hypothesis: first, we analyzed DNMT3A mutant and wild-type 

RNA-Seq data in the TCGA-LAML dataset (Ley et al., 2013)    to see whether 

gene pairs correlations are changed or not which might indicate that TAD 

boundaries are changed. Second, we did the CRISPR knock out of DNMT3A in 

the K562 cell line to compare TAD and loop information in DNMT3A knock out 

with vector control to see whether they have some relationships or not. 

 

1.5.2 Hypothesis 

Corresponding to aims mentioned in 1.6.1, we have these hypotheses: 

1. AMLs show many epigenetic abnormalities, which can result in altered 

chromatin interactions and topologically associated domains, that can lead to 

dysregulated transcription and cancer. 

2. DNMT3A mutations lead to aberrant methylation in the genome, which 

leads to altered CTCF binding in the genome, which leads to TAD boundary 
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changes and chromatin loops formation, which leads to abnormal gene 

expression. 

The reason why we have developed these hypotheses is that in previous 

work, Flavahan et al. 2016 showed that abnormal DNA demethylation resulting 

from IDH mutations in gliomas will lead to CTCF binding site loss (William A. 

Flavahan et al., 2016), because CTCF cannot bind to methylated DNA(Lai et al., 

2010), and then leads to TADs disruption(W. A. Flavahan et al., 2016). As AML 

is characterized by altered epigenetic factors, we reasoned it would be likely to 

show dysregulated TADs and chromatin interactions compared with normal 

haematopoietic cells.  

Next, we chose the most highly mutated epigenetic factor, DNMT3A, as an 

example, to investigate whether aberrant methylation will influence chromatin 

interaction and loop formation. In DNMT3A-mutated AML, enhancers are likely 

to be hypomethylated, allowing for more CTCF binding, resulting in potentially 

new chromatin loops, and altered Topologically Associating Domain (TAD) 

boundaries, while repressed genes may be hypermethylated, leading to less CTCF 

binding and reduced chromatin loops and TAD boundaries. These altered 

chromatin loops and TAD boundaries may then result in altered gene expression. 

Hence, we hypothesize that mutated DNMT3A will result in aberrant DNA 

methylation in AML, leading to altered chromatin interactions and TAD 

boundaries, leading to altered gene regulation and cancer. 

 The significance of our research is that if it is true that DNMT3A mutations 

in AML lead to altered chromatin loops and TAD boundaries, this may be a 



 

58 

 

vulnerability that can be exploited by epigenetic drugs, such as enhancer 

inhibitors such as JQ1 (Andricovich et al., 2018) that may block enhancers that 

make new chromatin loops or methylation inhibitors such as decitabine 

(Kantarjian et al., 2012) that further perturb the TAD structure of cells, 

potentially leading to TAD structure loss and cell death.    
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2. Materials and Methods 

2.1 Clinical Sample Collection 

2.1.1 Patients Sample Collection 

(Acknowledgement: My lab colleague Ms. Yufen Goh did the CD34+ 

selected samples collection part, and my lab colleague Ms. Winnie Fam did the 

total bone marrow samples collection, and my lab collaborators Prof. Wilson 

Wang from the National University Hospital, and Prof. Chng Wee Joo from the 

National University Hospital provided the clinical samples.) 

Bone marrow samples from AML patients were taken from the back of the 

pelvic (hip) bone. All bone marrow samples were obtained from the National 

University Hospital Singapore and collected according to the requirements of the 

Human Biomedical Research Act. Informed consent was obtained for all clinical 

samples used in the study. Patient clinical information see in Table 2.1. 
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 Table 2.1 Clinical information for patient samples 

*“n.d.” indicates “not done”. “N.A.” indicates “not applicable”.  

 
Femur47 Femur49 Femur50 AML28 AML29 AML30 AD796 AD903 AML42 AML43 AML44 

Gender Male Female Female Male Female Female Male Male Female Male Female 

Age 72yr 67yr 74yr 52yr 35yr 28yr 67yr 47yr 33yr 47yr 30yr 

Total MNC 
count 

329 million 567 million 690.2 
million 

56.3 
million 

106 
million 

98.4 
million 

8 million 38.85 
million 

7 million 4.2 million 6 million 

Viability 88% 93% 88% 91% 72% 93% 24% 36% 75% 90% 96% 

Percentage 
CD34+ 

7.80% 10.20% 10.30% 80.50% 74.40% 57.20% n.d. n.d. n.d. n.d. n.d. 

Total 
CD34+ 
count 

3.02million 6.28 million 6.9 million 22 million 22.4 
million 

20.2 
million 

n.d. n.d. n.d. n.d. n.d. 

Viability 77% 90% 85% 95% 92% 97% n.d. n.d. n.d. n.d. n.d. 

Karyotype n.d. n.d. n.d. Normal 
Karyotype 

Trisomy 8 45,X,-
X,t(8;21)(
q22;q22)/

46,XX 

normal 46,XY,?t(
8;12;21)(q
22;p13;q2
2),inv(9)(
p11q13)[1
9]/46,XY,
inv(9)(p11

q13)[1] 

46,XX,inv
(16)(p13.1
q22)[20] 

49,XY,-
3,+4,+5,add
(5)(q11.2)x2

,+8,-12,-
17,idic(21)(
p11.2),+der(
?)t(?;3)(?;q2
1)ins(?;12)(
?;q11q24.3), 
+2mar,~1d
min[19]/46,

XY[1] 

46,XX,add
(9)(q13)[3
]/46,XX[1

7] 

FLT3 n.d. n.d. n.d. Negative FLT3/ITD
: Positive 

FLT3/ITD
: Positive 

FLT3/ITD
: Positive 

FLT3/ITD
: Positive 

Negative Negative Negative 

NPM n.d. n.d. n.d. Negative Negative Negative Negative Negative Negative Negative Negative 

CEBPα n.d. n.d. n.d. Positive n.d. Negative Negative Positive Negative Negative Positive 

Relapse N.A. N.A. N.A. relapse relapse No No No No No No 
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2.1.2 Sample Preparation of Mononuclear Cells (MNCs)  

(Acknowledgement: The CD34+ selected samples preparation was 

performed by Ms. Yufen Goh, and total bone marrow samples collection was 

performed by Ms. Winnie Fam, and clinical samples provided by Prof. Wilson 

Wang and Professor Chng Wee Joo from the National University Hospital) 

Mononuclear cells (MNCs) were isolated from AML bone marrow through 

a ficoll gradient (Ficoll-Paque PLUS; GE Healthcare, USA) To examine, the 

levels of CD34+, we” the manufacturer’s instructions.    

 

2.1.3 Isolation of CD34+ Haematopoietic Stem and Progenitor 

Cells  

(Acknowledgement: The sample preparation method was performed by Ms. 

Yufen Goh, and clinical samples provided by Professor Wilson Wang and 

Professor Chng Wee Joo from the National University Hospital) 

CD34 + cells were isolated from samples AML28, AML29, AML30, 

Femur47, Femur49 and Femur50. Positive selection of CD34+ cells from bone 

marrow samples from knee replacement operations was performed with an 

adapted protocol using CD34 MicroBead Kit UltraPure, human (Miltenyi Biotec, 

Germany). The percentage of CD34+ cells was determined by flow cytometry 

with a BD LSR II Flow Cytometer (BD Biosciences, Germany) at both pre-and 

post-isolation with cell marker (PE-conjugated anti-human CD34, clone 8G12) 
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after exclusion of cell debris based on scatter signals and dead cells by DAPI 

fluorescent stain. Data analysis was performed by FACSDiva software. 

If the sample contained <20% CD34+, positive selection of CD34+ was 

performed according to the manufacturer’s instructions using CD34 MicroBead 

Kit UltraPure, human. 

If the sample contained 20 to 50% CD34+, positive selection of CD34+ was 

performed with double the volume of microbeads, relative to the sample volume. 

10μl PBS, 0.5% FBS, 2mM EDTA was added to every 108 mononuclear cells. 

An equal volume of FcR blocking solution (Miltenyi Biotec, Germany) and twice 

the amount of CD34+ ultrapure beads were added to the sample. 

If the sample contained >50% CD34+, a positive selection of CD34+ was 

performed with triple the volume of microbeads, relative to the sample volume. 

10μl PBS, 0.5% FBS, 2mM EDTA is added to every 108 mononuclear cells. An 

equal volume of FcR blocking and thrice the amount of CD34+ ultrapure beads 

was added to the sample. 

Magnetic separation with the autoMACS Pro Separator (Miltenyi Biotec, 

Germany) was carried out using the program, Posselds. CD34+ cells were 

collected as the positive fraction. 

 

2.1.4 Flow Cytometry Analysis 

(Acknowledgement: This method was performed by Ms. Yufen Goh, and the 
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clinical samples were provided by Professor Wilson Wang and Professor Chng 

Wee Joo from the National University Hospital) 

Samples AML28, AML29, AML30, Femur47, Femur49, and Femur50 were 

processed by this step. To check the percentage of CD34+ cells in the 

mononuclear cells population of all clinical samples and purity of the CD34+ 

cells after MACs separation, 100-250k cells were subjected to flow cytometry 

analysis with a BD FACSAria II. To examine the levels of CD34+, we stained the 

cells with phycoerythrin (PE)-conjugated anti-CD34 (BD Biosciences, 348057). 

To further confirm if the CD34+ cells obtained were primitive haematopoietic 

precursors or myeloid progenitors, the cells were also co-immunostained with 

allophycocyanin (APC)-conjugated CD33 (BD Bioscience, 555626) and 

fluorescein isothiocyanate (FITC)-conjugated CD45 (BD Bioscience, 555485). 

 

2.2 K562 CRISPR Knock Out 

2.2.1 K562 MEIS1 Region CTCF Knock Out 

2.2.1.1 CRISPR-Cas9 Plasmid Cloning 

(Acknowledgement: This experiment was conducted by Dr. Benny Wang 

Zhengjie.) 

CRISPR-Cas9 excision was performed with the All-in-One vector system as 

described previously (Sakuma, Nishikawa, Kume, Chayama, & Yamamoto, 

2014). Two sgRNA oligonucleotides (1st base) targeting two regions of interest 
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(chr2:66,802,343-66,802,362 & chr2:66,803,315-66,803,334) were designed 

using the Benchling web interface (Benchling [Biology Software]. (2019). 

Retrieved from https://benchling.com) and annealed (Table2.2). The annealed 

region was ligated into the pX330A-Cas9-2A-GFP or pX330S-Cas9-2A-GFP 

vector plasmid by Golden Gate Assembly(Sakuma et al., 2014). The Golden Gate 

Assembly was performed with the pX330A-Cas9-2A-GFP and pX330S-Cas9-

2A-GFP plasmids containing each targeted cut side to yield a single fused 

pX330A-Cas9-2A-GFP plasmid containing two cut sides. Generated all-in-one 

plasmids were confirmed for the successful insertion of the sgRNAs by Sanger 

sequencing (1st base) using the CRISPR-step2-F and CRISPR–step-2-R primers 

(Table 2.3). 

 

Table 2.2 CRISPR-Cas9 Excision Primers (5’ to 3’) 

Region One AAGCCAAAAAACGTGCCTTG 

Region Two TGCCCCGAGAGGAAATCCAG 

 

Table 2.3 CRISPR-Cas9 Sanger Sequence Primers (5’ to 3’) 

CRISPR-step2-F  GCCTTTTGCTGGCCTTTTGCTC 

CRISPR-step2-R CGGGCCATTTACCGTAAGTTATGTAACG 
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2.2.1.2 Transfection of K562 Cells 

(Acknowledgement: This experiment was conducted by Dr. Benny Wang 

Zhengjie.) 

Transfection of K562 cells was performed with the Neon Transfection 

System (ThermoFisher). Briefly, 5µg of pX330A-Cas9-2A-GFP with two cut 

sites was added to 1 million K562 cells and electroporated. The K562 cells were 

transfected with the plasmids containing sgRNAs of the designed cut sites as well 

as with control plasmids without the sgRNAs in different bio replicates. 

Transfected cells were kept at 37oC with 10% fetal bovine serum and 1% of 

penicillin-streptomycin RPMI1640 media for 48 hours before being 

Fluorescence-activated cell sorting (BD FACSAria Flow Cytometer) sorted for 

GFP fluorescing positive clones. Each positive clone was sorted into a single well 

of a 96 well-plate and cultured until a visible cell pellet could be observed. 

 

2.2.1.3 Genotyping of CRISPR Clones 

(Acknowledgement: This part was conducted by Dr. Benny Wang Zhengjie.) 

Cell pellets of the positive CRISPR clones were resuspended and passaged 

into one well of a 6 well plate containing 10% Fetal Bovine Serum and 1% of 

penicillin-streptomycin RPMI1640 media and further cultured for another five 

days. One million cells were subsequently harvested from each clone and their 

genomic DNA was extracted (Wizard SV Genomic DNA purification system, 

Promega). Genotyping of each clone was done with specific region-specific 
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internal and flanking primers (Table 2.4).  

 

Table 2.4 Genotyping Primers (5’ to 3’) 

Flanking Forward CTGCAATTCATCCGCTGCTC 

Flanking Reverse TCCCAGGCTCCTGTAGTCTC 

Internal Forward CGACTCGGTAGGAAACGGAG 

Internal Reverse CACACAGCAACTAACCCCGA 

 

 

2.2.1.4 Growth curve assay  

(Acknowledgement: This part was conducted by Dr. Benny Wang Zhengjie.) 

10 000 cells/well were seeded in 96 well plates and measured for cell 

growth at 0, 24, 48, 72 hours using the CellTiterGlo assay kit (Promega, G7571). 

Luminescence was measured on a Tecan plate reader.  

 

2.2.2 K562 DNMT3A Knock Out 

(Acknowledgement: This experiment was conducted by my lab collaborator 

Dr. Qiling Zhou from Prof. Daniel Tenen’s lab in the Cancer Science Institute of 

Singapore. This experiment resulted in DNMT3A CRISPR knockout clone 1. In 



 

67 

 

addition, my lab colleague Dr. Deepak Babu repeated this experiment, to obtain 

DNMT3A CRISPR knockout clone 2) 

We used CRISPR/Cas 9 to target exon 7 in DNMT3A to partially knock out 

a part of DNA sequence ~100bp and checked by Sanger sequencing and protein 

electrophoresis to ensure DNMT3A has been knocked out. The guide RNA is 

AGCATCGGACCCCACGGGCT (5’ to 3’). 

K562 cells were transfected with Cas9 (mCherry+) and gRNA lentivirus 

(GFP+) separately. After adding Dox to induce gRNA expression for 5-7 days, 

mCherry and GFP double-positive single cells were sorted into 96-well plates. 

gDNA was extracted from each cell colony for Sanger sequencing to check 

whether DNMT3A homozygous KO was successfully introduced. For the control 

cells, the DNMT3A gRNA lentivirus was replaced by empty vector lentivirus, and 

mCherry and GFP double positive cells were used as control cells after Sanger 

sequencing to confirm the genotype. 

 

2.3 Hi-C Experiments and Analyses  

2.3.1 Hi-C Libraries Preparation for CD34+ Selected AML and 

Femur Samples 

(Acknowledgement: This experiment was performed by my lab colleague 

Dr. Deepak Babu with Dovetail Biosciences). 

Sample AML28, AML29, AML30, Femur47, Femur49 were prepared using 



 

68 

 

this method. Libraries were prepared with DovetailTM Hi-C Kit in a similar 

manner as described previously (Lieberman-Aiden et al., 2009). Index primer 6 

(GCCAAT) and 12 (CTTGTA) included in the Hi-C kit were used. Libraries 

were dissolved in TE buffer. Hi-C libraries were sequenced on a high throughput 

Illumina sequencer HiSeq 4000.   

 

2.3.2 Hi-C Libraries Preparation for Total Bone Marrow AML 

Samples and K562 DNMT3A Knock Out and Vector 

Control Cells 

(Acknowledgement: This experiment was performed by my lab colleague Dr 

Deepak Babu with Arima-Hi-C Kit) 

Hi-C analyses using the Arima Hi-C kit were performed on AML42, 

AML43, AML44, K562 DNMT3A KO, and K562 vector control (Vec_Con). 

Libraries were prepared by Arima-Hi-C Kit(A. D. Schmitt et al., 2016), which 

uses a proprietary enzyme mixture called “Arima” to digest the DNA fragments. 

The cut sites of this combination are G^ANTC and ^GATC. Hi-C libraries were 

sequenced on the high throughput Illumina sequencer NovaSeq 6000.   
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2.3.3 Hi-C Data Process 

2.3.3.1 Alignment and Contact Matrix Construction 

Hg38 p2 is used as a genome reference, which is the same reference as the 

TCGA-LAML project dataset used (Ley et al., 2013), because I will use the data 

of the TCGA-LAML dataset in this thesis, and I want to keep all the data under 

the same genome reference. The TCGA-LAML dataset is a dataset of Acute 

Myeloid Leukemia clinical samples. I utilized Juicer (version 1.5) (Neva C 

Durand et al., 2016) software produced by Aiden lab from fasta format to hic 

format, which can be used to visualize heatmap in Juicebox (version 1.2.3) (N. C. 

Durand, J. T. Robinson, et al., 2016; J. T. Robinson et al., 2018). All heatmaps 

generated in Juicebox are under 10kb resolution and normalized by coverage. 

MAPQ <30 reads were filtered out for further analysis. 

 

2.3.3.2 Principal Component Analysis of AML Hi-C data 

To figure out whether AML samples are distinctly different from normal 

samples, I performed a Principal Component Analysis (PCA) based clustering 

using the python package provided by scHiCluster (Jingtian Zhou et al., 2019). I 

chose this package is because it can calculate multiple principal component value 

while other packages only concern PC1 in Hi-C data as PC1 is important for A/B 

compartment analysis. But in this analysis, I want to see how PC1 and PC2 

differentiate different samples. I first used the “dump” tool from Juicer (Version 

1.5) (Neva C Durand et al., 2016) to extract 1Mb resolution sparse format 
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matrices (KR normalized) for each sample and each chromosome, then converted 

them to n*n rows of sparse format matrices and made them into inputs of the 

scHiCluster to get principal component matrices for each sample. I only used the 

first and second principal components (PC1 and PC2) to draw the clustering 

plots. 

 

2.3.3.3 Topologically Associating Domain and Chromatin Loop Calling 

TAD calling for this thesis was processed by Arrowhead which is software 

compiled within Juicer tools (version 1.5) (Neva C Durand et al., 2016). 10kb 

resolution was used as our contact matrix can reach this resolution because I 

tested several samples and 10kb works the best. KR normalization (described in 

section 1.2.4.1) was used for all AML samples, individual Femur samples, K562 

CRISPR cells, and vector control cells. Only three Femurs combined Hi-C data 

which is used for TCGA data analysis (see in section 2.7) used VC normalization 

to call TADs as KR normalization matrix is absent in some chromosomes of such 

a large data. 

Chromatin loops were called by HiCCUPS (described in section 1.2.4.3) which is 

also complied in Juicer tools (version 1.5)  (Neva C Durand et al., 2016). KR as the 

normalization method to call under a total of three resolutions: 5kb, 10kb, and 25kb, 

and finally merged to get a final list of loops.All the TAD and loop lists were re-

organized by homemade scripts and I used the UCSC tool bedToBigBed (Kent, 

Zweig, Barber, Hinrichs, & Karolchik, 2010) to make the bigbed file for 

visualization on the UCSC genome browser (Kent et al., 2002). 
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2.3.3.4 K562 DNMT3A Knock Out cells TAD and Loop Comparison 

TAD comparison was done by a homemade script that used the similarity 

ratio to detect the same or different TAD (Figure 2.1). Here, the total length 

between head and tail means the “tail” coordinate minus the “head” coordinate.
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Figure 2.1 How to calculate the similarity ratio of two overlapping TADs 

I considered two TADs with a similarity ratio of no less than 90% to be the 

same TADs. If multiple TADs overlapped with one TAD were found, I will 

choose the highest similarity ratio one. Genes with the transcription starting site 

inside each TAD will be regarded as common/specific TAD-associated genes 

according to TADs they belong to.  
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Loop comparison is also done by a homemade script by my colleague Mr. 

Bertrand Wong Jern Han, which used the idea that two loops share at least 1bp 

common region for every two anchors (Figure 2.2). Loops with only one anchor 

overlapped or no anchor overlapped were regarded as specific loops. Genes with 

the transcription starting site inside the region start from upstream 15kb to 

downstream 15kb of two anchors were regarded as common/specific loop 

associated genes according to loops they belong to.  

 

Figure 2.2 How to define common/specific loops (Note: This figure is 

produced by Mr. Bertrand Wong Jern Han, an undergraduate of NTU SBS who 

did an internship in Dr. Melissa Fullwood’s lab)  

 

2.3.3.5 CD34+ AML and Femur Samples Identification of Genes and 

Enriched Gene Sets Associated with Common/Specific Loops 

(Acknowledgement: This part is conducted by Mr. Bertrand Wong Jern 

Han, an undergraduate of NTU SBS who did an internship in the lab of Dr. 

Melissa Fullwood) 
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Loops with both anchors overlapping by at least a single base pair were 

regarded as being shared between the AML and femur sample. To identify loops 

that were specific to either AML or femur samples, these loops were excluded. 

Subsequently, from the remaining class-specific loops, to identify loops that were 

common to all three AML or all three femur samples, all samples within a class 

were compared in a pairwise manner and overlapping loops that occur in all 

pairwise comparisons were considered common. Genes within 15kb of the 

highlighted loops were identified using the bedtools window function. Cancer-

linked information for these genes was obtained from the COSMIC Cancer Gene 

Census (Tate et al., 2019). to which we also added manually curated information 

about specific genes known to be important in AML such as MEIS1.  

 

2.3.3.6 Insulation Score Calling 

Insulation scores of K562 DNMT3A knockout and vector control Hi-C data 

were calculated by the HiCExplorer (Version 3.4.2) (Ramírez et al., 2018; Wolff 

et al., 2018; Wolff et al., 2020). This software used a diamond-like a window 

slide along the diagonal line of the Hi-C matrix to calculate the mean z-score to 

get the TAD separate score, which in this thesis is called as insulation score. This 

score can be simply described as the likelihood of a region to be a TAD. With a 

more negative score, the region is more likely to be a boundary, while with a 

more positive score, the region is more likely to be a TAD. 
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2.3.3.7 Copy Number Variation (CNV) and Translocation Analyses 

HiNT (version 2.2.7) is used for both CNV and translocation analyses as it 

is a software which can do both CNV and translocation analysis with a Hi-C 

processed file input. HiNT requires software BICseq2, in this thesis,version 

v0.7.3 of BICseq2 is used. For CNV, 50kb resolution is used. Juicer produced 

inter_30.hic file is the input file. For translocation, p<0.05 is te significant 

translocation cutoff.  

 

2.4 RNA Experiments and Analyses 

2.4.1 Total RNA Isolation and Sequencing 

(Acknowledgement: CD34+ AML and CD34+ Femur samples RNA 

isolation performed by Ms. Yufen Goh; Total bone marrow RNA isolation was 

performed by Ms. Winnie Fam and Dr. Deepak Babu; DNMT3A knockout K562 

and wild-type K562 RNA isolation performed by Dr. Deepak Babu; Sequencing 

runs were done by the Genome Institute of Singapore.) 

About 5 million mononuclear cells (MNCs) and 2.5 million CD34+ cells 

were set aside, and the DNA/RNA were extracted using AllPrep 

DNA/RNA/miRNA universal kit (Qiagen, Germany) according to manufacturer’s 

instructions (Qiagen, Germany). This is a dual-extraction kit, which permits the 

extraction of RNA followed by DNA from the same input tissue. The extracted 

nucleic acids were assessed using a NanoDrop spectrophotometer (ThermoFisher 

Scientific, USA). The assessment of RNA integrity was done on all samples 
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using the RNA 6000 Nano kit on the Agilent 2100 Bioanalyzer System (Agilent, 

USA). Sequencing was performed through the ribosomal rRNA-depleted RNA-

Seq approach (Illumina), either 2x150-151 or 2x101 bases. 

 

2.4.2 Reverse Transcription (RT) and Quantitative Polymerase 

Chain Reaction (qPCR) 

(Acknowledgement: RT-qPCR experiments in K562 CTCF knock out 

samples were conducted by Dr. Benny Wang Zhengjie, DNMT3A RT-qPCR 

experiments in K562 DNMT3A knock out samples were conducted by Dr. Deepak 

Babu, RT-qPCR experiments of other genes in K562 DNMT3A knock out samples 

were conducted by Ms. Judy Shao, a Ph.D. student at the Cancer Science 

Institute who did a Ph.D. rotation in Dr. Melissa Fullwood’s lab) 

Following RNA extraction (section 2.4.1), reverse transcription of RNA 

into cDNA was performed using the qScript cDNA Supermix (Quantabio). 

Quantitative polymerase chain reaction (qPCR) was performed with the GoTaq 

qPCR Mastermix (Promega) and QuantStudio 5 Real-Time PCR (Applied 

Biosystems). GAPDH was selected as the endogenous control for qPCR. 

 

2.4.3 Droplet Digital Polymerase Chain Reaction (ddPCR) 

(Acknowledgement: This experiment was conducted by Dr. Benny Wang 

Zhengjie.) 
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Following cDNA preparation (section 2.4.1 and 2.4.2), ddPCR experiments 

on cDNA were performed with the EvaGreen Mastermix (Biorad) and the QX200 

Droplet Digital PCR system. Post analyses were done with the Quantasoft 

Analysis Pro Softward (Biorad). 

 

2.4.4 RNA-Seq Analyses 

All RNA-Seq alignments were done by STAR (v2.7.3a) (Dobin et al., 

2013). The reference genome was hg38 p2. I normalized the raw data reads 

numbers input by their read length and unique mapping ratio. For AML28, 

AML29, AML30, CD34 normal sample1, and CD34 normal sample2 as they 

were sequenced by different lengths (either 2x150-151 or 2x101 bases), i 

randomly selected reads after we calculated the normalized read numbers, to 

make sure each sample has the same genome coverage (7× of the genome).  For 

other samples, 2x151bp were used with similar sequencing depth, so that no reads 

selection was applied. UCSC genome browser tracks for RNA-Seq were also 

prepared by STAR (v2.7.3a) (Dobin et al., 2013). I normalized the signals by 

Reads of exon model per Million mapped reads (RPM) and then converted the 

signals to bigwig format by bedGraphToBigWig tool from UCSC (Kent et al., 

2010). Transcripts Per Kilobase of exon model per Million mapped reads (TPM) 

were also calculated by the homemade script to indicate the exact observed RNA 

signals for each AML and Femur sample. The formula is below: 



 

77 

 

��� =

��
�� ∗ 10�

��� �
�1
�1 +

�2
�2 + ⋯ +

��
�� �

 

N is the reads number mapped to the exon i, L is the length of the exon i. 

Differential gene expression analysis was done by edgeR (version 4.1) (M. 

D. Robinson, McCarthy, & Smyth, 2010). 

 

2.5 Chromatin Immunoprecipitation -Quantitative 

Polymerase Chain Reaction (ChIP-qPCR), ChIP-

Seq Experiments and Analyses 

2.5.1 Chromatin Immunoprecipitation -Quantitative 

Polymerase Chain Reaction (ChIP-qPCR) and ChIP-Seq 

Experiments 

(Acknowledgement: The ChIP-qPCR for AML samples were done by Dr. 

Benny Wang Zhengjie; ChIP-Seq for all samples were done by Dr. Deepak Babu) 

Cells were crosslinked with 1% formaldehyde (Thermo Scientific) for 15 

minutes and quenched with glycine for 5 minutes at room temperature. Following 

this, the crosslinked cells were lysed with 1% SDS lysis buffer supplemented 

with protease inhibitor (Roche). Lysed cells were sonicated at 25 cycles with the 

Bioruptor Pico (Diagenode) and subsequently added to antibody-conjugated A/G 

beads (Invitrogen) and rotated overnight at 40C. Anti-HOXA9 (Sigma-



 

78 

 

HPA061982) and Anti-MEIS1 (abcam-ab19867) antibodies were used. The 

incubated beads were then washed in the following order: thrice with 0.1% SDS 

lysis buffer, once with high salt wash buffer, once with lithium chloride wash 

buffer, and once with Tris-EDTA buffer. The beads were eluted in ChIP elution 

buffer before treatment with RNase A (Qiagen) and Proteinase K (Ambion) at 

370C for 4 hours. The ChIP DNA was cleaned up with the QIAquick PCR 

purification kit (Qiagen).  

The ChIP DNA was then used for performing ChIP-qPCR or ChIP-Seq. All 

ChIP-qPCR experiments were performed with four biological replicates of cells. 

In the case of ChIP-Seq, 2x150 bases were sequenced on a high throughput 

Illumina sequencer.  

 

2.5.2 ChIP-Seq Analyses 

2.5.2.1 Published AML Patient Samples H3K27Ac ChIP-Seq Analysis 

(Acknowledgement: This part is done by my lab colleague Ms. Ruchi 

Choudhary, a Ph.D. student in Nanyang Technological University School of 

Biological Sciences) 

Super-enhancers (SEs) were called from previously published H3K27ac 

ChIP-Seq data from 63 AML patient samples and 2 FACS-purified 

haematopoietic stem and progenitor cell (HSPC) samples (McKeown et al., 

2017).  
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H3K27ac ChIP-seq sequences were aligned to the human genome using 

Bowtie2 (Langmead & Salzberg, 2012) with the default parameters. PCR 

duplicates were removed using ‘samtools markdup’. Blacklisted regions that fall 

within the ENCODE consensus were removed using ‘bedtools intersect’. After 

sorting and indexing sequences with ‘samtools’, narrow peaks were called using 

MACS2 (version 2.1.2) (Yong Zhang et al., 2008). Enhancer peaks within a 4 kb 

distance were stitched together and identified as SEs based on the ChIP-seq 

signal using a custom script similar to the ROSE package as previously described 

(Cao et al., 2017).  The alignment was performed with genome reference hg19 

and then the super-enhancer bed tracks were lifted over from hg19 to hg38 by the 

UCSC LiftOver tool (Navarro Gonzalez et al., 2021). 

 

2.5.2.2 THP-1 and K562 H3K27Ac ChIP-Seq Analysis 

THP-1 single-end ChIP-Seq data was downloaded from (Mohaghegh et al., 

2019). I chose SRR8329547 and SRR8329548 as two biological replicates for 

H3K27Ac ChIP-Seq data, and SRR8329549 and SRR8329550 as two biological 

replicates for total input background ChIP-Seq data. 

K562 single-end ChIP-Seq data is from the project, Histone Modifications 

by ChIP-seq from ENCODE/Broad Institute (Consortium, 2012). I chose 

SRR227385 and SRR227386 as two biological replicates for H3K27Ac ChIP-Seq 

data, and SRR227650 for total input background ChIP-Seq data. 

The basic analysis pipeline followed the pipeline described in section 
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2.5.2.3. 

 

2.5.2.3 AML Samples and K562 DNMT3A Knock Out and Vector 

Control Cells H3K27Ac ChIP-Seq Analysis 

First, I aligned all sequencing data with Bowtie2 (Version 2.2.5) (Langmead 

& Salzberg, 2012) with default settings by genome reference hg38 p2, then 

narrow peaks were called by MACS2 (version 2.2.7.1) (Yong Zhang et al., 2008) 

using the “-q 0.05 --keep-dup auto” settings to filter the q value less than 0.05 and 

remove duplicates. Super-enhancers and enhancers were called by a custom script 

similar to the ROSE package as previously described (Cao et al., 2017) by using a 

4kb stitch distance. 

For K562 DNMT3A Knock Out and Vector Control Cells H3K27Ac ChIP-

Seq only, I called the peaks, enhancers, and super-enhancers comparison between 

KO and Vec_Con following the method which is described in detail in section 

2.5.2.5. 

 

2.5.2.4 K562 DNMT3A Knock Out and Vector Control Cells CTCF, 

H3K27Me3, and H3K4Me3 ChIP-Seq Analysis 

First, I aligned all sequencing data with Bowtie2 (Version 2.2.5) (Langmead 

& Salzberg, 2012) with default settings by genome reference hg38 p2. 

For CTCF ChIP-Seq, narrow peaks were called by MACS2 (version 
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2.2.7.1) (Yong Zhang et al., 2008) using the “-q 0.05 --keep-dup auto” settings to 

filter the q value less than 0.05 and remove duplicates. Then I just compare the 

CTCF peaks between KO and Vec_Con which are described in detail in section 

2.5.2.5. 

For H3K27Me3 ChIP-Seq, broad peaks were called by MACS2 (version 

2.2.7.1) (Yong Zhang et al., 2008) using the “-q 0.05 --broad-cutoff 0.05 --keep-

dup auto” settings to filter the q value less than 0.05 and remove duplicates. 

“BroadPeak” file is used for calling silencers and H3K27me3-rich regions 

(MRRs), and “gappedPeak” was used as the peaks list. Silencers and H3K27me3-

rich regions (MRRs) were called in a similar manner of enhancers and super-

enhancers called by a custom script similar to the ROSE package but which used 

a 4kb stitch distance, as previously described (Cao et al., 2017). This follows the 

method and ideas previously described in (Y. Zhang et al., 2021). Peaks, 

silencers, super-silencers were compared between KO and Vec_Con following 

the method described in detail in section 2.5.2.5. 

For H3K4Me3 ChIP-Seq, broad peaks were called by MACS2 (version 

2.2.7.1) (Yong Zhang et al., 2008) using the “-q 0.05 --broad-cutoff 0.05 --keep-

dup auto” settings to filter the q value less than 0.05 and remove duplicates. 

BroadPeak is used for calling broad H3K4Me3 domains, and gappedPeak was 

used as the peaks list. Broad H3K4Me3 domains were selected by identifying the 

top 5% by the ranking of peak sizes as previously described (Cao et al., 2017; 

Dahl et al., 2016). Peaks and broad H3K4Me3 domains were compared between 

KO and Vec_Con following the method described in detail in section 2.5.2.5. 
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2.5.2.5 Peaks, Enhancers, Super-Enhancers, Silencers, Super-Silencers 

and Broad H3K4Me3 Domains Comparison Between K562 

DNMT3A Knock Out and Vector Control Cells. 

These comparisons were all done by BEDtools (version 2.29.2) (Quinlan & 

Hall, 2010). As we have two replicates for both KO and Vec_Con, I first used the 

“merge” tool of BEDtools to merge the two replicates’ lists into one, then I 

compared KO and Vec_Con lists by “intersect” tool of BEDtools, to identify the 

regions with at least 1bp overlap which were regarded as “common” regions. The 

regions without any overlap were regarded as “specific ” regions. 

 

2.6 Circular Chromosome Conformation Capture 

(4C) Experiments and Analyses 

(Acknowledgement: 4C-Seq experiments were conducted by Dr. Benny 

Wang Zhengjie, alignment, and r3cseq analysis was done by Dr. Benny Wang 

Zhengjie on CSI NGS Portal set up by Dr. Omer An and Dr. Henry Yang at the 

Cancer Science Institute (An et al., 2020)) 

4C-seq was performed as previously described with some modifications 

(Splinter, de Wit, van de Werken, Klous, & de Laat, 2012). In brief, 4 × 107 cells 

were harvested and crosslinked with 1% formaldehyde for 10 min at room 

temperature with rotation. The crosslinking was quenched by glycine for 5 min at 

room temperature with rotation. Following SDS and Triton X-100 
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permeabilization, nuclei were digested with HindIII-HF (NEB) overnight. 

Following proximity ligation, reverse cross-linking, and DNA purification, the 

circular DNA was digested with DpnII (NEB) 37 °C overnight and circularized.  

The 4C-seq library was generated by performing nested inverse PCR using 

Phusion DNA polymerase (Thermo Scientific) with the primers. 10% of the 1st 

PCR product was used for the 2nd PCR. The 4C-seq library was purified by 4–

20% gradient TBE PAGE gel (ThermoFisher Scientific) and the smear band 

regions including the expected sizes were excised. The library was recovered by 

incubating the crushed gel slice with 200 uL TE buffer overnight at 37 °C and the 

DNA in the supernatant was ethanol precipitated in presence of GlycoBlue 

(ThermoFisher Scientific). The multiplex 4C-seq library was pooled in equal 

molar ratio and sequenced on MiSeq (Illumina) with 1X150 bp. 500,000–

1,000,000 reads were produced for each library. BWA-Mem (0.4.17-r1188) was 

used to map to the human genome hg19. The mapped 4C-seq data was analyzed 

by r3CSeq (1.30.0). All the resulting bed tracks for 4C were first analyzed with 

human genome reference hg19 and subsequently, we used the UCSC LifeOver 

tool (Navarro Gonzalez et al., 2021) to lift over the data hg38. 

Further, the file after being lifted over was converted to a biginteract format 

by the bedToBigBed tool from UCSC (Kent et al., 2010).  
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2.7 Gene Correlation Analysis for TCGA-LAML Data 

2.7.1 Assignment of Genes into Different Pairs 

Our computational pipelines followed Flavahan, W. A., et al., 2016 with 

several modifications (William A. Flavahan et al., 2016). As shown in the flow 

chart (Figure 2.4), first, I collected a gene list from hg38 p2 annotation files, and 

only chose the annotated element which marked as “gene” in the annotation file. 

Flavahan, W. A., et al., 2016 used GM12878 and IMR90 TAD lists which from 

(Rao et al., 2014), while I used our Femur47, Femur 49, and Femur50 combined 

Hi-C matrix to call a haematopoietic stem cell-specific TAD list as the reference. 

The detailed process can be found in section 2.3.3.3. Next, I began to assign these 

genes to their corresponding TAD by checking whether the transcription starting 

site is located inside the TAD or not. Genes that cannot be assigned to a domain 

and genes that can be assigned to multiple domains, but which could not be 

unambiguously assigned to an inner-most domain were discarded before I divided 

genes into pairs (Figure 2.3 & Figure 2.4). 

After assigning genes into their respective TADs, I divided them into pairs 

by distance. For example, using 500 kb as the cut-off for the distance criteria, if 

the distance between two genes, we treated the genes as follows: (1)If these two 

genes were in the same domain, then this gene pair was be regarded as a “same 

domain pair”. (2)If these two genes belonged to different domains, then the pair 

was defined as a “cross boundary pair”. I used two different distance criteria in 

this thesis: 1000kb for detecting dysregulated boundaries in DNMT3A mutant 

AML samples, and 500kb for the same domain and cross boundary correlation 
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comparison analysis (Figure 4.1), which is similar to what Flavahan, W. A., et 

al., 2016 have done. 

 

Figure 2.3 How to assign a gene into a domain 
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Figure 2.4 Flow chart for assignment of genes into different pairs 

 

2.7.2 Gene Correlation Analysis and Dysregulated Boundaries 

Identification. 

TCGA AML project TCGA-LAML RNA-Seq gene expression files (Tier 3, 

htseq FPKM (Fragments Per Kilobase of exon model per Million mapped 

fragments) files) were downloaded and used (total 151 clinical samples, 124 

DNMT3A wild type cases, and 27 DNMT3A mutant cases (Ley et al., 2013), 

hg38p2 as a default reference genome) to calculate gene correlations. FPKM was 

then converted to TPM by a homemade script following the formula: 

��� = e���(����)��������(����)�����(���)   

First, 124 DNMT3A wild-type cases were used for comparing same domain 
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pairs and cross boundary pairs correlation changes against increases in distance 

between gene pairs. Gene pairs under 500kb distance of transcription starting site 

were used to calculate the correlation. Gene correlations were calculated by 

Pearson correlation using cor() function in Python (version 3.6.4), I generated a 

line plot illustrating correlation trend differences between “same domain pairs” 

and “cross boundary pairs” against increasing distance using R (version 3.3.1). 

Lines were smoothed by weighted linear least squares (LOESS, span=0.1). 

Next, I calculated the delta correlation using the 500kb as the distance 

criteria. I chose 500 kb instead of 180kb that Flavahan, W. A., et al., 2016 used as 

180kb is too small for cross boundary pairs (Very few cross boundary pairs were 

found in our results). Gene correlations were calculated by Pearson correlation 

using the cor() function in Python (version 3.6.4). Delta correlation equals 

correlations in DNMT3A mutant samples minus DNMT3A wildtype samples. 

Significances were calculated using fisher-z-transformation: 

(1) � =
�

�
ln(

���

���
) 

(2) � =
�����

�
�

����
�

�

����

 

(3) � = 2(1 − �����(�)) 

ρ in formula (1) is the gene pair correlations. After calculation each z value 

using formula (1) for DNMT3A mutant and DNMT3A wildtype, calculate Z using 

formula (2)  as a variance of two z value. Then using pnorm functions in formula 

(3) is the normal distribution function in Python(version 3.6.4) to get the 
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significance P. (pnorm might be different across different programming 

languages).Volcano plots were generated by script written in R(version 3.3.1) 

Dysregulated boundaries detection used 1000kb as the gene pairs distance 

and follow the flow chart in Figure 2.5. Femur Hi-C combined matrices was used 

to call TADs, and the TAD list was used to define the same domain and cross 

boundary gene pairs. For two TADs, the boundary between them was regarded as 

dysregulated if at least 1 same domain gene pair correlation is decreased and at 

least 1 cross boundary gene pair correlation is increased. 
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Figure 2.5 The flow chart of how to detect the altered boundaries by 

integrated analysis of gene correlation calculation and Hi-C analysis of 

Femur samples 

 

 



 

90 

 

2.8 Data Availability 

All the Chapter 3 data can be viewed in GEO accession GSE149381 in 

referee private access. To review GEO accession GSE149381: Go to 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149381 Enter token 

kzexsyyuljyhvuv into the box. 

 All Chapter 3 UCSC tracks can be viewed in: 

http://genome.ucsc.edu/s/lincy/AML 

 All Chapter 4 UCSC tracks can be viewed in: 

http://genome.ucsc.edu/s/lincy/DNMT3A 

 All homemade scripts can be viewed in: 

https://github.com/lingshi951129/thesis-code 

 

 

 

 

 

 



 

91 

 

3. The Three-Dimensional Chromatin 

Interaction Landscapes of Acute 

Myeloid Leukemia are Altered 

Compared with Normal Haematopoietic 

Stem Cells  

AML is derived from abnormal differentiation and proliferation of 

haematopoietic progenitor cells, which are marked by CD34 protein (Bonnet & 

Dick, 1997; Shlush et al., 2014), along with several aberrant activations and up-

regulation of some fusion oncogenic proteins (Kundu et al., 2002; Matsuo et al., 

2018; Y. Wang, Wu, Liu, & Jin, 2017). As AML shows dysregulated epigenetic 

(discussed in section 1.3.2), we asked how chromatin interactions, a form of 

epigenetic, are altered in AML. Altered 3D genome architecture has been 

observed in Acute Lymphocytic Leukemia and leukemia cell lines in previous 

studies (Kloetgen et al., 2020; Y. Li et al., 2018; Yang et al., 2019). However, 

how chromatin interactions differ between AML and normal haematopoietic stem 

cells are poorly understood.  

Here, we performed Hi-C analyses in AML and normal haematopoietic 

clinical samples to figure out how chromatin interaction impacts AML. To 

understand the potential impact of dysregulated chromatin interactions on 

transcription, we performed integrated RNA-Seq in several AML samples. 
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Furthermore, for several AML samples, we also obtained H3K27ac ChIP-Seq to 

characterize super-enhancers in the AML samples.   

 

3.1 Chromatin Interaction Alterations were Observed 

in CD34+ Acute Myeloid Leukemia Samples 

Compared with CD34+ Normal Haematopoietic 

Clinical Samples at Key Oncogenes. 

First, with the help of my lab collaborator Prof. Wilson Wang, and Prof. 

Chng Wee Joo from National University Hospital who provided the clinical 

samples, my colleague Ms. Yufen Goh collected and prepared the CD34+ sorted 

AML and CD34+ sorted normal femur samples for further Hi-C experiments 

(CD34+ AML samples: AML28, AML29, and AML30; CD34+ normal femur 

samples: Femur47, Femur49, and Femur50). In this part, I did all the 

bioinformatics analysis for RNA-Seq and Hi-C except loop comparison analysis. 

The reason why we sorted the clinical samples with CD34+ is due to the 

heterogeneity of AML (Horibata et al., 2019). As AML is a disease derived from 

abnormal differentiation and proliferation of haematopoietic progenitor cells 

(which are marked by CD34+), isolation of CD34+ AML cells leads to the 

enrichment of a more homogeneous group of primitive AML cells (Bonnet & 

Dick, 1997; Shlush et al., 2014). My colleague Dr. Deepak Babu performed the 

Hi-C experiments with Dovetail Biosciences. Billions of sequencing reads were 

applied, and 347-596 million Hi-C contact reads were used for further analysis. 
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927-1,682 of TADs and 4,733-24,294 loops were called from the Hi-C data 

(Table 3.1). 

 

 Table 3.1 Hi-C statistics for CD34+ sorted AML and Femur clinical 

samples  

 

Then, Hi-C clustering analysis was applied in both CD34+ AML samples 

and CD34+ normal femur samples. By using the Hi-C contact matrix under 1Mb 

resolution, we calculated the principal component 1 and principal component 2 

and drew the PCA plot. We can see that AML and Femur samples were 

separately clustered (Figure 3.1A), which indicates that CD34+ AML and 

CD34+ normal femur clinical samples indeed have variations in chromatin 

interactions. 

In the next step, Mr. Bertrand Wong Jern Han, an undergraduate of NTU 

SBS who did an internship in Dr. Melissa Fullwood’s lab compared the loop lists 

from my analysis between CD34+ AML samples and CD34+ normal femur 

samples. Interestingly, he found most loops in femur samples tend to be common, 

but AML tends to have more specific loops (Figure 4.1B). When he overlapped 

these AML associated loops with the oncogene list provided by the COSMIC 

 
Total Sequenced 

Reads 
Hi-C Contacts #TAD #loop 

AML28 1,290,109,443 535,816,129(41.53%) 1,682 24,394 

AML29 1,245,251,169 402,803,175(32.35%) 1,108 19,541 

AML30 1,387,562,168 347,777,411(25.06%) 1,296 10,733 

Femur47 1,337,973,222 596,400,948(44.57%) 1,153 4,733 

Femur49 1,156,332,234 396,674,984(34.30%) 927 13,107 

Femur50 1,165,296,399 481,662,160(41.33%) 1,234 13,795 
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Cancer Gene Census (Tate et al., 2019), some interesting oncogenes were found, 

including RAD21 which was found to be significantly mutated in AML (Figure 

1.9) (Ley et al., 2013),  RARA which was involved in PML-RARA fusion that 

commonly found in AML (Ley et al., 2013), MYC which was found to influence 

chromatin interactions (Kieffer-Kwon et al., 2017), and MEIS1 and HOXA9 

which were found to be overexpressed in over half of AML cases (Andreeff et al., 

2008; C. Collins et al., 2014; C. T. Collins & Hess, 2016; Gao, Sun, Liu, Zhang, 

& Ma, 2016) and presented poor prognosis (C. T. Collins & Hess, 2016; Mohr et 

al., 2017; Yuqing Sun et al., 2018).  

 

 

Figure 3.1 Principal Component Analysis (PCA) and loop comparisons 
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results indicate chromatin interaction alterations in CD34+ sorted Acute 

Myeloid Leukemia clinical samples compared with CD34+ sorted normal 

haematopoietic stem cells. A. Principal Component Analysis of CD34+ sorted 

AML and CD34+ Femur clinical samples. (Using Hi-C contact matrix of all 

chromosomes under 1Mb resolution, KR normalized) B. Loop comparison 

analysis revealed that oncogenes are associated with chromatin interactions in 

AML, numbers above brakes are loop numbers that are specific or common, and 

numbers inside brackets are associated gene numbers. Typical oncogenes found 

in these associated genes were marked out. (Note: My lab colleague Ms. Yufen 

Goh did the sample collection and preparation part, and my lab collaborators 

Prof. Wilson Wang, and Prof. Chng Wee Joo from National University Hospital 

provided the clinical samples. The Hi-C experiment was conducted by my 

colleague Dr. Deepak Babu. Analysis and figure in part B were produced by Mr. 

Bertrand Wong Jern Han, an undergraduate of NTU SBS who did an internship 

in Dr. Melissa Fullwood’s lab.) 

 

3.2 Dysregulation of a Frequently Interacting Region 

(FIRE) in MEIS1 region was Heterogeneously 

Present in CD34+ AML Clinical Samples 

We then explored these oncogenes deeper, especially the genes which were 

reported to be related to AML. In these genes, one gene termed MEIS1, in full, 

Myeloid Ecotropic Viral Integration Site 1 Homolog, is a gene of the Homeobox 

family, which is crucial for normal development. When we looked at the MEIS1 
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region, we found an interesting chromatin interaction that was heterogeneously 

present in CD34+ AML samples, but always present in the CD34+ normal femur 

samples (Figure 3.2A). Zoomed in heatmaps in this chromatin interaction region 

showed that AML28 and AML30 lost this chromatin interaction and AML29 

retained the chromatin interaction (Figure 3.2B). My colleague Dr. Benny Wang 

Zhengjie then conducted the MEIS1 ddPCR in AML28, AML29, and AML30, 

and compared these results with ddPCR results in several femur samples. 

Interestingly, AML28 and AML30 which lost this chromatin interaction showed 

the absence of MEIS1 gene expression. By contrast, AML29 showed an 

extremely high MEIS1 copy per µL (over 400) compared with normal femurs 

which showed MEIS1 expression in 5 of 6 patients, but at a much lower level - 

less than 150 (Figure 4.5 C & D). RNA-Seq for AML28, AML29 and AML30 

(the experiment was conducted by Dr. Deepak Babu, and I analyzed the data) 

also presented similar results (Figure 4.5E).  

As this chromatin interaction fulfilled all the features of Frequently 

Interacting Region (FIRE) (See in section 1.2.2.2) (present a local interaction 

hotspot with high levels of local chromatin interactions; in the middle of TAD; 

associated with super-enhancers (will confirm later); formation is partially 

dependent on CTCF (will confirm later)), we will call this chromatin interaction 

“MEIS1 FIRE” in this thesis. 
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Figure 3.2 A FIRE at MEIS1 is heterogeneously present in AML clinical 

samples and the absence of the FIRE is associated with a lack of MEIS1 gene 

expression. A. Different MEIS1 region FIRE profiles were observed in heatmaps 
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of CD34+ AML and Femur clinical samples (genomic region: chr2: 64,000,000-

69,000,000, visualized by Juicebox  (J. T. Robinson et al., 2018), color setting 

number: 5, normalization: coverage). B.  Zoomed in heatmaps of MEIS1 FIRE in 

Femur50, AML28, AML29, and AML30. C. MEIS1 ddPCR of CD34+ AML 

clinical samples: AML28, AML29, and AML30. D. MEIS1 ddPCR of CD34+ 

normal femur samples. E. RNA-Seq results visualized by UCSC genome browser 

tracks (Kent et al., 2002) integrated with Hi-C heatmaps in MEIS1 region 

(genomic region: chr2: 64,000,000-69,000,000). (Note: My lab colleague Ms. 

Yufen Goh did the sample collection and preparation part, and my lab 

collaborators Prof. Wilson Wang, and Prof. Chng Wee Joo from National 

University Hospital provided the clinical samples. Hi-C and RNA-Seq 

experiments were conducted by my colleague Dr. Deepak Babu. ddPCR 

experiment was conducted by my colleague Dr. Benny Wang Zhengjie.) 

 

3.3 Four Enhancer Regions Around the MEIS1 FIRE 

Identified from 63 AML Patients were Involved in 

Chromatin Interactions with MEIS1 in THP-1 

Cells 

Next, we tried to identify what kinds of elements are involved in chromatin 

interactions in this region, which might have resulted in MEIS1 expression 

changes. As AML29, which contains the MEIS1 FIRE, has an extremely high 

expression level of MEIS1, and a previous publication indicated that MEIS1 

expression was regulated by distal enhancers (Q. f. Wang et al., 2014), we asked 
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whether enhancers might be associated with the chromatin interactions. My 

colleague Ms. Ruchi Choudhary, a Ph.D. student in Nanyang Technological 

University School of Biological Sciences, has analyzed H3K27Ac ChIP-Seq data 

from published 63 AML patients and 2 CD34+ normal samples to identify the 

super-enhancers in this region (McKeown et al., 2017). The AML cell line THP-1 

Hi-C from Phanstiel et al., 2017 indicated that THP-1 also shows this FIRE 

(Figure 3.6A & B) (Phanstiel et al., 2017). Thus, Dr. Benny Wang Zhengjie 

conducted 4C at the MEIS1 Transcription Start Site (TSS) to detect the 

interacting regions of MEIS1 in THP-1, and I helped him to make the interaction 

track. Integrated results of both 4C and super-enhancers analysis showed that in 

THP-1, MEIS1 interacts with a few enhancer regions shown in most AML 

patients (Figure 3.3A). THP-1 H3K27Ac published data also presented these 

enhancers except region R2 (Figure 3.3A) (Mohaghegh et al., 2019). Thus, we 

concluded that MEIS1 can interact with four enhancer regions: R1 (57 in 63 

cases), R2 (38 in 63 cases), R3 (30 in 63 cases), and R4 (52 in 63 cases). 

Additionally, Ms. Ruchi Choudhary also analyzed the H3K27Ac 

enrichment in these patients and normal samples in these four regions. This 

analysis revealed that even the normal samples also present some of the 

enhancers in R1, R2, R3, and R4 (Figure 3.3A), the H3K27Ac enrichment is 

lower than most of the AML samples (Figure 3.3B). This discovery indicates that 

normal haematopoietic cells might have weaker enhancer intensities in these 

enhancer regions. This might be the explanation of why AML29 expresses higher 

MEIS1 than normal femurs. 
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Figure 3.3 MEIS1 region Super Enhancers (SE) profile in 63 AML clinical 

samples indicates four regions of enhancers interact with MEIS1. A. THP-1 

MEIS1 4C and published H3K27Ac data (Mohaghegh et al., 2019) analysis 

integrated with super-enhancers from published 63 AML patient samples and 2 

normal CD34+ clinical samples (McKeown et al., 2017). Tracks visualized in 

UCSC genome browser (Kent et al., 2002) (genomic region: chr2: 64,000,000-

69,000,000). B. H3K27Ac enrichment of 63 AML patient samples and 2 normal 

CD34+ clinical samples in each enhancer region. Normal CD34+ samples were 

indicated by orange color and arrows. (Note: MEIS1 4C experiment in THP-1 

cells was conducted by my colleague Dr. Benny Wang Zhengjie. 63 AML patient 

SE analysis was done by my colleague Ms. Ruchi Choudhary, a PhD student in 

Nanyang Technological University School of Biological Sciences.) 
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3.4 Integrated Hi-C, RNA-Seq and H3K27Ac ChIP-

Seq Analyses in Total Bone Marrow AML Clinical 

Samples Indicates that the FIRE can bring 

together MEIS1 and Enhancers 

To investigate whether the enhancer regions present in the MEIS1 region 

observed in THP-1 and published AML patient samples are also present in AML 

samples with and without the MEIS1 FIRE, we further performed integrated 

analyses of Hi-C, RNA-Seq, and H3K27Ac ChIP-Seq in a new batch of AML 

clinical samples. These samples were provided by my lab collaborator Prof. Chng 

Wee Joo from National University Hospital, collected and prepared by my lab 

colleague Ms. Winnie Fam for further experiments.  

Total bone marrow was used this time instead of CD34+ sorted cells, as we 

could only obtain limited amounts of each clinical sample, and we planned to 

perform a variety of sequencing on these samples. AD796 and AD903 are frozen 

total bone marrow AML samples, and AML42, AML43, and AML44 are fresh 

total bone marrow AML samples. Hi-C, ChIP-Seq, and RNA-Seq experiments 

were conducted by my colleague Dr. Deepak Babu. For the Hi-C experiment, this 

time we used the Arima Hi-C Kit instead of Dovetail services. The Hi-C statistics 

are shown in Table 3.2. In this part, I did all the bioinformatics analysis of RNA-

Seq, Hi-C, and ChIP-Seq. 

Hi-C clustering analysis by PCA was also applied on total bone marrow 

AML samples, along with CD34+ sorted AML and femur samples (Figure 

3.4A). We can see clearly that femurs and AMLs separately cluster together. 
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Interestingly, this time we figured out that frozen total bone marrow samples 

AD796 and AD903 were separated from other AML samples by PC2. Similarly, 

Femur47 separated with other femurs by PC2 (Figure 3.4A). We also discovered 

that Femur47, AD796, and AD903 all presented higher inter-chromosomal ratios 

compared with other samples in the same batches (Table 3.3). Since they also 

have lower numbers of called TADs and loops compared with other samples 

(Table 3.1 & 3.2), we guess the high ratio of inter-chromosomal interactions 

might be influencedinfluen the TAD and loop detections. 

Table 3.2 Hi-C statistics for frozen and fresh total bone marrow AML 

clinical samples  

 

Table 3.3 Hi-C quality statistics of all clinical samples 

 

 

 

 

 

 

 
Total Sequenced 

Reads 
Hi-C Contacts #TAD #loop 

AD796 884,279,692 556,385,368(62.92%) 139 191 

AD903 893,319,065 533,741,101(59.75%) 1,778 719 

AML42 844,725,953 520,623,955(61.63%) 3,216 4,663 

AML43 907,371,475 533,849,323(58.83%) 2,580 3,305 

AML44 894,400,600 550,344,133(61.53%) 3,958 4,525 

 
Inter-chromosomal Intra-chromosomal 

AML28 39,629,090(3.07% ) 496,187,039(38.46%) 

AML29 30,706,047(2.47%) 372,097,128(29.88%) 

AML30 31,659,727(2.28%) 316,117,684(22.78%) 

Femur47 105,328,806(7.87%) 491,072,142(36.70%) 

Femur49 31,044,622(2.68%) 365,630,362(31.62%) 

Femur50 42,950,254(3.69%) 438,711,906(37.65%)    

AD796 318,071,761(35.97%) 238,313,607(26.95%) 

AD903 198,409,825(22.21%) 335,331,276(37.54%) 

AML42 139,260,217(16.49%) 381,363,738(45.15%) 

AML43 175,204,085(19.31%) 358,645,238(39.53%) 

AML44 160,151,828(17.91%) 390,192,305(43.63%) 
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Further, we examined the MEIS1 FIRE using Juicebox heatmaps. AD796, 

AML42 and AML43 showed the FIRE while AD903 and AML44 did not (Figure 

3.4B & C). Enhancers and super-enhancers called from H3K27Ac ChIP-Seq in 

AD796, AD903, and AML42 indicated that regardless of the presence of the 

FIRE, enhancer region R1, R2, and R4 were always present in AML samples. 

Enhancer R2 was present sometimes, and this discovery matches what we 

observed in 63 published patient samples (Figure 3.3A). MEIS1 observed in 

RNA-Seq results also expressed in a similar manner we observed in CD34+ 

sorted clinical samples (Figure 3.2), that expression of MEIS1 correlated with 

FIRE. 

With these results above, we summarized all the observations into a table 

(Figure 3.4D). From this table, we can find that half of AML samples (AML28, 

AML30, AD903, and AML44 in total 8 AML samples) lost this MEIS1 FIRE, 

along with nearly no expression of MEIS1. As the enhancer regions R1, R3, and 

R4 are present in AML samples with and without the FIRE, and interactions 

between MEIS1 and these enhancer regions were found in both THP-1 cells and 

AML42 (Figure 3.3A & Figure 3.5), we next explored how the FIRE affects 

these chromatin interactions, enhancers, and transcription of MEIS1 in next 

section. 
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Figure 3.4 Hi-C, ChIP-Seq, and RNA-Seq integrated analysis on total bone 
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marrow AML clinical samples in the MEIS1 region. A. Principal Component 

Analysis of CD34+ sorted AML, CD34+ Femur, and total bone marrow AML 

clinical samples. (Using Hi-C contact matrix of all chromosomes under 1Mb 

resolution, KR normalized). B. Zoomed in heatmaps of all total bone marrow 

AML clinical samples in MEIS1 FIRE region (Visualized by Juicebox  (J. T. 

Robinson et al., 2018), color setting number: 8, normalization: coverage). C. 

MEIS1 region heatmaps integrated with enhancer and super-enhancers called 

from ChIP-Seq and RNA-Seq of total bone marrow AML clinical samples 

visualized in UCSC genome browser (Kent et al., 2002) (genomic region: chr2: 

64,000,000-9-69,000,000). D. Summary table of integrated analyses for all AML 

and Femur clinical samples. (Note: My lab colleague Ms. Winnie Fam did the 

sample collection and preparation part, and my lab collaborators Prof. Chng 

Wee Joo from National University Hospital provided the clinical samples. Hi-C, 

ChIP-Seq, and RNA-Seq experiments were conducted by my colleague Dr. 

Deepak Babu.) 
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Figure 3.5 Chromatin interactions indicated by heatmaps in AML42 and 

AD903 suggest that FIRE is essential for maintaining MEIS1 chromatin 

interactions with enhancer regions. A. The chromatin interactions annotated on 
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the heatmap of AML42 overlapped with AML42 enhancer and super-enhancer 

tracks. B. The chromatin interactions annotated on the heatmap of AD903 

overlapped with AD903 enhancer and super-enhancer tracks. (Two heatmaps 

visualized by Juicebox  (J. T. Robinson et al., 2018), genomic region: chr2: 

64,000,000-9-69,000,000, color setting number: 8, normalization: coverage. All 

enhancer and super-enhancer tracks visualized on UCSC genome browser with 

the same genomic region) C. Schematics of chromatin interactions in AML42 

and AD903 inferred from heatmaps. (Note: This figure was produced by my 

supervisor Dr. Melissa Jane Fullwood.) 

 

To address tha the FIRE is a true chromatin interaction but not a structure 

variation, and the expression level change is not due to copy number variation 

(CNV), we did the TAD and loop calling, translocation and CNV analyses on 

these clinical samples. Figure 3.6A and Figure 3.7A is aligned TAD and loop 

calling tracks with heatmaps. Even though these calling method seems not 

perform perfectly on clinical samples, for example, MEIS1 FIRE is not always 

been called through TAD and loop calling, but if we can combine two methods 

results, we can find that TAD or loop appeared in AML29, AML42, AML43 and 

all Femur samples. AD796 has no TAD and loop been called but this might 

because AD796 is a frozen sample which might have poor quality. Interestingly, 

AML30 has a loop been called while we cannot observe any interacion in MEIS1 

region on the heatmap. This might be a false positive or a weak loop which 

cannot influence MEIS1 expression. Table 3.4 is a summary of top 4 ranked 

translocations in these clinical samples. No MEIS1 region translocation is found. 
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Taken together with these results, we can say that MEIS1 FIRE might be the true 

chromatin interactions that heterogeneously appeared in AML. CNV analyses in 

Figure 3.6B and Figure 3.7B also indicate no MEIS1 region CNV is found. This 

result let us make sure that MEIS1 expression alterations are not due to CNV. 
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Table 3.4 Top 4 significant translocations of clinical samples 

*“N.A.” indicates “not applicable”. 

 Femur47 Femur49 Femur50 AML28 AML29 AML30 AD796 AD903 AML42 AML43 AML44 

1 N.A. chr19:2220
0000-
22400000 
with      
chrX:81500
000-
81700000 

chr1:188000
000-
188200000 
with 
chr17:71600
000-
71800000 

chr4:49100
000-
49300000 
with 
chr17:7410
0000-
74300000 

chr4:34600
000-
34800000 
with 
chr19:3000
0000-
30200000 

chr2:41900
000-
42100000 
with 
chr15:3270
0000-
32900000 

N.A. chr8:13660
0000-
136800000 
with 
chr12:3420
0000-
34400000 

Chr8:20000
00-2200000 
with 
chr17:4440
0000-
44600000 

chr3:27300
000-
27500000 
with 
chr5:74800
000-
75000000 

chr15:29900
000-
30100000 
with 
chrX:13260
0000-
132800000 

2 N.A. chr7:14240
0000-
142600000 
with 
chr12:2580
0000-
26000000 

chr8:604000
00-60600000 
with 
chr17:71600
000-
71800000 

chr1:29200
000-
29400000 
with 
chr22:4970
0000-
49900000 

chr14:9220
0000-
92400000 
with 
chr17:3590
0000-
36100000 

chr1:21580
0000-
216000000 
with 
chr15:2930
0000-
29500000 

N.A. chr8:92000
000-
92200000 
with 
chr21:3480
0000-
35000000 

chr6:16810
0000-
168300000 
with 
chr17:7160
0000-
71800000 

chr3:33100
000-
33300000 
with 
chr12:2780
0000-
28000000 

chr5:165600
000-
165800000 
with 
chr22:35700
000-
35900000 

3 N.A. chr3:61300
000-
61500000 
with 
chr22:1120
0000-
11400000 

chr13:11350
0000-
113700000 
with 
chr19:19200
000-
19400000 

chr3:66600
000-
66800000 
with 
chr22:2330
0000-
23500000 

chr1:19460
0000-
194800000 
with 
chr17:7160
0000-
71800000 

N.A. N.A. N.A. chr10:4530
0000-
45500000 
with 
chr17:3450
0000-
34700000 

chr5:45800
000-
46000000 
with 
chr17:6520
0000-
65400000 

chr15:29900
000-
30100000 
with 
chr17:65200
000-
65400000 

4 N.A. N.A. chr16:52700
000-
52900000 
with 
chr17:71600
000-
71800000 

chr8:21000
00-2300000 
with 
chr17:7200
0000-
72200000 

chr1:18140
0000-
181600000 
with 
chr22:1100
0000-
11200000 

N.A. N.A. N.A. chr8:70000
0-900000 
with 
chr15:6300
0000-
63200000 

chr3:24700
000-
24900000 
with 
chr17:2070
0000-
20900000 

chr5:691000
00-
69300000 
with 
chr19:27700
000-
27900000 
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Figure 3.6 No CNV is found in MEIS1 regions, and TAD and loop calling results indicate different chromatin interactions 

appeared in CD34+ selected clinical samples.A.TAD and loop calling tracks visualized in UCSC genome browser (Kent et al., 2002) 

(genomic region: chr2: 64,000,000-9-69,000,000). B. CNV analysis show no copy number variation in MEIS1 region in CD34+ selected 

clinical samples. (Note: My lab colleague Ms. Winnie Fam did the sample collection and preparation part, and my lab collaborators 

Prof. Chng Wee Joo from National University Hospital provided the clinical samples. Hi-C experiment experiments were conducted by 

my colleague Dr. Deepak Babu.)  
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Figure 3.7 No CNV is found in MEIS1 regions, and TAD and loop calling results indicate different chromatin interactions 

appeared in total bone marrow AML clinical samples.A.TAD and loop calling tracks visualized in UCSC genome browser (Kent et 



 

113 

 

al., 2002) (genomic region: chr2: 64,000,000-9-69,000,000). B. CNV analysis show no copy number variation in MEIS1 region in total 

bone marrow AML clinical samples. (Note: My lab colleague Ms. Winnie Fam did the sample collection and preparation part, and my 

lab collaborators Prof. Chng Wee Joo from National University Hospital provided the clinical samples. Hi-C experiment experiments 

were conducted by my colleague Dr. Deepak Babu.)  
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3.5 CTCF Binding Site CRISPR Excision of MEIS1 

FIRE Border Indicates the FIRE is Essential for 

Maintaining Chromatin Interactions Between 

MEIS1 and Enhancers in Myeloid Leukemia 

3.5.1 THP-1 and K562 Can be Used as a Model to Study the 

MEIS1 FIRE. 

To study how the FIRE influences chromatin interactions between MEIS1 

and enhancer regions R1, R3, and R4, we planned to perform CRISPR excision 

of a CTCF site in MEIS1 FIRE in a cell line. Myeloid leukemia cell lines such as 

THP-1, K562, and HL-60 were taken into considerations. We examined 

published Hi-C heatmaps in THP-1 (Phanstiel et al., 2017), K562, and GM12878 

(Rao et al., 2014). GM12878 is a human lymphoblastoid cell line, which was 

used here as a representative sample without FIRE. Heatmaps indicated that both 

THP-1 and K562 have the FIRE, and the FIRE in THP-1 is weaker than K562 

(Figure 3.8A & B). We could not find HL-60 published Hi-C data, so the HL-60 

heatmap is not placed here. Dr. Benny Wang Zhengjie then conducted the MEIS1 

ddPCR in these cell lines. As we expected, K562 has the highest MEIS1 

expression while THP-1 has a lower expression, and GM12878 and HL-60 show 

no expression (Figure 3.8C). Taken together, we inferred that K562 might be a 

good model to help us study the MEIS1 FIRE. 
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Figure 3.8 THP-1 and K562 show MEIS1 FIRE and MEIS1 expression. A. 

MEIS1 region heatmaps from published Hi-C data of THP-1 (Phanstiel et al., 

2017), K562 and GM12878 (Rao et al., 2014) (genomic region: chr2:64,227,134-

69,227,132 in human genome reference hg19. Visualized by Juicebox  (J. T. 

Robinson et al., 2018), color setting number: 150 for THP-1, 40 for K562, and 50 

for GM12878, normalization: coverage).B. Zoomed in MEIS1 FIRE region 

heatmap for THP-1, K562, and GM12878. C. MEIS1 ddPCR of THP-1, HL-60, 

K562, and GM12878. (Note: THP-1 monocytes data, K562 combined data, and 

GM12878 combined data were selected from corresponding papers. ddPCR 

experiment in this figure was conducted by my colleague Dr. Benny Wang 

Zhengjie.) 
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3.5.2 Reduced Chromatin Interactions Between MEIS1 and 

Enhancer Regions were Observed in K562 CRISPR 

Excised Cells. 

After we chose K562 as the study model, Dr. Benny Wang Zhengjie 

designed the CRISPR excision site at the CTCF binding site which acts as a 

border at the right side of FIRE (Figure 3.9), and applied the CRISPR knock out 

the operation. After excision, a 4C experiment was also conducted by him. I 

helped him to make the 4C interaction track. The K562 ChIP-Seq was also 

analyzed by me. 

K562 published H3K27Ac ChIP-Seq  (Consortium, 2012) was analyzed to 

ensure that enhancer regions R1, R2, R3, and R4 were present in K562 (Figure 

3.9). Compared with the empty vector which presented a similar interaction 

profile of THP-1 MEIS1 4C, CTCF binding site knock out cells showed a sharp 

decrease in chromatin interactions reaching out of the FIRE region with 

enhancers (Figure 3.9).  

Thus, we can conclude that the CTCF binding site at the border of the 

MEIS1 FIRE is important in maintaining the chromatin interactions between 

MEIS1 and enhancer regions such as R1, R3, and R4. 
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Figure 3.9 CTCF knockout at MEIS1 FIRE region in K562 cells reduced 

chromatin interactions between MEIS1 and enhancer regions. From top to 

bottom: Zoomed in CRISPR region of CTCF binding site; 4C signal track, total 

peak track and significant interactions track in empty vector cells; 4C signal 

track, total peak track, and significant interactions track in knock out cells; 

Published K562 H3K27Ac data (Consortium, 2012) analyses of enhancers, super-

enhancers, and signal tracks. All tracks were visualized with UCSC genome 

browser (Kent et al., 2002) (genomic region: chr2: 64,000,000-9-69,000,000). 

(Note: K562 CTCF binding cite knock out and 4C experiments in this figure were 

conducted by my colleague Dr. Benny Wang Zhengjie) 
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3.5.3 Multiple Cellular Alterations were Induced by the 

Absence of MEIS1 CTCF Binding Site in K562 

After we observed the chromatin interactions loss in CRISPR excision of 

MEIS1 FIRE applied K562 cells, we tried to investigate what patterns were 

influenced by these alterations. Dr. Benny Wang Zhengjie further conducted 

ChIP-qPCR of MEIS1 and H3K27Ac at enhancer regions R1, R2, and R3, and 

MEIS1 promoter region. The reason why we examined the MEIS1 protein 

binding here is that we were very curious about whether MEIS1 will regulate 

itself by binding to the sequence. The results showed that MEIS1 protein shows a 

significantly decreased binding in the R1 and MEIS1 promoter region (Figure 

3.10A). These results suggested that MEIS1 protein might bind to enhancer and 

promoter regions of itself to regulate its expression, and FIRE loss let MEIS1 

protein decrease which reduced such binding amount. H3K27Ac signals also 

decreased in R1, R3, and MEIS1 promoters, which suggested that enhancer 

ability might be weakened after loss of the CTCF binding site at the border of the 

MEIS1 FIRE. 

RT-qPCR of MEIS1 and MYC, which was previously found to be a 

downstream target of MEIS1 in Zebrafish (Bessa et al., 2008), was also done by 

Dr. Benny Wang Zhengjie. As expected, once FIRE loss, the MEIS1 expression 

decreased in all three KO clones, especially in C1 and C3, no MEIS1 is detected. 

MYC as the possible downstream target also decreased significantly (Figure 

3.10B). 
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Cell viability assay was also applied by Dr. Benny Wang Zhengjie to figure 

out whether cell growth and death were altered in knock-out cells or not. By 

checking every 24 hours, KO clones showed significantly lower cell viability 

after 48 hours compared with empty vector clones, which suggested that the 

CTCF binding site at the MEIS1 FIRE border is also responsible for maintaining 

cell growth and health (Figure 3.10C) 

Taken together, we summarized a schematic of what kinds of cellular 

changes were caused after CRISPR excision of a CTCF binding site at the border 

of the FIRE (Figure 3.10D). After excision, chromatin loops between MEIS1 

promotor and enhancers were perturbed as well as the H3K27ac levels at the 

enhancers and the binding of MEIS1 protein to the promoter and enhancers. 

MEIS1 expression was greatly decreased to almost no expression at all and MYC 

was also downregulated. Cell growth was slowed down. 
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Figure 3.10 CRISPR excision of CTCF binding site of MEIS1 FIRE region 
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led to multiple cellular changes. A. MEIS1 and H3K27Ac ChIP-qPCR in 

enhancer regions R1, R2, and R3 and MEIS1 region (** - P< 0.01, *- P < 0.05, 

ns- not significant). B. RT-qPCR of MEIS1 and MYC in 3 clones of CTCF 

binding cite knock out cells (****P<0.0001, *** - P< 0.001 ** - P< 0.01, *- P < 

0.05, N.D.- not detected). C. Cell viability assays in 3 days on both empty vectors 

and knock out 3 clones for each. D. Schematic summary about the cellular 

changes after CRISPR excision. A “fire” symbol represents MEIS1 FIRE. More 

arrows mean more fold changes of alterations. (Note: ChIP-qPCR, ddPCR, and 

cell viability assay were conducted by my colleague Dr. Benny Wang Zhengjie. 

Figure in part D was produced by my supervisor Dr. Melissa Jane Fullwood.) 

 

3.6 Summary  

In summary, we found that chromatin interaction landscapes might change 

in AML clinical samples compared with normal haematopoietic stem cells, and 

more altered loops are associated with oncogenes (Figure 3.1). Research in the 

oncogene MEIS1 region surprisingly led us to conclude that a specific chromatin 

interaction termed Frequently Interacting Region (FIRE) was heterogeneously 

present in AML clinical samples, which is stable in normal femur samples. The 

absence of a CTCF binding site at the border of this FIRE will subsequently 

cause MEIS1 downregulation, and MEIS1 downstream target MYC 

downregulation by destroying the chromatin interactions between MEIS1 

promoter and four enhancer regions: R1, R2, R3, and R4 and weakening the 

H3K27ac binding levels at these regions. We speculate the following schematic 
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of the mechanism of MEIS1 FIRE functioning: Two different subtypes of MEIS1 

FIRE might exist in AML, with or without the FIRE. With the existence of the 

FIRE, the MEIS1 promoter can interact with enhancers as normal cells, but the 

ability of enhancers was strengthened so that MEIS1 increased, and more MEIS1 

protein will bind to this region. While in the subtype without FIRE, no 

interactions can be formed without the help of the FIRE, and MEIS1 will decrease 

as well as the MEIS1 protein binding (Figure 3.11).  

There are still mysteries left in this proposed mechanism. For example, what 

factors initiate carcinogenesis? What alterations lead to the different subtypes? 

How does MEIS1 protein binding regulate its expression? Why is the enhancer 

ability of MEIS1 in AML stronger than normal? Further investigations need to be 

performed to examine these questions.  

 

 

Figure 3.11 Proposed schematic of the mechanisms of how MEIS1 FIRE 

influences MEIS1 expression and chromatin interactions, as well as other 

cellular changes. We hypothesized that there will be two subtypes of MEIS1 

FIRE in AML cells, which were indicated in this figure (Note: This figure was 

produced by my supervisor Dr. Melissa Jane Fullwood.)  
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4. DNMT3A Loss Leads to Altered 

Chromatin Interactions and Epigenetic 

Landscapes in Myeloid Leukemia  

4.1 DNMT3A Mutation Might Lead to Dysregulation 

of TAD Boundaries in Clinical AML Samples. 

The DNA Methyltransferase 3 Alpha (DNMT3A) is a gene responsible for 

maintaining and modulating DNA methylation. As described in section 1.4.2, 

DNMT3A is the most frequently mutated epigenetic factor gene in AML (Ley et 

al., 2013). AML patients with DNMT3A mutations usually show poor outcomes 

(Hou et al., 2012; Ley et al., 2010). Within this group of patients, over half of 

them were affected by the mutation in the R882 codon (37 patients in 62 

DNMT3A mutated patients) (Ley et al., 2010), which tends to form non-

functional tetramers. In other words, functional DNMT3A protein is lost. Thus, 

we asked, what is the influence upon chromatin interactions and epigenetic if 

DNMT3A is mutated or lost? To investigate this question, we first looked at the 

RNA-Seq data provided by the TCGA-LAML project, from The Cancer Genome 

Atlas Program (TCGA), which contains 201 cases in total, with 27 DNMT3A 

mutant patient cases (Ley et al., 2013). 

Inspired by William A. Flavahan et al., 2016, which found that certain IDH 

mutant gliomas have dysregulated TAD boundaries due to CTCF binding site 

loss (William A. Flavahan et al., 2016), we inferred that DNMT3A might have a 
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similar influence. We reasoned that as IDH is also DNA methylation-related 

gene, dysregulation of another DNA methylation gene such as DNMT3A might 

also lead to altered TAD boundaries. With the DNA methylation level changes, 

we anticipate that some of the methylation-sensitive CTCF binding sites will 

change in terms of CTCF occupancy because CTCF is anticorrelated with DNA 

methylation (Phillips & Corces, 2009; H. Wang et al., 2012). This loss of CTCF 

occupancy at methylation-sensitive CTCF binding sites will further alter the 

chromatin interactions as CTCF is an important protein information of chromatin 

interactions (Hansen, Pustova, Cattoglio, Tjian, & Darzacq, 2017; Phillips & 

Corces, 2009; Rao et al., 2014). 

Thus, we followed the gene correlation method for investigating altered 

TAD boundaries which were described in William A. Flavahan et al., 2016 

(William A. Flavahan et al., 2016), by using the TCGA-LAML RNA-Seq data 

(Ley et al., 2013), to investigate whether DNMT3A changes tend to lead to 

changes in TADs in AML. First, we divided the RNA-Seq data which have a total 

of 201 cases into two groups: DNMT3A wild type (127 cases) and DNMT3A 

mutant (27 cases). Then we merged the Hi-C contact matrix of 3 Femur samples 

mentioned in chapter 3, to get a high-resolution Hi-C matrix of normal AML 

patient samples, and called TADs from this matrix under 10kb resolution, using 

VC as the normalization.  

We further used this TAD list as a reference to divide genes into different 

pairs and defined whether they are the same domain pairs or cross boundary 

pairs. If two genes belonged to the same TAD, they are regarded as “same 

domain pairs”, while if they belonged to different TADs, they are regarded as 
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“cross boundary pairs” (Detailed methods can be found in section 2.7). We 

calculated the gene correlations from RNA-Seq data for both same domain and 

cross boundary gene pairs, to get the correlation changes of different gene pairs in 

DNMT3A mutant and wild types cases. 

  The correlation analysis results in DNMT3A wild-type AML cancers 

revealed that the gene correlation of same domain pairs is always higher than 

cross boundary pairs with the increase of gene pair distances (Figure 4.1A). This 

is expected because TADs are self-interacting genomic regions. This observation 

suggests that if TADs are not dysregulated, the same domain correlation will 

keep a higher correlation than a cross boundary.  

Next, when we investigated the alterations of gene pairs correlations across 

DNMT3A mutant and wild type, we calculated the delta correlation by using the 

correlation in DNMT3A mutant minus wild type. If the delta correlation of one 

gene pair is less than zero, this observation indicates that these gene pair have a 

decreased correlation in mutant, and vice versa. In Figure 4.1B, we can observe 

more cross boundaries in the positive delta correlation part, which indicates that 

cross boundary pair (orange dots) correlations tend to increase in DNMT3A 

mutant, while same domain pairs (blue dots) tend to show decreased correlation. 

This scenario supports our hypothesis that some of the TAD boundaries might be 

dysregulated in DNMT3A mutant cases.  

We then identified all possible dysregulated boundaries by analyzing the 

changes in the gene pairs correlation between DNMT3A cases and unmutated 

AMLs. If at least one same domain gene pairs in two TADs shows a decreased 
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correlation, and at the same time, cross boundary gene pairs which belong to 

these two TADs are found at least one support an increased correlation, then the 

boundary in between them will be regarded as probably dysregulated (Total 

number: 2364).  

Examining these possible dysregulated boundaries, we found chromosome 1 

has the highest proportion of dysregulated boundaries, and chromosome 21 has 

the lowest number of dysregulated boundaries, which correlates with the length 

of each chromosome – chromosome 1 is longer than chromosome 21 (Figure 

4.1C). However, we also found that several chromosomes such as chromosome 4, 

chromosome 13, chromosome 16, and chromosome 18 have fewer results 

compared with even shorter chromosomes (e.g., chromosome 20). This might 

indicate that these chromosomes have fewer gene expressional level changes or 

more conserved chromatin interactions. We note that this investigation is 

correlative, and further investigations need to be conducted to check whether 

there are dysregulated regions or not. 
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Figure 4.1 Correlation analysis on TCGA-LAML dataset indicated 

boundaries might be altered due to DNMT3A mutation.A. Correlation 

changes in DNMT3A wild type cases as a function of the distance of same domain 

pairs (blue) and cross boundary pairs (orange). B. Correlation changes between 

DNMT3A mutant and DNMT3A wild type cases in same domain pairs (blue) and 

cross boundary pairs (orange). C. Distribution in different chromosomes of 

possible altered boundaries detected after correlation analysis.  
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4.2 Altered Chromatin Interaction and Other 

Epigenetic and Transcriptional Profile Have been 

Observed in DNMT3A CRISPR Knock Out Cells. 

Since around 60% of DNMT3A mutation cases involve the R882 codon and 

this kind of mutation leads to loss of function in DNMT3A, we tried to mimic this 

kind of mutation by using CRISPR to knock out DNMT3A in K562 cells and lead 

to loss of DNMT3A protein. To check that our reasoning that DNMT3A 

mutations tend to lead to reduced function of DNMT3A and reduced gene 

expression is correct, I analyzed the transcriptional level of DNMT3A in 

DNMT3A mutant AML cases and found that the transcriptional level is decreased 

compared with wild type cases (Figure 4.2B). This gives us more confidence that 

the knockout of DNMT3A can mimic the real DNMT3A mutations in myeloid 

leukemia cells.  

 First, my lab collaborator Dr. Qiling Zhou from Prof. Daniel Tenen’s lab in 

the Cancer Science Institute of Singapore designed the guide RNA to target the 

exon 7 of DNMT3A. With the CRISPR experiment applied, one clone of 

DNMT3A knock-out cells with a deletion of 11bp by checking with Sanger 

sequencing in the target region are successfully generated (Figure 4.2A). My lab 

colleague Dr. Deepak Babu used this clone to prepare two replicates of Hi-C, 

RNA-Seq, and ChIP-Seq experiments. He also repeated this knock-out an 

experiment to get a clone 2 with 1 base pair of inserted “T” by checking with 

Sanger sequencing (Figure 4.2A). This clone 2 is only used in the RT-qPCR of 

DNMT3A and PLOD2, and we have not performed any additional Hi-C, ChIP-

Seq, RNA-Seq studies on this clone yet. Thus, in this thesis, we will call knock 
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out clone 1 as KO, and empty vector as Vec_Con, without specifying the KO 

clone 1, if clone 2 is not present.  

In the RT-qPCR experiment of DNMT3A, which was conducted by Dr. 

Deepak Babu, we can see a clear and significant loss of DNMT3A transcription in 

both clones (Figure 4.2C). 

 

 

Figure 4.2 CRISPR DNMT3A knockout in K562 cells. A. Sanger sequencing 

for DNMT3A knock-out clones 1 and 2, and empty vector control. B. DNMT3A 

transcription level in TCGA-LAML DNMT3A mutant and wild-type cases. C. 

RT-qPCR shows DNMT3A down-regulation in DNMT3A knock out clone versus 

the empty vector (Note: CRISPR experiment of KO clone1 and Empty Vector was 

done by my lab collaborator Dr. Qiling Zhou from Prof. Daniel Tenen’s lab in 



 

131 

 

the Cancer Science Institute of Singapore, and my lab colleague Dr. Deepak 

Babu repeated the CRISPR experiment, to obtain DNMT3A CRISPR knockout 

clone 2. DNMT3A RT-qPCR experiment was also conducted by Dr. Deepak 

Babu).  

After we knocked out the DNMT3A in K562 cells, we further investigated 

the consequences of DNMT3A loss on chromatin interactions, transcription, and 

epigenetic. Hi-C, RNA-Seq, and ChIP-Seq sequencing was conducted by my 

colleague Dr. Deepak Babu, and I did the further bioinformatics analyses.  

TADs and loops were predicted for both KO and Vec_Con (Detailed 

methods can be seen in section 2.3.3.3). To figure out whether chromatin 

interactions are dysregulated or not, we compared the TADs and loops between 

KO and Vec_Con. Similarity ratio (see in section 2.3.3.4) over 90% TADs in KO 

and Vec_Con were regarded as common TADs, and TADs with less than 90% 

similarity were considered to be specific TADs. Loops with both two anchors that 

overlapped in KO and Vec_Con are common loops and others were considered to 

be specific loops. By these comparisons, a greater proportion of loop alterations 

(more than half) were found in KO compared with TAD alterations (around 30%) 

(Figure 4.3A). This difference can be observed clearly in our Venn plot (Figure 

4.3B) as TADs have more overlapped proportions. Even though this result might 

have false positives and false negatives due to the limitations of TAD and loop 

calling algorithms (see in section 1.2.4.2 and section 1.2.4.3) and further manual 

curation needs to be done, we can conclude from this observation that TADs tend 

to be more conserved compare with loops, and chromatin interactions have a high 

chance to be altered in DNMT3A KO cells. 
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Next, we tried to understand what is the impact of DNMT3A loss on other 

types of epigenetic, such as histone modifications, as well as gene expression 

levels. We applied CTCF, H3K27Ac, H3K27Me3, and H3K4Me3 ChIP-Seq and 

RNA-Seq to study KO and Vec_Con. Previous work on DNA methylation has 

shown that DNA methylation levels will influence the epigenetic landscapes (Gu 

et al., 2018), as well as CTCF binding (Phillips & Corces, 2009; H. Wang et al., 

2012).  

In our results, ChIP-Seq for CTCF, H3K27Ac, H3K27Me3, and H3K4Me3 

showed an altered profile in KO cells (Figure 4.3D). Enhancers and super-

enhancers were called from H3K27Ac signals, silencers, and H3K27Me3-rich 

regions (MRRs), which we also called “super silencers”, were called from 

H3K27Me3 signals, and broad H3K4Me3 domain was defined as top 5% size of 

H3K4Me3 peaks as previously described (Cao et al., 2017; Dahl et al., 2016). An 

altered profile of super-enhancers, super silencers, and broad H3K4Me3 domains 

were observed in KO. Each of these categories had gains (KO specific) and losses 

(Vec_Con specific).  

As the altered epigenetic was observed, we were curious whether there were 

alterations in gene expression level profile. Through analyzing the RNA-Seq data 

of KO and Vec_Con, and filtering with FDR<0.05 and log2 fold change >1 and 

<-1, 173 down-regulated genes and 175 up-regulated genes were found (Figure 

4.3C), which indicates that DNMT3A knock out has an impact upon the 

transcription profile.  
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Different epigenetic alterations function to affect cells in different ways. For 

example, H3K27Ac or H3K4Me3 are associated with gene activation, hence the 

gain or loss of H3K27Ac and H3K4Me3 could further control the corresponding 

gene expressions.  H3K27Me3, as a mark of silencers, can also control gene 

expression. Chromatin interactions are another form of epigenetic marks which 

we found to have changed in KO cells and given that chromatin interactions have 

been associated with control of gene expression (Peng et al., 2019), (Figure 

4.3A), we then asked how the changed chromatin interactions are associated with 

altered gene expression.  

To investigate this question, we further counted the genes where their 

transcription starting site (TSS) is near altered loops/ TADs by using the criteria 

that TSSs located inside altered TAD are the altered (KO/Vec_Con specific) 

TAD associated genes, and TSSs inside a flanking region of +15kb and -15kb of 

two anchors of altered loops are sorted into altered KO/Vec_Con specific) loops 

associated genes. Then we overlapped the altered loop/TAD associated genes 

with differentially expressed genes and performed the manual curation to identify 

examples of genes to investigate in more detail. One interesting gene named 

Procollagen-Lysine,2-Oxoglutarate 5-Dioxygenase 2 (PLOD2) was found to be 

both involved in altered loops and TADs, and extremely down-regulated. (Figure 

4.3E & F). We then prepared an integrated map for this gene region to figure out 

what influenced this gene expression, which includes a Hi-C Juicebox image to 

show the TAD and loop structures, and a UCSC genome browser screenshot to 

visualize the CTCF, H3K27Ac, H3K27Me3, and H3K4Me3 ChIP-Seq as well as 

RNA-Seq patterns in this region.  
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Figure 4.3 Chromatin interaction and other epigenetic alterations found in 

DNMT3A knock-out cells. A. Common and specific TADs and loops in KO and 
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Vec_Con. B. Venn plots for common and specific TADs and loops in KO and 

Vec_Con. C. Volcano plot for up and down-regulated genes in KO compared 

with Vec_Con D. CTCF peaks and histone marks generally presented a 

proportion of alteration in KO versus Vec_Con. E. KO and Vec_Con 

common/specific loops associated genes can find several up/down-regulated. 

PLOD2 (orange dot) can be found in Vec_Con specific loops associated genes 

and it is conspicuously downregulated in KO cells. F. KO and Vec_Con 

common/specific TADs associated genes can find several up/down-regulated. 

PLOD2 (orange dot) also can be found in Vec_Con specific TADs associated 

genes and it is also conspicuously downregulated in KO cells. (Note: CRISPR 

knock-out experiment in this figure was conducted by my lab collaborator Dr. 

Qiling Zhou from Prof. Daniel Tenen’s lab. Hi-C, ChIP-Seq, and RNA-Seq 

experiments in this figure were performed by my colleague Dr Deepak Babu) 

 

4.3 DNMT3A Loss Leads to Alterations in FIREs, 

CTCF binding, Histone Modifications, and 

Expression of PLOD2 and MACC1.  

PLOD2 codes for the lysyl hydroxylasesis protein LH2, and is responsible 

for catalyzing the hydroxylation of collagen lysyl residues (Qi & Xu, 2018). 

Mutations in PLOD2 can cause Bruck Syndrome, a disease that consists of bone 

fragility and congenital joint contractures (Gistelinck et al., 2016), but there are 

also studies that show that overexpressed PLOD2 also be detected in many types 

of cancers, such as glioma, cervical and liver cancer (Gjaltema, de Rond, Rots, & 
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Bank, 2015), suggesting that PLOD2 may have an impact on cancer biology. 

However, we note that decreased PLOD2 expression in myeloid leukemia has not 

been reported and the interplay of how it can decrease is not yet known. To check 

what influenced PLOD2 expression in the case of DNMT3A KO, we integrated 

all results to generate an integrated map.  

First, we checked the Hi-C heatmap of the PLOD2 region, and we observed 

that a specific pattern of a small square TAD-like structure in the Vec_Con 

heatmap disappeared in KO (Figure 4.4A). This type of pattern is similar to the 

pattern in Chapter 3, the MEIS1 FIRE. In addition to the heatmap, when we 

looked at the insulation score at this region, the PLOD2 region also showed a 

peak in Vec_Con but not KO, which indicates that a sub-TAD was lost in KO. 

The same pattern could be observed in the TAD and loop list: Vec_Con showed 

both a TAD and a loop that did not show up in KO. As so many pieces of 

evidence suggest that there is loss of chromatin interactions in this region, and 

since this region also fulfills the FIRE definition (mentioned in section 1.2.2.2), 

we would consider this region to be an example of a FIRE loss in DNMT3A KO 

cells.  

Along with this FIRE loss, CTCF binding loss, H3K27Ac loss, and 

H3K27Me3 gained and decreased expression of PLOD2 were also found (Figure 

4.4D). My colleague Dr. Deepak Babu further confirmed the significant 

downregulation of PLOD2 in both two clones of KO by RT-qPCR (Figure 4.4B).  

Taken together of these observations, a possible assumption of why PLOD2 

is down-regulated is that the methylation might be altered at the CTCF binding 
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region due to DNMT3A knockout, and the CTCF binding loss caused the FIRE 

loss. This FIRE is responsible for the interactions between PLOD2 TSS and the 

left side enhancer. Loss of this FIRE, as well as the enhancer, caused PLOD2 

downregulated. At the same time, a gained H3K27Me3 silencer around the TSS 

region together with an unchanged H3K4Me3 peak creates a gained bivalent 

region around PLOD2 TSS, which might further decrease the PLOD2 expression 

as this region used to be active because only the H3K4Me3 peak existed in the 

vector control cells.  

Interestingly, in clinical samples from the TCGA-LAML project, PLOD2 

seems to be usually low expressed in DNMT3A mutated cases, while DNMT3A 

wild-type cases show a few numbers of outliers with extremely high PLOD2 

expression (Figure 4.4C). This might be an indication that DNMT3A loss can 

inhibit PLOD2 overexpression by destroying the FIRE at PLOD2. In further 

work, it would be interesting to explore what is the functional relevance and 

significance of PLOD2 downregulation in DNMT3A mutated AML.  
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Figure 4.4 PLOD2 region integrated analyses indicate a CTCF binding loss 
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caused boundary loss in KO cells. A. Hi-C heatmaps in PLOD2 region in 

Vec_Con and KO cells revealed a FIRE loss (genomic region: chr3:145,656,587-

146,574,036, visualized by Juicebox (J. T. Robinson et al., 2018), coverage 

normalization is used, 8 as the color number setting). B. RT-qPCR results showed 

an PLOD2 downregulation in all 2 KO clones. C. TCGA-LAML DNMT3A 

mutated patient samples always show a low expression of PLOD2, while 

DNMT3A wild type cases show a few outliers of extremely high PLOD2 

expression. D. Integrated map with tracks visualized in UCSC genome browser 

(Kent et al., 2002) in PLOD2 region (genomic region: chr3:145,656,587-

146,574,036). (Note: CRISPR knock out, Hi-C, RT-qPCR, ChIP-Seq and RNA-

Seq experiments in this figure were performed by my colleague Dr. Deepak 

Babu)  

 

Next, we asked whether more FIREs can be found to be dysregulated in 

KO. After a round of manual curation by my colleagues Ms. Judy Xiaoman Shao, 

a Ph.D. student who did her Ph.D. rotation in Dr. Melissa Fullwood’s Lab, and 

Dr. Deepak Babu, another interesting region was found around the Metastasis-

Associated in Colon Cancer Protein 1 (MACC1) gene.  

MACC1 is a gene involved in cell growth and hepatocyte growth factor 

pathway and acts as a prognostic indicator in colon cancer metastasis (Ge, Meng, 

Zhou, Zhang, & Ding, 2015; Stein et al., 2009). The link between MACC1 and 

AML is still unknown. Only one paper mentioned that MACC1 expression might 
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cause lymphatic metastasis in colorectal cancer (Z. Zhang, Jia, Wang, Du, & 

Zhong, 2021).  

We can observe that MACC1 is expressed, albeit at a low level, in the 

UCSC RNA-Seq track of Vec_Con, while there is nearly no expression in KO 

(Figure 4.5D). We note that MACC1 can be found in Vec_Con specific TAD 

genes, but not in the differential expression list as it is quite lowly expressed so it 

was filtered out during the analysis. To confirm this down-regulation, Ms. Judy 

Xiaoman Shao, conducted an RT-qPCR experiment in KO clone1, which showed 

a significant decrease compared with Vec_Con (Figure 4.5B). We will further 

repeat this experiment in KO clone 2 as well in the future. In clinical samples, 

DNMT3A wild-type cases also show a higher expression of MACC1 compared 

with DNMT3A mutant (Figure 4.5C). The functional significance of MACC1 

down-regulation upon DNMT3A loss needs further elucidation in the future. 

The FIRE in the MACC1 region is absent in KO cells which can be 

observed in heatmaps (Figure 4.5A), insulation score as well as TAD tracks 

(Figure 4.5D). At the same time, lost CTCF peaks in the FIRE region, and a 

common H3K4Me3 peak at the right side of FIRE was found. Based on these 

observations, we speculate that DNMT3A loss changes the methylation level, and 

further leads to CTCF loss. This FIRE can assist the interaction of TSS of 

MACC1 and H3K4Me3 region, but in KO samples, the FIRE disappeared, and 

MACC1 can no longer interact with the active signal, and then the expression 

level goes down. With DNMT3A knocked out, an H3K4Me3 peak is also lost 

right near the MACC1 TSS region, this might also be another explanation for the 

reduced gene expression at MACC1. 
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Figure 4.5 MACC1 region integrated analyses indicate a CTCF binding 
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loss caused boundary loss in KO cells. A. Hi-C heatmaps in MACC1 region in 

Vec_Con and KO cells revealed a FIRE loss (genomic region: chr7:19,762,370-

20,589,669, visualized by Juicebox (J. T. Robinson et al., 2018), coverage 

normalization is used, 8 as the color number setting). B. RT-qPCR results showed 

an MACC1 downregulation in the KO1 clone. C. TCGA-LAML DNMT3A 

mutated patient cases show a lower expression of MACC2 compared with 

DNMT3A wild-type cases. D. Integrated map with tracks visualized in UCSC 

genome browser (Kent et al., 2002) in MACC1 region (genomic region: 

chr7:19,762,370-20,589,669). (Note: RT-qPCR experiments in this figure were 

conducted by Ms. Judy Shao, a Ph.D. student at the Cancer Science Institute who 

did a Ph.D. rotation in in Dr. Melissa Fullwood’s lab. CRISPR knock out, Hi-C, 

ChIP-Seq, and RNA-Seq experiments in this figure were performed by my 

colleague Dr Deepak Babu) 

 

4.4 DNMT3A Loss also Leads to Alterations in 

Chromatin Loops, CTCF Bindings, Histone 

Modifications, and Expression of ARID5B. 

As we have observed two FIREs altered in the KO clone, we attempted to 

figure out whether chromatin loops alterations can be observed. As our loop and 

TAD comparison shown in Figure 4.3A & B, there are more loop alterations in 

KO cells compared with TADs. During the manual curation of Ms. Judy 

Xiaoman Shao and Dr. Deepak Babu, a candidate with loss of loops was found in 

AT-Rich Interactive Domain-Containing Protein 5B (ARID5B) region.  
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ARID5B is one of the genes in the AT-rich interaction domain (ARID) family, a 

family of DNA binding protein, which will modulate chromatin structure 

(Gregory, Kortschak, Kalionis, & Saint, 1996; Herrscher et al., 1995). ARID5B 

plays an important role in transcription modulation by recruiting PHF2 in the 

target gene region (P. Wang et al., 2020). A Single Nucleotide Polymorphism 

(SNP) in ARID5B was reported to be influential in Acute Lymphoblastic 

Leukemia (ALL) (Reyes-León et al., 2019; Tao et al., 2019), childhood leukemia 

(Emerenciano et al., 2014), and male promyelocytic leukemia (J. Zhou et al., 

2019). Downregulated ARID5B is associated with leukemia relapse (P. Wang et 

al., 2020). Taken together, alterations in ARID5B might be important for myeloid 

leukemia.  

We observed the loss of two chromatin loops loss with CTCF loss in the 

ARID5B region (Figure 4.6A & D), and loss of H3K27Ac enhancers and 

H3K4Me3 peaks and broad domains, as well as gain of H3K27Me3 silencers at 

the TSS region which formed a bivalent region (Figure 4.6D). ARID5B has also 

listed in Vec_Con specific loops associated genes but has been filtered out of the 

differential expressed gene list due to low expression. Dr. Deepak Babu also 

designed the RT-qPCR and confirmed the downregulation of ARID5B in both KO 

clone 1 and clone 2 (Figure 4.6B). ARID5B is also downregulated in clinical 

DNMT3A mutated cases compared with DNMT3A wild-type cases (Figure 4.6C).  

We suggest that CTCF loss caused the loss of two loops and these two loops 

facilitated the interaction of the TSS of ARID5B with H3K27Ac enhancers and 

H3K4Me3 broad domains in Vec_Con to maintain high expression. Loss of 

active signals of histones and gain of silencer signal could lead to the decrease of 
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ARID5B gene expression levels. 

As ARID5B can also modulate other gene expression levels (P. Wang et al., 

2020), and it can influence chromatin structure (Gregory et al., 1996; Herrscher et 

al., 1995), we suggest that ARID5B might be a gene that was directly affected by 

DNMT3A loss which further influence the landscape of 3D genome architecture 

and expression profile in myeloid leukemia, thus leading to indirect effects of 

DNMT3A loss. 
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Figure 4.6 ARID5B region integrated analyses indicate two chromatin 
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loops loss caused three gene expression level changes in KO cells. A. Hi-C 

heatmaps in ARID5B region in Vec_Con and KO cells revealed two chromatin 

loops loss (genomic region: chr10:61,120,715-62,877,928, visualized by Juicebox 

(J. T. Robinson et al., 2018), coverage normalization is used, 8 as the color 

number setting). B. RT-qPCR results showed an ARID5B downregulation in the 

KO1 clone. C. TCGA-LAML DNMT3A mutated patient cases show a lower 

expression of ARID5B compared with DNMT3A wild-type cases. D. Integrated 

map with tracks visualized in UCSC genome browser (Kent et al., 2002) in 

ARID5B region (genomic region: chr10:61,120,715-62,877,928). (Note: RT-

qPCR, CRISPR knock out, Hi-C, ChIP-Seq and RNA-Seq experiments in this 

figure were performed by my colleague Dr Deepak Babu) 

 

4.5 Summary 

In summary, we found two FIREs lost in the PLOD2 and MACC1 region 

and two loops lost in the ARID5B region in DNMT3A knock-out clone, as well as 

other altered epigenetic changes such as CTCF binding and histone marks. All 

these alterations might act together to lead to lower gene expression levels of 

these three genes. ARID5B might also lead to cause further alterations in gene 

expression and chromatin structure modulation in myeloid leukemia, as ARID5B 

is an epigenetic regulator. This, and other mechanisms, may contribute to the 

widespread dysregulated gene expression seen in the DNMT3A knock-out clone. 

The dysregulated gene expression and altered epigenetic factors in DNMT3A 
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might be reasons why DNMT3A mutated cases in AML usually show a poorer 

outcome as compared with wild-type AML. 
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5. Conclusions and Future Directions 

5.1 Conclusions 

In this thesis, we asked two questions: (1) whether Topologically 

Associating Domains (TADs) and chromatin loops are dysregulated in AML 

compared with normal haematopoietic cells, and (2) whether DNMT3A mutations 

lead to dysregulated TADs and chromatin loops in AML. 

To answer the first question, we examined the 3D genome architecture of 

AML clinical samples by Hi-C experiments compared with normal 

haematopoietic stem cells and figured out that there are differences in chromatin 

interactions between AML and normal haematopoietic stem cells, and many 

altered chromatin interactions are associated with oncogenes. Going further, we 

found the heterogeneous presence of MEIS1 FIRE as an example of altered 

chromatin interactions that correlated with MEIS1 expression. We also used a 

K562 model to perform CRISPR investigation of the MEIS1 FIRE region by 

removing a CTCF binding site at the FIRE border to investigate the mechanisms 

behind the MEIS1 FIRE in modulating the MEIS1 expression. We proposed a 

mechanism that two subtypes of MEIS1 FIRE might exist in AML patients and 

FIRE can facilitate the MEIS1 promoter interaction with enhancers, which further 

influence the MEIS1 expression, MYC expression, enhancer strength, and cell 

growth. 

For the second question, we first analyzed the AML clinical RNA-Seq data 

in the TCGA online database, to compare the DNMT3A mutant and wild type and 
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figure out the differences in gene pairs correlations. By dividing gene pairs into 

same domain pairs and cross boundary pairs and checking the gene correlations, 

we observed the features of dysregulated boundaries. Then we used the K562 cell 

line as a model to mimic the DNMT3A mutation by CRISPR knockout of 

DNMT3A. Through an integrated analysis of Hi-C, ChIP-Seq of CTCF, 

H3K27Ac, H3K27Me3, and H3K4Me3 and RNA-Seq in DNMT3A CRISPR 

knock out K562 cells compared with vector control cells, we identified three 

examples of dysregulated chromatin interactions: PLOD2, MACC1, and ARID5B. 

Two FIRE regions and two loops were lost in these three examples, along with 

gene expression level change and alterations of epigenetic landscapes. 

Through the research work completed above, we concluded these key 

points:  

1. Chromatin interactions including FIRE, loops, and TADs tend to be 

altered in AML compared with normal stem cells, and these altered 

loops are associated with oncogenes.  

2. MEIS1 FIRE is heterogeneously present in AML patients. 

3. A CTCF binding site at the MEIS1 FIRE is essential for facilitating the 

chromatin interaction between MEIS1 promotor with enhancers and 

modulation of enhancer intensities. 

4. Loss of a CTCF binding site at the MEIS1 FIRE will induce many 

cellular changes such as gene expressional changes and cell growth 

changes. 

5. DNMT3A is required for the maintenance of TAD boundaries. 

6. DNMT3A knockout in K562, the myeloid leukemia cell line, will lead 
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to chromatin interaction changes, altered epigenetic landscape, and 

gene expression changes. 

7. PLOD2, MACC1, and ARID5B regions were affected by DNMT3A 

loss, and showed altered chromatin interactions, CTCF binding, histone 

modifications, an gene expression levels. MACC1 and ARID5B were 

also downregulated in DNMT3A mutant AML patient samples 

compared with DNMT3A wild-type patients. 

 

5.2 Discussion 

In this thesis, we investigated the 3D genome organization in AML clinical 

samples compared with normal samples and in the DNMT3A CRISPR knock-out 

K562 cells versus vector control cells. From this work, we found out that AML 

samples, and DNMT3A loss of function, lead to chromatin interaction alterations. 

In this discussion, I will address the technical limitations we faced, unsolved 

problems in our research, interesting phenomena we found, and possible 

therapeutic strategies based on our findings. 

5.2.1 Limitations of Hi-C Technique and Analysis 

In this thesis, we used Hi-C to study chromatin interactions. The reason we 

choose Hi-C is that the Hi-C technique can detect the chromatin interactions in 

the whole genome, and we wished to investigate the complete 3D genome 

organization maps in our research questions. Compared with other “C” 

techniques, such as 4C and 5C, Hi-C indeed was the best choice for our works to 
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detect possible dysregulated chromatin interactions. However, it still has some 

limitations.  

First is its high cost, both in terms of experimental cost and analysis cost. 

To detect the whole genome chromatin interactions, Hi-C requires a very deep 

sequencing depth, especially in the clinical samples. In our case, 300,000,000 of 

Hi-C contact reads were the minimum requirement if we want to reach the 10kb 

resolution. To obtain this Hi-C contact number, at least 2◊150bp 1,000,000,000 

reads are required as the input for clinical samples due to the duplicates and 

mapping quality filtering. In other word, ~100◊sequencing depth for each base 

is required (300◊1,000,000,000 base pairs, divided by the genome length 

3,088,269,832 (hg38.p2), equals to 97.14). Cell line Hi-C is less technically 

challenging, but ~30◊sequencing depth is also needed.  

Such deep sequencing will generate large data files, which will take up 

storage space for hard disks ~1Tb per sample to store raw data and metadata. To 

analyze these data, the hardware requirement is also crucial. Taking the software 

Juicer as an example, the ideal settings are >= 4 cores (min 1 core) and >= 64 GB 

RAM (min 16 GB RAM). When calling loops by HiCCUPS, Graphics Processing 

Unit (GPU) is also required (N. C. Durand, M. S. Shamim, et al., 2016). If the 

researcher only has a workstation or personal computer with limited hardware 

settings, the analysis of high-resolution Hi-C data could be a tough challenge. 

Even with a good server, it takes days or weeks per sample for a single analysis 

step. For the current research, Hi-C is still an expensive and irreplaceable tool for 

studying 3D genome organization. However, in the future, we hope that with 
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further technical optimization, the costs of Hi-C can be reduced.  

The second limitation is the limitations in the algorithms. Even though there 

are a variety of algorithms to call different scales of chromatin interactions such 

as TAD and loops, the unsolved problem for these algorithms is the accuracy. 

False-positive and false negative predictions make it difficult to get accurate 

comparisons between samples. Manual curation for these false positives and false 

negatives is highly labor-intensive as usually thousands of results will be 

reported. Moreover, as TADs are  hierarchical structures, there is no gold 

standard for TAD definition in computational terms (Dali & Blanchette, 2017).  

Some of the TAD calling algorithms do not report overlapping TADs (e.g., 

TopDom and HiCseg) (Shin et al., 2016) (Lévy-Leduc et al., 2014) while some of 

the algorithms use an overlapping list to identify TAD hierarchies (e.g., 

arrowhead and TADtree) (Rao et al., 2014) (Weinreb & Raphael, 2016). The 

questions of “what is the statistical definition for TADs and sub-TADs?”, “What 

are the typical sizes of TADs” and “What should be the exact statistical 

characteristics to determine the boundaries of TAD?”, have yet to be resolved. 

 

5.2.2 Difficulties in Clinical Research in AML  

In this thesis, we carried out the clinical sample study comparing AML 

versus normal, and we faced some difficulties in the clinical research. 

The first ddifficulty is the heterogeneity of AML. AML is a highly 

heterogeneous disease with many different subtypes (Horibata et al., 2019; Ley et 
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al., 2013; S. Li, Mason, & Melnick, 2016; Swaminathan et al., 2018), making 

genetic and epigenetic research difficult. In our work, we figured out that the 

MEIS1 FIRE is heterogeneously present in AML patients. However, due to the 

heterogeneity of AML, to understand this phenomenon better, we would require 

more clinical samples, and here we faced the second problem - the difficulty to 

acquire samples. 

Clinical samples are always rare for research due to many reasons. For 

example, the patients might not be willing to provide samples for study, or the 

sample quality might not be suitable for sequencing, or the storage of samples 

cannot perform well, etc. The samples collected from patients usually have a 

limited cell amount, which makes it difficult to carry out integrated analysis in 

many aspects. In our case, the Hi-C, ChIP-Seq, and RNA-Seq integrated analysis 

could only be carried out in total bone marrow samples without CD34+ sorting 

due to the limited number of cells. Also, despite these efforts, we were still left 

with several samples that lacked RNA-Seq or ChIP-Seq.  

In addition, due to the heterogeneity of AML, and the limited sample 

numbers, it is difficult to research specific mutations. For example, for our study, 

when we planned to study DNMT3A mutation, we failed to acquire a DNMT3A 

mutated clinical sample, even though we obtained a total of eight AML clinical 

samples for testing. Thus, we could only mimic the mutation in the K562 cell 

line.  

Clinical research is important for therapeutic advances, and we hope that 

with further improvements in terms of applying integrated epigenetic and RNA-
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Seq methods to clinical samples, more of these limitations can be overcome. 

 

5.2.3 Limitations of Different Cell Lines as the Study Model of 

MEIS1 FIRE loss as well as DNMT3A loss 

When we tried to seek out an alternative way to study the MEIS1 FIRE and 

DNMT3A mutation, we decided to use cell lines for our analyses due to the 

limitations of clinical research. We considered leukemia cell lines including HL-

60, THP-1, and K562. 

HL-60 is an Acute promyelocytic leukemia cell line, but unfortunately, it 

does not appear likely to have the MEIS1 FIRE (Figure 3.5). Thus, it is not 

suitable for the MEIS1 FIRE CRISPR study. Although THP-1 has a weak MEIS1 

FIRE, it is not amenable for CRISPR studies, because THP-1 cells cannot tolerate 

growth in single-cell colonies and need the proximity of other cells to grow. HL-

60 also has this problem. According to several tries by my colleagues and other 

researchers in Cancer Science Institute, THP-1 and HL-60 usually die quickly 

after CRISPR transfection and single-cell sorting. Thus, we finally chose K562. 

However, K562 is a Chronic Myelogenous Leukemia (CML) cell line. Even 

though K562 is a leukemia cell line and also of the myeloid lineage, we do not 

know whether K562 will reflect the same effects in AML or not. Thus, further 

studies need to be applied to verify the discoveries in our works. 
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5.2.4 Unsolved Problems in MEIS1 FIRE Region 

For the MEIS1 FIRE region, we gave a proposed mechanism on how the 

FIRE modulates MEIS1 expression and figured out that two subtypes (with and 

without FIRE) might exist in AML. But there are still some questions that need to 

be answered. 

First, why has the FIRE disappeared in some of the AML patients? Based 

on the current understanding that CTCF is essential for maintaining chromatin 

interactions (Hansen et al., 2017; Phillips & Corces, 2009; Rao et al., 2014), and 

the finding that CTCF is anticorrelated with DNA methylation (Phillips & 

Corces, 2009; H. Wang et al., 2012), one possible answer might be the DNA 

methylation level change caused CTCF loss of FIRE. To confirm this answer, 

bisulfite sequencing is needed to test the DNA methylation levels, as well as 

CTCF ChIP-Seq to investigate whether CTCF binding is lost. 

Another question is, why is there stronger H3K27Ac enhancer intensity in 

AML? Maybe some epigenetic factors which control H3K27Ac levels have been 

altered in AML. We need to explore the changes in epigenetic factors through 

RNA-Seq. Changes in DNA methylation level may also be the reason, as 

H3K27Ac is found to be strongly anticorrelated with DNA methylation (Kundaje 

et al., 2015). Again, to test this assumption, bisulfite sequencing is needed. 

 

5.2.5 MEIS1 and HOXA9 Co-expression 

MEIS1 and HOXA9 co-expression has been widely studied for years in 

leukemia, and aberrant co-expression will induce AML (Thorsteinsdottir, Kroon, 
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Jerome, Blasi, & Sauvageau, 2001). During our research on MEIS1 FIRE, I have 

also engaged in the bioinformatics analyses of research in the relations between 

MEIS1 FIRE and HOXA9. Since the discovery is not related to the thesis 

hypothesis, and most of the work has done by my colleague Dr. Benny Wang 

Zhengjie, I did not put this section into the thesis. But it is still an interesting 

topic to discuss (B. Wang et al., 2021).  

We found that a super-enhancer heterogeneously presented in AML patients 

which interacted with HOXA9 promoter by a chromatin loop. ChIP-qPCR 

experiments in THP-1 show that MEIS1 protein can bind to MEIS1 promoter, 

HOXA9 promoter, MYC promoter, and this super-enhancer region. HOXA9 

protein can bind to these regions as well. This might suggest that MEIS1 and 

HOXA9 co-express by binding to each promoter and enhancer to regulate their 

expressions, which forms a positive feedback loop. Once one of them is 

overexpressed due to the appearance of super-enhancers, their expression will be 

highly elevated in myeloid leukemia. Loss of MEIS1 FIRE will largely reduce 

both of their expressions. We have proposed a schematic of mechanisms in 

Figure 5.1.  

In this part, the remaining question is: why is the super-enhancer 

heterogeneously present in HOXA9? We inferred that super-enhancer loss may be 

because of the MEIS1 FIRE loss, but more investigations should be carried out to 

confirm our assumptions and to explain why the MEIS1 FIRE can control the 

super-enhancer. 
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Figure 5.1 Proposed schematic of the mechanisms leading to the 

heterogeneous expression of MEIS1 and HOXA9 in different sub-types of 

AML (Note: This figure was produced by my supervisor Dr. Melissa Jane 

Fullwood) 
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5.2.6 The Relationships Between DNMT3A, Histone Marks and 

CTCF Binding 

We have observed altered histone modification and CTCF binding profile in 

DNMT3A knock-out K562 cells, raising several questions. For instance, how does 

DNMT3A influence the histone marks? Previous works found that DNMT3A and 

TET1 can help the depositions of H3K27Me3 in bivalent regions (Gu et al., 

2018), but in our case, when DNMT3A was knocked out, we found that an 

H3K27Me3 is gained to form a bivalent region in the PLOD2 region (Figure 

4.4). One study showed that CTCF binding can remove H3K27Me3 (Weth et al., 

2014), which might be the reason why the H3K27Me3 mark was gained in this 

region as the CTCF binding was lost there.  

And for the CTCF binding, the three altered chromatin interaction regions 

all presented CTCF binding loss. DNMT3A knockout leads to mainly reduced 

DNA methylation, which as we inferred, should result in more CTCF binding. 

The possible explanation for this might be that DNMT3A does not function by 

itself only and other DNA methylases - DNMT1, DNMT3B, DNMT3L also play 

an important role in DNA methylation. The question of how these epigenetic 

factors change or have compensatory roles after DNMT3A knockout remains to 

be explored.  

 

5.2.7 The Role of PLOD2 and ARID5B in Leukemia 

During our K562 DNMT3A study, we found three interesting regions: 
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PLOD2, MACC1, and ARID5B. These three genes are all found to be related to 

cancer previously (Emerenciano et al., 2014; Ge et al., 2015; Gjaltema et al., 

2015; Reyes-León et al., 2019; Stein et al., 2009), while interestingly we found 

PLOD2 overexpressed in glioma, cervical and liver cancer, which indicate 

overexpression of PLOD2 might facilitate cancer formation and/or progression.  

However, in our study, PLOD2 showed overexpression in a few DNMT3A 

wild-type clinical samples, while the level of PLOD2 in DNMT3A mutant 

remains low. We do not know what is the impact of down regulation of PLOD2 

on leukemia progression, but if DNMT3A mutation can control the PLOD2 

expression by influencing the PLOD2 FIRE, and if further work indicates that 

downregulation of PLOD2 is therapeutically valuable for leukemia patients, then 

this consequence of the DNMT3A mutation might be beneficial for leukemia 

patients. If we can study more on this mechanism, new drugs can be designed to 

mimic DNMT3A influences on PLOD2 FIRE to treat PLOD2 overexpressed 

cancers. Alternatively, existing drugs could be repurposed. For example, 

decitabine and azacytidine are drugs used to treat Acute Myeloid Leukemia 

patients and these drugs work by inhibiting DNA methyltransferases (Kantarjian 

et al., 2012). 

Another interesting gene is the ARID5B, like DNMT3A, ARID5B can also 

modulate other gene expression levels (P. Wang et al., 2020), and it can influence 

chromatin structure (Gregory et al., 1996; Herrscher et al., 1995), we inferred that 

ARID5B may be another epigenetic factor under the control of DNMT3A, which 

will cause further indirect effect of DNMT3A loss. This might be a reason why 

DNMT3A mutant AML usually shows a poor outcome. To address this 

assumption, more analysis between DNMT3A, ARID5B and other gene 
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expressions needs to be done. 

 

5.2.8 Possible Therapeutic Strategies Suggested from Our 

Works 

Through our works in AML clinical samples and DNMT3A knock-out K562 

cells, several possible therapeutic ways can be suggested. First, as we conclude that 

chromatin interactions tend to be altered in AML and DNMT3A mutated AML, it 

would be useful to develop strategies to target chromatin interactions.  

In our DNMT3A knock-out cells, we found the histone modification profile 

changed. In addition to using DNA methylation drugs to target AML(Contieri, 

Duarte, & Lazarini, 2020), our discovery may suggest that drugs that target histone 

modifications might also be useful. (give some examples of drugs that target 

histone modifications) 

Last, as we inferred that ARID5B might be controlled by DNMT3A and may 

cause further indirect effect of DNMT3A loss if this assumption can be confirmed, 

drugs targeting ARID5B might also be another treatment strategy. 

 

5.3 Future Directions 

5.3.1 Our Future Plans  

We hypothesized that DNMT3A might control the chromatin interactions by 

controlling the DNA methylation level. We also thought that CTCF binding 
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alterations caused by DNA methylation change will be the factor of dysregulated 

chromatin interaction. However, we lack a DNA methylation profile of DNMT3A 

loss samples. Thus, in future work, bisulfite sequencing will be used to fill in this 

piece of the puzzle. 

Another work that needs to be improved is the ChIP-Seq analysis. We 

noticed that some of the ChIP-Seq with an unbalanced sequencing depth (e.g., 

CTCF and H3K27Me3), and we will try to balance them to get a more accurate 

comparison between KO and Vec_Con. 

We are also planning to establish some software from our used scripts in our 

study to help other researchers to reduce the bioinformatics work. The initial plan 

about this includes: (1) Establish a software of gene correlation analysis to 

indicate boundary dysregulation, and (2) Establish a software of loop comparison, 

which can figure out specific loops associated genes and further overlap with 

differential expressed genes and enhancer/silencer altered genes. 

In the future, we are also interested to investigate epigenetic drugs in Acute 

Myeloid Leukemia for their impact on chromatin interactions, for example, 

DOT1L inhibitors. DOT1Li treated THP-1 cells have already been sequenced for 

Hi-C and RNA-Seq, and further analysis will be applied to seek out the impact of 

DOT1Li in myeloid leukemia. 

 

5.3.2 Suggestions for Future Research 

As we discussed in section 5.2.1, there are plenty of algorithms that can 

predict the chromatin interactions, but the poor accuracy, the ambiguous 
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statistical standard of TAD, and the hardware requirement hinder chromatin 

interaction analyses. We hope that in the future, we will have a better 

understanding of 3D genome organization, and a better sense of how a TAD 

should be statistically termed. With these improvements, we can optimize the 

algorithms of TAD/loop call. 

In terms of clinical research, we hope that more resources of a clinical 

database of Hi-C can be established. We now have the TCGA database as a 

cancer clinical sample data resource, which includes whole genome sequencing 

and RNA profile, but no epigenetic database including Hi-C data and ChIP-Seq 

of cancer clinical samples has been established. By establishing such a database 

in the future, cancer clinical research will become easier. 

We noticed that current drugs for cancer treatment are mainly influenced by 

methylations, histone marks, or targeting a specific gene. We suggest that in the 

future, we can try to develop drugs that target chromatin interactions. In addition, 

we can investigate how existing drugs affect chromatin interactions. 

We also have some suggestions based on the problems we found in our 

study. As we found that our ChIP-Seq seems to have an unbalanced sequencing 

depth, but if the ChIP enriched signal differs a lot in the original sample, it is hard 

to clarify what kind of reason may have caused this unbalance. Thus, we suggest 

using the spike-in strategy (Egan et al., 2016) when quantificational comparisons 

between groups are needed. 
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5.4 Overview 

Taken together, our work provided a better understanding of chromatin 

interactions alterations and gene expression changes in AML and DNMT3A mutant 

myeloid leukemia. Our research indicates the relevance of chromatin interactions in 

cancer biology, and suggests that drugs that modulate epigenetic, such as DNA 

methylation, may lead to changes in chromatin interactions. In future research, we 

are interested to develop therapeutic strategies for altering the dysregulated 

chromatin interactions seen in AML through epigenetic drugs. 
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